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ABSTRACT

Turbulent motions due to flux-driven thermal convection are investigated by numerical simulations and stochastic modeling. Tilting of con-
vection cells leads to the formation of sheared flows and quasi-periodic relaxation oscillations for the energy integrals far from the threshold
for linear instability. The probability density function for the temperature and radial velocity fluctuations in the fluid layer changes from a
normal distribution at the onset of turbulence to a distribution with an exponential tail for large fluctuation amplitudes for strongly driven
systems. The frequency power spectral density has an exponential shape, which is a signature of deterministic chaos. By use of a novel decon-
volution method, this is shown to result from the presence of Lorentzian pulses in the underlying time series, demonstrating that exponential
frequency spectra can also persist in turbulent flow regimes.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0012017., s

I. INTRODUCTION

Buoyancy-driven motion of a fluid confined between hori-
zontal plates is a cornerstone of fluid mechanics and has many
areas of application, including astrophysics, industry, laboratory
fluid dynamics, meteorology, oceanography, and plasma physics.
Due to its rich dynamics, the Rayleigh–Bénard convection model
has become a paradigm to investigate pattern formation, nonlinear
phenomena, and scaling relationships.1–6

For sufficiently strong forcing, oscillating fluid motion, and
chaotic behavior results. An intrinsic property of deterministic chaos
is an exponential frequency power spectral density for the fluc-
tuations. This has been observed in numerous experiments and
model simulations of fluids and magnetized plasmas.7–27 Recently,
the exponential spectrum has been attributed to the presence of
uncorrelated Lorentzian pulses in the temporal dynamics.29–43 This
includes the Lorenz model, which describes chaotic dynamics in
Rayleigh–Bénard convection.23–30

In two-dimensional thermal convection, it is well known that
the convection rolls in a horizontally periodic domain can give
rise to the spontaneous formation of strong mean flows through a
tilting instability.44–63 For strongly driven thermal convection,

turbulent states develop where the sheared mean flows tran-
siently suppress the fluctuating motions, resulting in quasi-periodic
relaxation oscillations.57–74 Similar relaxation oscillations have also
been identified in turbulent plasmas.75–86 This dynamics has been
described in terms of a predator–prey system, with a conservative
transfer of kinetic energy from the fluctuating to the mean motions
and a viscous dissipation of the latter.60–63,87–90 The velocity and tem-
perature fluctuations throughout the fluid layer are strongly inter-
mittent with positive skewness and flatness moments. The probabil-
ity density functions have exponential tails, resembling the state of
hard turbulence in Rayleigh–Bénard convection.91–100

In this contribution, it is for the first time demonstrated that
these properties of irregular fluid motion can be present simulta-
neously. The fluctuation statistics in a state of turbulent convection
are investigated by numerical simulations of a fluid layer driven by
a fixed heat flux.60,101–103 Time-series analysis and stochastic mod-
eling of the temperature field are presented. It is demonstrated
that the frequency power spectral density of the fluctuations has
an exponential tail. A novel deconvolution algorithm is applied,
showing that the temperature signal can be described as a super-
position of Lorentzian pulses. Hence, the well-known properties of
deterministic chaos can persist even in turbulent flow regimes.
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The outline of this paper is as follows: In Sec. II, we present
the model equations and briefly discuss the shear flow generation
mechanism. In Sec. III, the basic results from the numerical simula-
tions are presented. The fluctuation statistics are presented in Sec. IV
and in Sec. V; it is demonstrated that the exponential frequency
power spectral density is due to the presence of Lorentzian pulses
in the time series. The conclusions and a summary of the results are
presented in Sec. VI. The Appendix presents a derivation of the fre-
quency power spectral density due to a periodic train of pulses with
fixed shape and duration.

II. MODEL EQUATIONS

Considering two-dimensional fluid motions in a gravitational
field opposite to the x-axis, the model equations describing thermal
convection are given by

( ∂
∂t

+ ẑ ×∇ψ ⋅ ∇)Θ = κ∇2Θ, (1a)

( ∂
∂t

+ ẑ ×∇ψ ⋅ ∇)Ω +
∂Θ
∂y
= μ∇2Ω, (1b)

where Θ describes the temperature, ψ is the stream function for the
two-dimensional fluid velocity field v = ẑ × ∇ψ, and Ω = ẑ ⋅ ∇ × v= ∇2ψ is the associated fluid vorticity. The temperature perturba-
tions are normalized by the temperature difference △T over the
fluid layer in hydrostatic equilibrium, length scales are normalized
by the fluid layer depth d, and time is normalized by the ideal inter-
change rate.101–103 The normalized heat diffusivity κ and viscosity μ
are related to the Rayleigh and Prandtl numbers by R = 1/κμ and
P = μ/κ, respectively. The temperature in hydrostatic equilibrium is
given by Θ = 1 − x. A similar mathematical model also describes
fluctuations in non-uniformly magnetized plasmas where the sym-
metry axis z corresponds to the direction of the magnetic field and
the effective gravity is due to magnetic field curvature.50–54,57–63

In many cases, the fluid is confined in a geometry where x cor-
responds to the radial coordinate and y the azimuthal direction. In
the following, we therefore refer to the x- and y-direction as radial
and azimuthal, respectively. All dependent variables are accordingly
assumed to be periodic in the azimuthal direction, for example, Θ(y)
=Θ(y + L). In the radial direction, the boundary conditions are taken
to be

ψ(x = 0) = ψ(x = 1) = 0, (2a)

Ω(x = 0) = Ω(x = 1) = 0, (2b)

∂Θ
∂x
(x = 0) = −1, Θ(x = 1) = 0. (2c)

The latter condition corresponds to a fixed conductive heat flux
through the fluid layer.60,101–103 It should be noted that the free-slip
boundary conditions imply that there is no convective heat transport
through the radial boundaries since vx = −∂ψ/∂y = 0 for x = 0, 1.

For the azimuthally periodic system, it is convenient to define
the profile of any dependent variable as its azimuthal average and
denote this by a zero subscript. For the temperature field Θ, this is
given by

Θ0(x, t) = 1
L ∫

L

0
dyΘ(x, t). (3)

The motivation for separating profiles and spatial fluctuations is
simply that the latter are the components mediating the radial con-
vective heat flux, while the former describes the modifications of the
equilibrium state profiles.

Similar to the temperature profile, an average azimuthal flow is
also defined by

v0(x, t) = 1
L ∫

L

0
dy

∂ψ
∂x
= ∂ψ0

∂x
. (4)

Due to the conservation of net circulation of the fluid layer, the mean
azimuthal flow is intrinsically sheared and corresponds to differen-
tial rotation of the fluid layer. Such flows develop due to a tilting
instability of the convective cells.44–63 Since the symmetric flow v0
is intrinsically incapable of mediating radial convective transport,
it is natural to separate the kinetic energy into two components
comprised by the fluctuating motions and the sheared mean flows,
defined, respectively, by

K(t) = ∫ dx
1
2
[∇(ψ − ψ0)]2, U(t) = ∫ dx

1
2
v2

0. (5)

The evolution of these energy integrals are readily derived from the
mean vorticity equation,60–63

dK
dt
= ∫ dx vxΘ −Π − μ∫ dx (Ω −Ω0)2, (6)

dU
dt
= Π − μ∫ dxΩ2

0, (7)

where the kinetic energy transfer rate from the fluctuating motions
to the sheared mean flows is defined by

Π = ∫ dx v0
∂

∂x
(vxvy). (8)

As expected, the convective transport drive for the kinetic energy
integral in Eq. (6) appears only for the fluctuating motions, while vis-
cous dissipation damps kinetic energy in either form. The radial con-
vective transport of azimuthal momentum evidently yields a conser-
vative transfer of kinetic energy between the fluctuating motions and
the azimuthally mean flows.

Numerical simulations have shown that turbulent convection
can display predator–prey-like relaxation oscillations for the energy
integrals,57–62 which can be interpreted as follows: Initially, the con-
vective energy grows exponentially due to the primary instability.
When the fluctuation level becomes sufficiently large to sustain the
sheared mean flows against viscous dissipation, this flow energy
grows at the expense of the convective motions. The spatial fluc-
tuations are effectively stabilized at a sufficiently strong shear flow.
Kinetic energy is, however, continuously transferred to the mean
flows, leading to an almost complete suppression of the fluctua-
tion energy and, thus, the radial convective transport. Subsequently,
there are no fluctuating motions to sustain the sheared flows, which
hence decay on a viscous time scale. Finally, as the mean flows
become sufficiently weak, the convective energy again starts to grow
and the cycle repeats. As will be seen from the numerical simula-
tions presented in Sec. III, this leads to a strong modulation of the
fluctuations.
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III. TURBULENT CONVECTION

The temperature and vorticity equations are solved numerically
by combining a finite difference and a Fourier–Galerkin method for
spatial discretization using an Arakawa scheme for the exact con-
servation of energy and enstrophy. The resolution of the simulation
domain is set to 128 × 128 grid points. For time discretization, a
third order stiffly stable integrator is used83,104,105 with a time step of
Δ t = 5 × 10−3. Time series of the dependent variables are recorded
at radially equidistant points in the simulation domain and analyzed
in the following.

For sufficiently high Rayleigh numbers, numerical simulations
of the two-dimensional thermal convection model result in turbu-
lent states.60–62 Previously, it has been shown that close to the onset
of turbulent convection, for R = 4 × 105 and P = 1, the radial velocity
fluctuations in the center of the domain are normally distributed.60

Increasing the Rayleigh number to R = 2 × 106 results in a proba-
bility distribution function for the radial velocity fluctuations with
exponential tails.60–62 Previous investigations have shown that the
large-amplitude fluctuations are associated with coherent structures
propagating through the fluid layer. Here, we present a detailed anal-
ysis of the fluctuation statistics in the latter parameter regime (with R
= 2 × 106, P = 1, corresponding to κ = μ = 7.07 × 10−4 and L = Lx = Ly
= 1), resembling the state of hard turbulence in thermal convection
experiments.91–100

The time-averaged profile of the temperature and the relative
fluctuation level are presented in Fig. 1. Here and in the following,
angular brackets indicate a time average. The turbulent motions sig-
nificantly reduce the heat confinement in the fluid layer, reducing
the temperature on the left boundary from unity in the case of only
heat conduction to less than 0.343 on average in the turbulent state.
There is a significant profile gradient in the center of the fluid layer.
The relative fluctuation level increases drastically from the center of
the domain and radially outward, reaching more than 0.5 close to
the outer boundary.

The intermittency of the fluctuations is quantified by the skew-
ness moment, defined by SΘ = ⟨(Θ − ⟨Θ⟩)3⟩/Θ3

rms, and the flat-
ness moment, defined by FΘ = ⟨(Θ − ⟨Θ⟩)4⟩/Θ4

rms − 3, where the
variance is given by Θ2

rms = ⟨(Θ − ⟨Θ⟩)2⟩. Both the skewness and
flatness moments vanish for a normally distributed random vari-
able. The profile of these moments for the temperature fluctuations
is presented in Fig. 2. This shows that the probability density for
the fluctuations is positively skewed and flattened in the outer part

FIG. 1. Time-averaged profile of the temperature and the relative fluctuation level.

FIG. 2. Time-averaged profile of the skewness and flatness moments for the
temperature fluctuations.

of the simulation domain, suggesting frequent appearance of large-
amplitude bursts in the time series at a fixed point in the fluid layer.
The moments are largest at x = 3/4, where the skewness is 1.81, while
the flatness moment is 5.82. This demonstrates a strong departure
from a normal distribution of the fluctuations.

The time-averaged profile of the stream function is presented
in Fig. 3 together with the root mean square fluctuation level of the
radial velocity. The time-averaged stream function has a near half-
period sinoidal variation over the fluid layer and vanishes at the
boundaries. This implies an average counter-streaming mean flow
in the fluid layer, which vanishes in the center of the domain and is
strongest close to the boundaries. However, the radial velocity fluc-
tuation vanishes at the boundaries due to the stress-free boundary
conditions. The velocity fluctuation level has a local minimum in the
center of the domain. At x = 3/4, the mean flow is 0.155, resulting
in a vertical transit time of ∼6.46 in non-dimensional units. There
are some changes in this transit time since the mean flow velocity
changes in time, as discussed later.

The evolution of the kinetic energy in the fluctuating and mean
motions for a short part of the simulation run is presented in
Fig. 4. This shows the quasi-periodic relaxation oscillations resem-
bling predator–prey type dynamics, where kinetic energy is trans-
ferred from the fluctuating motions to the sheared flows and sub-
sequently dissipated by viscosity. The auto-correlation function for
the energy integrals is presented in Fig. 5. The mean flow energy

FIG. 3. Time-averaged profile of the stream function and the root mean square
value of the radial velocity. The dashed line shows a half-period sine function fit to
the stream function profile.
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FIG. 4. Evolution of the kinetic energy in fluctuating, K, and mean flows, U, showing
predator–prey-like relaxation oscillations.

auto-correlation function has a damped oscillatory behavior with
a period of ∼125, corresponding to the characteristic separation
between bursts in the energy integrals. The auto-correlation func-
tion for the energy in the fluctuating motions has a decay time of∼25, which is attributed to the characteristic duration of the bursts
in the kinetic energy seen in Fig. 4. This has been confirmed by con-
ditional averaging of large-amplitude events in the energy integral
time series.

In Fig. 6, the normalized temperature fluctuations Θ̃ = (Θ− ⟨Θ⟩)/Θrms recorded in the center of the fluid layer, at x = 1/2,
and in the outer part, at x = 3/4, are presented. The evolution of
the temperature during the onset of a turbulent period is shown
in Fig. 7. This shows the presence of a structure moving radially
through the fluid layer as well as azimuthally due to a sheared mean
flow. Throughout the fluid layer, the fluctuations are strongly inter-
mittent with large bursts during the time of strong activity in the
energy of the fluctuating motions presented in Fig. 4. In the outer
part of the fluid layer, the fluctuations have a nearly periodic oscil-
lation in the periods between the bursts in the energy integrals. This
is due to the sheared mean flow with a transit time of ∼6.46. In
the following, the statistical properties of these fluctuations will be
elucidated.

FIG. 5. Auto-correlation function for the kinetic energy in fluctuating and mean
flows.

FIG. 6. Time series of the temperature fluctuations at x = 1/2 and x = 3/4.

IV. FLUCTUATION STATISTICS

The probability density function for the temperature fluctua-
tions measured at x = 1/2 and x = 3/4 is presented in Fig. 8. As
expected from the radial variation of the skewness and kurtosis
moments, the distributions have elevated tails compared to a normal
distribution. For x = 3/4, the distribution is strongly skewed and has
a nearly exponential tail toward large values. This is demonstrated
by the solid line in Fig. 8, which is the best fit of a convolution of a
normal distribution and a Gamma distribution. Similarly, the prob-
ability distribution functions for the radial velocity fluctuations are
presented in Fig. 9 together with the best fit of a convolution between
a Laplace and a normal distribution. This clearly demonstrates the
presence of exponential tails in the probability densities.

The frequency power spectral densities for the temperature
signals measured at x = 1/2 and x = 3/4 are presented in semi-
logarithmic plots in Figs. 10 and 11. From Fig. 10, with logarithmic
scaling of the frequency, it is clear that the frequency spectrum has
a pronounced maximum at the linear frequency f = 8 × 10−3, which
corresponds to the characteristic time between bursts in the energy
integrals discussed above. Some higher harmonics of this frequency
peak are also readily identified. The frequency spectrum for x = 3/4
also has a peak at ∼f = 0.2, corresponding to the vertical transit time
by the average mean flow.

When the spectra are plotted with a logarithmic scaling for
the power as presented in Fig. 11, it is clearly seen that fre-
quency power spectral density has an exponential decay on the form
exp(−4πτd∣ f ∣), with the characteristic time τd = 0.637 for x = 1/2
and τd = 0.382 for x = 3/4. In Sec. V, it will be demonstrated that the
exponential spectrum is due to the presence of Lorentzian pulses in
the time series and that the slope corresponds to the duration time
of these pulses. Similar exponential frequency spectra are also found
for the stream function, radial velocity, and vorticity field. However,
the slope, and therefore the duration time of the underlying pulses,
varies for the different quantities.

V. LORENTZIAN PULSES

An exponential frequency power spectrum is a signature of
deterministic chaos and has been attributed to Lorentzian-shaped
pulses in the underlying time series. In order to demonstrate this,
consider the stochastic process that gives a superposition of pulses
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FIG. 7. Exemplary snapshots of the tem-
perature field Θ, showing the evolution
at the onset of a turbulent period. The
black crosses show the radially equidis-
tant positions where time series are
recorded.

with fixed shape ϕ and duration τd,106–117

ΦK(t) = K(T)∑
k=1

Akϕ( t − tkτd
), (9)

where Ak and tk are pulse amplitude and arrival time for the pulse
labeled k, respectively, and K(T) is the number of pulses present in
a time interval of duration T. In the case of Lorentzian pulses, the
function ϕ is given by39–41

ϕ(θ) = 1
π

1
1 + θ2 . (10)

In the case of uncorrelated Lorentzian pulses, it was recently shown
that the frequency power spectral density is exponential, and for the
normalized variable Φ̃ = (Φ − ⟨Φ⟩)/Φrms, it is given by39,40

SΦ̃( f ) = 2πτd exp(−4πτd∣ f ∣).
In the Appendix, it is shown that for a periodic sequence of
Lorentzian pulses with fixed duration, the frequency power spec-
trum is a product of the exponential spectrum and a uniform delta
pulse train at frequencies corresponding to multiples of the inverse
periodicity time. In the case of a slight irregularity in the period
between the pulses, the delta peaks in the frequency spectrum with
broaden and have finite amplitude.
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FIG. 8. Probability density function for the normalized temperature fluctuations at
x = 1/2 and x = 3/4. The solid line shows the best fit of a convolution between a
Gamma and a normal distribution.

FIG. 9. Probability density function for the normalized radial velocity fluctuations at
x = 1/2 and x = 3/4. The solid line shows the best fit of a convolution between a
Laplace and a normal distribution.

As shown in Fig. 6, the temperature time series at x = 3/4 can be
separated into parts with nearly periodic oscillations and turbulent
parts with chaotic, large-amplitude fluctuations. An example of sep-
arating these periods is shown in Fig. 12. In Fig. 13, the frequency
power spectral density of the quasi-periodic and turbulent parts is

FIG. 10. Logarithm of the frequency power spectral density for temperature
fluctuations at x = 1/2 and x = 3/4.

FIG. 11. Frequency power spectral density for temperature fluctuations at x = 1/2
and x = 3/4. The dashed lines show the best fit of an exponential function.

shown together with the power spectral density of the entire signal. It
is clear that the power spectrum of the entire signal is well described
by the power spectrum of the turbulent parts and that they have the
same time scale, τd = 0.382. The black dashed line gives an exponen-
tial spectrum with 4 times the duration time of the whole spectrum,
which closely resembles the power spectrum of the quasi-periodic
parts of the signal. In the following, this is used as an estimated
duration time of the periodic part.

In order to demonstrate that the temperature time series can
be described as a superposition of Lorentzian pulses, a deconvolu-
tion algorithm using a Lorentzian pulse with fixed duration time
estimated from the power spectral density is applied. This gives the
pulse amplitudes and arrival times, which can be used to reconstruct
the original signal. The superposition of pulses with fixed duration
given by Eq. (9) can be written as a convolution between the pulse
function and a train of delta pulses,114,118

ΦK(t) = [ϕ ∗ FK]( t
τd
), (11)

where

FK(t) = K(T)∑
k=1

Akδ( t − tkτd
). (12)

FIG. 12. Example of splitting of temperature fluctuations into quasi-periodic (green)
and turbulent (orange) parts at x = 3/4.
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FIG. 13. Power spectral density of the temperature fluctuations at x = 3/4. The red
line gives the spectrum of the entire time series as shown in Fig. 10, the orange
lines give the spectra of the turbulent parts from Fig. 12, while the green lines give
the spectra of the quasi-periodic parts. The black dashed line gives the prediction
for an exponential spectrum with the periodicity time seen in the raw time series.

The goal is to find the forcing FK(t) and to estimate the pulse ampli-
tudes {Ak}Kk=1 and arrival times {tk}Kk=1 as accurately as possible. In
order to do this, a modified version of the Richardson–Lucy decon-
volution algorithm will be used.118–123 Following this scheme, an
initial guess for FK is made, denoted by F(1)K . The numerical value
of this initial forcing matters little and can be set as some positive
constant or the signal itself. The initial value is updated iteratively,
with the nth iteration given by

F(n+1)
K = F(n)K

D ∗ ϕ̂
F(n)K ∗ ϕ ∗ ϕ̂ , (13)

where ϕ̂(t) = ϕ(−t). Here and in the following, D denotes any of the
simulation data time series discussed above.

The result from the deconvolution algorithm is presented in
Figs. 14 and 15 for representative turbulent and the quasi-periodic
parts, respectively. It is clear that most of the signals are well recon-
structed by a superposition of Lorentzian pulses. As an example,

FIG. 14. Excerpt of turbulent part (orange solid line) and reconstructed signal from
the deconvolution (black dashed line). The dots indicate arrival times and ampli-
tudes of Lorentzian pulses with duration time τd = 0.382. The circular dots give
half the true amplitude value for better comparison with the time series.

FIG. 15. Excerpt of quasi-periodic part (green solid line) and reconstructed signal
from the deconvolution (black dashed line). The dots indicate arrival times and
amplitudes of Lorentzian pulses with duration time τd = 1.528. The circular dots
give half the true amplitude value for better comparison with the time series.

the first peak in Fig. 14 results from a structure of high tempera-
ture moving radially through the fluid layer similar to the structures
shown in Fig. 7. The lift-time of the two-dimensional structure in
Fig. 7 exceeds the duration of the Lorentzian-shaped peak in Fig. 14,
but the single-point recording can be modeled as a compound of
several Lorentzian pulses. The frequency power spectral density of
the reconstructed time series accurately reproduces that from the
numerical simulations as expected. This analysis clearly demon-
strates that the exponential frequency spectra for the temperature
fluctuations in the thermal convection simulations are due to the
presence of Lorentzian pulses in the time series.

VI. DISCUSSION AND CONCLUSIONS

In this contribution, the statistical properties of the temperature
fluctuations in numerical simulations of turbulent thermal convec-
tion have been investigated by time-series analysis and stochastic
modeling. The generation of a sheared mean flow through the fluid
layer results in predator–prey-like dynamics of the energy integrals
and leads to multiple temporal scales in the dynamics. For suffi-
ciently large Rayleigh numbers, a regime corresponding to hard tur-
bulence results with exponential tails in the probability distribution
function for the temperature and velocity fluctuations.

The frequency power spectral density for the fluctuations has
local maxima at frequencies corresponding to bursting in the energy
integral as well as transit time for the mean flow through the fluid
layer. However, when presented in a semi-logarithmic plot, it is clear
that the frequency spectrum has an exponential tail for power den-
sities all the way down to round off errors. A novel deconvolution
method has been used to show that the exponential spectrum is due
to the presence of Lorentzian pulses in the temperature time series.
The time scale for the structures is consistent with the slope of the
exponential frequency spectra.
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APPENDIX: PERIODIC ARRIVALS

In this appendix, the frequency power spectral density for a
superposition of pulses with periodic arrivals is calculated. A super-
position of K pulses with fixed shape and duration, as given by
Eq. (9), can be written as a convolution between the pulse function
ϕ and a train of delta pulses,

ΦK(t) = ∫ ∞
−∞ dθ ϕ( t

τd
− θ)FK(θ), (A1)

where the forcing FK due to the delta pulse train is given by

FK(θ) = K∑
k=1

Akδ(θ − tk
τd
). (A2)

The pulse duration time τd is taken to be the same for all pulses,
and the pulse amplitudes Ak are taken to be randomly distributed
with mean value ⟨A⟩ and variance A2

rms = ⟨(A − ⟨A⟩)2⟩. The pulse
function is assumed to be localized and normalized such that112,115

∫ ∞
−∞ dθ ∣ϕ(θ)∣ = 1.

The frequency power spectral density of a random process
ΦK(t) is defined as

SΦ(ω) = lim
T→∞⟨∣FT[ΦK](ω)∣2⟩, (A3)

where the Fourier transform of the random variable over the domain
[0, T] is defined by

FT[ΦK](ω) = 1√
T

T

∫
0

dt exp(−iωt)ΦK(t). (A4)

Here, ω = 2πf is the angular frequency. Analytical functions that
fall sufficiently rapid to zero, such as the pulse function ϕ, have the
Fourier transform

F[ϕ](ϑ) = ∞
∫−∞ dθ exp(−iθϑ)ϕ(θ) (A5)

and the inverse transform

ϕ(θ) =F−1[F[ϕ](ϑ)](θ) = 1
2π

∞
∫−∞ dϑ exp(iθϑ)F[ϕ](ϑ). (A6)

Note that, here, θ and ϑ are non-dimensional variables, as opposed
to t and ω.

Neglecting end effects in by assuming T/τd ≫ 1, the frequency
power spectral density of the stationary process ΦK is found to be
the product of the power of the pulse function and the power of the
forcing,114

SΦ(ω) = ∣F[ϕ](τdω)∣2 lim
T→∞⟨∣FT[FK( t

τd
)](ω)∣2⟩, (A7)

which is independent of K since the average is over all random vari-
ables. The frequency power spectrum for the forcing FK will now be
calculated for the case of periodic pulses.

The marginal probability density function for the pulse arrival
times when these are periodic with period τp and starting point s,
assuming that the starting time s is known, is

Ptk(tk∣s) = δ(tk − τpk − s). (A8)

Since each arrival is deterministic, the joint distribution of all arrivals
with known starting point is the product of the marginal distribu-
tions,

Pt1 ,...,tK (t1, . . . , tK ∣s) = K∏
k=1

δ(tk − τpk − s). (A9)

To account for the fact that the periodicity but not the actual arrival
time is known, the starting point is randomly and uniformly chosen
in the interval [0, τp],

Ps(s) = {τ−1
p , 0 < s < τp

0, else.
(A10)

The Fourier transform of the forcing is

FT[FK( t
τd
)](ω) = τd√

T

K∑
k=1

Ak exp(−iωtk). (A11)

Multiplying this expression with its complex conjugate and aver-
aging over all random variables give after some calculations, the
frequency power spectrum of the forcing,

lim
T→∞⟨∣FT[FK](ω)2∣⟩ = τ2

d

τp
A2

rms +
τ2

d

τp
⟨A⟩22π

∞∑
n=−∞ δ(τpω − 2πn).

(A12)
According to Eq. (A7), this is to be multiplied by the spectrum of
the pulse function. Thus, the frequency power spectral density for
a superposition of periodic pulses with fixed shape and duration is
given by the sum of the spectrum of the pulse function (due to a ran-
dom distribution of pulse amplitudes and represented by the term
proportional to A2

rms in the above equation) and the spectrum of the
pulse function multiplied by a uniform delta pulse train, also known
as a Dirac comb (represented by the last term in the above equa-
tion proportional to ⟨A⟩2, which vanishes for a symmetric amplitude
distribution).
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