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Abstract

We study binary linear codes C obtained from the quadric Veronese embedding

of P3 in P9 over F2. We show how one can find the higher weight spectra of

these codes. Our method will be a study of the Stanley-Reisner rings of a series

of matroids associated to each code C.
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1. Introduction

Projective Reed-Müller codes is a class of error-correcting codes that has

attracted much attention over the last decades. To find the code parameters,

including the generalized Hamming weights, has been a difficult task. In [16]

one found these parameters for projective Reed-Müller codes of order two. For

projective Reed-Müller codes of higher order important contributions have ap-

peared quite recently. See [2] and [4], where one gives results that have wide

applications in determining such generalized Hamming weights for these codes.

For affine Reed-Müller codes there are recent nice results in [1]. To find the
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more refined information lying in higher weight spectra of projective Reed-

Müller codes is more difficult, when their orders are higher than one, and to our

knowledge there are few results about the higher weight spectra of these codes.

Let C(a, b)q be the (projective Reed-Müller) code with a generator matrix

Gq with n = qb + · · · + q + 1 columns that are coordinate vectors of the n

points of the image of Pbq by the a-uple embedding of Pbq into P
b(b+3)

2
q . Such a

matrix is only defined up to permutations of the columns, and multiplications

of each column by a non-zero constant, but such operations are irrelevant for

the properties that we will study.

In an earlier paper [9] one studied the simplest projective Reed-Müller codes

of order at least 2, namely the codes C(2, 2)q over Fq. In the present paper we

study the code C(2, 3)2, defined by the Veronese embedding of P3
q into P9

q. Here

the 15 columns of the generator matrix G correspond to the points of P3, and

each row is obtained by taking an element of a basis for the vector space of all

homogeneous polynomials of degree 2 in 4 variables, and evaluating it at the

points of P3. We will compute the higher weight spectra of this code, that is the

quantities A
(r)
w that give the number of subcodes of C(2, 3)2 of dimension r and

support weight w. In addition we are interested in the equivalent data of the

generalized weight polynomials Pj(Z): for each j = 0, · · · , n the value Pj(2
m)

is the number of codewords of weight j in the extension code C(2, 3)2 ⊗Fq F2m .

A key result is Corollary 17 which tells exactly what information it is essential

to extract from these resolutions.

Our method will consist of finding the N-graded resolutions of the Stanley-

Reisner rings of a series of 10 matroids derived from the parity check matroid M

of the code. We will compute them by identifying some sets of points in P3
2 with

some geometric properties (how many quadrics pass through these points). The

N-graded Betti numbers of these resolutions will give us the generalized weight

polynomials Pj(Z), which are equivalent to the higher weight spectra.

The purpose of this article is mainly to reveal the power of the sketched

method, and demonstrate how it can be used, through this example C(2, 3)2.

The method summarized above is exemplified through the concrete calculations
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in Sections 3-6, giving rise to Theorems 21 and 22. The binary code in the

present paper has only 210 = 1024 elements, and we have been able to verify

Theorem 21 using more straightforward methods. We hope nevertheless that,

together with a better general understanding of the geometry of quadrics in P3,

our method will give the higher weight spectra of C(2, 3)q for general q.

2. Definitions and notation

Let q be a prime power and let νq be the Veronese map that maps P3 into

P9 over Fq, i.e. (x, y, z, w) is mapped to (x2, xy, xz, xw, y2, yz, yw, z2, zw,w2),

and let V = Vq be the image, a non-degenerate smooth threefold of degree 8.

The cardinality |V | of V is |P2| = q3 + q2 + q+ 1. Fix some order for the points

of V , and for each such point, fix a coordinate 10-tuple that represents it. Let

Gq be the (10× (q3 + q2 + q + 1))− matrix, whose columns are the coordinate

10-tuples of the points of V , taken in the order fixed.

Definition 1. The Veronese code C(2, 3)q is the linear [q3+q2+q+1, 10]q-code

with generator matrix Gq.

For q = 2 we thus get a [15, 10]-code C(2, 3)2. This is the code which will

be the main object of interest in this paper.

2.1. Hamming weights, spectra and generalized weight polynomials

Definition 2. Let C be a [n, k] linear code over Fq. Let c = (c1, · · · , cn) ∈ C.

The support of c is the set

Supp(c) = {i ∈ {1, · · · , n} : ci 6= 0}.

Its weight is

wt(c) = |Supp(c)|.

Similarly, if T ⊂ C, then its support and weight are

Supp(T ) =
⋃
c∈T

Supp(c) and wt(T ) = |Supp(T )|.
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Important invariants of a code are the generalized Hamming weights, introduced

by Wei in [15]:

Definition 3. Let C be a [n, k] linear code over Fq. Its generalized Hamming

weights are

di = min{wt(D) : D ⊂ C is a subcode of dimension i}

for 1 6 i 6 k.

We also have

Definition 4. Let C be a [n, k] linear code over Fq. For 1 6 w 6 n and

1 6 r 6 k, the higher weight spectra of C are

A(r)
w = |{D : D subcode of C of dimension r and weight w}| .

In particular, we have

dr = min{w : A(r)
w 6= 0}.

In [12], one shows that the number of codewords of a given code extended

to a field extension of a given weight can be expressed by polynomials (the

generalized weight polynomials). More precisely, if C is a [n, k]-code over Fq,

then the code C(i) = C ⊗Fq Fqi for i > 1 is a [n, k] code over Fqi . Then

Theorem 5. Let C be a [n, k]-code over Fq. Then, there exists polynomials

Pw ∈ Z[Z] for 0 6 w 6 n such that

∀i > 1, Pw(qi) =
∣∣∣{c ∈ C(i) : wt(c) = w

}∣∣∣ .
In [11], one gives a relation between the higher weight spectra and the polyno-

mials defined above, namely

Theorem 6. Let C be a [n, k] code over Fq. Let 0 6 w 6 n. Then

Pw(qm) =

m∑
r=0

A(r)
w

r−1∏
i=0

(qm − qi).
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2.2. Matroids, resolutions and elongations

There are many equivalent definitions of a matroid. We refer to [13] for a

deeper study of the theory of matroids.

Definition 7. A matroid is a pair (E, I) where E is a finite set and I is a set

of subsets of E satisfying

(R1) ∅ ∈ I

(R2) If I ∈ I and J ⊂ I, then J ∈ I

(R3) If I, J ∈ I and |I| < |J |, then ∃j ∈ J − I such that I ∪ {j} ∈ I.

The elements of I are called independent sets. The subsets of E that are not

independent are called dependent sets, and inclusion minimal dependent sets are

called circuits.

For any X ⊂ E, its rank is

r(X) = max{|I| : I ∈ I, I ⊂ X}

and its nullity is n(X) = |X| − r(X). The rank of the matroid is r(M) = r(E).

Finally, for any 0 6 i 6 |E| − r(M),

Ni = {X ⊂ E : n(X) = i}.

If C is a [n, k]-linear code given by a (n−k)×n parity check matrix H, then

we can associate to it a matroid MC = (E, I), where E = {1, · · · , n} and X ∈ I

if and only if the columns of H indexed by X are linearly independent over Fq.

It can be shown that this matroid is independent of the choice of the parity

check matrix of the code, and we may thus call it the parity check matroid of

C.

Let K be a field. We can associate to M a monomial ideal IM in S =

K[{Xe}e∈E ] defined by

IM =<Xσ : σ 6∈ I >

where Xσ is the monomial product of all Xe for e ∈ σ. This ideal is called the

Stanley-Reisner ideal of M and the quotient SM = S/IM the Stanley-Reisner
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ring associated to M . We refer to [6] for the study of such objects. As described

in [8] the Stanley-Reisner ring has minimal N and Nn-graded free resolutions

0← SM ← S ←
⊕
j∈N

S(−j)β1,j ←
⊕
j∈N

S(−j)β2,j ← · · · ←
⊕
j∈N

S(−j)β|E|−r(M),j ← 0

(1)

and

0← SM ← S ←
⊕
α∈Nn

S(−α)β1,α ← · · · ←
⊕
α∈Nn

S(−α)β|E|−r(M),α ← 0.

In particular the numbers βi,j and βi,α are independent of the minimal free

resolution and of the field K, and are called respectively the N-graded and Nn-

graded Betti numbers of the matroid. We have

βi,j =
∑

wt(α)=j

βi,α.

We also note that β0,0 = 1.

As a consequence of a more general result by Peskine and Szpiro ([14],

Lemma on p. 1422]):

Theorem 8. Let M be a matroid of rank r = n − k on a set of cardinality n.

Then the N-graded Betti numbers of RM satisfy the equations

k∑
i=0

n∑
j=0

(−1)ijsβi,j = 0, (2)

for 0 6 s 6 k − 1, where by convention, 00 = 1.

The k equations (2) from Theorem 8 are often called the Herzog-Kühl equations,

and have a particularly nice form and solution when the resolution is pure. See

also [3] for more on this topic.

Definition 9. For a matroid M we define φj(M) =
∑k
i=0(−1)iβi,j .

Remark 10. The equations (2) can be written:

n∑
j=0

jsφj(M) = 0, (3)
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and it is clear that these equations are independent in the variables φj(M) with

a Vandermonde coefficient matrix.

Also, as explained in [8, Theorem 1], we can compute the Nn-graded Betti

number βi,α as the Euler characteristic of a certain matroid. If M is a matroid

and σ is a subset of the ground set E, then Mσ is the matroid with independent

sets

I(Mσ) = {τ ∈ I(M) : τ ⊂ σ} .

Moreover, the Euler characteristic of M is

χ(M) =

|E|∑
i=0

(−1)i−1 |{τ ⊂ E : |τ | = i and τ 6∈ I}|

=

|E|∑
i=0

(−1)i |{τ ⊂ E : |τ | = i and τ ∈ I}|

The following result ([8, Theorem 1], last part) will be very useful:

Theorem 11. Let M be a matroid on the ground set E. Let σ ⊂ E. Then

βn(σ),σ = (−1)r(σ)−1χ(Mσ).

In particular, for any circuit σ, β1,σ = 1.

We will also frequently use ([8, Theorem 1], first part):

Theorem 12. Let C be a [n, k]-code over Fq. The N-graded Betti numbers of

the parity check matroid MC satisfy: βi,j 6= 0 if and only if there exists an

inclusion minimal set in Ni of cardinality j. In particular, βi,X = 0 if and only

if X is not inclusion minimal in Ni. Furthermore di = min{j : βi,j 6= 0}.

Remark 13. Because of this result we will call the term
⊕

j∈N S(−j)βi,j in (1)

”the nullity i part of the (graded) resolution (1)”.

Definition 14. Let M = (E, I) be a matroid, with |E| = n, and let l > 0.

Then, the l-th elongation of M is the matroid M (l) = (E, I(l)) with

I(l) = {I ∪X : I ∈ I, X ⊂ E, |X| 6 l}.
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The l-th elongation of M is a matroid of rank min{n, r(M) + l}.

We denote by N
(l)
i be the set of subsets X of E with n(l)(X) = i. The

following result is trivial, but useful:

Proposition 15. N
(l)
i = Ni+l, for i = 0, · · · , n − r(M) − l. In particular the

inclusion minimal elements of N
(l)
i are the same as the inclusion minimal ele-

ments of Ni+l.

The main theorem of [10] gives an expression of the generalized weight poly-

nomials of a code to the Betti numbers of its associated matroid and its elon-

gations, namely:

Theorem 16. Let C be a [n, k] code over Fq.

Pw(Z) =
∑
l>0

(φw(M (l))− φw(M (l−1)))Zl, (4)

where φw(M (−1)) = 0.

Corollary 17. For a linear code C the following 3 pieces of information are

equivalent:

(a) The knowledge of the generalized weight polynomials Pw(Z), for all w.

(b) The knowledge of the A
(r)
w for all r and w.

(c) The knowledge of the φ
(l)
j for MC for all l and j.

Proof. That (a) and (b) are equivalent follows directly from Theorem 6. The-

orem 16 gives the equivalence between (a) and (c).

Remark 18. The knowledge of the φj(M
(l)) for all j, l is then enough to find

the higher weight spectra. We will nevertheless have to compute some of the

individual β
(l)
i,j in order to find all the φj(M

(l)).

Let us now focus on C(2, 3)q There is a one-to-one correspondence between

words of this C(2, 3)q and affine equations for quadrics in P3
q, and under this

correspondence, the support of a codeword correspond to points of P3
q that
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are not on the quadric. Thus, the circuits of MC correspond to quadrics with

inclusion maximal point sets over Fq.

From [7, Tables 15.4 and 15.9], we see that the set of quadrics in P3
q (where by

a quadric we will here mean a non-zero quadric polynomial up to a multiplicative

constant) is:

Proposition 19. In P3
q the q10−1

q−1 quadrics are as follows.

� There are (q2 + 1)(q + 1) double planes, each with q2 + q + 1 points,

� There are 1
2q(q

2 + q + 1)(q2 + 1)(q + 1) pairs of two distinct planes, each

pair with 2q2 + q + 1 points

� There are 1
2q

4(q3 − 1)(q2 + 1) hyperbolic quadrics, each with q2 + 2q + 1

points.

� There are 1
2q

4(q3 − 1)(q2 − 1) elliptic quadrics, each with q2 + 1 points.

� There are q2(q3 − 1)(q2 + 1)(q + 1) cones, each with q2 + q + 1 points.

� There are 1
2q(q

3 − 1)(q2 + 1) lines, each with q + 1 points.

In order to compute the Betti numbers of the parity check matroid of

C(2, 3)q, we will need the following lemma. An analogous result was proved

in [9, Lemma 1] for the codes C(2, 2)q and the proof for our codes C(2, 3)q is

identical:

Lemma 20. For any X ⊂ E = {1, · · · , q2 + q + 1} the nullity n(X) is equal

to the dimension over Fq of the affine set of polynomial expressions that define

quadrics that pass through all the points of E −X.

3. The resolution of the Stanley-Reisner ring of the parity check ma-
troid

From now on, we set q = 2, C = C(2, 3)2, and M = MC . The rest of the

paper will mainly consist of finding the right input in order to be able to utilize

the formulas (4). In this section we will simply find the φj(M
(0)) = φj(M).
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Later, in Section 7, these values will be used (via (4)), in combination with

other input, to find the Pw(Z).

By Proposition 19 the codewords of C have weights 4, 6, 8, 8, 10, 12, depend-

ing on whether the complements of their supports are plane pairs, hyperbolic

quadrics, cones, double planes, elliptic quadrics or lines, respectively. Further-

more, by [16] we have:

d1 = 4, d2 = 6, d3 = 7, d4 = 8, d5 = 10,

d6 = 11, d7 = 12, d8 = 13, d9 = 14, d10 = 15.

We then have rk(M) = 15− 10 = 5.

We will identify minimal elements of Ni (the sets of nullity i) for i = 1, · · · 10,

and then use Theorem 12 to obtain the structure of the minimal resolutions of

the Stanley-Reisner ring ofM . Since d1 = 4, allX with |X| ≤ 3 are independent,

so |X| ≥ 4 for all (minimal) X in N1. Moreover n(X) ≥ 7 − 5 = 2 for all X

with |X| ≥ 7, so the only candidates or minimal elements in N1 are those X

with |X| = 4, 5, 6. For |X| = 4, the only elements of N1 are the 105 supports of

codewords that are complements of plane pairs. There are no minimal elements

of N1 of cardinality 5 since their complements are necessarily contained in a pair

of planes. Hence, by Theorems 12 and 11, the nullity 1 part of the resolution

(1) is

S(−4)105 ⊕ S(−6)β1,6 ,

where the S(−6)-part is due to codewords of weight 6 with supports that are

complements of hyperbolic quadrics that are not contained in plane pairs. Let

us compute this number that we will need for the first elongation. From [7,

Table 15.8], any plane intersects an hyperbolic quadric in either 3 or 5 points

(in the latter case, the plane is a tangent plane at one point, and the intersection

between the quadric and the plane is 2 lines intersecting at the tangent point).

So, if the hyperbolic quadric (with 9 points) is contained in a pair of planes,

these planes have to be tangent planes, say Π1 and Π2, at distinct points P1

and P2 respectively. Let L
(1)
1 , L

(1)
2 , L

(2)
1 , L

(2)
2 be the lines Π1 ∩ H and Π2 ∩ H
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respectively. Then L
(i)
1 ∩ L

(i)
2 = Pi. Let L = Π1 ∩ Π2. If L is one of the lines

L
(i)
j , then H ∩ (Π1 ∪ Π2) has 7 points. If not, L intersects the lines L

(i)
j in at

least 2 distinct points (otherwise P1 = P2), so that H ∩ (Π1 ∪Π2) has at most 8

points. In any case, this shows that H is not included in Π1 ∪Π2, and b is thus

equal to the number of hyperbolic quadrics, that is β1,6 = 280.

Let us analyze the nullity 2 term. Since d2 = 6, all X with |X| ≤ 5 are out

of the question. Since rk(M) = 5, all X with |X| ≥ 8 have n(X) ≥ 8 − 5 = 3,

so they are also out of the question. Hence we are left with X with |X| = 6, 7,

and by Theorem 12 again the nullity 2 term is of type S(−6)c1 ⊕S(−7)c2 (here

c1, c2 could be zero a priori).

In a perfectly analogous manner we argue for the higher nullity terms. Hence

the entire resolution looks like:

0← S/I ← S ← S(−4)105⊕S(−6)280 ← S(−6)c1⊕S(−7)c2 ← S(−7)c3⊕S(−8)c4

← S(−8)c5 ⊕ S(−9)c6 ← S(−10)c7 ← S(−11)c8 ← S(−12)c9

← S(−13)c10 ← S(−14)c11 ← S(−15)c12 ← 0.

Remark 10 gives 10 independent equations in 10 variables (the φj(M)), and

we get

φj(M) = −770, 3960,−31185, 86240,−135828, 136080,−88935, 36960,−8910, 952

for 6 6 j 6 15. Moreover, from φ6(M) = −770, we get that

c1 = β2,6 = 280 + 770 = 1050. (5)

4. Resolution for the first elongation matroid

From Proposition 15 and Theorem 12, using the shape of the resolution of

M , we see that the resolution associated to M (1) looks like:

0← S/I(1) ← S ← S(−6)e1 ⊕ S(−7)e2 ← S(−7)e3 ⊕ S(−8)e4

← S(−8)e5 ⊕ S(−9)e6 ← S(−10)e7 ← S(−11)e8 ← S(−12)e9
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← S(−13)e10 ← S(−14)e11 ← S(−15)e12 ← 0.

Remark 10 gives 9 independent equations in 10 variables (the φj(M
(1))). In

order to compute them all, we need to compute one, say e1. This corresponds

to minimal elements of N
(1)
1 = N2 of cardinality 6. We will now see that these

elements corresponds to (complements) of either a plane and a line outside or

four lines through a point, not three of them in the same plane. The way to do

it is that we show that these two configurations are minimal in N2, compute the

number of such configurations, their local Betti numbers, and show that there

can’t be any other, since we already know β2,6.

If X is minimal in N2, this means that E − X is a set of points, maximal

(for inclusion) with the properties that there are exactly 2 independent conics

passing through them by Lemma 20. Since d2 = 6, we already know that any

set of cardinality 6 has nullity at most 2, so that we just need to show that these

configurations have at least 2 independent conics passing through them. This

will also show that X is minimal in N2. So consider first a plane Π together

with a line L not contained in Π. The union has clearly 9 points. And if Π1

and Π2 are two distinct planes passing through L, then the conics Π ∪ Π1 and

Π ∪ Π2 are clearly independent, and containing Π ∪ L. Then, in the case 4

lines L1, L2, L3, L4 passing through a point, not 3 of them in the same plane,

it has also clearly 9 points. If n(X) = 1, this means that the unordered pair

of planes ((L1, L2), (L3, L4)) and ((L1, L3), (L2, L4)) are the same, which shows

that either L1, L2, L3 or L1, L2, L4 lie on the same plane. Now, we compute the

”local” contribution β2,X for these 2 configurations, using Euler characteristic

(Theorem 11). In both cases, since n(X) = 2, all subsets of cardinality 6 and 5

are dependent, and there are exactly 1 and 6 of them. All subsets of cardinality

3 or less are independent, so we just have to see how many subsets of cardinality

4 are dependent. In the first case, there are exaclty 3 (corresponding to the 3

planes passing through the line L). In the second case, also 3, corresponding to

the plane pairs ((L1, L2), (L3, L4)), ((L1, L3), (L2, L4)) and ((L1, L4), (L2, L3)).
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In both cases then, we have

β2,X = −1 + 6− 3 = 2.

Finally, it is not difficult to see that there are 15 · (35 − 7) = 420 plane-line

configurations, and 15 · 7·6·4·14! = 105 configurations of 4 lines through a point,

not 3 of them in the same plane. Since

2 · 420 + 2 · 105 = 1050 = β2,6,

this shows us that the minimal elements of N2 are exactly the configurations

listed above, and that there are 525 of them. Thus −φ6(M (1)) = β
(1)
1,6 = 525,

and we get that

φj(M
(1)) = −1710, 26145,−96040, 186102,−220500, 166110,−78120, 21015,−2478

for 7 6 j 6 15.

5. Resolutions for the second and third elongation matroids

In a similar way as in the previous section, the resolutions for the second

and third elongation matroids look like

0← S/I(2) ← S ← S(−7)f1 ⊕ S(−8)f2 ← S(−8)f3 ⊕ S(−9)f4 ← S(−10)f5

← S(−11)f6 ← S(−12)f7 ← S(−13)f8 ← S(−14)f9 ← S(−15)f10 ← 0.

and

0← S/I(3) ← S ← S(−8)g1 ⊕ S(−9)g2 ← S(−10)g3 ← S(−11)g4

← S(−12)g5 ← S(−13)g6 ← S(−14)g7 ← S(−15)g8 ← 0.

respectively. In both cases, Remark 10 gives one independent equation less than

the number of variables (the φw(M (i)) for i = 2, 3). So, as for the first elonga-

tion, we will find the number of minimal elements of N
(2)
1 = N3 of cardinality

7 and N
(3)
1 = N4 of cardinality 8 respectively.
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Elements of N2 of cardinality 7 are necessarily complements of intersections

of 2 quadrics. The only way to achieve that is to intersect 2 pair of planes,

a plane and a hyperbolic quadric, or 2 hyperbolic quadrics, all of them with

8 points in the intersection. As before, in order for an hyperbolic quadric to

intersect with a pair of planes in 8 points, the planes have to be tangent planes,

and the intersection is 4 lines. From [5, E.1], the intersection of 2 hyperbolic

quadrics with 8 points in the intersection is also 4 lines. Both intersections

can thus be seen also as the intersection of 2 pairs of planes (with no points

common to all the planes). It is not difficult to see that these configurations are

minimal in N2, and that they are 105·12·8
2·2 = 2520 such. Thus, β

(1)
1,7 = 2520, and

β
(1)
2,7 = 2520− 1710 = 810.

As we did in the previous section, we identify 2 types of sets of points, that

together with the contribution of their local Betti numbers, fills β
(1)
2,7 , so that we

can compute β
(2)
1,7 . These sets are on the one hand a plane with a point outside,

and on the other hand 8 points so that no 3 of them are collinear. There are

120 sets of the first type, and 15 of the second. It is also easy to compute that

β
(1)
2,X = 6 for each of these sets. This leads us to

φ7(M (2)) = −β(2)
7,1 = −(120 + 15) = −135,

and together with Remark 10,

φj(M
(2)) = −5355, 36260,−100548, 154350,−142590, 79380,−24660,−3297

for 8 6 j 6 15.

For the second resolution of this section, it is not hard to find that the

minimal elements of N4 of cardinality are the complements of planes. This says

that

φ8(M (3)) = −β(3)
1,8 = −#{planes of P3

2} = −15,

which, together with Remark 10 gives

φj(M
(3)) = −4900, 26712,−60900, 74550,−51660, 19200,−2988

for 9 6 j 6 15.
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6. Resolutions for the remaining elongation matroids

The remaining elongation matroids are easier to deal with, since they have

pure (and actually linear) resolutions. This means that the equations from

Remark 10 are indepedent, with the same number of unknwons. So that we get

0← S/I(4) ← S ← S(−10)3003 ← S(−11)13650 ← S(−12)25025

← S(−13)23100 ← S(−14)10725 ← S(−15)2002 ← 0,

0← S/I(5) ← S ← S(−11)1365 ← S(−12)5005

← S(−13)6930 ← S(−14)4290 ← S(−15)1001 ← 0,

0← S/I(6) ← S ← S(−12)455 ← S(−13)1260 ← S(−14)1170 ← S(−15)364 ← 0,

0← S/I(7) ← S ← S(−13)105 ← S(−14)195 ← S(−15)91 ← 0,

0← S/I(8) ← S ← S(−14)15 ← S(−15)14 ← 0,

0← S/I(9) ← S ← S(−15)← 0,

and

0← S/I(10) ← S ← 0.

7. The generalized weight polynomials and higher weight spectra

In this section, we are finally able to compute the generalized weight poly-

nomials and the higher weight spectra of C:
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Theorem 21. The code C(2, 3)2 has the following non-zero generalized weight

polynomials

P0(Z) = 1,

P4(Z) = 105Z − 105,

P6(Z) = 525Z2 − 1295Z + 770,

P7(Z) = 135Z3 + 1575Z2 − 5670Z + 3960,

P8(Z) = 15Z4 + 5340Z3 − 31500Z2 + 57330Z − 31185,

P9(Z) = 4900Z4 − 41160Z3 + 132300Z2 − 182280Z + 86240,

P10(Z) = 3003Z5 − 29715Z4 + 127260Z3 − 286650Z2 + 321930Z − 135828,

P11(Z) = 1365Z6 − 15015Z5 + 74550Z4 − 215250Z3 + 374850Z2 − 356580Z

+136080,

P12(Z) = 455Z7 − 5460Z6 + 30030Z5 − 99575Z4 + 217140Z3 − 308700Z2

+255045Z − 88935,

P13(Z) = 105Z8 − 1365Z7 + 8190Z6 − 30030Z5 + 74760Z4 − 131040Z3

+157500Z2 − 115080Z + 36960,

P14(Z) = 15Z9 − 210Z8 + 1365Z7 − 5460Z6 + 15015Z5 − 29925Z4 + 43860Z3

−45675Z2 + 29925Z − 8910,

P15(Z) = Z10 − 15Z9 + 105Z8 − 455Z7 + 1365Z6 − 3003Z5 + 4990Z4

−6285Z3 + 5775Z2 − 3430Z + 952.

In particular the generalized Hamming weights of C(2, 3)2 are given by d1 =

4, d2 = 6, d3 = 7, · · · , d10 = 15.

Proof. This is a direct consequence of Theorem 16 and the computations done

in Sections 3-6.

Finally, from Theorem 6, we get the higher weight spectra.
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Theorem 22. The non-zero higher weight spectra of the code C(2, 3)2 are

A
(1)
4 = 105 A

(1)
6 = 280 A

(1)
8 = 435 A

(1)
10 = 168

A
(1)
12 = 35 A

(2)
6 = 525 A

(2)
7 = 2520 A

(2)
8 = 6405

A
(2)
9 = 156805 A

(2)
10 = 29610 A

(2)
11 = 38640 A

(2)
12 = 39830

A
(2)
13 = 26880 A

(2)
14 = 11865 A

(2)
15 = 2296 A

(3)
7 = 135

A
(3)
8 = 5565 A

(3)
9 = 323405 A

(3)
10 = 147000 A

(3)
11 = 479850

A
(3)
12 = 1135470 A

(3)
13 = 1840020 A

(3)
14 = 1845600 A

(3)
15 = 861735

A
(4)
8 = 15 A

(4)
9 = 4900 A

(4)
10 = 63378 A

(4)
11 = 497700

A
(4)
12 = 2650900 A

(4)
13 = 9436140 A

(4)
14 = 20484030 A

(4)
15 = 20606924

A
(5)
10 = 3003 A

(5)
11 = 70980 A

(5)
12 = 899535 A

(5)
13 = 7046760

A
(5)
14 = 32555145 A

(5)
15 = 68646228 A

(6)
11 = 1365 A

(6)
12 = 52325

A
(6)
13 = 968310 A

(6)
14 = 9721470 A

(6)
15 = 43000517 A

(7)
12 = 455

A
(7)
13 = 25410 A

(7)
14 = 599340 A

(7)
15 = 5722510 A

(8)
13 = 105

A
(8)
14 = 7455 A

(8)
15 = 166691 A

(9)
14 = 15 A

(9)
15 = 1008

A
(10)
15 = 1
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