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Abstract

The exhaust of particles and heat in the boundary of contemporary magnetic
confinement experiments remains to this day a major obstacle on the road to
commercially viable fusion energy production. It is recognized, that coherent
structures of hot and dense plasma, called blobs or filaments, are the domi-
nant mechanism for cross-field particle transport. These filaments are created
by plasma turbulence at the outboard midplane and move radially outwards
driven by interchange motions. This leads to high average particle densities
and relative fluctuation levels in the scrape-off layer, which increases plasma-
wall interactions.

Time series of the plasma density measured at a fixed point using either
Langmuir probes or gas puff imaging have shown highly intermittent fluctua-
tions across a variety of devices, plasma parameters and confinement modes.
Recent statistical analysis of measurement data time series has revealed that
the fluctuations are well described as a superposition of uncorrelated exponen-
tial pulses with fixed duration and exponentially distributed pulse amplitudes,
arriving according to a Poisson process.

Due to the complexity of the physics involved in the boundary of fusion
devices, numerical simulations are utilized to gain an accurate description of
scrape-off layer plasmas. This approach requires a validation metric for sim-
ulations of plasma turbulence such as the statistical framework based on fil-
tered Poisson processes. In this thesis, well-established models for scrape-off
layer plasmas are analyzed. These models use two-fluid equations simulating
plasma evolution in the two-dimensional plane perpendicular to the magnetic
field. Time series of the plasma density are measured at a fixed point and their
fluctuation statistics are compared to experimental measurements utilizing the
statistical framework. This includes probability density functions, power spec-
tral densities and conditionally averaged waveforms. In addition, simulations
of a population of seeded blobs are performed in order to study the effects
of blob interactions. It is shown that the fluctuation statistics of single-point
measurements in simple numerical models stand in excellent agreement with
their experimental counterparts. This work thereby sets a new standard and
methodology for validating scrape-off layer turbulence simulations.
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1 | Fluctuations in magnetized
plasmas

Nuclear fusion is the process by which light atomic nuclei fuse together to
form heavier nuclei and smaller by-products, releasing large amounts of energy.
Since the middle of the last century, different strategies to harness fusion energy
have been investigated. At present magnetic confinement is considered the
most promising approach to deliver fusion power in the foreseeable future. To
this day, however, controlling and harnessing nuclear fusion remains one of
the greatest engineering challenges. Magnetically confined fusion requires the
fuel to have enormously high temperatures while the vessel walls must be at
room temperature or lower. The heat exhaust problem has therefore famously
been referred to as “probably the main challenge towards the realization of
magnetic confinement fusion” [1]. A detailed understanding of the intricate
physics involved in the boundary of fusion devices therefore remains crucial in
order to provide fusion energy as a sustainable and CO2 emission free option
for the future energy grid.

This thesis project is concerned with numerical simulations of boundary
plasmas and a statistical analysis of plasma fluctuations. These simulations
require a method of validation with experimental observations. In this thesis,
a recently developed stochastic model for fluctuation statistics is utilized to
identify suitable numerical models for boundary plasmas.

This thesis is structured as follows: This chapter delivers a brief overview
of the current state of knowledge on the boundary of fusion plasmas. The main
emphasis will lie on plasma fluctuations for reasons that will become clear over
the course of this chapter. Chapter 2 is dedicated to the derivation of reduced
fluid models for the boundary plasma, which are used for the numerical sim-
ulations presented in this thesis. Chapter 3 introduces the Filtered Poisson
Process, a phenomenological model which is able to describe all relevant sta-
tistical properties of plasma fluctuations in the boundary region. Chapter 4
delivers a summary of the publications and unpublished manuscripts included

1



2 CHAPTER 1. FLUCTUATIONS IN MAGNETIZED PLASMAS

in this thesis and Chapter 5 provides the conclusion and outlook. The pub-
lished papers and unpublished manuscripts are attached at the end of this
thesis, representing the main contribution of this work.

1.1 Nuclear fusion

Although a multitude of nuclear reactions produces fusion energy, only the
reaction of the hydrogen isotopes Deuterium 2

1D and Tritium 3
1T,

2
1D + 3

1T→ 4
2He (3.5MeV) + 1

0n (14.1MeV), (1.1)

is feasible with the prevailing technology. This reaction produces a helium
particle 4

2He and a neutron 1
0n together with 17MeV of kinetic energy. This

exothermic, single-step reaction has the largest fusion cross section at the low-
est temperatures of all potential reactions. In addition, the low atomic number
results in a lower electrostatic potential that must be overcome, making this the
most promising candidate for fusion power plants. With one in 6420 hydrogen
atoms in sea water, Deuterium can be considered abundant, while the radioac-
tive Tritium must be obtained from breeding of the lithium isotope 6Li, which
can be found in minerals from the Earth’s crust. Due to the high temperature
of approximately 108 K for D-T fusion, no solid vessel could achieve steady-
state confinement at these temperatures. The fuel would instantaneously lose
its heat when colliding with the vessel walls. In order to achieve long enough
energy confinement times, required for producing fusion power in a steady-
state, a different approach has to be adopted. Since all hydrogen particles are
fully ionized at these temperatures, i.e., in a plasma state, the particles can be
confined with magnetic fields [2].

1.2 Magnetic confinement

Magnetic Confinement Fusion (MCF) chooses the approach to use the gyro-
motion of charged particles in a magnetic field to confine the plasma. An array
of cylindrical solenoidal coils creating a uniform magnetic field can confine the
plasma in the radial direction, however charged particles moving along these
field lines can intersect material surfaces at both ends. The simplest method
to mitigate these end losses is to bend the magnetic field to connect the ends,
which results in a torus shape. The resulting inhomogeneity of the magnetic
field due to its curvature and radial gradient, however, complicates plasma
confinement. Since a gyrating particle experiences a stronger magnetic field
on one side of its orbit than the other, it will experience a change in its gyration
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Figure 1.1: Schematic illustration of a tokamak device [3].

radius, resulting in a net drift which is in opposite direction for ions and elec-
trons. These “guiding-center drifts” which are perpendicular to the magnetic
field B and its variation ∇B, create a vertical electric field E. The resulting
fields give rise to another guiding-center drift, the electric or E×B drift, which
moves both negatively and positively charged particles radially outwards. A
toroidal plasma current, induced by a central transformer, creates a poloidal
magnetic field. Introducing this poloidal field results in helical magnetic field
lines, which mitigates this problem since the guiding-center drifts cancel out as
the particles rotate poloidally while following the magnetic field lines. Outer
poloidal field coils are used in addition to shape and position the plasma col-
umn. This concept is known as a tokamak, invented in the 1950s in the Soviet
Union and to this day considered to be the most promising route for plasma
confinement and nuclear fusion. A schematic illustration of the tokamak con-
cept is shown in Fig. 1.1.

Despite the advanced magnetic geometry of tokamak devices which es-
tablish a perfect equilibrium, experimental measurements indicate that large
amounts of particles and heat are still transported across the magnetic flux
surfaces. This transport is caused by plasma turbulence, which is particu-
larly strong at the boundary of the device. All modern tokamak experiments
adopted the “divertor configuration”, which is illustrated in Fig. 1.2. This
configuration is achieved by creating a magnetic null point (X-point) in the
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poloidal plane with a divertor coil carrying a current parallel to the plasma
current. Within this point, the magnetic field lines are closed with the last
closed flux surface (LCFS), often referred to as the separatrix. The outward
region is called the Scrape-Off Layer (SOL), in which the magnetic field lines
intersect the divertor plates. Ideally, all plasma leaking from the core through
the separatrix into the SOL flows down to the divertor plates where it interacts
with the material surfaces, with little to no influence on the fusion process in
the core. The poloidal flux expansion near the X-point increases the distance
of the magnetic field lines to the divertor plates, letting the plasma cool down
before it reaches the material surfaces. Additional precautions, such as tilted
target plates, buffers of neutralized gas in front of the target (divertor detach-
ment) or installing a second divertor above the plasma column (double-null
configuration) are applied in some experiments to reduce the heat flux on the
divertor plates further. Despite all these efforts, plasma turbulence leads to
highly intermittent bursts of particles and heat propagating through the SOL
to the main chamber walls, leading to erosion, damages of sensitive equipment
and the release of impurities into the core plasma, where they may degrade
confinement and create radiative instabilities. An accurate description for the
cross-field transport in the SOL is therefore required in order to predict and
handle plasma and heat exhaust in future devices [2].

1.3 Radial transport in the SOL

Historically, the first attempts to describe cross-field transport in tokamak
plasmas used a simple diffusive model in the SOL [4]. In this case the transport
follows Fick’s law

Γ⊥ = −D⊥
∂n

∂r
, (1.2)

where Γ⊥ stands for the cross-field particle flux, D⊥ is the diffusion coefficient
estimated from the plasma parameters [5], n stands for the plasma density and
r for the radial/cross field dimension. This model, however, fails to account for
experimental observations, requiring significantly higher diffusion coefficients
than expected from classical or Bohm diffusion [6, 7]. Experimental radial
profiles in the SOL could only be reproduced by numerical simulations by
assuming large cross field drifts or high effective diffusion coefficients Deff

⊥ ,
often referred to as “anomalous” diffusion [8]. It was expected that the SOL
is dominated by strong flows parallel to the magnetic field, transporting most
of the plasma to the divertor targets, resulting in exponential profiles with
constant Deff

⊥ . These assumptions were refuted by experimental measurements
such as presented for the TCV tokamak in Fig. 1.3. Here, the variable ρ stands
for the distance to the separatrix and the dashed line indicates the beginning
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Figure 1.2: Schematic illustration of the boundary region of a tokamak in a
divertor configuration [3].

of the wall shadow, the region in which the magnetic field lines interact with
the vessel walls. For the lowest line-averaged densities n a sharp decay in the
density profile is observed close to the separatrix, with a much slower decay
radially outwards. These regions are referred to as the near-SOL for the region
of steep profiles and far-SOL, respectively [10]. For increasing n the break
point between these two regions moves radially inwards, resulting in a long
decay length in the whole SOL, called broadening [11]. This radial variation is
also observed in other tokamak experiments such as Alcator C-Mod, MAST,
NSTX, ASDEX, JET and DIII-D [12–18], and in numerical simulations with
SOL turbulence codes such as ESEL [19]. For a purely diffusive transport this
effect requires a significant radial increase of the effective diffusion coefficient
as indicated in Fig. 1.4 for Alcator C-Mod plasmas, questioning the concept
of purely diffusive transport. In the case of the DIII-D experiment, UEDGE
transport simulations were unable to find any matching diffusion coefficient
[21]. This motivates the introduction of an effective anomalous velocity veff⊥ to
the diffusion model,

Γ⊥ = −Deff
⊥
∂n

∂r
+ veff⊥ n. (1.3)
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Figure 1.3: Time-averaged, radial profile of the particle density normalized
to the separatrix value in the TCV tokamak. The different colored symbols
refer to different line-averaged core plasma densities with the black triangles
referring to the lowest and the red triangles to the highest value. Reprinted
from [9], with permission from IAEA.

For an advective-diffusive transport, however, the particle flux would follow a
linear relationship with the inverse density scale length λn [22] as

Γ⊥
n

= veff⊥ −
Deff
⊥
n

∂n

∂r
= veff⊥ +

Deff
⊥
λn

. (1.4)

In experimental measurements, such as for TCV shown in Fig. 1.5, no linear
relationship can be found. Similar studies on the flux–gradient relation in a
simple ESEL interchange model of the SOL at constant temperatures, shown
in Fig. 1.6, draw an equivalent conclusion [19].

These findings clearly indicate that a different model is needed in order to
describe turbulence and cross-field transport in the SOL adequately.

1.4 Intermittent fluctuations in the SOL

In the process of finding a better model describing plasma transport in the
SOL of tokamak experiments, measurements of the relative fluctuation levels
provide additional insight. Among the first experiments investigating this is
the Caltech tokamak where fluctuation levels of 10-90% of the mean were
measured in ion saturation current measurements in the edge [23, 24]. Similar
observations were made in other experimental devices where these include the
TEXT device, shown in Fig. 1.7, and in TCV, Fig. 1.8. The fluctuation profiles
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Figure 1.4: Effective diffusivity profiles for different operational modes of the
Alcator C-Mod experiment. The effective diffusion coefficient must vary by
several orders of magnitude in order to match purely diffusive transport models.
Reprinted from [20], with the permission of IAEA.

of the TCV experiment correspond to the time averaged profiles shown in
Fig. 1.3. In the low-density case the relative fluctuation levels increase radially
in the near SOL and stay approximately constant in the far SOL. Note that
the fluctuation levels in the far SOL are independent of the line-averaged core
density. For all densities the relative fluctuation levels in the far SOL range
between 0.5 and 1, indicating that the broad profiles are dominated by large
fluctuations. These findings differ drastically from the plasma core, where
fluctuation levels are only around 1% [25].

A more detailed picture of SOL fluctuations can be obtained by analyzing
time series of the plasma parameters. These time series are typically obtained
by Langmuir probes, consisting of a conducting element which is inserted into
the plasma and draws a measurable current [27, 28]. Another well-known
method is Gas puff imaging (GPI), where a puff of neutral gas is injected into
the plasma edge, so that excitation radiation can be measured [29]. Examples
for time series measured at the outboard mid-plane in the far SOL of TCV,
Alcator C-Mod and KSTAR are shown in Fig. 1.9. Here, Φ̃ stands for the
time series Φ(t) normalized to have zero mean and unit standard deviation.
In all three devices, the time series show strongly intermittent positive bursts,
which suggests an explanation for the large relative fluctuation levels in the
SOL. A stochastic model describing these fluctuations as a superposition of
uncorrelated pulses was introduced in 2012 [30]. This phenomenological model,
known in the context of stochastic processes as the Filtered Poisson Process
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Figure 1.5: The relationship between
the normalized radial particle flux
and the inverse density scale length
for a range of TCV experiments.
Reprinted from [22], with the permis-
sion from Elsevier.

Figure 1.6: The flux–gradient relation
in a simple ESEL interchange model
of the SOL at constant temperatures.
Reprinted from [19], with the permis-
sion from Elsevier.

Figure 1.7: Radial dependencies of
fluctuation levels of different plasma
parameters in the TEXT tokamak ex-
periment. Reprinted from [26], with
the permission from Elsevier.

Figure 1.8: Radial profile of the rel-
ative fluctuation level of the particle
density in the TCV SOL. Reprinted
from [9], with permission from IAEA.
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Figure 1.9: Fluctuation time series measured from different tokamak exper-
iments. The time is normalized by the characteristic duration time of the
underlying bursts. The black line indicates the mean value of the signal. Im-
age courtesy of A. Theodorsen [39].

(FPP), remains to the day of writing this thesis the most accurate statistical
description of SOL fluctuations, as all of its major assumptions and predictions
agree with the statistical properties of experimental measurements [31–38]. A
detailed discussion of the FPP model is provided in Chapter 3 of this thesis.

The statistical properties of the fluctuations appear to be remarkably uni-
versal across numerous tokamak experiments, confinement modes and plasma
parameters. Since positive fluctuations dominate over negative ones, the prob-
ability density functions (PDFs) are positively skewed and flattened. Fig. 1.10
shows the PDFs of the ion saturation current measured in the boundary of
four different devices, exhibiting almost identical results. Time series obtained
at different radial positions in the boundary region of Alcator C-Mod exhibit
close to normal distributions near the separatrix, whereas in the far SOL show
increasingly skewed PDFs with an exponential tail towards positive values, as
shown in Fig. 1.11. Collectively, all of these PDFs are well described by a
Gamma distribution with a shape parameter depending on the intermittency
of the time series [40]. PDFs with exponential tails towards positive events
have also been observed in multiple other devices such as TCV, Tore Supra
and KSTAR [9, 35, 41–45]. The skewness and kurtosis of these time series are
exceeding 0 and 3 respectively, as they would be for a normal distribution. A
parabolic relationship between skewness and kurtosis has been demonstrated
in [46–48] which remains consistent with predictions of the FPP model [49].
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Figure 1.10: PDF of the ion satura-
tion current in the boundary of Tora
Supra, Alcator C-Mod, MAST and
PISCES. Reprinted from [42], with
permission from AIP Publishing.

Figure 1.11: PDFs of gas puff imag-
ing data time series at different ra-
dial positions in the boundary of Al-
cator C-Mod. The full lines represent
the predictions of the FPP model.
Reprinted from [40], with permission
from IAEA.

The universality of plasma fluctuations in the SOL is also observed in the
power spectral densities (PSDs) of the measured time series [36–38, 40, 50, 51].
The PSDs of time series for the ion saturation current in a variety of devices
are shown in Fig. 1.12. For a given scaling factor for the frequency axis all
PSDs collapse to a single curve. In contrast to the PDFs, the radial position
does not seem to have any influence on the PSDs as shown for Alcator C-Mod
in Fig. 1.13. In all experimental measurements the PSD remains flat for low
frequencies and shows a power law decay for high frequencies. The analysis of
these fluctuations utilizing the FPP framework has shown that the shape of
the PSD can be attributed to the shape of the underlying pulses from the time
series [52], providing further support for the stochastic model.

Apart from stochastic modeling, conditional averaging can be applied in
order to reveal the shape of these large-amplitude fluctuations. Hereby all
events above a certain threshold, typically 2.5 times the rms-value above the
signal mean, are considered and their peak is stored within a time window. The
average over all windows is referred to as the conditionally averaged waveform,
showing a sharp peak with a short rise and longer decay [9, 31, 33, 35–37, 42,
44, 53]. The conditionally averaged waveform of time series acquired from the
boundary of TCV are shown in Fig. 1.14. The shape of these large-amplitude
fluctuations remain similar for all line-averaged core densities of the experiment
and are reproducible by numerical simulations of the two-dimensional ESEL
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Figure 1.12: PSDs of fluctuation time
series of the ion saturation current
in various devices. Reprinted figure
with permission from [50]. Copyright
(1999) by the American Physical So-
ciety.

Figure 1.13: PSDs for gas puff imag-
ing time series at different radial po-
sitions in the edge of Alcator C-Mod.
The broken line shows the FPP pre-
dictions. Reprinted from [40], with
permission from IAEA.

model. Fig. 1.15 shows the agreement of conditionally averaged waveforms
for time series measured in different tokamak experiments and compared to
an asymmetric, two-sided exponential function. Both the distribution of the
maximal amplitude of the conditional structures and the waiting times between
two consecutive peaks are found to be exponentially distributed [33, 35–37, 54].

In conclusion, the statistical properties of time series measured at the mid-
plane boundary of tokamak devices indicate that the SOL is dominated by
intermittent structures. In order to investigate the shape of these objects and
to gain more information about the physical mechanisms responsible for their
transport, stochastic modeling alone, however, does not suffice.

1.5 Plasma filaments

2D imaging diagnostics such as GPI and wide angle visible imaging reveal that
edge transport in the SOL can be attributed to coherent structures. These
objects have historically been featured under a variety of names, such as inter-
mittent plasma objects (IPOs), avaloids, solitary vortices and streamers, but
are most commonly referred to as filaments or blobs in recent literature. First
observations of plasma filaments were made with fast cameras at the Caltech
tokamak in the mid 1980’s [55–57] and with 2D probe arrays in the 1990’s
[58, 59]. The importance of filaments for edge transport, however, has only
been considered at the discovery of the main chamber recycling regime at Al-
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Figure 1.14: Conditionally averaged
waveform of particle density time se-
ries from TCV and ESEL simulations.
Reprinted from [9], with permission
from IAEA.
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Figure 1.15: Conditionally averaged
waveform for time series measured in
the edge of TCV, Alcator C-Mod and
KSTAR. The broken line shows a two-
sided exponential fit. Image courtesy
of A. Theodorsen [39].

cator C-Mod in 1998 [60]. Since then, plasma filaments have been observed in
over 40 devices, including all major tokamak experiments, with a variety of di-
agnostics [61]. Filaments typically have a significantly higher density than the
surrounding plasma and are aligned to the local magnetic field with their scale
lengths much larger in the direction parallel to the magnetic field compared to
the perpendicular direction. Filaments have a cross-field size between 2 mm
and 10 cm, radial velocity of 0.2 to 2 km/s and a lifetime in the range of tens
of µs [62–70]. Examples of plasma filaments for different confinement modes in
the MAST device are shown in Fig. 1.16. The elongation of the filaments along
the magnetic field, stretching from the upper to the lower divertor is clearly
visible. Filaments propagate through the SOL due to interchange motion, il-
lustrated in Fig. 1.17. A simplified model ignoring parallel dynamics explains
filament motion as follows: Due to the magnetic geometry at the outboard
mid-plane, magnetic gradient and curvature drifts result in a charge polariza-
tion, perpendicular to the magnetic field B. This results in an electric field E,
transporting the filament in the radial direction with the E×B velocity uE .
While the filaments propagate outwards they carry particles and heat much
faster than purely diffusive transport would allow, explaining the broad profiles
in the SOL. Fig. 1.18 shows an example of a filament propagating through the
SOL of NSTX. Here, the filament is visualized in the plane perpendicular to
the field lines. Due to their appearance in the two-dimensional plane, filaments
are often referred to as blobs in this context.

Measurements using Langmuir probes and GPI simultaneously confirmed
that propagating filaments are the same structures that cause intermittent
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Figure 1.16: Wide angle fast visible imaging of inter-ELM, L-mode and ELM
filaments in the MAST device. The panels above show the toroidal variation
in emission across the center column, the peaks are used to label the filaments.
Reprinted from [71], © IOP Publishing. Reproduced with permission. All
rights reserved.

bursts in the time series [74, 75]. The intermittency of the time series and the
length and amplitude of individual bursts are therefore given by the filament
parameters.

Even though radial blob propagation can be qualitatively understood with
the presented two-dimensional model, parallel dynamics must be considered for
a more accurate picture [7]. Since the filament plasma is neutral, the current
due to magnetic gradient and curvature drifts must be closed. The charged
particles stream along the magnetic field lines until they reach the target plates
where the resulting parallel current can close in the plasma Debye sheath. The
parallel resistivity of the plasma and the sheath resistivity limits the magnitude
of the parallel current. Alternatively, the current can be closed by polarization
currents in the cross-field plane, thereby creating the dipolar electric potential.
A schematic illustration of the current paths are shown in Fig. 1.19. The ratio
of the current closed through the parallel and perpendicular path determines
the strength of the electric field in the filament and therefore its E×B velocity.
If the parallel currents are dominant and close mainly in the plasma sheath
the filament is said to be in the “sheath limited” regime, while in the case
where the currents are closed in the cross-field plane, the filament is in the
“inertial” regime. Analytical velocity scaling laws show that the radial velocity
of a filament v⊥ is strongly dependent on its perpendicular size a of a filament
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Figure 1.17: Illustration of charge separation in the filament and the resulting
E×B drift, transporting the filament in the radial direction. Reprinted from
[72], with the permission from AIP Publishing.

Figure 1.18: Propagation of a blob from the main plasma through the SOL in
the NSTX device. Each box shows a 24 × 24 cm portion of the edge at the
outer mid-plane and the frame rate is 7µs. The position of the separatrix is
given by the full line and the the wall shadow by the broken line. Reprinted
from [73], with the permission from Elsevier.

[76, 77], as

v⊥(a) ∝
{√

2a for a� a∗

1/a2 for a� a∗
(1.5)

where a∗ is defined as

a∗ =

(
4L2

ρsR

)1/5

ρs. (1.6)

In this expression L stands for the connection length to the divertor targets,
R is the major radius of the tokamak and ρs the ratio between the acoustic
speed and the ion gyration radius. These velocity scaling laws are reproduced
with numerical simulations [78–80]. However, it is found difficult to match
these laws to experimental observations in both asymptotic limits, as small



1.5. PLASMA FILAMENTS 15

Figure 1.19: Schematic illustration
of current paths within a filament.
Reprinted from [7]. Copyright ©
Cambridge University Press 2008.

Figure 1.20: Joint probability of the
normalized filament velocity and cross
field size in the TORPEX device.
Reprinted figure with permission from
[76]. Copyright (2009) by the Ameri-
can Physical Society.

filaments are difficult to identify and filaments cannot become larger than the
SOL width [65, 66]. Relatively good agreement has been found in the toroidal
plasma device TORPEX shown in Fig. 1.20, showing the joint probability of
the filament velocity and cross-field size [76]. Here, the perpendicular width of
the filaments is normalized by a∗ and the filament velocity by

v∗ =

(
2Lρ2

s

R3

)1/5

cs (1.7)

with cs standing for the ion sound speed. The dashed and dotted lines show
the ideal scaling laws for the inertial and sheath connected regimes. It is found
that the cross-field size of filaments is in between the scale length of the plasma
pressure gradient and the particle gyration radius, hence, filaments are often
referred to as mesoscale structures.

Even though filament generation has been extensively studied in tokamak
plasmas [81, 82], simple toroidal plasmas [83–86] and numerical simulations
[87–90], to this day no quantitatively accurate analytical model of filament gen-
eration has been developed [61, 91, 92]. A number of linear instabilities have
been identified that are attributed to cause filament generation, namely the in-
terchange, drift-wave, Kelvin-Helmholtz, Rayleigh–Taylor, resistive-ballooning
and conducting-wall instabilities [61, 93]. Due to the limited understanding of
the intricate physics responsible for filament generation in tokamak plasmas,
this topic remains a field of active research.
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1.6 Numerical modeling of SOL plasmas

As experimental measurements and analytical models for SOL turbulence and
plasma filaments face intrinsic limitations, numerical simulations of first prin-
ciple based models have provided further insight. Due to the complexity of the
involved physics, it remains a delicate task to derive models with appropriate
approximations that still capture the most relevant physical mechanisms of
SOL turbulence. Attempts to model the SOL with gyrokinetic particle-in-cell
codes are limited by their enormous computational costs and their dependence
on poorly understood boundary conditions [94, 95]. Electromagnetic gyrofluid
models have been derived [96] and applied for studying temperature dynamics
and finite Larmor radius effects on filaments [97, 98], as well as turbulence
in open and closed magnetic field lines [99, 100]. At present, most numerical
models for SOL turbulence and filament dynamics originate from the standard
plasma fluid transport equations derived by Braginskii [101]. The derivations
of the fluid models used in the papers and manuscripts included in this thesis
are discussed in Chapter 2.

Numerical simulations of SOL plasmas can be categorized into models of
saturated turbulence where filament-like structures are created due to non-
linear dynamics, and simulations of explicitly seeded, isolated filaments. The
first self-consistent evolution of a seeded plasma blob in two dimensions has
been studied in 2003 [102], shown in Fig. 1.21. Here, the blob is initialized
as a symmetrical 2D-Gaussian on a constant plasma background. The radial
propagation and the evolution of the blob into a mushroom-shaped object with
a steep front has been observed. The radial variation of the density of the blob
and its according E×B velocity is shown in Fig. 1.22. The peak of the radial
velocity is trailing the density peak, resulting in a steepening of the blob front.
The according temporal evolution is shown in Fig. 1.23, where the observed
pulses have a short rise and long fall time; an observation consistent with the
underlying pulses of time series in experiments such as in Fig. 1.9. Studies of
isolated filaments have been extended to three dimensions, considering dynam-
ics parallel to the magnetic field [103–108] and have been used to investigate
specific physical effects such as electromagnetic effects or finite ion Larmor
radius effects [103, 109–111]. Models for radial blob velocity dependencies on
filament amplitudes and sizes have been developed [78, 80, 112, 113]. Simula-
tions of multiple simultaneously seeded filaments discovered that filaments in
close proximity interact through the electric potential they generate [114, 115].
A systematical analysis of blob interaction in dependence of the intermittency,
defined as the level of blob overlap, is presented in Paper IV.

First attempts of modeling plasma turbulence typically use two-dimensional
slab geometries, where curvature effects are modeled by effective gravity terms.
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Figure 1.21: Contour plot of the evolution of a 2D density blob. Reprinted
from [102], with the permission from AIP Publishing.

Rayleigh–Bénard convection models have been used as a simplified description
of the non-linear interchange dynamics in the SOL [116–123]. These models
have been further extended by including sheath dissipation due to losses along
magnetic field lines and drift wave dynamics in the edge region [87, 124–133].
One example for a turbulence simulation in a 2D slab geometry of a model
including sheath dissipation is presented in Fig. 1.24. Plasma streaming from
the core into the SOL is modeled as a density source term in the left hand side
of the simulation domain. Small perturbations in the plasma density become
unstable and result in coherent structures that propagate radially outwards due
to the interchange mechanism. The transition from closed to open magnetic
field lines is simulated by applying different closures for the parallel dynam-
ics. These 2D turbulence simulations have contributed to the understanding
of the stability of filaments in the SOL and were able to reproduce the char-
acteristic PDFs of plasma fluctuations and their radial variations [131, 134].
Further investigations on the statistical properties in turbulence simulations
can be performed by analyzing time series [9, 123, 135–137] and blob tracking
methods in order to investigate filament properties [138–141].

Advances in computing power enabled three-dimensional turbulence simu-
lations in the last decade, taking into account the parallel dynamics in SOL
plasmas [106, 142–147]. Three-dimensional simulations enable implementing
realistic geometries and can therefore be used to explore X-point effects and dif-
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Figure 1.22: Radial variation of the
plasma density (full line) and the
radial velocity (broken line) at the
symmetry axis of a seeded blob.
Reprinted from [112], with the per-
mission from AIP Publishing.

Figure 1.23: Temporal evolution of
the plasma density recorded at the
symmetry axis at different radial posi-
tions. Reprinted from [112], with the
permission from AIP Publishing.

ferent divertor configurations [139, 148]. Due to their immense computational
costs, three-dimensional turbulence simulations have relatively short runs, lim-
iting the amount of statistical analysis that can be performed.

A variety of comparisons between the output from numerical simulation
codes and experiments have been performed in order to validate simulation
codes. These studies mainly focused on the dynamics of individual blob struc-
tures or on specific physical effects on turbulence and transport. Surprisingly
little attention has been attributed to comparisons of fluctuation statistics,
considering their universal nature in experiments. The published papers and
yet unpublished manuscripts included in this thesis attempt to fill this gap.
Here, the main focus lies on utilizing the FPP model, which predicts all major
statistical properties of experimental measurements at the outboard mid-plane.
By comparing time series from numerical simulations to the predictions of the
FPP model one can identify which parameters and assumptions conform to ex-
perimental observations. We can thereby gain additional insight and a better
understanding of the intricate physics of the boundary of present and future
fusion devices.



1.6. NUMERICAL MODELING OF SOL PLASMAS 19

0 20 40 60 80 100 120 140

x

0

20

40

60

80

100

y

1.02

1.14

1.26

1.38

1.50

1.62

1.74

1.86

1.98

Figure 1.24: Snapshot of plasma density of a two-dimensional turbulence sim-
ulation. Plasma is injected into the simulations domain at a constant rate and
generates blob-like structures due to turbulence. Reprinted from [141], with
the permission from AIP Publishing.
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2 | Reduced fluid models for SOL
plasmas

In this chapter, a brief derivation of the reduced fluid models used in the in-
cluded publications is presented. The derivations start from the Braginskii fluid
equations whose assumptions and validity for SOL plasmas are discussed. Ap-
plying drift reduction, Bohm-normalization and a number of approximations,
results in the reduced two-fluid model, equivalent to the two-dimensional fluid
models used in Paper III and IV. By applying interchange normalization this
model will be further modified to the idealized interchange model, used in
Paper I.

2.1 Braginskii fluid equations

The Braginskii fluid model is derived by taking successive velocity moments
of the kinetic Boltzmann equation and applying a collisional closure. Each
moment depends on the next higher order and therefore require additional as-
sumptions to obtain a closure for the model. The Braginskii equations describe
the evolution of the three lowest order fluid moments. The assumptions and
the formulation of this closure are presented in [101]. The standard Braginskii
fluid equations describing the evolution of the particle density nα, fluid velocity
uα and temperature Tα for particle species α are given by

∂nα
∂t

+∇ · (nαuα) = 0, (2.1)

mαnα

(
∂

∂t
+ uα · ∇

)
uα = −∇pα−∇·Πα+Zαenα (E + uα ×B)+Rα, (2.2)

3

2
nα

(
∂

∂t
+ uα · ∇

)
Tα + pα∇uα = −∇ · qα −Πα : ∇uα +Qα. (2.3)

21
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Here, α determines the particle species, i.e., electrons and ions, m the
particle mass, p the pressure, Zαe the particle charge, R the friction force, Π
the viscous stress tensor, q the heat flux, : the tensor inner product and Q the
frictional interspecies heating and energy exchange.

The Braginskii equations are only applicable if certain assumptions for the
modeled system are valid. Applying fluid equations requires that the distribu-
tion of particle velocities is close to Maxwellian, i.e., the time scale of relaxation
back to a Maxwellian must be shorter than the characteristic time scales of the
modeled system. If this condition is fulfilled, the system is referred to as colli-
sional. In addition to being collisional, a plasma must be strongly magnetized
to be adequately described by the Braginskii equations. This implies that the
particles complete many gyrations between collisions, setting an upper limit
for the collisionality of the plasma.

In summary, the phenomenon we want to model needs to satisfy the fol-
lowing conditions in order to be well described by the Braginskii equations:

L⊥ � ρα, (2.4)

L‖ � λ, (2.5)

τ � τc � Ω−1
α . (2.6)

In these expressions L⊥ stands for the characteristic size of the modeled phe-
nomena perpendicular to the magnetic field, ρα is the gyration radius for
species α, L‖ the parallel size of the system, λ the collisional mean free path, τ
the characteristic time of the problem, τc the collision time and Ωα the gyration
frequency of the referred particle species [149].

For the further derivation using drift reduction it will be useful to quantify
the magnetization. We thereby define the magnetization parameter δ as

δ =
ρα
L⊥

. (2.7)

The magnetization can be equivalently expressed in the temporal domain by

δ =
νie
Ωi

(2.8)

where νie stands for the collisional frequency between ions and electrons.
For both electrons and ions the magnetization parameter is δ � 1 for a

fully magnetized plasma.



2.2. DRIFT REDUCTION 23

2.2 Drift reduction

The Braginskii model given by Eqs. (2.1) - (2.3) is very general, making mod-
eling of SOL plasmas with the presented equations relatively inefficient. A
more suitable description of plasma phenomena in the SOL can be derived by
simplifying the presented model with an approach called drift ordering. Since
turbulence and filaments in the SOL, evolve with velocities much lower than
the plasma sound speed cs =

√
(Te + Ti)/mi we apply the ordering

u⊥ ∼
ρα
L⊥

cs ∼ δcs. (2.9)

This ordering assumes that the transverse electric fields are small, resulting
in the perpendicular electric field being substantially electrostatic. This is a
direct consequence of the E ×B velocity being a factor δ smaller than sound
speed and Faraday’s law [149]. We can now determine the perpendicular part
of the momentum equation, given by Eq. (2.2), by taking the cross product
with B resulting in

uα,⊥ =
E×B
B2

−∇pα ×B
eαnαB2

−mαduα/dt×B
eαB2

−∇ ·Πα ×B
eαnαB2

+
Rα ×B
eαnαB2

, (2.10)

where we used d/dt = ∂/∂t+(uα·∇) and assumed single charge particle species,
i.e., Zαe = eα. The terms in this expression display the fluid drifts occurring
in the system, namely from left to right: the E × B drift; the diamagnetic
drift; the polarization drift; the viscous drift and the collisional drift. From
this expression we can determine the dominant drifts and thereby simplify the
model.

As mentioned previously, the electric drift velocity is of O(δ) compared to
the plasma sound speed:

uE =
E×B
B2

∼ δcs. (2.11)

Similarly, the diamagnetic drift is also of O(δ) since

udia = −∇pα ×B
eαnαB2

∼ nαTαB

L⊥eαnαB2
∼ Tα
L⊥Ωαmα

∼ δcs. (2.12)

The polarization drifts for both ions and electrons are smaller in comparison,
as can be shown by

upol,i =
midui/dt×B

eiB2
∼ δ3cs, (2.13)
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and
upol,e ∼

me

mi
δ3cs. (2.14)

For the viscous drift we use Bragniskii’s approximation for the perpendicular
component of the viscous stress tensor Πα ∼ (pα/Ωα)∇vα which shows that
this term is of O(δ3) since

uvis,i =
∇ ·Πα ×B
eαnαB2

∼ nTδcs
einiBL2

⊥Ω
∼ δ3cs, (2.15)

and
uvis,e ∼

me

mi
δ3cs, (2.16)

respectively. Lastly, we need to find an approximation for the collisional drift.
For this we use R⊥ = enJ⊥/σ⊥ for the perpendicular momentum transfer
from electron-ion friction and σ⊥ = ne2νei/me. From the ordering follows
J⊥ ∼ enδcs which leads to the approximation of the frictional drift

ufri =
Rα ×B
eαnαB2

∼ neδcs
Bσ⊥

∼ me

mi

νei
Ω
δcs. (2.17)

For SOL conditions we can typically assume that νei/Ω ∼ δ so that the colli-
sional drift is of O(δ2).

This ordering reveals that the dominant perpendicular drifts are the electric
and the diamagnetic drifts as all other drifts are at least one order of magnitude
smaller. By substituting the remaining drifts into the Braginskii equation we
can rewrite the electron density equation in a simpler form,

∂ne
∂t

+∇ ·
[
ne
(
uE + udia,e + ue‖

)]
= 0. (2.18)

Since the plasma is quasi-neutral, i.e. ne ' ni ' n, this equation is used to
describe the evolution of the total plasma density n. Eq. (2.18) is usually
manipulated to

∂n

∂t
+ uE · ∇n = −∇ ·

(
nu‖,e

)
+

(
1

e
∇pe − n∇φ

)
· ∇ ×

(
b
B

)
. (2.19)

Instead of explicitly deriving separate continuity equations for electrons
and ions, we can utilize quasi-neutrality and charge conservation to derive an
equation for the fluid velocity, which will prove to be very handy. For this we
use ∇ · J = 0 with J = en(ui − ue). Inserting all drifts that give rise to a net
current results in

∇ ·
(
Jdia + Jpol + Jvis + J‖

)
= 0. (2.20)
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In the following we only include the leading order drifts in the ion polarization
velocity and neglect the electron polarization drift entirely due to the small
electron mass. The sum of the ion polarization and viscous drifts using the
lowest order solution of the perpendicular momentum equation and the parallel
velocity u0 = u0⊥ + ui‖ is then given by

upol,i + uvis,i = b× 1

enB

[
min

(
∂

∂t
+ ui0 · ∇

)
ui0 +∇ ·Πi0

]
, (2.21)

where Πi0 is the viscous stress tensor calculated with ui0 and

u0⊥ = b× 1

B

(
∇φ+

1

en
∇pi

)
. (2.22)

Inserting this into Eq. (2.20) leads to the drift-reduced charge conservation
equation [149]

−∇ ·
{
b× 1

B

[
min

(
∂

∂t
+ ui0 · ∇

)
ui0 +∇ ·Πi0

]}
=

∇ · J‖ +∇ (pi + pe) · ∇ ×
(
b
B

)
, (2.23)

which will be further simplified in the following.

2.3 Further approximations and simplifications

A number of additional approximations are applied to simplify the model and
make it efficiently numerically solvable.

First of all, we apply the electrostatic approximation, and thereby neglect
all time derivatives of B and calculate the electric field E directly from the
electric potential. Under this approximation, Eq. (2.23) can be expressed in
the more readable form

mi∇ ·
[
n

B

d0

dt

(∇⊥φ
B

+
∇⊥pi
enB

)]
−∇ · (b×∇ ·Π0) =

∇ · J‖ +∇ (pi + pe) · ∇ ×
(
b
B

)
, (2.24)

where we used d0/dt = ∂/∂t + (ui0 · ∇). In addition, we neglected spatial
non-uniformity of B, which will be discussed in further detail later. Stud-
ies of electromagnetic effects on plasma blob-filament transport showed that
these effects in high temperature or high beta plasmas suppress the resistive
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drift wave turbulence in filaments [109, 150] but will not be considered in the
following.

We can further simplify Eq. (2.24) by applying scale separation for the
plasma density, so that∇n ∼ ∇n0+∇ñ ∼ 1/Ln+kñ, where the particle density
has been separated into a background n0 and a fluctuation ñ. Ln stands for
the characteristic scale length for the background density and k for the wave
number for the particle density fluctuations. Dividing by n0 leads to ∇ lnn ∼
1/Ln + kñ/n0. We now assume that 1/kLn � 1 and ñ/n0 � 1. The latter
assumption is the so called thin layer or Boussinesq approximation where we
assume that the density perturbations are small compared to the equilibrium.
This assumption is hardly justified since relative fluctuations in the SOL can
be of order unity as discussed in the previous chapter. This approximation is,
however, commonly used since it makes the numerical integration of Eq. (2.24)
significantly more efficient. By introducing a generalized vorticity,

$ = ∇ ·
(
∇⊥φ+

∇⊥pi
en

)
, (2.25)

we can now simplify the first term in Eq. (2.24) to

mi∇ ·
[
n

B

d0

dt

(∇⊥φ
B

+
∇⊥pi
enB

)]
≈ min

B2

d0$

dt
. (2.26)

From this expression, $ can be relatively easily inverted, especially when as-
suming that ions are cold, leading us to the next approximation.

For the remaining derivation we will assume small ion temperature, Ti �
Te, simplifying the equations significantly. This is a restrictive assumption, as
experimental measurements indicate that the ion temperature is higher than
the electron temperature in the SOL [151, 152]. Numerical simulations incor-
porating finite ion temperature have shown that the coherency of filaments is
increased [153]. However, since the simplified model still captures the funda-
mental dynamics in the SOL, this approximation is commonly used to reduce
the model complexity.

As for the electrons, all models in the included publications and manuscripts
assume isothermal electrons. This assumption simplifies the model drastically,
as it makes Eq. (2.3) obsolete. Numerical simulations of isolated filaments
with dynamic electron temperature have shown that thermal effects lead to a
strong increase in the filament propagation in the poloidal direction and reduce
the net radial propagation. These effects arise from the electron temperature
dependence of the sheath currents, which will be discussed later in this chapter
[154].

Next, we will define the geometry of the magnetic field. For the whole
simulation domain, we assume straight magnetic field lines with constant field
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strength. We need to make one exception to this assumption, as no curvature
term would remain in a completely homogeneous field. As there would be no
drive for filament motion without this term, it is required to capture some
effects of curvature in the model. With the use of vector algebra presented in
[149] we can write the curvature term from Eqs. (2.19) and (2.24) as

∇×
(
b
B

)
= 2

b× κ

B
+
µ0

(
J‖ − J⊥

)

B2
, (2.27)

where we introduced the curvature vector κ = (b · ∇)b. Note that one unit
of the term b× κ/B originates from the magnetic gradient and one from the
curvature. The second term on the right hand side can be neglected due to
charge conservation [149]. The magnetic field in a tokamak can be approxi-
mated to lowest order to be purely toroidal and falling radially with 1/R. In a
cylindrical coordinate system (R,Φ, Z) the toroidal magnetic field is therefore

B =
B0R0

R
Φ̂. (2.28)

In a slab geometry with Z being replaced with the binormal direction y which
is perpendicular to R̂ and Φ̂ this motivates the definition of the curvature
operator

K(u) = ∇×
(
b
B

)
· ∇u ≈ − 2

B0R0

∂u

∂y
. (2.29)

Despite arguing that the frictional drift is negligible in Eq. (2.30) one typ-
ically retains an approximation of this term due to numerical reasons. We
therefore add this term to Eq. (2.19) as

∇ · (neufri) ≈ −∇ · (Dn∇⊥ne) ≈ −Dn∇2
⊥ne, (2.30)

where we introduced the density diffusion coefficient Dn which we assumed to
be spatially constant. Similarly, one can derive the diffusion term for Eq. (2.24)
from its ion viscosity term, since we can use the approximation

∇ ·Πi = −minµω∇2
⊥uE , (2.31)

where µω stands for the effective cross-field kinematic viscosity of the ions.
Inserting the electric drift and taking the divergence results in the diffusion
term for ∇2

⊥φ as
∇ ·
(miµω
eB2

∇⊥∇2
⊥φ
)
. (2.32)

The diffusion coefficients can be approximated from classical or neo-classical
diffusion such as presented in [155], or are chosen for numerical accuracy and
stability.
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Arguably the starkest simplification of the presented models in this thesis
is the restriction to only two dimensions, the plane perpendicular to B. The
parallel closure of the model equations is different for closed and open field
lines, i.e., whether the simulation domain is located in the SOL or in the edge
region. Since the parallel direction plays an important role in the SOL for
particle and current dissipation as plasma flows along the magnetic field lines
towards the divertor plates, a suitable approximation for the parallel losses is
required. This closure is achieved by integrating over the parallel direction
where the so-called sheath boundary conditions come into play. In the initial
transient period where the plasma vessel is filled and the cold wall surface
electrically neutral, electrons will strike the surface at a higher rate than the
ions due to their higher speed. This charges the vessel walls negatively which
impedes further electron flow towards the surface and results in a thin sheath
at material surfaces. Here, the ions shield the electric potential of the surface
and the sheath extends a few Debye lengths, λD =

√
ε0Te/nee2, outwards from

the surface into the plasma. In this region quasi neutrality is violated since the
ion density is higher than the electron density, ni > ne. The electric current
density drawn by the vessel walls is governed by the influx of electrons and ions
at the sheath surface. It depends on the potential φ at the sheath entrance
and can be written as

J‖|sheath = ensecs

[
1− eΛ−eφ/Te

]
, (2.33)

with the plasma density at the sheath edge nse, the acoustic speed cs and the
floating potential Λ = ln

√
mi/2πme. The first term in the parenthesis is due

to the ion flux and the second due to the electron flux [17]. We can now take
the average of the parallel dimension in a slab geometry with B = B ẑ,

1

L‖

∫ L‖/2

−L‖/2
∇‖ · J‖dz, (2.34)

and use Eq. (2.33) as the boundary conditions. The first term on the right
hand side of Eq. (2.19) can be handled analogously for the parallel electron
velocity.

Paper III includes a core region in the simulation domain, requiring a dif-
ferent closure for the parallel dynamics. In this model we include resistivity in
the parallel component of the electron momentum equation neglecting inertia,
i.e.,

en
∂φ

∂z
− Te

∂n

∂z
+ χenJ‖ = 0, (2.35)

where the resistivity is given by χ = mνei/nee
2. Rearranging Eq. (2.35) for J‖
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and taking the parallel derivative results in [156, 157]

∇‖ · J‖ =
Te
eχ

∂2

∂z2

(
lnne −

eφ

Te

)
. (2.36)

From this we can take the average of the parallel dimension by integrating over
z, resulting in the desired 2D model equations. A systematic analysis of the
dimensionality of scrape-off layer turbulence is presented in [147, 158].

2.4 Reduced two-fluid model

Since the Braginskii fluid model is only valid in a specific range of time and
length scales it seems natural to normalize all physical variables to values that
are characteristic for the modeled system. We will first discuss the so-called
Bohm normalization where we normalize the spatial and temporal units by ρs
and Ωi, respectively, i.e.,

∇ → ∇′ = ρs∇,
∂

∂t
→ ∂

∂t′
=

1

Ωi

∂

∂t
. (2.37)

Here, ρs stands for the ion sound Larmor radius defined as ρs =
√
Temi/eB.

We normalize the remaining variables with their characteristic values for SOL
conditions N and T0 as

n→ n′ =
n

N
, Te → T ′ =

Te
T0
, φ→ φ′ =

eφ

T0
. (2.38)

From these expressions we can define the characteristic magnitude for the
density source, diffusion coefficients and effective gravity drive as

S → S′ = SNΩi, Dn → D′n = DBohmDn, µω → D′Ω = DBohmµω, g =
2ρs
R
,

(2.39)
where the collisional diffusion is defines as DBohm = ρ2

sΩi. Applying this
normalization to Eq. (2.19) and dropping the dash sign, inserting the curvature
operator from Eq. (2.29) and adding the diffusion term of Eq. (2.30) results in
the electron density equation

dn

dt
+ g

(
∂n

∂y
− n∂φ

∂y

)
= Dn∇2

⊥n+ Sn +

〈
∇‖
(
nue‖

)
〉

‖
, (2.40)

where the advective derivative is given by d/dt = ∂/∂t + uE · ∇⊥ and uE =
−∇⊥φ×B/B2 is the E×B drift. Here, 〈·〉‖ refers to the average over the paral-
lel dimension. We also added the density source term Sn. Performing the same
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kind of operations on Eq. (2.24) after applying the Boussinesq approximation
results in the vorticity equation

d∇2
⊥φ

dt
+
g

n

∂n

∂y
= DΩ∇4

⊥φ+

〈
1

n
∇‖J‖

〉

‖
, (2.41)

where we introduced DΩ as the collisional dissipation term representing vis-
cosity. Averaging over the parallel direction after inserting Eq. (2.34) and
Eq. (2.36) can be expressed as

〈
∇‖
(
nue‖

)
〉

‖
= −η(x)n exp(Λ− φ) + χ(x)(φ̂− n̂), (2.42a)

〈
1

n
∇‖J‖

〉

‖
= η(x) [1− exp(Λ− φ)] + χ(x)(φ̂− n̂), (2.42b)

where the spatially fluctuating electron density n̂ and plasma potential φ̂ are
defined as n̂ = n − 〈n〉y and φ̂ = φ − 〈φ〉y and 〈·〉y refers to the flux sur-
face average. Note, that we neglect 1/n in the plasma conductivity term for
the vorticity equation, since we assume the plasma density to have small rel-
ative fluctuation levels in the edge region and n ∼ 1. We redefined χ =(
ρs/L‖

)2
(mi/me)(Ωs/νei) as the normalized parallel plasma conductivity where

we used ∇2
‖ → −k2

‖ ' −L−2
‖ and introduced η = ρs/L‖ as the normalized

sheath dissipation coefficient. νei stands for the collision frequency between
electrons and ions given by

νei =
logΛce

4Z2ni

6
√

2π3/2ε20
√
meT

3/2
e

, (2.43)

and the Coulomb logarithm is approximately [149]

logΛc ≈ 18− log

[( ne
1019

)1/2
(
Te

103e

)−3/2
]
. (2.44)

These parameters depend on the radial position, the sheath dissipation term
only occurs in the SOL and the plasma conductivity term is finite in the plasma
edge region. A schematic illustration of these two regions in the simulation
domain is shown in Fig. 2.1.

This model is equivalent to the one used in Paper III. Paper IV utilizes a
slightly simpler model placing the whole domain in the SOL by choosing η =
constant and χ = 0, and discarding Λ in the sheath dissipation term. A list of
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Figure 2.1: Schematic illustration of the edge and scrape-off layer region in the
simulation domain. The position of the plasma source term (gray shaded) and
the border between edge and SOL (dashed vertical line) are indicated [137].

representative machine parameters relevant for the reduced two-fluid models is
presented in Table 2.1. Since each device performs a range of experiments with
slightly different configurations, these parameters might vary. The presented
parameters are consistent with those used in the numerical simulations in the
included references. The radial position of the SOL is indicated by the sum of
the major and minor radius and the parallel connection length is estimated as
L‖ = πq95R, with q95 as the safety factor at the 95% poloidal magnetic flux
surface, if not explicitly stated in the references. It should also be noted, that
the definition of the connection length varies from source to source as it may
refer to the whole poloidal length or only to the lenth between the outboard
midplane to the outer divertor plates.

Table 2.1: Machine parameters.

ne[m
−3] Te[eV] B[T] L‖[m] R+ r[m] reference

MAST 8× 1018 40 0.5 30 1.5 [106]
C-Mod 1.4× 1019 23 4.5 20 0.9 [159]
TCV 5× 1018 25 1.45 15 1.13 [138, 160]

KSTAR 7× 1017 35 2.0 26 2.3 [161]
AUG 8× 1018 40 2.5 25 2.15 [162]
JET 2× 1019 45 3.45 25 4.21 [155]
NSTX 6× 1018 13 0.25 20 1.53 [159]

The plasma parameters calculated for these device parameters are pre-
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sented in Table 2.2. Based on these values, we can estimate the input pa-

Table 2.2: Physical parameters.

ρs[m] Ωi[s
−1] cs[ms−1]

MAST 1.8× 10−3 2.4× 107 4.4× 104

C-Mod 1.5× 10−4 2.2× 108 3.3× 104

TCV 5.0× 10−4 6.9× 107 3.5× 104

KSTAR 4.3× 10−4 9.6× 107 4.1× 104

AUG 3.7× 10−4 1.2× 108 4.4× 104

JET 2.8× 10−4 1.7× 108 4.6× 104

NSTX 2.1× 10−3 1.2× 107 2.5× 104

rameters for the reduced two-fluid model shown in Table 2.3. Note that the
diffusion and viscosity coefficients for the model are not presented as they are
chosen arbitrarily high for numerical stability in the included publications.

Table 2.3: Input parameters.

g η χ

MAST 2.4× 10−3 6.1× 10−5 2.7× 10−4

C-Mod 3.4× 10−4 7.7× 10−6 1.0× 10−5

TCV 8.8× 10−4 3.3× 10−5 1.9× 10−4

KSTAR 3.7× 10−4 1.6× 10−5 6.8× 10−4

AUG 3.4× 10−4 1.5× 10−5 7.7× 10−5

JET 1.3× 10−4 1.1× 10−5 3.1× 10−5

NSTX 2.7× 10−3 1.0× 10−4 1.1× 10−4

2.5 Idealized interchange model

A minimal model for SOL plasma dynamics in the cross-field plane can be
obtained by ignoring parallel dynamics entirely and applying the so called
interchange normalization. We start again with Eq. (2.19) and Eq. (2.24), use
the curvature operator given by Eq. (2.29), and include the diffusion terms.
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The perpendicular components then take the form
(
∂

∂t
+

1

B
ẑ×∇φ · ∇

)
n− 2n

B0R0

∂φ

∂y
+

2Te
eB0R0

∂n

∂y
= Dn∇2

⊥n, (2.45a)
(
∂

∂t
+

1

B
ẑ×∇φ · ∇

)
∇2
⊥φ+

2c2
s

R0n

∂n

∂y
= DΩ∇4

⊥φ. (2.45b)

Under the interchange normalization, length scales are normalized by the char-
acteristic length l of the system, time scales by the ideal interchange rate
γ =

√
g/l with g = 2c2

s/R0 and the plasma density and electrostatic potential
accordingly, i.e.,

∇ → ∇′ = l∇, ∂

∂t
→ ∂

∂t′
=

1

γ

∂

∂t
, n→ n′ =

n

N
, φ→ φ′ =

φ

γB0l2
. (2.46)

Inserting these expressions into the equations for plasma density and vorticity
results in

(
∂

∂t′
+ ẑ×∇′φ′ · ∇′

)
n′ − 2n′

l

R0

∂φ′

∂y′
+

γ

Ωi

∂n′

∂y′
=
Dn

γl2
∇′2⊥n′, (2.47a)

(
∂

∂t′
+ ẑ×∇′φ′ · ∇′

)
∇′2⊥φ′ +

1

n′
∂n′

∂y′
=
DΩ

γl2
∇′4⊥φ′. (2.47b)

We neglect the term resulting from the compression of the electric drift since
its prefactor is l/R0 � 1. The term resulting from the compression of the
diamagnetic drift will also be neglected in the continuity equation as previous
work has shown that it has a negligible contribution to the cross-field dynamics
and since γ/Ωi � 1 [163]. In addition we introduce the normalized particle
diffusion and viscosity coefficients

κ = Dn/γl
2 and µ = Dφ/γl

2, (2.48)

neglect 1/n in front of the interchange term as we apply the Boussinesq approx-
imation and drop the dash notation to receive the minimal model for plasma
convection

(
∂

∂t
+ ẑ×∇φ · ∇

)
n = κ∇2

⊥n, (2.49a)
(
∂

∂t
+ ẑ×∇φ · ∇

)
∇2
⊥φ+

∂n

∂y
= µ∇4

⊥φ. (2.49b)

The emphasis of this model lies on reducing the complexity and the number
of free parameters as drastically as possible without losing the capability of
modeling plasma advection self-consistently. This model has also been used in



34 CHAPTER 2. REDUCED FLUID MODELS FOR SOL PLASMAS

the past to describe buoyancy-driven convection in a fluid confined between
two horizontal plates and heated from below. The model, named the Rayleigh-
Bénard convection model after the original experimental work of Henri Bénard
[164] and the first analytical work on this model of Lord Rayleigh [165], has
become a paradigm to investigate nonlinear phenomena due to its rich dynam-
ics [123, 166–170]. The normalized particle diffusion and viscosity coefficients
in the presented formulation are related to the Rayleigh and Prandtl numbers
as R = 1/κµ and R = µ/κ, which are typically used as model parameters for
the Rayleigh-Bénard model. We use this model in Paper I.



3 | Stochastic modeling

This chapter is dedicated to describing the Filtered Poisson Process (FPP),
a stochastic model used for describing the intermittent fluctuations in single
point measurements obtained in the boundary of fusion experiments. The basis
of this model was already developed in 1909 [171] and was further extended in
the 1940s to describe noise in vacuum tubes [172, 173]. Since then, the model
has been extended and used to describe fluctuations in numerous academic
fields, including neuroscience, fluid dynamics and nuclear fission [174–180].
The FPP has first been introduced as a model describing SOL fluctuations in
2012 [30] and has since then shown excellent agreement with the statistical
properties of fluctuations in various fusion experiments [31–38].

3.1 Filtered Poisson Process

The FPP is a stochastic process, given by a superposition of uncorrelated
pulses which are distributed according to a Poisson process. For a given time
t ∈ [0, T ] the process Φk(t) can be written as [30, 49]

Φk(t) =

K(T )∑

k=1

Ak φ

(
t− tk
τd

)
. (3.1)

Here, the random variables are defined as follows: K(T ) stands for the number
of pulses arriving in the time interval [0, T ], Ak is the pulse amplitude and tk
the pulse arrival time. It is further assumed that all pulses have the same pulse
shape φ and duration time τd.

Alternatively, the process can be expressed as a convolution of the pulse
shape and a delta pulse train

Φk(t) = [φ ∗ fK ]

(
t

τd

)
, (3.2)

35
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where fK is the forcing defined as a train of delta pulses

fK(θ) =

K(T )∑

k=1

Ak δ

(
θ − tk

τd

)
. (3.3)

As the process can be expressed as a train of delta pulses filtered through the
pulse shape, it is called a Filtered Poisson Process.

For a given time interval [0, T ], the number of pulsesK(T ) follows a Poisson
distribution

PK(K|T ) =
1

K!

(
T

τw

)K
exp

(
− T
τw

)
, (3.4)

with intensity T/τw. The waiting times between two consecutive pulses are
independent and exponentially distributed with mean value τw and the ar-
rival times tk are independent and uniformly distributed in the interval [0, T ].
These properties of the process are consistent with experimental measure-
ments, showing exponentially distributed waiting times [33, 35–37]. Time se-
ries with quasi-periodic arrival times are observed in SOL simulations utilizing
Rayleigh–Bénard like convection models [123] and are discussed in Paper II in
further detail. The amplitudes are chosen to be exponentially distributed, as
this is observed in experimental measurements [35–37].

In the following, we will discuss two pulse shapes that are most relevant
for SOL fluctuation measurements and corresponding numerical simulations.
Firstly, the pulse shape of an asymmetric, two-sided exponential pulse is de-
fined as

φ(θ, λ) =

{
exp

(
− θ

1−λ

)
, θ ≥ 0,

exp
(
θ
λ

)
, θ < 0.

(3.5)

Here, θ is a dimensionless variable and λ stands for the asymmetry parameter
with λ ∈ (0, 1). In some cases, a one-sided exponential pulse is applied with λ =
0, which refers to the limit limλ→0 φ(θ, λ). Exponential pulses stand in good
agreement with experimental measurements [9, 31, 33, 35–37, 42, 44, 53] and
numerical SOL simulations [9, 137]. Secondly, Lorentzian pulses are considered
which are defined as

ψ(θ) =
1

π

1

1 + θ2
. (3.6)

These can also be generalized to a skewed Lorentzian, however no closed ana-
lytical form is known and require a definition via the inverse Fourier transform
[181]. Indications for Lorentzian pulses in time series in the edge region [182–
185] and corresponding numerical simulations [123] have been reported. Expo-
nential pulses consist of a discontinuous peak and exponential tales, whereas
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Figure 3.1: Realizations of the FPP
with one-sided exponential pulses and
different intermittency parameters.
Reprinted from [49], with the permis-
sion from AIP Publishing.

Figure 3.2: Realizations of the FPP
with Lorentzian pulses and different
intermittency parameters. Reprinted
from [186], with the permission from
AIP Publishing.

Lorentzian pulses have a smooth peak and algebraic tails. The consequences
of these properties will be apparent in the following discussions.

Calculating moments of distributions of the process requires the integrals
of the pulse shapes, defined as

In =

∫ ∞

−∞
dθ[φ(θ)]n. (3.7)

For exponential pulses this results in Iφ,n = 1/n, independent of the pulse
asymmetry λ. For Lorentzian pulses the first four integrals are given by Iψ,1 =
1, Iψ,2 = 1/2π, Iψ,3 = 3/8π2 and Iψ,4 = 5/16π3.

The main property of the FPP is given by the ratio of the pulse duration
and average waiting time,

γ =
τd

τw
, (3.8)

which is referred to as the intermittency parameter. For short waiting times
and long duration times, γ � 1, the level of pulse overlap is high, resulting in a
large mean value and small relative variation around the mean. In the opposite
limit, γ � 1, the signal is dominated by individual, isolated pulses, resulting
in a small mean value and large relative fluctuations. Numerical realizations
of the FPP with different intermittency parameters are shown for one-sided
exponential pulses in Fig. 3.1 and for symmetric Lorentzian pulses in Fig. 3.2
displaying the features of these processes.
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3.2 Moments and PDFs

The four lowest order central moments of the FPP take the form

〈Φ〉 = γ〈A〉I1, (3.9a)

Φ2
rms = γ〈A2〉I2, (3.9b)

SΦ =
1

γ1/2

〈A3〉I3

〈A2〉3/2I3/2
2

, (3.9c)

FΦ = 3 +
1

γ

〈A4〉I4

〈A2〉2I2
2

, (3.9d)

where SΦ stands for the skewness of the process and FΦ is the kurtosis or
flatness [30]. The last two moments exhibit the parabolic relationship

FΦ = 3 +
〈A2〉〈A4〉
〈A3〉2

I2I4

I2
3

S2
Φ. (3.10)

Inserting the expressions for the integrals of the pulse shapes for two-sided ex-
ponential and Lorentzian pulses and assuming exponentially distributed ampli-
tudes simplifies these expressions further. For exponential pulses the expression
for the relative fluctuation level becomes

Φrms

〈Φ〉 = γ−1/2, (3.11)

and the universal parabolic relationship of Eq. (3.10) reduces to

FΦ = 3 +
3

2
S2

Φ, (3.12)

which stands in good agreement with experimental measurements [46–48]. No-
tably, these expressions do not depend on the pulse asymmetry parameter, λ.

The PDF of the process with exponential pulses is given by a Gamma
distribution with shape parameter γ and scale parameter 〈A〉 [187],

PΦ,φ(Φ) =
Φγ−1

〈A〉γΓ(γ)
exp

(
− Φ

〈A〉

)
. (3.13)

Typically, the realization of the process is normalized to have zero mean and
unit standard deviation,

Φ̃ =
Φ− 〈Φ〉

Φrms
, (3.14)

with the according PDF [187],

P
Φ̃,φ

(Φ̃) =
γγ/2

Γ(γ)

(
Φ̃ + γ1/2

)γ−1
exp

(
−γ1/2Φ̃− γ

)
. (3.15)
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Figure 3.3: PDFs of a FPP with expo-
nential pulses with different intermit-
tency parameters γ. Reprinted from
[49], with the permission from AIP
Publishing.

Figure 3.4: PDFs of a normalized
FPP with Lorentzian pulses with dif-
ferent intermittency parameters γ.
Reprinted from [188], with the per-
mission from AIP Publishing.

This expression is used as a fit in Fig. 1.11. For an FPP of Lorentzian pulses
no closed expressions for its PDF is known. However, it can be derived by
taking the inverse Fourier transform of its corresponding characteristic function
resulting in [188]

P
Φ̃,ψ

(Φ̃) =

(
π

γ

)1/2 ∫ ∞

0
dw exp

(
−γπw sin (1/2 arctanw)

(1 + w2)1/4

)

×cos

(
πγw +

√
πγΦ̃w − γπw cos (1/2 arctanw)

(1 + w2)1/4

)
.

(3.16)

For both exponential and Lorentzian pulses the PDF of the processes are char-
acterized by the intermittency parameter. The PDFs are shown for a range of
different γ in Fig. 3.3 and Fig. 3.4. The PDFs are unimodal for all values of
γ and have an exponential tail towards large fluctuation amplitudes for small
values of γ. In the opposite limit, the PDFs approach a normal distribution
with vanishing mean and unit standard deviation for Φ̃.

3.3 Second order statistics

In order to calculate the second order moments, namely the power spectral
density (PSD) and the Auto-correlation function (ACF), we consider the FPP
as a convolution of a pulse train fK and a pulse shape φ. The Fourier transform
of the FPP is given by the product of the Fourier transform of fK and φ. The
power spectrum of Φ can therefore be expressed as the product of the power
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Figure 3.5: Auto-correlation func-
tion of a normalized FPP consist-
ing of two-sided exponential pulses
with different asymmetry parameters
λ. Reprinted from [52], with the per-
mission from AIP Publishing.

Figure 3.6: Power spectral den-
sity of a normalized FPP consist-
ing of two-sided exponential pulses
with different asymmetry parameters
λ. Reprinted from [52], with the per-
mission from AIP Publishing.

spectrum of fK and φ. The power spectrum of fK is flat due to the uncorrelated
delta pulses, so that the frequency dependence of the spectrum of Φ is only
dependent on φ. The ACF is given by the Fourier transform of the PSD.
For two-sided exponential pulses the PSD of an FPP normalized according to
Eq. (3.14), takes the form [52]

Ω
Φ̃,φ

(ω;λ) =
2τd

[1 + (1− λ)2τ2
dω

2][1 + λ2τ2
dω

2]
, (3.17)

with the according ACF

R
Φ̃,φ

(r;λ) =
1

1− 2λ

[
(1− λ) exp

(
− |r|

(1− λ)τd

)
− λ exp

(
− |r|
λτd

)]
. (3.18)

The ACF and PSD are displayed for a range of γ-values in Figs. 3.5 and 3.6.
In contrast to the PDFs, the second order statistics are independent of γ but
change for different λ. In the limits of a one-sided exponential pulse, the ACF
is purely exponential and the PSD is Lorentzian shaped. For λ close to zero
or 1, the spectrum has an intermediate range where the spectrum falls with
ω−2 before it falls with ω−4 in the high frequency limit. This expression is in
excellent agreement with the experimental measurements shown in Fig. 1.13
with λ = 0.1.

For Lorentzian pulses the PSD of a normalized FPP takes an exponential
form [181]

Ω
Φ̃,ψ

(ω) = 2πτd exp (−2τd|ω|) , (3.19)



3.4. EXCESS TIME STATISTICS 41

and the ACF is Lorentzian shaped,

R
Φ̃,ψ

(r) =
4

4 + (r/τd)2
. (3.20)

These expressions can be generalized to skewed Lorentzian pulses, however no
closed expressions are known. An alternative formulation is presented in [181].

3.4 Excess time statistics

Expressions for excess time statistics, specifically the rate of level crossings
above a given threshold and the average time spent above this threshold, can
be derived for an FPP. In the context of fluctuations in the SOL of fusion
experiments, these quantities are crucial considering the energy of incoming
particles to the vessel walls and the energy threshold of physical sputtering.
The number of sputtered particles per incoming particle is specified by the
modified Bohdansky yield function [189]. The mean yield as a function of
energy of an incoming deuterium particle on a tungsten wall is plotted for a
range of relative fluctuation levels in Fig. 3.7. For constant energy, no sputter-
ing occurs beneath 200 eV. For realistic scenarios of Erms/〈E〉 > 0 sputtering
already occurs at significantly lower mean energies. An accurate description
of excess time statistics is therefore of importance for fusion experiments.

For an FPP the number of level crossings is given by Rice’s formula [173]

X(Φ) = T

∫ ∞

0
dΦ̇ Φ̇PΦ,Φ̇

(
Φ, Φ̇

)
. (3.21)

Here Φ̇ stands for the derivative of the process Φ and PΦ,Φ̇

(
Φ, Φ̇

)
for the

joint PDF between Φ and Φ̇. This formulation requires the process to be
differentiable, hence an FPP consisting of one-sided exponential pulses cannot
be considered this way. For two-sided exponential pulses with λ ∈ (0, 1) the
rate of up-crossings is given by [190]

τd

T
X(Φ) =

λγλ−1(1− λ)γ(1−λ)−1

γΓ(γλ)Γ(γ(1− λ))

(
γΦ

〈Φ〉

)γ
exp

(
− γΦ

〈Φ〉

)
. (3.22)

For this expression, the limit λ→ 0 exists. Eq. (3.22) is plotted for exponential
pulses with λ = 0 and λ = 1/2 and a range of γ-values in Fig. 3.8. From this,
the PDF of time as well as mass above a given threshold can be determined
analytically for the limits γ → 0 and γ → ∞ and numerically with Monte
Carlo simulations for general γ [190].

At the time of writing this thesis, excess time statistics of an FPP consisting
of Lorentzian pulses have not been investigated.
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Figure 3.7: Mean yield function for
a range of relative fluctuation levels.
Image courtesy of A. Theodorsen [39].

Figure 3.8: Rate of up-crossings for a
FPP consisting of exponential pulses
with λ = 0 (dashed line) and λ =
1/2 (full line) for various γ-values.
Reprinted figure with permission from
[190]. Copyright (2018) by the Amer-
ican Physical Society.

3.5 Density profiles

The FPP can be extended to include a spatial variable x, resulting in a model
of advecting single pulses and corresponding profiles. In the following, this
model is discussed in the context of filament motion in SOL plasmas. The
presented notation is consistent with [49]. Alternative formulations based on
a Lagrangian approach to filament dynamics result in equivalent expressions
[11, 191–193].

The model is given by a superposition of pulses

ΦK(x, t) =

K∑

k=1

φk(x, t). (3.23)

In contrast to previous sections φk is compounded by both amplitude and
pulse shape. For simplicity, we keep K constant in the following derivation.
The evolution of individual pulses, neglecting pulse interaction, is given by the
modified advection equation,

∂φk
∂t

+ v⊥
∂φk
∂x

+
φk
τ‖

= 0, (3.24)

with v⊥ as the radial velocity and τ‖ representing the parallel transit time,
describing parallel losses along the magnetic field. Note, that we assume v⊥
and τ‖ to be constant for all filaments. Following Eq. (3.24), individual pulses
can be written as the product of their amplitude and pulse shape, φk(x, t) =
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Ak(t)ϕk(x − xk − vkt) with xk as the position of the pulse at t = 0. The
individual amplitudes are assumed to satisfy the expression

dAk
dt

= −Ak
τ‖
. (3.25)

The solution for this amplitude equation can be expressed by introducing the
initial amplitude A0k resulting in

Ak(t) = A0k exp

(
− t+ xk/v⊥

τ‖

)
, (3.26)

with the pulse k being located at x = 0 at time −xk/v⊥. We further assume
the pulse shape to take the form of an exponential function,

ϕk(x) = Θ

(
− x

l⊥

)
exp

(
x

l⊥

)
, (3.27)

where Θ is the Heaviside function and l⊥ is the radial size of the pulse. Note,
that this pulse shape is consistent with the findings shown in Fig. 1.22. We
now consider the signal at a reference position ξ. At the reference time tk =
(ξ − xk)/v⊥ for pulse k at position ξ, the process takes the form

ΦK(ξ, t) =

K∑

k=1

A0k exp

(
− ξ

v⊥τ‖

)
Θ

(
t− tk
τ⊥

)
exp

(
− t− tk

τd

)
, (3.28)

with τ⊥ = l⊥/v⊥ and the pulse duration given by the harmonic mean of the
perpendicular and parallel transit time τd = τ‖τ⊥/(τ‖ + τ⊥). By averaging
over uniformly distributed pulse arrivals, the resulting radial profile takes the
exponential form

〈Φ〉(ξ) =
τd

τw
〈A0〉exp

(
− ξ

v⊥τ‖

)
. (3.29)

The resulting scale length of the profile is governed by the radial velocity of
the filaments and the parallel transit time. Multiple realizations at individual
points in time and the corresponding mean profile are shown in Fig. 3.9.

The application of this model exhibits numerous limitations. The assump-
tion of constant radial velocities and pulse size is an overly simplified descrip-
tion for filament transport in the SOL. In addition, the assumption of radially
constant τw and therefore radially constant γ does not hold in experimental
observations. Interactions between individual filaments and two-dimensional
motion are also not considered. However, this mathematical model still pro-
vides valuable insight in the relation between individual filaments and radial
profiles in the SOL and can serve as a framework to relate isolated blob and
filament studies to turbulence simulations and experimental measurements.
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Figure 3.9: Radial exponential density profile (black dashed line) illustrated as
the mean of individual density realizations (colored lines) given by a superpo-
sition of individual exponentially shaped pulses. Image courtesy of F. Militello
[194].

3.6 Deconvolution method

Since the FPP can be expressed as a convolution of a pulse function φ and
a forcing, consisting of delta-function pulses fK , shown in Eq. (3.2), one can
attempt to estimate the forcing if the pulse shape is known [38, 123, 195]. For
a given forcing, one can determine the pulse amplitudes {Ak}Kk=1 and arrival
times {tk}Kk=1 directly. This method has the advantage of capturing pulses of
all sizes, not only events above a certain threshold as is the case for conditional
averaging. Additionally, the problem of pulse overlap is less severe. In order
to estimate the forcing, a modified Richardson-Lucy deconvolution algorithm
can be used [196, 197]. The algorithm is initialized with a first guess for the
forcing f (1)

K . This value is iteratively updated with the n-th iteration given by

f
(n+1)
K = f

(n)
K

D ∗ φ̂
f

(n)
K ∗ φ ∗ φ̂

. (3.30)

Here, φ̂(t) = φ(−t) and D denotes the investigated time series. This algorithm
converges to the least squares solution [198]. The initial guess for the forcing
matters little as it only determines the number of iterations required until the
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algorithm converges.
This deconvolution algorithm thereby provides a versatile tool to analyze

time series of SOL fluctuations in experiments and simulations, as it can pro-
vide clear results even for relatively short time series.
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4 | Summary of Papers

The main focus of this thesis is on investigating the statistical properties of
fluctuations in numerical simulations of SOL plasmas. Papers I and III study
time series of single point measurements of established fluid models utilizing
the FPP framework. Paper II provides additional theoretical insight to the
results obtained in Paper I. Lastly, Paper IV investigates the interaction of
filaments in SOL simulations and thereby discusses to what degree filaments
can be considered uncorrelated, which is a basic assumption for the FPP model.
The papers are ordered thematically.

In order to investigate the statistical properties of fluctuations described by
different SOL models, we start with the idealized interchange model discussed
in Paper I, arguably the simplest self-consistent description of SOL turbulence.
Fluctuation time series at different radial positions are obtained and analyzed
by stochastic modeling. We observe that the PDFs for the temperature fluc-
tuations change from a normal distribution in the center of the simulation
domain to a distribution with an exponential tail at the boundary of the sim-
ulation domain, a result consistent with experimental measurements of SOL
plasmas. The PSDs have an exponential shape, which can be attributed to
the underlying Lorentzian pulses, identified by a deconvolution method. The
time series of the temperature show periods of strongly intermittent fluctua-
tions with large bursts, interrupted by quiescent periods with quasi-periodic
oscillations. These alternating periods can be attributed to the generation
of a sheared mean flow through the fluid layer resulting in predator-prey-like
dynamics of the kinetic energy integrals. Since this behavior has not been ob-
served in time series of experimental measurements, it becomes clear that the
utilized Rayleigh-Bénard-like model is insufficient to reproduce all statistical
properties of SOL fluctuations.

Paper II provides additional theoretical insight as the shot noise process
with periodic arrivals is investigated. It is shown analytically that the PSD
of a shot noise process with periodic arrivals, Lorentzian pulses and exponen-
tially distributed amplitudes has an exponentially modulated Dirac comb of
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decaying amplitudes. In addition, we provide numerical realizations of a shot
noise process with quasi-periodic arrival times by using a narrow, uniform dis-
tribution for each arrival around the strictly periodic arrival time. We find
that moderate deviations from perfect periodicity destroys the Dirac comb as
it leads to a broadening of its peaks and the decrease of the peak amplitudes
for higher harmonics. The resulting PSD resembles the findings of Paper I,
thereby confirming that the statistical properties of the fluctuation time series
of the idealized interchange model are due to the presence of quasi-periodic
Lorentzian pulses.

In Paper III we study the statistical properties of reduced two-fluid models
and thereby increase the model complexity and number of considered physical
effects compared to the idealized interchange equations. Again, we observe that
the PDFs of fluctuation time series of the plasma density show an exponential
tail in the far SOL. In contrast to the model discussed in Paper I, we find that
the average burst or pulse shape is well described by a two-sided exponential
function. The PSD of the particle density is that of the average pulse shape
and does not change with radial position. The amplitudes and the waiting
times between two consecutive arrivals are exponentially distributed. The
profiles have an exponential form with radially constant scale length. As for
the moments, we find that the fluctuation level increases with radial position
and a nearly parabolic relationship between skewness and flatness moments.
All of these results stand in perfect agreement with the predictions of the
FPP model. In contrast to experimental measurements, we can choose an
arbitrarily high sampling frequency for the single point measurements in these
simulations. For frequencies higher than what is experimentally feasible, we
observe an exponential spectrum in the PSD and a continuous, Lorenztian-like
peak in the averaged pulse shape. These results cannot be compared directly
to experimental counterparts due to the poor sampling rate by the diagnostics.

The last paper included in this thesis investigates the interaction of single
filaments with each other and thereby addresses the question to what extent
filaments can be considered isolated. As the FPP model assumes all pulses
in a time series to be uncorrelated, this study remains highly relevant for the
work presented in Papers I-III. A reduced two-fluid model is used for this in-
vestigation. In order to track filaments and determine filament parameters, a
blob tracking algorithm based on an amplitude threshold method is presented.
The velocity estimates of the algorithm are validated by a conventional center
of mass approach. We introduce a model of multiple seeded filaments where
the filament parameters, i.e. size, initial position, amplitude and arrival time,
are sampled from appropriate distribution functions. A model-specific inter-
mittency parameter is introduced which quantifies the level of filament interac-
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tions as a function of their average size, velocity and waiting time. This model
is then studied for different levels of complexity and filament interaction com-
pared to theoretical size-velocity scaling laws of perfectly isolated filaments.
We observe an increase in the average radial velocity for strongly interacting
filaments. This is found to be caused by the interaction of filaments with the
electrostatic potential of one another. The blob tracking approach is then ap-
plied on full plasma turbulence simulations where a strong correlation is found
between filament amplitudes, sizes and velocities. Despite the observed in-
crease in the radial velocities for strongly interacting filaments, we observe a
systematical size-velocity relationship consistent with theoretical predictions.
We therefore conclude that filaments can be regarded to lowest order as iso-
lated structures, i.e., that the corresponding pulses in the FPP model can be
assumed to be uncorrelated.
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5 | Conclusion and future work

The exhaust of particles and heat in the boundary of contemporary magnetic
confinement experiments remains to this day one of the biggest challenges on
the road to commercially viable fusion energy production. Due to the com-
plexity of the physics involved in the boundary of fusion devices, the scientific
community relies increasingly on numerical simulations. This approach re-
quires a validation metric for boundary turbulence simulations such as the
Filtered Poisson Process (FPP), a model which is capable to predict all rele-
vant statistical properties of fluctuations in the scrape-off layer (SOL). In this
thesis, two models for boundary plasmas are analyzed in detail. The idealized
interchange model, one of the simplest models used in the past, has shown to
only reproduce some of the statistical properties observed in experimental mea-
surements. The reduced two-fluid model has proven to reproduce all relevant
properties of the FPP model and experimental measurements. These results
are especially encouraging when considering the assumptions and simplifica-
tions of this model, such as the reduction to two dimensions, cold ions and
isothermal electrons. In addition, this thesis provides a systematical study
of plasma filament interaction, concluding that studies of isolated filaments
adequately describe filament motion in turbulent SOL plasmas. This the-
sis thereby displays the relevance and importance of numerical simulations of
reduced two-fluid models for gaining a better understanding of the intricate
physics of boundary plasmas.

Based on the presented results, a number of ideas for future work can
be proposed. One next step would be the analysis of three-dimensional turbu-
lence simulations utilizing the FPP model, as the restriction to two dimensions
remains arguably the strongest simplification of the presented simulations. Re-
cent work studying the dimensionality of SOL turbulence utilizing the STORM
code, the same code basis as used in Paper III and IV, provides a useful starting
point for this investigation [147, 158]. The short time durations of 3D codes
due to their computational costs remain a limitation for this project. However,
this limitation could be compensated by placing several measurement probes
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at different binormal/poloidal positions, where we expect the statistical prop-
erties of the fluctuation time series to be statistically identical. Including
additional physical parameters such as evolving electron and ion temperature,
using non-Boussinesq models or a more realistic magnetic geometry may also
provide additional insight.

Hitherto, we have only considered models derived from the Braginskii fluid
equations, leaving out codes utilizing different models that are commonly used
for SOL plasmas. An obvious next candidate for stochastic validation would
be fully self-consistent global gyrofluid models [96–98, 199, 200]. These models
incorporate high fluctuation amplitude levels and finite Larmor radius effects
and are considered to be a more complete description of the physical mecha-
nisms in the SOL.

As for the reduced two-fluid model, a systematical parameter scan should
be performed in order to identify the model variables relevant for the moments
and fluctuation statistics. Unpublished work on this topic has found a non-
trivial relationship between the sheath dissipation coefficient and the scale
length of the radial profile. The blob tracking algorithm presented in Paper
IV might provide further insight as the blob parameters could be compared to
the FPP framework for density profiles discussed in chapter 3.5.

The role of neutral particles in the SOL has been studied in various tur-
bulence codes [201–204]. To this day however, no attempt has been made to
analyze the effects of local ionization and recombination on the fluctuation
statistics. Applying the FPP framework on one of the existing models incor-
porating plasma-neutral interactions would be another interesting extension of
the presented work.

Lastly, the stochastic model of multiple seeded filaments discussed in Pa-
per IV opens the door to a number of applications. Since it enables to define
all filament parameters it provides a perfect tool to bridge the gap between
isolated filaments and turbulence simulations. One example would be the eval-
uation of the FPP framework for density profiles in a controlled environment
if turbulence simulations prove to be too demanding.
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ABSTRACT

Turbulent motions due to flux-driven thermal convection are investigated by numerical simulations and stochastic modeling. Tilting of con-
vection cells leads to the formation of sheared flows and quasi-periodic relaxation oscillations for the energy integrals far from the threshold
for linear instability. The probability density function for the temperature and radial velocity fluctuations in the fluid layer changes from a
normal distribution at the onset of turbulence to a distribution with an exponential tail for large fluctuation amplitudes for strongly driven
systems. The frequency power spectral density has an exponential shape, which is a signature of deterministic chaos. By use of a novel decon-
volution method, this is shown to result from the presence of Lorentzian pulses in the underlying time series, demonstrating that exponential
frequency spectra can also persist in turbulent flow regimes.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0012017., s

I. INTRODUCTION

Buoyancy-driven motion of a fluid confined between hori-
zontal plates is a cornerstone of fluid mechanics and has many
areas of application, including astrophysics, industry, laboratory
fluid dynamics, meteorology, oceanography, and plasma physics.
Due to its rich dynamics, the Rayleigh–Bénard convection model
has become a paradigm to investigate pattern formation, nonlinear
phenomena, and scaling relationships.1–6

For sufficiently strong forcing, oscillating fluid motion, and
chaotic behavior results. An intrinsic property of deterministic chaos
is an exponential frequency power spectral density for the fluc-
tuations. This has been observed in numerous experiments and
model simulations of fluids and magnetized plasmas.7–27 Recently,
the exponential spectrum has been attributed to the presence of
uncorrelated Lorentzian pulses in the temporal dynamics.29–43 This
includes the Lorenz model, which describes chaotic dynamics in
Rayleigh–Bénard convection.23–30

In two-dimensional thermal convection, it is well known that
the convection rolls in a horizontally periodic domain can give
rise to the spontaneous formation of strong mean flows through a
tilting instability.44–63 For strongly driven thermal convection,

turbulent states develop where the sheared mean flows tran-
siently suppress the fluctuating motions, resulting in quasi-periodic
relaxation oscillations.57–74 Similar relaxation oscillations have also
been identified in turbulent plasmas.75–86 This dynamics has been
described in terms of a predator–prey system, with a conservative
transfer of kinetic energy from the fluctuating to the mean motions
and a viscous dissipation of the latter.60–63,87–90 The velocity and tem-
perature fluctuations throughout the fluid layer are strongly inter-
mittent with positive skewness and flatness moments. The probabil-
ity density functions have exponential tails, resembling the state of
hard turbulence in Rayleigh–Bénard convection.91–100

In this contribution, it is for the first time demonstrated that
these properties of irregular fluid motion can be present simulta-
neously. The fluctuation statistics in a state of turbulent convection
are investigated by numerical simulations of a fluid layer driven by
a fixed heat flux.60,101–103 Time-series analysis and stochastic mod-
eling of the temperature field are presented. It is demonstrated
that the frequency power spectral density of the fluctuations has
an exponential tail. A novel deconvolution algorithm is applied,
showing that the temperature signal can be described as a super-
position of Lorentzian pulses. Hence, the well-known properties of
deterministic chaos can persist even in turbulent flow regimes.
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The outline of this paper is as follows: In Sec. II, we present
the model equations and briefly discuss the shear flow generation
mechanism. In Sec. III, the basic results from the numerical simula-
tions are presented. The fluctuation statistics are presented in Sec. IV
and in Sec. V; it is demonstrated that the exponential frequency
power spectral density is due to the presence of Lorentzian pulses
in the time series. The conclusions and a summary of the results are
presented in Sec. VI. The Appendix presents a derivation of the fre-
quency power spectral density due to a periodic train of pulses with
fixed shape and duration.

II. MODEL EQUATIONS

Considering two-dimensional fluid motions in a gravitational
field opposite to the x-axis, the model equations describing thermal
convection are given by

( ∂
∂t

+ ẑ ×∇ψ ⋅ ∇)Θ = κ∇2Θ, (1a)

( ∂
∂t

+ ẑ ×∇ψ ⋅ ∇)Ω +
∂Θ
∂y
= μ∇2Ω, (1b)

where Θ describes the temperature, ψ is the stream function for the
two-dimensional fluid velocity field v = ẑ × ∇ψ, and Ω = ẑ ⋅ ∇ × v= ∇2ψ is the associated fluid vorticity. The temperature perturba-
tions are normalized by the temperature difference △T over the
fluid layer in hydrostatic equilibrium, length scales are normalized
by the fluid layer depth d, and time is normalized by the ideal inter-
change rate.101–103 The normalized heat diffusivity κ and viscosity μ
are related to the Rayleigh and Prandtl numbers by R = 1/κμ and
P = μ/κ, respectively. The temperature in hydrostatic equilibrium is
given by Θ = 1 − x. A similar mathematical model also describes
fluctuations in non-uniformly magnetized plasmas where the sym-
metry axis z corresponds to the direction of the magnetic field and
the effective gravity is due to magnetic field curvature.50–54,57–63

In many cases, the fluid is confined in a geometry where x cor-
responds to the radial coordinate and y the azimuthal direction. In
the following, we therefore refer to the x- and y-direction as radial
and azimuthal, respectively. All dependent variables are accordingly
assumed to be periodic in the azimuthal direction, for example, Θ(y)
=Θ(y + L). In the radial direction, the boundary conditions are taken
to be

ψ(x = 0) = ψ(x = 1) = 0, (2a)

Ω(x = 0) = Ω(x = 1) = 0, (2b)

∂Θ
∂x
(x = 0) = −1, Θ(x = 1) = 0. (2c)

The latter condition corresponds to a fixed conductive heat flux
through the fluid layer.60,101–103 It should be noted that the free-slip
boundary conditions imply that there is no convective heat transport
through the radial boundaries since vx = −∂ψ/∂y = 0 for x = 0, 1.

For the azimuthally periodic system, it is convenient to define
the profile of any dependent variable as its azimuthal average and
denote this by a zero subscript. For the temperature field Θ, this is
given by

Θ0(x, t) = 1
L ∫

L

0
dyΘ(x, t). (3)

The motivation for separating profiles and spatial fluctuations is
simply that the latter are the components mediating the radial con-
vective heat flux, while the former describes the modifications of the
equilibrium state profiles.

Similar to the temperature profile, an average azimuthal flow is
also defined by

v0(x, t) = 1
L ∫

L

0
dy

∂ψ
∂x
= ∂ψ0

∂x
. (4)

Due to the conservation of net circulation of the fluid layer, the mean
azimuthal flow is intrinsically sheared and corresponds to differen-
tial rotation of the fluid layer. Such flows develop due to a tilting
instability of the convective cells.44–63 Since the symmetric flow v0
is intrinsically incapable of mediating radial convective transport,
it is natural to separate the kinetic energy into two components
comprised by the fluctuating motions and the sheared mean flows,
defined, respectively, by

K(t) = ∫ dx
1
2
[∇(ψ − ψ0)]2, U(t) = ∫ dx

1
2
v2

0. (5)

The evolution of these energy integrals are readily derived from the
mean vorticity equation,60–63

dK
dt
= ∫ dx vxΘ −Π − μ∫ dx (Ω −Ω0)2, (6)

dU
dt
= Π − μ∫ dxΩ2

0, (7)

where the kinetic energy transfer rate from the fluctuating motions
to the sheared mean flows is defined by

Π = ∫ dx v0
∂

∂x
(vxvy). (8)

As expected, the convective transport drive for the kinetic energy
integral in Eq. (6) appears only for the fluctuating motions, while vis-
cous dissipation damps kinetic energy in either form. The radial con-
vective transport of azimuthal momentum evidently yields a conser-
vative transfer of kinetic energy between the fluctuating motions and
the azimuthally mean flows.

Numerical simulations have shown that turbulent convection
can display predator–prey-like relaxation oscillations for the energy
integrals,57–62 which can be interpreted as follows: Initially, the con-
vective energy grows exponentially due to the primary instability.
When the fluctuation level becomes sufficiently large to sustain the
sheared mean flows against viscous dissipation, this flow energy
grows at the expense of the convective motions. The spatial fluc-
tuations are effectively stabilized at a sufficiently strong shear flow.
Kinetic energy is, however, continuously transferred to the mean
flows, leading to an almost complete suppression of the fluctua-
tion energy and, thus, the radial convective transport. Subsequently,
there are no fluctuating motions to sustain the sheared flows, which
hence decay on a viscous time scale. Finally, as the mean flows
become sufficiently weak, the convective energy again starts to grow
and the cycle repeats. As will be seen from the numerical simula-
tions presented in Sec. III, this leads to a strong modulation of the
fluctuations.
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III. TURBULENT CONVECTION

The temperature and vorticity equations are solved numerically
by combining a finite difference and a Fourier–Galerkin method for
spatial discretization using an Arakawa scheme for the exact con-
servation of energy and enstrophy. The resolution of the simulation
domain is set to 128 × 128 grid points. For time discretization, a
third order stiffly stable integrator is used83,104,105 with a time step of
Δ t = 5 × 10−3. Time series of the dependent variables are recorded
at radially equidistant points in the simulation domain and analyzed
in the following.

For sufficiently high Rayleigh numbers, numerical simulations
of the two-dimensional thermal convection model result in turbu-
lent states.60–62 Previously, it has been shown that close to the onset
of turbulent convection, for R = 4 × 105 and P = 1, the radial velocity
fluctuations in the center of the domain are normally distributed.60

Increasing the Rayleigh number to R = 2 × 106 results in a proba-
bility distribution function for the radial velocity fluctuations with
exponential tails.60–62 Previous investigations have shown that the
large-amplitude fluctuations are associated with coherent structures
propagating through the fluid layer. Here, we present a detailed anal-
ysis of the fluctuation statistics in the latter parameter regime (with R
= 2 × 106, P = 1, corresponding to κ = μ = 7.07 × 10−4 and L = Lx = Ly
= 1), resembling the state of hard turbulence in thermal convection
experiments.91–100

The time-averaged profile of the temperature and the relative
fluctuation level are presented in Fig. 1. Here and in the following,
angular brackets indicate a time average. The turbulent motions sig-
nificantly reduce the heat confinement in the fluid layer, reducing
the temperature on the left boundary from unity in the case of only
heat conduction to less than 0.343 on average in the turbulent state.
There is a significant profile gradient in the center of the fluid layer.
The relative fluctuation level increases drastically from the center of
the domain and radially outward, reaching more than 0.5 close to
the outer boundary.

The intermittency of the fluctuations is quantified by the skew-
ness moment, defined by SΘ = ⟨(Θ − ⟨Θ⟩)3⟩/Θ3

rms, and the flat-
ness moment, defined by FΘ = ⟨(Θ − ⟨Θ⟩)4⟩/Θ4

rms − 3, where the
variance is given by Θ2

rms = ⟨(Θ − ⟨Θ⟩)2⟩. Both the skewness and
flatness moments vanish for a normally distributed random vari-
able. The profile of these moments for the temperature fluctuations
is presented in Fig. 2. This shows that the probability density for
the fluctuations is positively skewed and flattened in the outer part

FIG. 1. Time-averaged profile of the temperature and the relative fluctuation level.

FIG. 2. Time-averaged profile of the skewness and flatness moments for the
temperature fluctuations.

of the simulation domain, suggesting frequent appearance of large-
amplitude bursts in the time series at a fixed point in the fluid layer.
The moments are largest at x = 3/4, where the skewness is 1.81, while
the flatness moment is 5.82. This demonstrates a strong departure
from a normal distribution of the fluctuations.

The time-averaged profile of the stream function is presented
in Fig. 3 together with the root mean square fluctuation level of the
radial velocity. The time-averaged stream function has a near half-
period sinoidal variation over the fluid layer and vanishes at the
boundaries. This implies an average counter-streaming mean flow
in the fluid layer, which vanishes in the center of the domain and is
strongest close to the boundaries. However, the radial velocity fluc-
tuation vanishes at the boundaries due to the stress-free boundary
conditions. The velocity fluctuation level has a local minimum in the
center of the domain. At x = 3/4, the mean flow is 0.155, resulting
in a vertical transit time of ∼6.46 in non-dimensional units. There
are some changes in this transit time since the mean flow velocity
changes in time, as discussed later.

The evolution of the kinetic energy in the fluctuating and mean
motions for a short part of the simulation run is presented in
Fig. 4. This shows the quasi-periodic relaxation oscillations resem-
bling predator–prey type dynamics, where kinetic energy is trans-
ferred from the fluctuating motions to the sheared flows and sub-
sequently dissipated by viscosity. The auto-correlation function for
the energy integrals is presented in Fig. 5. The mean flow energy

FIG. 3. Time-averaged profile of the stream function and the root mean square
value of the radial velocity. The dashed line shows a half-period sine function fit to
the stream function profile.
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FIG. 4. Evolution of the kinetic energy in fluctuating, K, and mean flows, U, showing
predator–prey-like relaxation oscillations.

auto-correlation function has a damped oscillatory behavior with
a period of ∼125, corresponding to the characteristic separation
between bursts in the energy integrals. The auto-correlation func-
tion for the energy in the fluctuating motions has a decay time of∼25, which is attributed to the characteristic duration of the bursts
in the kinetic energy seen in Fig. 4. This has been confirmed by con-
ditional averaging of large-amplitude events in the energy integral
time series.

In Fig. 6, the normalized temperature fluctuations Θ̃ = (Θ− ⟨Θ⟩)/Θrms recorded in the center of the fluid layer, at x = 1/2,
and in the outer part, at x = 3/4, are presented. The evolution of
the temperature during the onset of a turbulent period is shown
in Fig. 7. This shows the presence of a structure moving radially
through the fluid layer as well as azimuthally due to a sheared mean
flow. Throughout the fluid layer, the fluctuations are strongly inter-
mittent with large bursts during the time of strong activity in the
energy of the fluctuating motions presented in Fig. 4. In the outer
part of the fluid layer, the fluctuations have a nearly periodic oscil-
lation in the periods between the bursts in the energy integrals. This
is due to the sheared mean flow with a transit time of ∼6.46. In
the following, the statistical properties of these fluctuations will be
elucidated.

FIG. 5. Auto-correlation function for the kinetic energy in fluctuating and mean
flows.

FIG. 6. Time series of the temperature fluctuations at x = 1/2 and x = 3/4.

IV. FLUCTUATION STATISTICS

The probability density function for the temperature fluctua-
tions measured at x = 1/2 and x = 3/4 is presented in Fig. 8. As
expected from the radial variation of the skewness and kurtosis
moments, the distributions have elevated tails compared to a normal
distribution. For x = 3/4, the distribution is strongly skewed and has
a nearly exponential tail toward large values. This is demonstrated
by the solid line in Fig. 8, which is the best fit of a convolution of a
normal distribution and a Gamma distribution. Similarly, the prob-
ability distribution functions for the radial velocity fluctuations are
presented in Fig. 9 together with the best fit of a convolution between
a Laplace and a normal distribution. This clearly demonstrates the
presence of exponential tails in the probability densities.

The frequency power spectral densities for the temperature
signals measured at x = 1/2 and x = 3/4 are presented in semi-
logarithmic plots in Figs. 10 and 11. From Fig. 10, with logarithmic
scaling of the frequency, it is clear that the frequency spectrum has
a pronounced maximum at the linear frequency f = 8 × 10−3, which
corresponds to the characteristic time between bursts in the energy
integrals discussed above. Some higher harmonics of this frequency
peak are also readily identified. The frequency spectrum for x = 3/4
also has a peak at ∼f = 0.2, corresponding to the vertical transit time
by the average mean flow.

When the spectra are plotted with a logarithmic scaling for
the power as presented in Fig. 11, it is clearly seen that fre-
quency power spectral density has an exponential decay on the form
exp(−4πτd∣ f ∣), with the characteristic time τd = 0.637 for x = 1/2
and τd = 0.382 for x = 3/4. In Sec. V, it will be demonstrated that the
exponential spectrum is due to the presence of Lorentzian pulses in
the time series and that the slope corresponds to the duration time
of these pulses. Similar exponential frequency spectra are also found
for the stream function, radial velocity, and vorticity field. However,
the slope, and therefore the duration time of the underlying pulses,
varies for the different quantities.

V. LORENTZIAN PULSES

An exponential frequency power spectrum is a signature of
deterministic chaos and has been attributed to Lorentzian-shaped
pulses in the underlying time series. In order to demonstrate this,
consider the stochastic process that gives a superposition of pulses

Phys. Fluids 32, 085102 (2020); doi: 10.1063/5.0012017 32, 085102-4

Published under license by AIP Publishing



Physics of Fluids ARTICLE scitation.org/journal/phf

FIG. 7. Exemplary snapshots of the tem-
perature field Θ, showing the evolution
at the onset of a turbulent period. The
black crosses show the radially equidis-
tant positions where time series are
recorded.

with fixed shape ϕ and duration τd,106–117

ΦK(t) = K(T)∑
k=1

Akϕ( t − tkτd
), (9)

where Ak and tk are pulse amplitude and arrival time for the pulse
labeled k, respectively, and K(T) is the number of pulses present in
a time interval of duration T. In the case of Lorentzian pulses, the
function ϕ is given by39–41

ϕ(θ) = 1
π

1
1 + θ2 . (10)

In the case of uncorrelated Lorentzian pulses, it was recently shown
that the frequency power spectral density is exponential, and for the
normalized variable Φ̃ = (Φ − ⟨Φ⟩)/Φrms, it is given by39,40

SΦ̃( f ) = 2πτd exp(−4πτd∣ f ∣).
In the Appendix, it is shown that for a periodic sequence of
Lorentzian pulses with fixed duration, the frequency power spec-
trum is a product of the exponential spectrum and a uniform delta
pulse train at frequencies corresponding to multiples of the inverse
periodicity time. In the case of a slight irregularity in the period
between the pulses, the delta peaks in the frequency spectrum with
broaden and have finite amplitude.
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FIG. 8. Probability density function for the normalized temperature fluctuations at
x = 1/2 and x = 3/4. The solid line shows the best fit of a convolution between a
Gamma and a normal distribution.

FIG. 9. Probability density function for the normalized radial velocity fluctuations at
x = 1/2 and x = 3/4. The solid line shows the best fit of a convolution between a
Laplace and a normal distribution.

As shown in Fig. 6, the temperature time series at x = 3/4 can be
separated into parts with nearly periodic oscillations and turbulent
parts with chaotic, large-amplitude fluctuations. An example of sep-
arating these periods is shown in Fig. 12. In Fig. 13, the frequency
power spectral density of the quasi-periodic and turbulent parts is

FIG. 10. Logarithm of the frequency power spectral density for temperature
fluctuations at x = 1/2 and x = 3/4.

FIG. 11. Frequency power spectral density for temperature fluctuations at x = 1/2
and x = 3/4. The dashed lines show the best fit of an exponential function.

shown together with the power spectral density of the entire signal. It
is clear that the power spectrum of the entire signal is well described
by the power spectrum of the turbulent parts and that they have the
same time scale, τd = 0.382. The black dashed line gives an exponen-
tial spectrum with 4 times the duration time of the whole spectrum,
which closely resembles the power spectrum of the quasi-periodic
parts of the signal. In the following, this is used as an estimated
duration time of the periodic part.

In order to demonstrate that the temperature time series can
be described as a superposition of Lorentzian pulses, a deconvolu-
tion algorithm using a Lorentzian pulse with fixed duration time
estimated from the power spectral density is applied. This gives the
pulse amplitudes and arrival times, which can be used to reconstruct
the original signal. The superposition of pulses with fixed duration
given by Eq. (9) can be written as a convolution between the pulse
function and a train of delta pulses,114,118

ΦK(t) = [ϕ ∗ FK]( t
τd
), (11)

where

FK(t) = K(T)∑
k=1

Akδ( t − tkτd
). (12)

FIG. 12. Example of splitting of temperature fluctuations into quasi-periodic (green)
and turbulent (orange) parts at x = 3/4.
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FIG. 13. Power spectral density of the temperature fluctuations at x = 3/4. The red
line gives the spectrum of the entire time series as shown in Fig. 10, the orange
lines give the spectra of the turbulent parts from Fig. 12, while the green lines give
the spectra of the quasi-periodic parts. The black dashed line gives the prediction
for an exponential spectrum with the periodicity time seen in the raw time series.

The goal is to find the forcing FK(t) and to estimate the pulse ampli-
tudes {Ak}Kk=1 and arrival times {tk}Kk=1 as accurately as possible. In
order to do this, a modified version of the Richardson–Lucy decon-
volution algorithm will be used.118–123 Following this scheme, an
initial guess for FK is made, denoted by F(1)K . The numerical value
of this initial forcing matters little and can be set as some positive
constant or the signal itself. The initial value is updated iteratively,
with the nth iteration given by

F(n+1)
K = F(n)K

D ∗ ϕ̂
F(n)K ∗ ϕ ∗ ϕ̂ , (13)

where ϕ̂(t) = ϕ(−t). Here and in the following, D denotes any of the
simulation data time series discussed above.

The result from the deconvolution algorithm is presented in
Figs. 14 and 15 for representative turbulent and the quasi-periodic
parts, respectively. It is clear that most of the signals are well recon-
structed by a superposition of Lorentzian pulses. As an example,

FIG. 14. Excerpt of turbulent part (orange solid line) and reconstructed signal from
the deconvolution (black dashed line). The dots indicate arrival times and ampli-
tudes of Lorentzian pulses with duration time τd = 0.382. The circular dots give
half the true amplitude value for better comparison with the time series.

FIG. 15. Excerpt of quasi-periodic part (green solid line) and reconstructed signal
from the deconvolution (black dashed line). The dots indicate arrival times and
amplitudes of Lorentzian pulses with duration time τd = 1.528. The circular dots
give half the true amplitude value for better comparison with the time series.

the first peak in Fig. 14 results from a structure of high tempera-
ture moving radially through the fluid layer similar to the structures
shown in Fig. 7. The lift-time of the two-dimensional structure in
Fig. 7 exceeds the duration of the Lorentzian-shaped peak in Fig. 14,
but the single-point recording can be modeled as a compound of
several Lorentzian pulses. The frequency power spectral density of
the reconstructed time series accurately reproduces that from the
numerical simulations as expected. This analysis clearly demon-
strates that the exponential frequency spectra for the temperature
fluctuations in the thermal convection simulations are due to the
presence of Lorentzian pulses in the time series.

VI. DISCUSSION AND CONCLUSIONS

In this contribution, the statistical properties of the temperature
fluctuations in numerical simulations of turbulent thermal convec-
tion have been investigated by time-series analysis and stochastic
modeling. The generation of a sheared mean flow through the fluid
layer results in predator–prey-like dynamics of the energy integrals
and leads to multiple temporal scales in the dynamics. For suffi-
ciently large Rayleigh numbers, a regime corresponding to hard tur-
bulence results with exponential tails in the probability distribution
function for the temperature and velocity fluctuations.

The frequency power spectral density for the fluctuations has
local maxima at frequencies corresponding to bursting in the energy
integral as well as transit time for the mean flow through the fluid
layer. However, when presented in a semi-logarithmic plot, it is clear
that the frequency spectrum has an exponential tail for power den-
sities all the way down to round off errors. A novel deconvolution
method has been used to show that the exponential spectrum is due
to the presence of Lorentzian pulses in the temperature time series.
The time scale for the structures is consistent with the slope of the
exponential frequency spectra.
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APPENDIX: PERIODIC ARRIVALS

In this appendix, the frequency power spectral density for a
superposition of pulses with periodic arrivals is calculated. A super-
position of K pulses with fixed shape and duration, as given by
Eq. (9), can be written as a convolution between the pulse function
ϕ and a train of delta pulses,

ΦK(t) = ∫ ∞
−∞ dθ ϕ( t

τd
− θ)FK(θ), (A1)

where the forcing FK due to the delta pulse train is given by

FK(θ) = K∑
k=1

Akδ(θ − tk
τd
). (A2)

The pulse duration time τd is taken to be the same for all pulses,
and the pulse amplitudes Ak are taken to be randomly distributed
with mean value ⟨A⟩ and variance A2

rms = ⟨(A − ⟨A⟩)2⟩. The pulse
function is assumed to be localized and normalized such that112,115

∫ ∞
−∞ dθ ∣ϕ(θ)∣ = 1.

The frequency power spectral density of a random process
ΦK(t) is defined as

SΦ(ω) = lim
T→∞⟨∣FT[ΦK](ω)∣2⟩, (A3)

where the Fourier transform of the random variable over the domain
[0, T] is defined by

FT[ΦK](ω) = 1√
T

T

∫
0

dt exp(−iωt)ΦK(t). (A4)

Here, ω = 2πf is the angular frequency. Analytical functions that
fall sufficiently rapid to zero, such as the pulse function ϕ, have the
Fourier transform

F[ϕ](ϑ) = ∞
∫−∞ dθ exp(−iθϑ)ϕ(θ) (A5)

and the inverse transform

ϕ(θ) =F−1[F[ϕ](ϑ)](θ) = 1
2π

∞
∫−∞ dϑ exp(iθϑ)F[ϕ](ϑ). (A6)

Note that, here, θ and ϑ are non-dimensional variables, as opposed
to t and ω.

Neglecting end effects in by assuming T/τd ≫ 1, the frequency
power spectral density of the stationary process ΦK is found to be
the product of the power of the pulse function and the power of the
forcing,114

SΦ(ω) = ∣F[ϕ](τdω)∣2 lim
T→∞⟨∣FT[FK( t

τd
)](ω)∣2⟩, (A7)

which is independent of K since the average is over all random vari-
ables. The frequency power spectrum for the forcing FK will now be
calculated for the case of periodic pulses.

The marginal probability density function for the pulse arrival
times when these are periodic with period τp and starting point s,
assuming that the starting time s is known, is

Ptk(tk∣s) = δ(tk − τpk − s). (A8)

Since each arrival is deterministic, the joint distribution of all arrivals
with known starting point is the product of the marginal distribu-
tions,

Pt1 ,...,tK (t1, . . . , tK ∣s) = K∏
k=1

δ(tk − τpk − s). (A9)

To account for the fact that the periodicity but not the actual arrival
time is known, the starting point is randomly and uniformly chosen
in the interval [0, τp],

Ps(s) = {τ−1
p , 0 < s < τp

0, else.
(A10)

The Fourier transform of the forcing is

FT[FK( t
τd
)](ω) = τd√

T

K∑
k=1

Ak exp(−iωtk). (A11)

Multiplying this expression with its complex conjugate and aver-
aging over all random variables give after some calculations, the
frequency power spectrum of the forcing,

lim
T→∞⟨∣FT[FK](ω)2∣⟩ = τ2

d

τp
A2

rms +
τ2

d

τp
⟨A⟩22π

∞∑
n=−∞ δ(τpω − 2πn).

(A12)
According to Eq. (A7), this is to be multiplied by the spectrum of
the pulse function. Thus, the frequency power spectral density for
a superposition of periodic pulses with fixed shape and duration is
given by the sum of the spectrum of the pulse function (due to a ran-
dom distribution of pulse amplitudes and represented by the term
proportional to A2

rms in the above equation) and the spectrum of the
pulse function multiplied by a uniform delta pulse train, also known
as a Dirac comb (represented by the last term in the above equa-
tion proportional to ⟨A⟩2, which vanishes for a symmetric amplitude
distribution).
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Dirac comb and exponential frequency spectra in chaotic dynamics

A. Theodorsen, G. Decristoforo and O. E. Garcia

Department of Physics and Technology, UiT The Arctic University of Norway,

N-9037 Tromsø, Norway

An exponential frequency power spectral density is a well known property of

many continuous time chaotic systems and has been attributed to the presence of

Lorentzian-shaped pulses. Here a stochastic modelling of such fluctuations are pre-

sented, describing these as a super-position of pulses with fixed shape and constant

duration. Closed form expressions are derived for the lowest order moments, auto-

correlation function and frequency power spectral density in the case of periodic pulse

arrivals and a random distribution of pulse amplitudes. In general, the spectrum is a

Dirac comb located at multiples of the periodicity time and modulated by the pulse

spectrum. Randomness in the pulse arrival times is investigated by numerical realiza-

tions of the process and the results are discussed in the context of some well-known

chaos models.
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I. INTRODUCTION

An intrinsic property of deterministic chaos in continuous time systems is an exponential

frequency power spectral density (PSD) for the fluctuations.1–10 This has been observed in

numerous experiments and model simulations of fluids and magnetized plasmas. Recently,

the exponential spectrum has been attributed to the presence of Lorentzian pulses in the tem-

poral dynamics.11–21 Weakly non-linear systems are often characterized by a quasi-periodic

oscillations, resulting in a frequency power spectral density resembling a Dirac comb.19–27

Far from the linear instability threshold the spectral peaks broaden and in many cases an

exponential spectrum results.1–27

Many chaotic systems, including the Lorenz and the Rössler models, display quasi-

periodic orbits with Lorentzian-shaped pulses close to the primary instability threshold.

The associated PSD has sharp peaks at frequencies corresponding to the periodicity of the

oscillations, resembling a Dirac comb. The Lorentizan-shaped pulses lead to an exponential

modulation of the amplitude of the spectral peaks. With period-doubling the density of

spectral peaks increases and in the chaotic state the spectral peaks broadens and the PSD

is eventually an exponential function of frequency.

In this contribution, we present a stochastic model that describes a super-position of

Lorentzian pulses and the resulting frequency spectra.28–30 The model is based on the process

known as shot noise or filtered Poisson process.31–41 This model has recently been used to

describe intermittent fluctuations in turbulent fluids and plasmas.17,18

For a super-position of pulses with fixed shape and constant duration closed form expres-

sions are here derived for the lowest order moments, auto-correlation function and frequency

power spectral density in the case of periodic pulse arrivals and a random distribution of

pulse amplitudes. In general, the spectrum is a Dirac comb located at multiples of the peri-

odicity time and modulated by the pulse spectrum. Randomness in the pulse arrival times

is investigated by numerical realizations of the process and the results are discussed in the

context of some well-known chaos models.

The contribution is structured as follows. In Sec. II, a motivating example for studying

periodic pulse trains in connection to chaotic motion is presented. In Sec. III the stochastic

model for a super-position of pulses is presented and its PSD for general arrival times is

derived. In Sec. IV the case of periodic pulse arrivals is analyzed in detail with a particular
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FIG. 1. Power spectral density of the x-variable in the Lorenz system for σ = 10, β = 8/3 and

various values of ρ.

focus on Lorentzian pulses. Finally, in Sec. VI it is demonstrated that the stochastic model

describes the chaotic dynamics of the Lorenz system.

II. THE LORENZ SYSTEM

A canonical chaos system is given by the Lorenz equations describing weakly non-linear

thermal convection in an inversely stratified fluid

dx

dt
= σ(y − x), (1)

dy

dt
= x(ρ− z)− y, (2)

dz

dt
= xy − βz. (3)

Here x, y and z are the variables and σ, ρ and β are the model parameters. Time series of

the x-variable and the associated frequency PSD are presented in Figs. 2 and 1 for σ = 10,

β = 8/3 and three different values of the model parameter ρ.

For ρ = 350 the solutions consists of periodic oscillations and the frequency PSD resemble

a Dirac comb with an exponential modulation of the peak amplitudes. As shown in Fig. 2,

the oscillations are well described by Lorentzian-shaped pulses. Following a period doubling

bifurcation, the solution for ρ = 220 is still regular and the PSD is again dominated by a

Dirac-like comb. For ρ = 28 the solution is chaotic and the PSD has an exponential shape for

high frequencies and some narrow peaks for low frequencies. In the following, these features

of the chaotic dynamics will be analyzed by describing the fluctuations as a super-position

3
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FIG. 2. Excerpt of the time series of the z-variable in the Lorenz system for σ = 10, β = 8/3 and

ρ = 350 compared to a superposition of Lorentz pulses.

of Lorentzian-shaped pulses.

III. THE POWER SPECTRAL DENSITY OF A SUM OF PULSES

In this section, we develop an expression for the power spectral density of the a shot

noise process for general arrival times. This is based on the formalism developed for filtered

Poisson processes, also called shot noise processes.

We consider a train ofK(T ) pulses arriving in the interval [0, T ] with randomly distributed

arrival times {tk}K(T )
k=1 and randomly distributed amplitudes {Ak}K(T )

k=1 . The pulses have a

characteristic shape ϕ and a characteristic duration time τd.

Following these remarks, the process is written as a convolution between a pulse train fK

and a pulse shape ϕ:

ΦK(t) =

∫ ∞

−∞
ds ϕ

(
t

τd

− s
)
fK(s), (4)

where

fK(s) =

K(T )∑

k=1

Akδ

(
s− tk

τd

)
(5)

and δ denotes the Dirac delta function. This can be viewed as a point process fK passed

through a filter with response function φ, hence the name. Note that for i.i.d. uniform pulse

arrivals, K(T ) is a Poisson process.

We normalize the pulse shape such that

∫ ∞

−∞
|ϕ(s)|ds = 1. (6)
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We also introduce the notation

ρϕ(s) =
1

I2

∞∫

−∞

duϕ(u)ϕ(u+ s) (7)

and

%ϕ(θ) =
1

I2

|F [ϕ](θ)|2 (8)

for the auto-correlation and the power spectral density of the pulse shape, respectively. Here,

In =

∫ ∞

−∞
ϕ(s)nds. (9)

Note that the functions ρϕ and %ϕ form a Fourier transform pair, where the definition of

the Fourier transform is given in Appendix A. Throughout this contribution, we will use

Lorentzian pulses, which are detailed in Appendix D.

To find the PSD, we start from Eq. (4), and take the Fourier transform as defined in

Appendix A:

FT [ΦK ](ω) =

T∫

0

dt exp(−iωt)ΦK(t) =

T∫

0

dt exp(−iωt)
∞∫

−∞

ds ϕ(s)fK

(
t

τd

− s
)

(10)

where we have exchanged the functions in the convolution given by Eq. (4). A change of

variables u(t) = t− τds gives

FT [ΦK ](ω) =

∞∫

−∞

ds ϕ(s) exp(−iτdωs)

T−τds∫

−τds

du fK

(
u

τd

)
exp(−iωu). (11)

We assume that ϕ(s) is negligible after a few τd. Moreover, since no pulses arrive for negative

times, fK(u) = 0 for u < 0. Assuming T/τd � 1, we can therefore approximate the limits

of the second integral in Eq. (11) as u ∈ [0, T ], and the two integrals become independent.

This gives

FT [ΦK ](ω) = F [ϕ](τdω)FT [fK ](ω). (12)

The power spectral density (PSD) of the stationary process Φ is therefore

SΦ(ω) = lim
T→∞

1

T

〈
|FT [ΦK ](ω)|2

〉
= |F [ϕ](τdω)|2 lim

T→∞

1

T

〈
|FT [fK ](ω)|2

〉
, (13)

where SΦ(ω) is independent of K, since the average is over all random variables. The power

spectrum is thus the product of the power spectrum of the pulse shape and the power

5



spectrum of the point process. Non-uniform arrivals only affect the point process, so this

will be isolated in the analysis in Sec. III A.

Using Eq. (8), the full power spectral density of Φ can be written as

SΦ(ω) = I2%ϕ(τdω) lim
T→∞

1

T

〈
|FT [fK ](ω)2|

〉
. (14)

A. The power spectral density for general arrival times

The Fourier transform of the point process is

FT [fK ](ω) = τd

K∑

k=1

Ak exp(−iωtk). (15)

Multiplying this expression with its complex conjugate and averaging over all random vari-

ables gives (for a general distribution of arrivals Pt1,t2,...,tK (t1, t2, . . . , tK), assuming ampli-

tudes are i.i.d. and independent of the arrival times):

1

T

〈
|FT [fK ](ω)2|

〉

=
∞∑

K=0

PK(K;T, τw)
τ 2

d

T

K∑

k=1

K∑

l=1

∞∫

−∞

dt1· · ·
∞∫

−∞

dtKPt1,...,tK (t1, . . . , tK)

×
∞∫

0

dA1PA(A1)· · ·
∞∫

0

dAKPA(AK)AkAl exp(iω(tl − tk)).

=
∞∑

K=0

PK(K;T, τw)
τ 2

d

T

K∑

k,l=1

〈AkAl〉〈exp(iω(tl − tk))〉. (16)

In this equation, there are K terms where k = l and K(K−1) terms where k 6= l. Summing

over all these terms, we have

1

T

〈
|FT [fK ](ω)2|

〉
= τ 2

d

∞∑

K=0

PK(K;T, τw)

{
K

T

〈
A2
〉

+
1

T
〈A〉2

K∑

k=1

∑

l 6=k
〈exp(iω(tl − tk))〉

}
. (17)

The average inside the exponential sum is the joint characteristic function of tl and tk.

Exchanging the order of k and l in the double sum is the same as taking the complex
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conjugate of this characteristic function, so we get

1

T

〈
|FT [fK ](ω)2|

〉
=
τ 2

d〈K〉
T

〈
A2
〉
+

τ 2
d

T
〈A〉2

∞∑

K=0

PK(K;T, τw)
K∑

k=2

k−1∑

l=1

2Re[〈exp(iω(tl − tk))〉]. (18)

1. Uniformly distributed i.i.d arrivals

As an example, we show that the expression in Eq. (18) is consistent with the established

result for K(T ) a pure Poisson point process.

Now tl, tk are i.i.d. uniformly distributed arrivals on [0, T ]. We therefore have that

〈exp(iω(tl − tk))〉 = 〈exp(iωtl)〉〈exp(−iωtk)〉 = 2
1− cos(ωT )

ω2T 2
. (19)

All terms in the double sum are equal, and we get

1

T

〈
|FT [fK ](ω)2|

〉
=
τ 2

d〈K〉
T

〈
A2
〉

+ 2
τ 2

d

T
〈A〉2〈K(K − 1)〉1− cos(ωT )

ω2T 2
. (20)

In this case, K is Poisson distributed with mean and variance equal to T/τw and we get

1

T

〈
|FT [fK ](ω)2|

〉
=
τ 2

d

τw

〈
A2
〉

+
2τ 2

d

τ 2
w

〈A〉2 1− cos(ωT )

ω2T 2
, (21)

which gives, using γ = τd/τw,

lim
T→∞

1

T

〈
|FT [fK ](ω)2|

〉
= τdγ

〈
A2
〉

+ 2πτdγ
2〈A〉2δ(τdω), (22)

which is the standard expression for the Poison process.39 Identifying the last term as con-

taining a Dirac delta in the limit T → ∞ makes sense in the theory of distributions46. A

Poisson process gives a flat spectrum, so the only frequency variation in the full spectrum

will be due to the pulse function.

2. Periodic arrival times

We consider the situation where the periodicity is known, but the exact arrivals are not.

This corresponds to uncertainty in where the measurement starts in relation to the first

arrival time. If the arrivals are periodic, the marginal PDF of arrival k given that the

starting time is s, is

Ptk|s(tk|s) = δ(tk − τpk − s). (23)
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Since each arrival is deterministic, the joint PDF with known starting point is is the product

of the marginal PDFs, and we have

〈exp(iω(tl − tk))〉 = exp(iωτp(l − k)). (24)

Note that this is independent of s for all starting points, so for now we need not consider s

further. We have from Eq. (18)

K∑

k=2

k−1∑

l=1

2Re[〈exp(iω(tl − tk))〉] =
K∑

k=2

k−1∑

l=1

2 cos(τpω(l − k))

=
K − 1 + cos(τpωK)−K cos(τpω)

cos(τpω)− 1
=

cos(τpωK)− 1

cos(τpω)− 1
−K. (25)

Due to the periodicity, there are bT/τpc events in a time series of length T . We use

PK(K;T, τp) = δ(K − bT/τpc). Inserting this and Eq. (25) into Eq. (18) gives

1

T

〈
|FT [fK ](ω)2|

〉
=
τ 2

d

T
bT/τpc

〈
A2
〉

+
τ 2

d

T
bT/τpc〈A〉2

[
bT/τpc−1 cos(τpωbT/τpc)− 1

cos(τpω)− 1
− 1

]
.

(26)

For T/τp � 1, bT/τpc/T ≈ 1/τp, and we have (writing K = bT/τpc)

lim
K→∞

1

T

〈
|FT [fK ](ω)2|

〉
=
τ 2

d

τp

〈
A2
〉
− τ 2

d

τp

〈A〉2 +
τ 2

d

τp

〈A〉2 lim
K→∞

1

K

cos(τpωK)− 1

cos(τpω)− 1
. (27)

Let us consider the last part of the last term,

lim
K→∞

1

K

cos(τpωK)− 1

cos(τpω)− 1
. (28)

For integer n and τpω 6= 2πn, this limit is zero. For τpω → 2πn, this limit tends to ∞. We

might therefore consider Eq. (28) proportional to a train of δ-pulses located at τpω = 2πn.

Setting τpω = 2πn + ε where ε � 1 and expanding the cosine in the denominator, we

have

lim
K→∞

1

K

cos(τpωK)− 1

cos(τpω)− 1
≈ lim

K→∞

2

K

1− cos(εK)

ε2
. (29)

This is on the same form as we had when deriving Eq. (22), so we conclude that

lim
K→∞

1

K

cos(τpωK)− 1

cos(τpω)− 1
∼ 2π

∞∑

n=−∞
δ(τpω − 2πn). (30)

Inserting this into Eq. (26) gives the full expression for the PSD of a train of delta pulses

with randomly distributed amplitudes:

lim
T→∞

1

T

〈
|FT [fK ](ω)2|

〉
= τdγA

2
rms + 2πτdγ

2〈A〉2
∞∑

n=−∞
δ(τdω − 2πnγ). (31)

This equation will be discussed in the following section.
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IV. THE SHOT NOISE PROCESS WITH PERIODIC ARRIVALS

The full power spectral density of Φ is given by multiplying Eq. (31) by the power

spectrum of the pulse functions, Eq. (8), as given by Eq. (14):

SΦ(ω) = τdγA
2
rmsI2%ϕ(τdω) + 2πτdγ

2〈A〉2I2%ϕ(τdω)
∞∑

n=−∞
δ(τdω − 2πnγ). (32)

There are two main differences from the uniformly distributed pulses, given by Eq. (22):

Arms enters into the first term instead of 〈A2〉, and there is a contribution of delta spikes

at integer multiples of 2π/τp, with an envelope given by the pulse shape. We may view the

first term as the average spectrum, due to the randomness of the amplitude distribution,

while the second term containing the sum of delta pulses is due to the periodicity of the

pulse arrivals. Accordingly, the first term vanishes for degenerately distributed amplitudes,

pA(A) = δ(A − 〈A〉). For a symmetric amplitude distribution around 0, 〈A〉 = 0 and

A2
rms = 〈A2〉. The periodicity is canceled out and only the first term remains.

In Fig. 3, the power spectral density of a synthetically generated shot noise is presented

for exponentially distributed amplitudes (blue line) and symmetrically Laplace distributed

amplitudes (orange line). The arrivals are periodic and the pulses have a Lorentzian shape.

The analytic expression Eq. (32) for both cases is given by the black and green dashed

lines respectively. The Dirac comb with decaying amplitudes is easily seen in the case with

exponential amplitudes. We emphasize that the main effect of the periodicity, the Dirac

comb, is completely cancelled out by the symmetrically distributed pulse amplitudes.

A. The correlation function

By the Wiener-Khinchin theorem,

RΦ(t) =
1

2π

∞∫

−∞

dω SΦ(ω) exp(iωt) (33)

= γA2
rmsI2ρϕ(t/τd) + γ2〈A〉2I2

∞∑

n=−∞
%ϕ(2πnγ) exp(i2πnγt/τd). (34)

By using the Poisson summation formula and properties of the Fourier transform as detailed

in Appendix C, we can write RΦ as

RΦ(t) = γA2
rmsI2ρϕ

(
t

τd

)
+ γ〈A〉2I2

∞∑

m=−∞
ρϕ

(
m

γ
+

t

τd

)
. (35)
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FIG. 3. The power spectral density of a shot noise process with periodic arrival times for expo-

nentially (blue) and Laplace (orange) distributed amplitudes. The analytic expression is given by

the black and green dashed lines, respectively.

Writing m/γ + t/τd = (m + t/τp)/γ, we see that the correlation function consists of a

central peak with followed by periodic modulations at integer multiples of τp. Again, for

degenerate amplitudes the correlation function only consists of the periodic train: there is

no randomness left in the signal and so the correlation function does not decay for large

times. For symmetric amplitudes, only the central peak remains.

In Fig. 4, the auto-correlation function of a synthetically generated shot noise is presented

for exponentially distributed amplitudes (blue line) and symmetrically Laplace distributed

amplitudes (orange line). The arrivals are periodic and the pulses have a Lorentzian shape.

The analytic expression Eq. (32) for both cases is given by the black and green dashed lines

respectively. For exponentially distributed amplitudes, the periodicity is clearly seen. This

effect is again completely cancelled out by symmetrically distributed amplitudes.
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FIG. 4. The auto-correlation function of a shot noise process with periodic arrival times for

exponentially (blue) and Laplace (orange) distributed amplitudes. The analytic expression is given

by the black and green dashed lines, respectively.

B. The mean value and standard deviation

The mean value of the shot noise process with periodic pulses, assuming a uniform starting

time distribution in [0, τp), is given by

〈ΦK〉 =
K∑

k=1

∫
dAPA(A)

∫
ds Ps(s)Aϕ

(
t− τpk − s

τd

)

=
〈A〉
τp

K∑

k=1

τp∫

0

ds ϕ

(
t− τpk − s

τd

)

=
〈A〉
τp

K∑

k=1

(t−τpk)/τd∫

(t−τp(k+1))/τd

τdduϕ(u) = γ〈A〉
(t−τp)/τd∫

(t−(K+1)τp)/τd

duϕ(u)

〈Φ〉 = lim
T→∞

∞∑

K=1

pK(K; τw, T )〈ΦK〉 = γ〈A〉I1. (36)

In the last step, we let T → ∞ giving K → ∞ and set the upper integration limit to

∞ to avoid the effect due to the signal starting at t = 0. This is the expected result from

Campbell’s theorem. This is also consistent with the fact that the square mean value is given

by the zero-frequency delta function in the power spectrum, SΦ(ω) = 2π〈Φ〉2δ(ω)+. . . .

The second moment is most conveniently found by noting that

〈Φ〉2 = 〈Φ(t)Φ(t)〉 = RΦ(0) = γA2
rmsI2 + γ〈A〉2I2

∞∑

m=−∞
ρϕ

(
m

γ

)
, (37)
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where we have used that ρϕ(0) = 1. This can be verified by calculating the second moment

directly as was done for the first. In Appendix B, it is shown that this is also equivalent to

an extention of Campbell’s theorem. We get the variance

Φ2
rms = γA2

rmsI2 + γ〈A〉2I2

( ∞∑

m=−∞
ρϕ(m/γ)− γ I

2
1

I2

)
. (38)

In the case γ � 1, only the m = 0 term in the sum gives a contribution, ρϕ(0) = 1, giving

lim
γ→0

Φ2
rms = γ

〈
A2
〉
I2, (39)

where we neglect the γ2-contribution of the last term in the bracket. Thus, in the limit of no

pulse overlap, the variance for the case of periodic pulses is equivalent to the case of Poisson

distributed pulses.

In the case γ � 1, we can write m/γ = m4t → t and treat the sum as an integral,

γ
∑

m ρ(m/γ)(1/γ) ≈ γ
∫
ρ(t)4t = γI2

1/I2, where the sum is over all integers and the

integral is over all reals. The terms inside the bracket cancel, and we get

lim
γ→∞

Φ2
rms = γA2

rmsI2. (40)

Since A2
rms = 〈A2〉 − 〈A〉2 ≤ 〈A2〉, the periodic pulse overlap gives lower variance than

the Poisson distributed pulses as there is less randomness in the signal. For exponential

amplitudes, the variance in the periodic case is a factor 2 smaller. For amplitudes with zero

mean value, it is equal to the Poisson case while for fixed amplitudes, the signal has no

variance as pulses will accumulate until the rate of accumulation exactly matches the rate

of decay, after which the signal will remain constant.

C. Quasi-periodic pulses

In this section, we present the effect of quasi-periodicity in the arrival time distribution

on the second-order statistics of the shot noise process. Here, we model quasi-periodicity

using a uniform distribution for each arrival around the periodic arrival time, so that the

distribution of the k’th arrival time given the starting time s is

Ptk(tk|s) =





1
2τpκ

, −τpκ ≤ tk − τpk − s ≤ τpκ

0, else
. (41)
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FIG. 5. The power spectral density of a shot noise process with quasi-periodic arrival times for

different values of the κ-parameter. The analytic expression for purely periodic pulses is given by

the black dashed line.

In the limit κ → 0, we recover the periodic arrivals, while for κ > 1, the probability dis-

tributions of adjacent arrivals overlap. We emphasize that this is still a very restrictive

formulation: even for κ > 1, each arrival is guaranteed to be centered on the time corre-

sponding to the periodic arrival time, and the number of arrivals in a given interval is fixed

up to end effects.

In Figs. 5 and 6, the effect of this quasi-periodicity is presented. The full lines give the

power spectral densities and the auto-correlation functions of the shot noise process with

quasi-periodic arrival times for different values of the κ-parameter, Lorentzian pulses and

exponentially distributed amplitudes. The black dashed line gives the analytic prediction

for purely periodic pulses. Even moderate deviations from pure periodicity quickly destroy

the Dirac comb. For κ = 1, the spectrum and correlation function are already difficult to

distinguish from the case of Poisson distributed arrivals. Thus, quasi-periodic phenomena

in for example turbulent fluids cannot be expected to produce more than the first peak of

the Dirac comb.

V. MULTIPLE PERIODICITIES: ROUTE TO CHAOS

We now consider a situation where we have multiple periodicities, each with their own

amplitudes and possible offsets, such that we can write the Fourier transform of the point

13
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FIG. 6. The auto-correlation function of a shot noise process with quasi-periodic arrival times for

different values of the κ-parameter. The analytic expression for purely periodic pulses is given by

the black dashed line.

process as

FT [fK ](ω) = τd

P∑

p=1

Kp∑

k=1

Apk exp(−iω[τ pk + αp]), (42)

where τ p are the periods, {Apk}
Kp

k=1 are the arrivals connected to the p’th periodicity, αp are

constant offsets for the first arrivals and Kp = b(T − αp)/τ pc. We assume that arrivals for

different periodicities are independent. Further, we arange the periods in decreasing order,

τ 1 ≥ τ 2 ≥ τ 3 ≥ . . . . For large enough T that the offsets can be neglected, this leads to an

increasing order in the number of events, K1 ≤ K2 ≤ K3 ≤ . . . . We get

|FT [fK ](ω)2|

=τ 2
d

P∑

p,q=1

Kp∑

k=1

Kq∑

l=1

ApkA
q
l exp(−iω[τ pk − τ ql + αp − αq])

=τ 2
d

P∑

p=1

Kp∑

k=1

(Apk)
2

+τ 2
d

P∑

p=1

Kp∑

k,l=1
k 6=l

ApkA
p
l exp(−iωτ p[k − l])

+τ 2
d

P∑

p,q=1
p6=q

Kp∑

k=1

Kq∑

l=1

ApkA
q
l exp(−iω[τ pk − τ ql + αp − αq]).

14



Taking the average over all amplitudes and gathering terms (k, l)+(l, k) in the second double

sum as well as terms (p, q) + (q, p) in the triple sum, we get

1

T

〈
|FT [fK ](ω)2|

〉

=
τ 2

d

T

P∑

p=1

Kp
〈
(Ap)2〉+

τ 2
d

T

P∑

p=1

Kp∑

k=2

k−1∑

l=1

〈Ap〉22 cos(ωτ p[k − l])

+
τ 2

d

T

P∑

p=2

p−1∑

q=1

Kp∑

k=1

Kq∑

l=1

2〈Ap〉〈Aq〉

exp

(
iω

(k − l)(τ p + τ q)

2

)
cos

(
ω

(k + l)(τ p − τ q)
2

+ ω(αp − αq)
)
.

The first two terms just gives a sum of the result in (31) over all periods. To investigate the

last term, we consider the special case where τ p = τ ∀p so Kp = K ∀p. Then we have that

the last term is

τ 2
d

T

P∑

p=2

p−1∑

q=1

〈Ap〉〈Aq〉2 cos(ω(αp − αq))
K∑

k=1

K∑

l=1

exp(iωτ(k − l))

=
τ 2

d

T

P∑

p=2

p−1∑

q=1

〈Ap〉〈Aq〉2 cos(ω(αp − αq))cos(Kωτ)− 1

cos(ωτ)− 1
. (43)

This contains exactly the expression found in Eq. (29), so we have that

lim
T→∞

1

T

〈
|FT [fK ](ω)2|

〉

=
P∑

p=1

{
τdγ(Aprms)

2 + 2πτdγ
2〈Ap〉2

∞∑

n=−∞
δ(τdω − 2πnγ)

}

+
P∑

p=2

p−1∑

q=1

〈Ap〉〈Aq〉2 cos(ω(αp − αq))2πτdγ

∞∑

n=−∞
δ(τω − 2πn).

(44)
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Here, γ = τd/τ . Seeing that we can exchange 2
∑P

p=2

∑p−1
q=1 with

∑P
p=1

∑P
q=1, q 6=p, we can

write the full expression as

lim
T→∞

1

T

〈
|FT [fK ](ω)2|

〉
=

P∑

p=1

τdγ(Aprms)
2+

P∑

p=1

2πτdγ
2〈Ap〉

[
〈Ap〉+

∑

q 6=p
〈Aq〉 cos(ω(αp − αq))

] ∞∑

n=−∞
δ(τdω − 2πnγ)

=
P∑

p=1

τdγ(Aprms)
2 + 2πτdγ

2

P∑

p=1

P∑

q=1

〈Ap〉〈Aq〉 cos(ω(αp − αq))
∞∑

n=−∞
δ(τdω − 2πnγ). (45)

Thus, we get the same expression as for only one periodicity, except that we make the

replacements

A2
rms →

P∑

p=1

(Aprms)
2,

〈A〉2 →
P∑

p=1

P∑

q=1

〈Ap〉〈Aq〉 cos(ω(αp − αq)).

In this case, the correction to the second term in the expression for the PSD depends on the

offset between the different pulse trains. In particular, if there is no offset, αp − αq = 0, we

just get the double sum over all mean values of the amplitudes. In this model, this means

that adding further pulses with the same periodicity does not affect the density of the spikes

in the Dirac comb. As period doubling can be seen as both decreasing τp and adding more

pulses, this result shows that only decreasing τp affects the density of the Dirac comb.

VI. APPLICATION TO THE LORENZ ATTRACTOR

The predictions for the PSD of the stochastic model can be compared to that from

numerical simulations of Lorenz system. In Fig. 7 the low-frequency part of the spectrum is

presented for ρ = 350 as well as the predicted Dirac comb for a super-position of Lorentzian

pulses with duration τd = 0.039 and periodicity τp = 0.194. This is clearly a good description

of the oscillations in the Lorenz system.

In the chaotic state for ρ = 28 the PSD presented in Fig. 8 has some low-frequency peaks

with higher harmonics on top of a exponential spectrum. This spectrum can be reproduced

by a super-position of quasi-periodic Lorentzian with duation τd = 0.135, periodicity τp =
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FIG. 7. The power spectral density of a Lorenz system with ρ = 350, σ = 10 and β = 8/3 compared

to the frequency power spectral density of a synthetic shot noise process with periodic arrival times

and exponentially distributed amplitudes.
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FIG. 8. The power spectral density of a Lorenz system with ρ = 28, σ = 10 and β = 8/3 compared

to the power spectral density of a synthetic shot noise process with quasi-periodic arrival times,

exponentially distributed amplitudes and κ = 0.1.

0.643 and κ = 0.1 for the distribution of pulse arrivals. This is an excellent description of

the PSD for the Lorenz system except for the very lowest frequencies which is likely due to

the chaotic nature of the fluctuations.
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Appendix A: Definitions of the Fourier transform and the Power spectral

density

The PSD of a random process Φ(t) is defined as

SΦ(ω) = lim
T→∞

1

T

〈
|FT [Φ](ω)|2

〉
, (A1)

where

FT [ΦK ](ω) =

T∫

0

dt exp(−iωt)Φ(t) (A2)

is the Fourier transform of the random variable over the domain [0, T ].

Analytical functions which fall rapidly enough to zero (such as the pulse function) have

the Fourier transform

F [ϕ](θ) =

∞∫

−∞

ds ϕ(s) exp(−iθs) (A3)

and the inverse transform

ϕ(s) = F−1[F [ϕ](θ)](s) =
1

2π

∞∫

−∞

dθ exp(iθs)F [ϕ](θ). (A4)

Note that here, θ and s are non-dimensional variables, as opposed to t and ω.

Appendix B: The extended Campbell’s theorem

For a full discussion of Campbell’s theorem for the mean value of a shot noise process as

well as various extentions, we refer to [Rice, Campbell, Pecseli]. It can be shown that for

i.i.d. waiting times W with distribution pW and mean value τw, we have in our notation

〈
Φ2
〉

= γ
〈
A2
〉
I2+

2γ〈A〉2I2

∞∑

k=1

∫ ∞

0

ds1

∫ ∞

0

ds2 · · ·
∫ ∞

0

dskpW (s1)pW (s2) · · · pW (sk)ρϕ

(
1

τd

k∑

n=1

sn

)
. (B1)

The k’th order integral can be compactly written as 〈ρφ(Sk/τd)〉, where Sk =
∑k

n=1 sn. All

sn are i.i.d., with distribution pW , and we denote the corresponding characteristic function

as CW . We get

〈
ρϕ

(
1

τd

Sk

)〉
=

∞∫

−∞

dS pS(S; k)ρϕ

(
1

τd

S

)
=

1

2π

∞∫

−∞

du

∞∫

−∞

dS CS(u; k) exp(−iSu)ρϕ

(
1

τd

S

)
.

(B2)
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As CS is the characteristic function of the sum of k i.i.d. random variables, we get CS(u; k) =

CW (u)k. Further, we see that this equation contains the Fourier transform of ρϕ, so we have

〈
ρϕ

(
1

τd

Sk

)〉
=
τd

2π

∞∫

−∞

duCW (u)k%ϕ(τdu), (B3)

which gives

〈
Φ2
〉

= γ
〈
A2
〉
I2 + 2γ〈A〉2I2

∞∑

k=1

τd

2π

∞∫

−∞

duCW (u)k%ϕ(τdu). (B4)

Note that in this equation, only Ck
W depends on k, so we may take the sum over k into

the integral and investigate
∑

k For periodic arrivals, pW (w) = δ(w − τw), giving CW (u) =

exp(iuτw), and we get

〈
Φ2
〉

= γ
〈
A2
〉
I2 + 2γ〈A〉2I2

∞∑

k=1

ρϕ

(
1

τd

kτw

)
. (B5)

As A2
rmsI2 = 〈A2〉I2 − 〈A〉2I2 = 〈A2〉I2 − 〈A〉2I2ρϕ(0) and ρϕ(s) = ρϕ(−s), this is equivalent

to Eq. (37).

Appendix C: The Poisson summation formula

Here, we briefly present the well-known Poisson summation formula, which is treated in

a number of textbooks42–45. For our purposes, the formulation used in Corollary VII.2.6 in45

is the most useful. The statement in the book is for functions on general Euclidian spaces,

but we repeat it here only for our special case (the real line):

The Poisson summation formula Suppose the Fourier transform of f and its inverse

are defined as in Eq. (A3) and Eq. (A4) respectively. Further suppose that |f(s)| ≤ A(1 +

|s|)−1−δ and |F [f ](θ)| ≤ A(1 + |θ/2π|)−1−δ with A > 0 and δ > 0. Then

∞∑

m=−∞
f(m) =

∞∑

n=−∞
F [f ](2πn), (C1)

where both series converge absolutely.

• Note that the inequality conditions guarantee that both |f(s)| and |F [f ](θ)| are inte-

grable, which again guarantees that both f and its Fourier transform are continuous

and vanish at ∞ (Theorem I.1.2 in45)).
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• Using properties of the Fourier transform, the summation formula can be cast to a

number of different forms:

∞∑

n=−∞
F [f ](2πn) =

∞∑

m=−∞
f(m) (C2)

∞∑

n=−∞
γF [f ](2πnγ) =

∞∑

m=−∞
f(m/γ) (C3)

∞∑

n=−∞
γF [f ](2πnγ) exp(i2πnγt/τd) =

∞∑

m=−∞
f(m/γ + t/τd). (C4)

• By using the definitions of ρ and % given in Eq. (7) and Eq. (8) respectively, as well as

the Fourier transform, we have that if Eq. (C1) holds for ϕ, then by Eq. (C4) we have

∞∑

m=−∞
ϕ(m+ s) =

∞∑

n=−∞
F [ϕ](2πn) exp(i2πns),

∞∫

−∞

duϕ(u)
∞∑

m=−∞
ϕ(s+m) =

∞∫

−∞

duϕ(u)
∞∑

m=−∞
F [ϕ](2πn) exp(i2πns),

∞∑

m=−∞
ρϕ(m) =

∞∑

n=−∞
%ϕ(2πn),

which means that the summation formula holds for the correlation function and power

spectrum of the pulse as well. This does not necessarily work in reverse - if one of

the sums over ϕ or its Fourier transform diverges, we cannot exchange the summation

and the integral in the second step. Consider as an example the one-sided exponential

pulse (detailed in Appendix E). Here, the pulse function does not fulfill the Poisson

summation formula as the Fourier transform goes as θ−1, and so the sum diverges.

Its correlation function and power spectrum do, however, fulfill the conditions and

therefore the formula.

Appendix D: The Lorentz pulse

The Lorentz pulse is given by

ϕ(s) = (1 + s2)−1/π. (D1)
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Its Fourier transform is

F [ϕ](θ) = exp(−|θ|), (D2)

the integrals are In =, and we have the correlation function

ρϕ(s) = 4 (4 + s2)−1, (D3)

and spectrum

%ϕ(θ) = 2π exp(−2|θ|). (D4)

In general, the full sum of the correlation function is given by

∞∑

m=−∞
ρϕ

(
m

γ
+

t

τd

)
= γπ[coth(2γπ − iγπt/τd) + coth(2γπ + iγπt/τd)]. (D5)

Two special cases of this are of interest in the current contribution. For t = 0, we get

∞∑

m=−∞
ρϕ

(
m

γ

)
= 2γπ coth(2γπ), (D6)

while in the limit γ → 0 we get the expected result

lim
γ→0

∞∑

m=−∞
ρϕ

(
m

γ
+

t

τd

)
= ρϕ(t/τd). (D7)

Appendix E: Table of pulses

For reference, we here present some relations for other pulse functions.

Name ϕ(s) F [ϕ](θ) ρϕ(s) %ϕ(θ)

One-sided exponential





0, s < 0

exp(−s), s ≥ 0
(1 + iθ)−1 exp(−|s|) 2 (1 + θ2)−1

Symmetric exponential exp(−|s|) 2 (1 + θ2)−1 2 exp(−|s|)[1 + |s|] 8(1 + θ2)−2

Sech sech(s)/π sech[πθ/2] s csch(s) π2sech[πθ/2]2/2

Gauss exp(−s2/2)/
√

2π exp(−θ2/2) exp(−s2/4) 2
√
π exp(−θ2)

A few reasonable results for the infinite sums can be obtained:

Name
∑∞

m=−∞ ρϕ(m/γ)

One-sided exponential coth
(

1
2γ

)

Symmetric exponential 2 coth
(

1
2γ

)
+ 1

γ
csch

(
1

2γ

)2
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Appendix F: Representation of delta functions under finite sampling

In this contribution, we frequently plot delta functions superposed on a waveform. A true

representation of a continuous-time delta function would be a line extending out of the plot

domain. Alternatively, we could indicate the delta spikes by arrows or stars on the ends.

The first solution does not give an indication of the amplitude of the delta, while the second

makes for very busy figures.

We have instead elected to represent the Dirac delta by its discrete analog, the Kronecker

delta. For t → 4tn, we have ω = 2πf → 2πm/4t. A Dirac delta at a given angular

frequency ω∗ is then given by δ(ω−ω∗) = δ(2π(m−k)/4t) = 4t

2π
δm−k where k is the nearest

integer to 4tω∗/2π. That is, the Dirac delta is approximated as a boxcar of width equal to

the sampling step and a height equal to the inverse of the sampling step. This indicates the

amplitude of the delta spikes, separates them from any superposed functions and tends to

better approximations for finer sampling.

REFERENCES

1P. Atten, J. C. Lacroix, and B. Malraison, Phys. Lett. A 79, 255 (1980).

2U. Frisch and R. Morf, Phys. Rev. A 23, 2673 (1981).

3H. S. Greenside, G. Ahlers, P. C. Hohenberg, and R. W. Walden, Physica D 5, 322 (1982).

4D. S. Broomhead and G. P. King, Physica 10D, 217 (1986).

5A. Brandstater and H. L. Swinney, Phys. Lett. A 35, 2207 (1987).

6C. L. Streett and M. Y. Hussaini, Applied Numerical Mathematics 7, 41 (1991).

7D. E. Sigeti, Physica D 82, 136 (1995).

8D. E. Sigeti, Phys. Rev. E 52, 2443 (1995).

9M. R. Paul, M. C. Cross, P. F. Fischer, and H. S. Greenside, Phys. Rev. Lett. 87, 154501

(2001).

10C. L. E. Franzke, S. M. Osprey, P. Davini and N. W. Watkins, Sci. Rep. 5, 9068 (2015).

11D. C. Pace, M. Shi, J. E. Maggs, G. J. Morales, and T. A. Carter, “Exponential frequency

spectrum in magnetized plasmas” Phys. Rev. Lett. 101, 085001 (2008).

12D. C. Pace, M. Shi, J. E. Maggs, G. J. Morales, and T. A. Carter, “Exponential frequency

spectrum and Lorentzian pulses in magnetized plasmas” Phys. Plasmas 15, 122304 (2008).

22



13G. Hornung, B. Nold, J. E. Maggs, G. J. Morales, M. Ramisch, and U. Stroth, “Observation

of exponential spectra and Lorentzian pulses in the TJ-K stellarator” Phys. Plasmas 18,

082303 (2011).

14J. E. Maggs and G. J. Morales, “Origin of Lorentzian pulses in deterministic chaos” Phys.

Rev. E 86, 015401 (2012).

15J. E. Maggs, T. L. Rhodes, and G. J. Morales, “Chaotic density fluctuations in L-mode

plasmas of the DIII-D tokamak” Plasma Phys. Contr. Fusion 55, 085014 (2013).

16Z. Zhu, A. E. White, T. A. Carter, S. G. Baek, and J. L. Terry, “Chaotic edge density

fluctuations in the Alcator C-Mod tokamak” Phys. Plasmas 24, 042301 (2017).

17G. Decristoforo, A. Theodorsen, and O. E. Garcia, ‘Intermittent fluctuations due to

Lorentzian pulses in turbulent thermal convection” Phys. Fluids 32, 085102 (2020).

18G. Decristoforo, A. Theodorsen, J. Omotani, T. Nicholas, and O. E. Garcia, “Intermittent

fluctuations due to Lorentzian pulses in turbulent thermal convection” Phys. Fluids 32,

085102 (2020).

19N. Ohtomo, K. Tokiwano, Y. Tanaka, A. Sumi, S. Terachi, and H. Konno, “Exponential

characteristics of power spectral densities caused by chaotic phenomena” J. Phys. Soc.

Japan 64, 1104 (1995).

20J. E. Maggs and G. J. Morales, “Generality of deterministic chaos, exponential spectra,

and Lorentzian pulses in magnetically confined plasmas” Phys. Rev. Lett. 107, 185003

(2011).

21J. E. Maggs and G. J. Morales, “Exponential power spectra, deterministic chaos and

Lorentzian pulses in plasma edge dynamics” Plasma Phys. Contr. Fusion 54, 124041

(2012).

22J. D. Farmer, Physica D 4, 366 (1982).

23A. Libchaber, S. Fauve, and C. Laroche, Physica D 7, 73 (1983).

24E. F. Stone, Phys. Lett. A 148, 434 (1990).

25T. Klinger, A. Latten, A. Piel, G. Bonhomme, T. Pierre, and T. Dudok de Wit, Phys. Rev.

Lett. 79, 3913 (1997).

26B. Mensour and A. Longtin, Physica D 113, 1 (1998).

27L. A. Safonov, E. Tomer, V. V. Strygin, Y. Ashkenazy, and S. Havlin, Chaos 12, 1006

(2002).

28O. E. Garcia and A. Theodorsen, “Power law spectra and intermittent fluctuations due to

23



uncorrelated Lorentzian pulses” Phys. Plasmas 24, 020704 (2017).

29O. E. Garcia and A. Theodorsen, “Skewed Lorentzian pulses and exponential frequency

power spectra” Phys. Plasmas 25, 014503 (2018).

30O. E. Garcia and A. Theodorsen, “Intermittent fluctuations due to uncorrelated Lorentzian

pulses” Phys. Plasmas 25, 014506 (2018).

31E. Parzen, Stochastic processes (Holden-Day, Oakland, CA, 1962).

32H. L. Pécseli, Fluctuations in Physical Systems (Cambridge University Press, Cambridge,

2000).

33S. O. Rice, “Mathematical analysis of random noise” Bell Sys. Tech. J. 23, 282 (1944).

34O. E. Garcia, “Stochastic modeling of intermittent scrape-off layer plasma fluctuations”

Phys. Rev. Lett. 108, 265001 (2012).

35R. Kube and O. E. Garcia, “Convergence of statistical moments of particle density time

series in scrape-off layer plasmas” Phys. Plasmas 22, 012502 (2015).

36A. Theodorsen and O. E. Garcia, “Level crossings, excess times, and transient plasma–wall

interactions in fusion plasmas” Phys. Plasmas 23, 040702 (2016).

37O. E. Garcia, R. Kube, A. Theodorsen, and H. L. Pécseli, “Stochastic modelling of in-

termittent fluctuations in the scrape-off layer: Correlations, distributions, level crossings,

and moment estimation” Phys. Plasmas 23, 052308 (2016).

38O. E. Garcia and A. Theodorsen, “Auto-correlation function and frequency spectrum due

to a super-position of uncorrelated exponential pulses” Phys. Plasmas 24, 032309 (2017).

39A. Theodorsen, O. E. Garcia, and M. Rypdal, “Statistical properties of a filtered Poisson

process with additive random noise: distributions, correlations and moment estimation”

Phys. Scripta 92, 054002 (2017).

40A. Theodorsen and O. E. Garcia, “Level crossings and excess times due to a superposition

of uncorrelated exponential pulses” Phys. Rev. E 97, 012110 (2018).

41A. Theodorsen and O. E. Garcia, “Probability distribution functions for intermittent

scrape-off layer plasma fluctuations’ Plasma Phys. Contr. Fusion 60, 034006 (2018)

42M. Overholt, A Course in Analytic Number Theory. American Mathematical Society

(AMS) 2014 ISBN 978-1-4704-1706-2.

43S. Bochner, Lectures on Fourier Integrals, Annals of Math. Studies 42, Princeton University

press, Princeton, NJ, 1959

44L. Grafakos, “Classical Fourier Analysis”, https://doi.org/10.1007/978-0-387-09432-8

24



45E. M. Stein and G. Weiss, “Introduction to Fourier Analysis on Euclidian Spaces”, Prince-

ton University Press, Princeton, NJ, 1971

46I. Richards and H. Youn, “Theory of Distributions”, Cambridge University Press,

https://doi.org/10.1017/CBO9780511623837

25



114 PAPER II



Paper III:
Numerical turbulence simulations
of intermittent fluctuations in the
scrape-off layer of magnetized plas-
mas

G. Decristoforo, A. Theodorsen, J. Omotani, T. Nicholas, and O. E. Garcia,
Submitted to Physics of Plasmas on 15.2.2021,
Available online: arXiv:2102.04723 [physics.plasm-ph]

115

https://arxiv.org/abs/2102.04723


116 PAPER III



Numerical turbulence simulations of intermittent fluctuations in the scrape-off

layer of magnetized plasmas

G. Decristoforo,a) A. Theodorsen,a) J. Omotani,b) T. Nicholas,c) and O. E. Garciaa)

(Dated: 8 March 2021)

Intermittent fluctuations in the boundary of magnetically confined plasmas are investigated

by numerical turbulence simulations of a reduced fluid model describing the evolution of

the plasma density and electric drift vorticity in the two-dimensional plane perpendicular to

the magnetic field. Two different cases are considered, one describing resistive drift waves

in the edge region and another including only the interchange instability due to unfavorable

magnetic field curvature in the scrape-off layer. Analysis of long data time series obtained

by single-point recordings are compared to predictions of a stochastic model describing

the plasma fluctuations as a super-position of uncorrelated pulses. For both cases investi-

gated, the radial particle density profile in the scrape-off layer is exponential with a radially

constant scale length. The probability density function for the particle density fluctuations

in the far scrape-off layer has an exponential tail. Radial motion of blob-like structures

leads to large-amplitude bursts with an exponential distribution of peak amplitudes and the

waiting times between them. The average burst shape is well described by a two-sided

exponential function. The frequency power spectral density of the particle density is sim-

ply that of the average burst shape and is the same for all radial positions in the scrape-off

layer. The fluctuation statistics obtained from the numerical simulations are in excellent

agreement with recent experimental measurements on magnetically confined plasmas. The

statistical framework defines a new validation metric for boundary turbulence simulations.

a)Department of Physics and Technology, UiT The Arctic University of Norway, NO-9037 Tromsø, Norway
b)United Kingdom Atomic Energy Authority, Culham Centre for Fusion Energy, Culham Science Centre, Abingdon,

Oxon, OX14 3DB, UK
c)York Plasma Institute, Department of Physics, University of York, Heslington, York YO10 5DD, UK
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I. INTRODUCTION

At the boundary of magnetically confined plasma, turbulent transport of particles and heat in

the outermost region enhances plasma interactions with the material surfaces. This can become a

serious issue for future fusion experiments and reactors.1–3 A complete description of the physical

mechanisms underlying the cross-field plasma and heat transport in the scrape-off layer (SOL) and

its effects on plasma–wall interactions is necessary if reliable predictions for reactor relevant de-

vices are to be obtained. Unfortunately, such an understanding is at present still not fully achieved

and predictions and extrapolations are often based on empirical scaling laws or highly simplified

transport modelling with limited theoretical foundation.3–5

Fluctuations and turbulent motions in the boundary region of magnetized plasmas have been

extensively investigated both experimentally and theoretically. It is recognized that in the SOL

radial motion of blob-like filament structures is the dominant mechanism for cross-field transport

of particles and heat.6–9 This leads to broadening and flattening of radial profiles and high average

particle density in the SOL that increases plasma–wall interactions.10–23 Experimental measure-

ments using Langmuir probes and gas puff imaging have revealed highly intermittent fluctuations

of the particle density in the far SOL. Interestingly, measurements across a variety of magnetic

geometries, including conventional tokamaks, spherical tokamaks, reversed field pinches and stel-

larators have shown similar fluctuation characteristics.24–27 Recent statistical analysis of excep-

tionally long fluctuation data time series from several tokamak devices has shown that the fluctua-

tions are well described as a super-position of uncorrelated exponential pulses with fixed duration,

arriving according to a Poisson process and with exponentially distributed pulse amplitudes.28–42

A statistical framework based on filtered Poisson processes has proven an accurate description of

both average radial profiles and fluctuations in the boundary of magnetically confined plasma.43–53

So far, this stochastic model has not been utilized to analyze fluctuation data from numerical

turbulence simulations of the boundary region of magnetized plasmas. In order to obtain statisti-

cally significant results, long simulation data time series or a large ensemble are required, equiv-

alent to several hundred milliseconds in experiments with medium-sized magnetically confined

plasma. Since most turbulence simulation studies have been focused on the dynamics of individ-

ual blob structures or on the effects of specific physical mechanisms on turbulence and transport,

the simulations have likely not produced time series data of sufficient duration in order to analyze

them in the same manner as the experimental measurements.28–42 In this paper we present the first
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results from applying the same statistical framework on numerical simulation data as has recently

been done on experimental measurements. By using a simplified turbulence model describing the

fluctuations in the two-dimensional plane perpendicular to the magnetic field, we have obtained

data time series sufficiently long to allow unambiguous identification of the fluctuation statistics.

The main goal of this study is to clarify these statistical properties and compare them with that

found from experimental measurements. This is considered an essential step towards validation of

turbulence simulation codes.54–56

A recent analysis of fluctuation data time series obtained from numerical simulations of turbu-

lent Rayleigh–Bénard-convection in two dimensions has given some illuminating results.57 This

model has frequently been used as a simplified description of the non-linear interchange dynamics

in the SOL of magnetically confined plasmas.58–66 In Ref. 57 it was found that the fluctuation time

series are well described as a super-position of Lorentzian pulses, resulting in an exponential fre-

quency power spectral density. In the present study, more sophisticated models for SOL turbulence

are investigated, including sheath dissipation due to losses along magnetic field lines intersecting

material surfaces as well as drift wave dynamics in the edge region.67–83 The resulting far SOL

data time series are shown to be dominated by large-amplitude bursts with a two-sided exponen-

tial pulse shape and fluctuation statistics that compare favorably with those found in experimental

measurements.28–42

In this contribution we present a detailed statistical analysis of fluctuation data time series from

numerical simulations of a two-dimensional reduced fluid model describing the evolution of the

electron density and electric drift vorticity. The paper is structured as follows. The reduced fluid

model equations, normalization and parameters are discussed in Sec. II. A brief introduction to

the stochastic model is also presented here. We present the results for the time-averaged profiles

and probability densities in Sec. III and for the fluctuation statistics in Sec. IV. A discussion of the

results and the conclusions are finally presented in Sec. V.

II. MODEL EQUATIONS

The reduced fluid model investigated here is motivated by previous simulation studies per-

formed by Sarazin et al.,69–71 Garcia et al.72–74, Myra et al.75–77, Bisai et al.78–80 and Nielsen

et al.81–83 One particular case of the model is equivalent to that used in Ref. 71 and simulates

SOL conditions in the entire simulation domain where a particle source is located close to the
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inner boundary. The particle density profile results from a balance between the plasma source,

the sheath dissipation and radial transport due to the interchange instability. Another case of the

model is similar to that used in Ref. 79 and features a simulation domain separating an edge re-

gion corresponding to plasma dynamics on closed magnetic flux surfaces and a SOL region where

sheath dissipation balances the interchange drive. The source term is located in the plasma edge

region where parallel resistivity gives rise to unstable drift waves. Despite these two fundamen-

tally different descriptions of the primary instability mechanism underlying the SOL turbulence,

the resulting fluctuations are remarkably similar as will be shown in the following.

We use two-field fluid model equations describing the plasma evolution in the edge and SOL

regions for a quasi-neutral plasma, neglecting electron inertia and assuming for simplicity isother-

mal electrons and negligibly small ion temperature. We make these simplifying assumptions in

order to obtain long fluctuation data time series from the numerical simulations. We choose a slab

geometry where x refers to the radial direction and y to the binormal or poloidal direction. The

reduced electron continuity and electron drift vorticity equations are given by

dn
dt

+g
(

∂n
∂y
−n

∂φ
∂y

)
= Sn +D⊥∇2

⊥n+

〈
1
L‖

∇‖J‖e

〉

‖
, (1a)

d∇2
⊥φ

dt
+

g
n

∂n
∂y

= ν⊥∇4
⊥φ +

〈
1

nL‖
∇‖J‖

〉

‖
, (1b)

where n represents the normalized electron density, φ is the normalized electric potential, g is

normalized effective gravity (that is, drive from unfavorable magnetic curvature), Sn is the plasma

source term, and D⊥ and ν⊥ are the normalized particle and vorticity diffusion coefficients. We

use the standard Bohm normalization as previously used and discussed in Refs. 67–80. In addition

we have the advective derivative d/dt = ∂/∂ t +VE ·∇⊥, where VE = ẑ×∇φ is the electric drift.

The plasma source term is given by Sn(x) = S0 exp(−(x− x0)
2/λ 2

s ), where S0 is the maximum

amplitude of the source, x0 is the source location and λs is the e-folding length for the source.

Equations (1) are averaged along the magnetic field lines, with the contribution from the nor-

malized parallel electron J‖e and total plasma currents J‖ in the sheath connected regime given
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by
〈

1
L‖

∇‖J‖e

〉

‖
=−σn exp(Λ−φ)+χ(φ̂ − n̂), (2a)

〈
1

nL‖
∇‖J‖

〉

‖
= σ [1− exp(Λ−φ)]+χ(φ̂ − n̂). (2b)

Here Λ is the sheath potential, σ the normalized sheath dissipation and χ the normalized parallel

plasma conductivity. Like in several previous investigations, these parameters are taken to be a

function of the radial position in the boundary region.72–83 In particular, the sheath dissipation

coefficient σ is finite in the SOL region (x > xSOL) and vanishes in the edge (x < xSOL), which

corresponds to the region with closed magnetic flux surfaces,

σ(x) =





0, 0≤ x< xSOL,

σ0, xSOL ≤ x≤ Lx.
(3)

Similarly, the plasma conductivity χ is neglected in the SOL and is finite in the edge region,

χ(x) =





χ0, 0≤ x< xSOL,

0, xSOL ≤ x≤ Lx.
(4)

The simulation domain is sketched in Fig. 1, showing the location of the plasma source and the

separation between the edge and SOL regions. Furthermore, the spatially fluctuating electron

density n̂ and plasma potential φ̂ are defined as n̂ = n−〈n〉y and φ̂ = φ −〈φ〉y where 〈·〉y refers

to the flux surface average. This leads to the final reduced electron continuity and electric drift

vorticity equations,

dn
dt

+g
(

∂n
∂y
−n

∂φ
∂y

)
= Sn(x)+D⊥∇2

⊥n−σ(x)nexp(Λ−φ)+χ(x)(φ̂ − n̂), (5a)

d∇2
⊥φ

dt
+

g
n

∂n
∂y

= ν⊥∇4
⊥φ +σ(x) [1− exp(Λ−φ)]+χ(x)(φ̂ − n̂). (5b)

In the following we present results from numerical simulations of this model for two different

cases. In the first case, the domain is split into two regions, effectively the edge and the SOL

regions, by taking xSOL = 50. In the second case, a pure SOL plasma is considered with xSOL = 0,

thus plasma conductivity χ is not present in the simulation domain.

The input parameters have been chosen to be similar to that used in previous publications

based on this model.79 For all runs presented here, the simulation domain lengths are chosen to
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FIG. 1. Schematic illustration of the simulation domain for the xSOL = 50 case. The position of the plasma

source term (gray shaded) and the border between edge and SOL (dashed vertical line) are indicated.

be Lx = 200 and Ly = 100, with the border between the edge and the SOL at xSOL = 50 for the

two-region case. It has been verified that a change of the size of the simulation domain does not

influence the fluctuation statistics. The simulation code is implemented in BOUT++84 utilizing the

STORM branch,85 which uses a finite difference scheme in the x-direction and a spectral scheme

in the y-direction. Time integration is performed with the PVODE solver.86 We use a resolution

of 512×256 grid points for all runs. We further take D⊥ = ν⊥ = 10−2, g = 10−3, χ = 6×10−4,

S0 = 11/2000, σ0 = 5×10−4, Λ = 0.5ln(2πmi/me) with deuterium ions, x0 = 20 and λs = 10. We

apply periodic boundary conditions in the poloidal direction and zero gradient boundary conditions

in the radial direction for both the electron density and vorticity fields. For the plasma potential

we use zero gradient boundary conditions at the outer boundary and fixed boundary conditions

φ(x = 0) = 0 at the inner boundary.

During the simulations, the plasma parameters at 9 different radial positions in the simulation

domain are recorded with a sampling frequency of one in normalized time units. The location of

these probes are presented in Fig. 1. This corresponds to single-point measurements in the ex-

periments, and the simulation data will be analyzed in the same manner as has previously been

done for experimental measurement data. The contour plots of the electron density in both simula-

tion cases presented in Fig. 2 show several blob-like structures with the familiar mushroom-shape

typical for strongly non-linear interchange motions.65

Time series of the plasma parameters with a duration of 2×106 time units have been obtained

under statistically stationary conditions, that is, excluding initial transients in the turbulence sim-

ulations. 10 simulation runs with this duration time are performed for the two-region model and 7

for the one region model. The fluctuation statistics to be presented in Sec. IV are based on these
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FIG. 2. Contour plots of log(n) in the turbulent state for the xSOL = 0 and xSOL = 50 cases showing the

presence of mushroom-shaped blob-like structures in the SOL.

ensembles of simulation data. In the following analysis we will frequently consider plasma pa-

rameters normalized such as to have vanishing mean and unit standard deviation, for example. For

the electron density we define

ñ =
n−〈n〉

nrms
, (6)

where the angular brackets denote a time average and nrms is the root mean square value calculated

from the time series. A short part of the normalized electron density time series are presented in

Fig. 3 for both simulation cases, showing frequent appearance of large-amplitude bursts due to

the high density blob-like structures moving radially outwards. The radial variation of the lowest

order moments of these fluctuations are presented and discussed in Sec. III.

In the following, the numerical simulation data will be compared to predictions of a stochastic

model which describes the fluctuations as a super-position of uncorrelated pulses with fixed shape
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FIG. 3. A short part of the normalized electron density time series recorded at x = 100 for the xSOL = 0 and

xSOL = 50 simulation cases.

and constant duration. This is written as43–53

ΨK(t) =
K(T )

∑
k=1

Akψ
(

t− tk
τd

)
, (7)

where ψ is the pulse function, τd is the pulse duration time, K(T ) is the number of pulses for a

realization of duration T , and for the event labelled k the pulse amplitude is Ak and the arrival

time tk. The mean value of the random variable ΨK is 〈Ψ〉 = (τd/τw)〈A〉, where 〈A〉 is the av-

erage pulse amplitude and τw is the average pulse waiting time. We will assume pulses arriving

according to a Poisson process, which implies independent and exponentially distributed waiting

times and independent arrival times uniformly distributed on the realization. We further assume

independently and exponentially distributed amplitudes, PA(A) = exp(−A/〈A〉)/〈A〉, and we will

consider the case of a two-sided exponential pulse function,50

ψ(θ ;λ ) =





exp(θ/λ ), θ < 0,

exp(−θ/(1−λ )), θ ≥ 0,
(8)

where the pulse asymmetry parameter λ is restricted to the range 0 < λ < 1. For λ < 1/2, the

pulse rise time is faster that than the decay time, while the pulse shape is symmetric in the case

λ = 1/2. The frequency power spectral density for this process is just the spectrum of the pulse

function,50

ΩΨ̃(ω) =
2τd

[1+(1−λ )2(τdω)2][1+λ 2(τdω)2]
, (9)

where ω is the angular frequency. Note that the power spectral density of Ψ̃ is independent of

the amplitude distribution. From this it follows that the frequency power spectral density can be
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used to estimate the pulse parameters τd and λ , which will be done in the following analysis of the

numerical simulations.

The stationary probability density function (PDF) for the random variable ΨK can be shown to

be a Gamma distribution,53

〈Ψ〉PΨ(Ψ) =
γ

Γ(γ)

(
γΨ
〈Ψ〉

)γ−1

exp
(

γΨ
〈Ψ〉

)
, (10)

with shape parameter γ = τd/τw, that is, the ratio of the pulse duration and the average pulse

waiting time τw. This parameter describes the degree of pulse overlap, which determines the level

of intermittency in the process. From the Gamma distribution it follows that the skewness moment

is SΨ = 〈(Ψ− 〈Ψ〉)3〉/Ψ3
rms = 2/γ1/2 and the flatness moment is FΨ = 〈(Ψ− 〈Ψ〉)4〉/Ψ4

rms =

3+ 6/γ . Accordingly, there is a parabolic relationship between these moments given by FΨ =

3+ 3S2
Ψ/2. For strong pulse overlap and large γ , the probability density function approaches a

normal distribution and the skewness SΨ and excess flatness FΨ−3 moments vanish.

III. PROFILES AND DISTRIBUTIONS

The time-averaged electron density profiles in the turbulence simulations are presented in

Fig. 4. Since the xSOL = 50 case does not include any sheath dissipation in the edge region,

the average density is higher here than for the xSOL = 0 case. Throughout the entire SOL region,

we observe that the electron density decreases exponentially with a radially constant scale length

of 35.5. This is to be compared with the equilibrium SOL profile scale length in the absence of

turbulence given by (D⊥/σ0) =
√

20 for the simulation parameters used here. Interestingly, both

the scale length and the absolute density are very similar for the two simulation cases investigated.

We further show the relative fluctuation level at different radial positions for both cases in Fig. 5.

The normalized fluctuation level is very high, increases radially outwards and is roughly similar

for the two simulation cases.

The radial variation of the skewness and flatness moments of the electron density fluctuations

are presented in Figs. 6 and 7, respectively. From these figures it is clear that the intermittency of

the fluctuations increases radially outwards in the SOL, qualitatively similar for the xSOL = 0 and

xSOL = 50 cases. By plotting the flatness moment versus the skewness, presented in Fig. 8, it is

seen that for both simulation cases there is a nearly parabolic relationship between these higher

order moments. Such a parabolic relationship is predicted by the stochastic model describing
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FIG. 4. Time-averaged electron density profile for the xSOL = 0 and xSOL = 50 cases. The broken line is the

best fit of an exponential function with a scale length of 35.5.
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FIG. 5. The relative fluctuation level of the electron density at different positions in the SOL for the xSOL = 0

and xSOL = 50 cases.

the fluctuations as a super-position of uncorrelated pulses,43–46 which can be related to blob-like

structures moving radially outwards in the SOL as seen in Fig. 2.

The PDFs for the normalized electron density fluctuations at different radial positions are pre-

sented in Figs. 9 and 10 for the xSOL = 0 and xSOL = 50 cases, respectively. The PDFs change from

a narrow and nearly symmetric distribution in the edge/near SOL region to a distribution with an

exponential tail for large fluctuation amplitudes in the far SOL. In Fig. 11 we further compare the

PDFs of the electron density time series recorded in the far SOL at x = 100 for both simulation

cases with a Gamma distribution with a shape parameter of 1.4. Such a Gamma distribution is

predicted by the stochastic model describing the fluctuations as a super-position of uncorrelated

exponential pulses. The Gamma distribution is clearly an excellent description of the PDF for the

electron density fluctuations in the simulations. A similar change in the shape of the PDF radially
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FIG. 6. Skewness of the electron density fluctuations at different radial positions for the xSOL = 0 and

xSOL = 50 cases.
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FIG. 7. Flatness of the electron density fluctuations at different radial positions for the xSOL = 0 and xSOL =

50 cases.

outwards in the SOL has also been reported from previous turbulence simulations.72–74

IV. FLUCTUATION STATISTICS

In this section we present a detailed analysis of the electron density fluctuations recorded at x =

100. In order to reveal the typical shape of large-amplitude bursts in the time series, a conditional

averaging method which allows for overlapping events is applied. This identifies a total of 3128

conditional events with peak amplitudes larger than 2.5 times the root mean square value above

the mean for the xSOL = 50 case and 1701 conditional events for the xSOL = 0 case. The average

burst structures are presented in Fig. 12 and shows an asymmetric shape with a fast rise and a

slower decay. The is compared to an asymmetric, two-sided exponential function given by Eq. (8)

with duration time τd = 300 and asymmetry parameter λ = 0.2. The conditional burst shape is
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FIG. 8. Flatness plotted versus skewness for the electron density fluctuations in the SOL. The broken line

shows the parabolic relationship Fn = 3+3S2
n/2 for comparison.

0 5 10 15

ñ

10−5

10−4

10−3

10−2

10−1

100

P
(ñ
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FIG. 9. Probability density functions of the normalized electron density recorded at different radial positions

for the xSOL = 0 case.

shown with semi-logarithmic axes in the inset in Fig. 12, showing that the decay of the conditional

pulse shape is approximately exponential. However, the two-sided exponential function obviously

fails to describe the smooth peak of the average burst shape in the simulations. As shown for short

time lags in Fig. 12, this is better described using a skewed Lorentzian pulse as a fit function with

duration 80 and skewness parameter 1 for the xSOL = 50 case.87–90 The slightly elevated tails of

the conditional burst shape is likely due to finite pulse overlap in the turbulence simulations.

The frequency power spectral density of the electron density fluctuations recorded at x = 100 is

presented with semi-logarithmic axes in Fig. 13 for the xSOL = 50 case. This shows an exponential

decrease of power with frequency for high frequencies. This exponential fall off is attributed to

the smooth peak of the large-amplitude bursts in the simulations. In agreement with the fit of a

Lorentzian function to the peak of the conditionally averaged burst shape in Fig. 12, the power
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(ñ
)

x = 56
x = 100
x = 138
x = 175

FIG. 10. Probability density functions of the normalized electron density recorded at different radial posi-

tions for the xSOL = 50 case.
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FIG. 11. Probability density functions of the normalized electron density recorded at x = 100 for both

simulations cases compared to a Gamma distribution with shape parameter γ = 1.4 shown with the dashed

black line.

spectral density decreases exponentially with a characteristic scale given by the duration of the

Lorentzian-shaped peak.89 The flattening of the power spectral density at low powers and high

frequencies is due to the noise floor implied by round off errors in the computations.49

The frequency power spectral density due to a super-position of uncorrelated exponential pulses

is clearly not a good description of the simulation data for high frequencies. However, present-

ing the power spectrum with double-logarithmic axes shows that the spectrum given by Eq. (9)

gives excellent agreement for high powers and low frequencies. This is clearly shown in Fig. 14

for the case xSOL = 50. The exponential decay of the power at high frequencies is clearly due

to the smooth peak of the large-amplitude bursts in the time series. This is consistent with the
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FIG. 12. Conditionally averaged burst shape at x = 100 of the xSOL = 50 case (full blue line) compared to

a two-sided exponential pulse (dashed green line), as well as a skewed Lorentzian pulse for short time lags

(dashed black line). The conditional average is normalized by its peak amplitude.
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FIG. 13. Frequency power spectral density for the electron density fluctuations recorded at x = 100 for

the xSOL = 50 case (full line). This is compared to the predictions of a stochastic model describing the

fluctuations as a super-position of uncorrelated, two-sided exponential pulses (dashed green line), as well

as an exponential function for the high frequency part (dashed black line).

conditionally averaged burst shape presented in Fig. 12. Similar results for conditional averag-

ing and frequency power spectra are found for the case xSOL = 0 but with slightly different pulse

parameters.

The conditionally averaged burst shape is presented in Fig. 15 for different radial positions in

the SOL for the xSOL = 50 case. Here it is seen that the burst shape in the far SOL region is

the same for all radial positions, despite the fact that the relative fluctuation amplitude increases

radially outwards. Accordingly, as predicted by the stochastic model, the frequency power spectral

density has the same shape for all these different radial positions, as is shown in Figs. 16 and 17
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FIG. 14. Frequency power spectral density of the electron density fluctuations recorded at x = 100 for the

xSOL = 50 case (full blue line). This is compared to the predictions of a stochastic model describing the

fluctuations as a super-position of uncorrelated, two-sided exponential pulses with duration time τd = 300

and asymmetry parameter λ = 0.2 (dashed green line).
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FIG. 15. Conditionally averaged burst shapes at different radial positions for the xSOL = 50 case. The

conditional averages are normalized by their peak amplitude.

for both the one- and two-region cases. The spectra are well described by that of a two-sided

exponential pulse function, shown by the dashed black line in the figures.

Restricting the peak amplitude of conditional events in the electron density to be within a range

of 2–4, 4–6 and 6–8 times the rms value, the appropriately scaled conditional burst shapes are

presented in Fig. 18. This reveals that the average burst shape and duration do not depend on

the burst amplitude and is again well described by a two-sided exponential function except for

the smooth peak. This supports the assumption of fixed pulse duration in the stochastic model

describing the fluctuations as a super-positions of pulses.

From the conditional averaging we further obtain the peak amplitudes of conditional events and

15



10−6 10−5 10−4 10−3 10−2 10−1

f

10−3

10−2

10−1

100

101

102

103

S ñ
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FIG. 16. Frequency power spectral densities of the electron density fluctuation recorded at different ra-

dial positions for the xSOL = 50 model. The dashed line shows the spectrum due to a super-position of

uncorrelated, two-sided exponential pulses with duration time τd.
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(

f) x = 56
x = 100
x = 138
x = 175
ψ

FIG. 17. Frequency power spectral densities of the electron density fluctuation recorded at different radial

positions for the xSOL = 0 model. The dashed line shows the spectrum due to a super-position of uncorre-

lated two-sided exponential pulses.

the waiting times between them. The PDFs of these are presented in Figs. 19 and 20, respectively.

The distributions are similar for both simulation cases and are clearly well described by an expo-

nential distribution as shown by the dashed black line in the plots. This is in agreement with the

assumptions for the stochastic model presented in Sec. II. In particular, the exponential waiting

time distribution supports the hypothesis that the events are uncorrelated and arrive according to a

Poisson process.
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〈ñ
〉

2−4
4−6
6−8

ψ

FIG. 18. Conditionally averaged burst shape at x = 100 of the xSOL = 50 case for different conditional

amplitude threshold intervals. The conditional averages are normalized by their peak amplitudes.
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FIG. 19. Probability density functions of conditional burst amplitudes of the electron density time series

recorded at x = 100.

V. DISCUSSION AND CONCLUSIONS

The abundant experimental evidence for universal statistical properties of fluctuations in the

SOL of magnetically confined fusion plasmas sets high requirements for validation of turbulence

simulation codes for the boundary region.54–56 In this context, we have examined the statistical

properties of the electron density fluctuations in the SOL by numerical simulations of plasma tur-

bulence in the two-dimensional plane perpendicular to the magnetic field. Two model cases have

been considered, one describing resistive drift waves in the edge region and another including only

the interchange instability due to unfavorable magnetic field curvature. For both cases, mushroom-

shaped blob-like structures move radially outwards, resulting in large-amplitude fluctuations and

high average particle densities in the SOL. The numerical simulations show that the time-averaged

radial profile decreases exponentially with radial distance into the SOL with the same characteris-
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FIG. 20. Probability density functions of waiting times between consecutive large-amplitude burst in the

electron density time series recorded at x = 100.

tic length scale for both simulation cases. Moreover, the fluctuation statistics in the SOL are the

same for both cases. This is despite the different linear instability mechanisms driving the fluctu-

ations in the edge/near SOL region in the two simulation cases. It appears that any drift-ordered

instability mechanism will lead to formation of filament structures when coupled to a SOL region

with unfavorable magnetic field curvature.

According to a stochastic model describing the profile as due to radial motion of filament struc-

tures, the profile scale length is given by the product of the radial filament velocity and the parallel

transit time.46–48 This suggests that typical filament velocities are the same in both simulation

cases. Future work will investigate the distribution of filament sizes and velocities by analysis of

the velocity fluctuations and applying a blob tracking algorithm as described in Ref. 91.

The relative fluctuation level increases radially outwards, nearly reaching unity in the far SOL

for the plasma parameters investigated here. Similarly, the skewness and flatness moments also

increase into the SOL, and these higher order moments closely follow a quadratic dependence as

predicted by the stochastic model describing the fluctuations as a super-position of uncorrelated

pulses. The PDF of the electron density fluctuations changes from a nearly Gaussian distribution

in the edge/near SOL region to a distribution with an exponential tail for large amplitudes in the

far SOL. In the far SOL region, the PDFs are well described by a Gamma distribution with the

shape parameter given by the ratio of the pulse duration and average waiting time. The increase of

this intermittency parameter with radial distance into the SOL suggests that only the most coherent

and large-amplitude blob structures are able to move through the entire SOL region before they

disperse and break up due to secondary instabilities.
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A conditional averaging analysis has revealed that the shape of large-amplitude bursts in single-

point recordings in the far SOL is well described by a two-sided exponential pulse, as has previ-

ously been found in experimental measurements. However, the high resolution and smoothness of

the solution from the numerical computations implies that the burst structure has a rounded peak as

opposed the to break point in experimental measurements due to their much lower sampling rate

and additional measurement noise. The smooth peak is well described by a skewed Lorentzian

pulse function. This is further supported by the frequency power spectral density, which is well

described by that of a two-sided exponential pulse for high powers and low frequencies. However,

for low powers and high frequencies, the frequency power spectral density has an exponential de-

cay which obviously can be attributed to the smooth, Lorentzian shaped peak of large-amplitude

fluctuations in the numerical simulations. In experimental measurements, this exponential tail

in the spectrum may readily be masked by low sampling rates, limiting the highest frequencies

resolved, or by additive measurement noise, limiting the lowest power resolved.49,50

In summary, it is here demonstrated that a simple but self-consistent model for turbulent fluc-

tuations in the scrape-off layer reveals the same statistical properties of large-amplitude events as

found in the experiments. This includes exponentially distributed pulse amplitudes and waiting

times, the latter supporting the assumption of Poisson events.28–33,36–40 The simulation data also

agree with predictions of the stochastic model, namely an exponential average profile, Gamma

distributed fluctuation amplitudes and a frequency power spectral density determined by the aver-

age shape of large-amplitude bursts. It is concluded that the filtered Poisson process, describing

the fluctuations in single-point recordings as a super-position of uncorrelated pulses with fixed

duration, is an excellent description of the SOL plasma fluctuations in the turbulence simulations

investigated here.43–53

The simple turbulence model used in this study does not include finite ion temperature effects,

X-point physics, parallel collisional conductivity in the scrape-off layer, or any effect of interac-

tions with neutral particles. Numerous SOL turbulence models and codes are now being extended

to include these features.92–100 The statistical framework with super-position of filaments can be

used for analysis and interpretation of simulation results in these more advanced models, similar

to what has been done here and previously for experimental measurements. As such, this work

sets a new standard for validation of turbulence simulation codes.54–56
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ABSTRACT

Interaction of coherent structures known as blobs in the scrape-off layer of magnetically confined plasmas is investigated. Isolated and interact-
ing seeded blobs, as well as full plasma turbulence, are studied by two-dimensional numerical simulations. The features of the blobs (position,
size, amplitude) are determined with a blob tracking algorithm, which identifies them as coherent structures with amplitudes above a chosen
particle density threshold, and their velocities are compared to a conventional center of mass approach. We find that the theoretical velocity-
size scaling dependence for isolated blobs is correctly resolved by the blob tracking method. The benchmarked approach is then extended to a
population of interacting plasma blobs with statistically distributed amplitudes, sizes, and initial positions for different levels of blob interaction.
We observe a correlation between the level of blob interaction and the number of blobs deviating from size–velocity scaling laws of perfectly
isolated blobs. This is found to be caused by the interaction of blobs with the electrostatic potential of one another, leading to higher average
blob velocities. We introduce a model specific intermittency parameter, quantifying the degree of blob interaction. For interacting blobs, we
estimate the deviation from the picture of perfectly isolated blobs as a function of the intermittency parameter. For full plasma turbulence simu-
lations, we observe a strong correlation between the blob amplitudes, sizes, and velocities estimated by the blob tracking algorithm.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0021314

I. INTRODUCTION

In tokamaks and other magnetically confined plasma experi-
ments, particle transport in the plasma edge region is dominated by
turbulence-driven coherent structures of high density and temperature
called blobs or filaments. This can lead to enhanced erosion of the
reactor walls and can contribute to the power loads to divertor
targets.1–5 These structures have been observed in multiple plasma
devices in all operation regimes using reciprocating or wall mounted
Langmuir probes,6–12 fast visual cameras,3–5,13–16 and gas puff
imaging.17–22

In addition to experimental evidence, theoretical understanding
of the underlying physical mechanism of blob propagation has been
developed in the last 20 years.23–26 It is understood that the basic
mechanism responsible for the radial transport of blobs arises due to
grad-B and curvature drifts leading to a charge polarization in the
plasma blob/filament. The resulting electric field gives rise to an E�B
drift that propels the blob across the magnetic field. Since detailed
physical models increase the analytical complexity significantly, the

scientific community relies on numerical simulations of isolated blobs
and full turbulence simulations of the scrape-off layer. Numerical sim-
ulations in two dimensions27–36 and three dimensions37–45 have
enhanced the understanding of the underlying mechanisms of blob
and filament propagation in the scrape-off layer.

Most of these numerical simulations investigate idealized, iso-
lated blobs modeled as positive amplitude and symmetrical Gaussian
perturbations on a constant plasma background. This approach has
provided an effective way of investigating the influence of specific
physical effects, such as finite Larmor radius effects,46 electromagnetic
effects,47 or parallel electron dynamics48 on the blob velocity, coher-
ence, and lifetime. Scaling laws describing the radial blob velocity
dependence on its amplitudes and size29,30,34,35,49 have been developed,
and different regimes determined by various physical parameters have
been discovered.50,51

Despite this progress, understanding how well these scaling laws
describe blobs in fully turbulent scenarios where they interact with
each other is non-trivial. Previous work has shown that single blobs in
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close proximity do interact through the electric potential they gener-
ate.52,53 This analysis was performed on two spatially separated and
seeded blobs on a constant plasma background and, therefore, does
not address the complexity of a fully turbulent plasma environment.
In our work, we expand the investigation by starting from isolated
blob simulations and then extending our analysis to decreasingly inter-
mittent systems, until we consider fully turbulent scrape-off layer
plasma. The intermittency of such a system is a measure of the degree
of blob overlap.54,55 To bridge these two extremes, we use a stochastic
model of multiple randomly seeded blobs where blob amplitudes,
sizes, initial positions, and the waiting times between consecutive blobs
are randomly sampled from given distribution functions.

In order to track blobs in these intermittent and turbulent envi-
ronments, we implement a tracking algorithm that provides specific
blob parameters such as trajectory, velocity, size, and amplitude over
the lifetime of individual blobs. Tracking algorithms using either
simple threshold methods, defining every coherent structure above a
chosen particle density threshold as a blob, or convolutional neural
networks, have been presented and applied on two- and three-
dimensional data.56–58 For our analysis, we choose the threshold
method since it provides a simple and consistent definition for blobs
in both the isolated and the fully turbulent cases. Since there are sev-
eral ways of defining a blob, this has the advantage of being able to
choose an exact and unbiased definition for blobs instead of using
machine learning algorithms that require a test dataset. Note that our
implementation of a blob tracking algorithm is only designed for
numerical simulations where the time and spatial resolution can be
chosen. Applying blob tracking techniques on experimental measure-
ments with high speed imaging data using, for example, a watershed
algorithm13 is complicated by the spatial and temporal resolution of
the measurement techniques. The watershed algorithm is based on fit-
ting two-dimensional Gaussians to local density maxima in order to
extract the position, widths, and amplitudes of the fluctuations.

The structure of this publication is as follows: In Sec. II, we pre-
sent the equations of the physical model that we use for our further
analysis. In Sec. III, we present a detailed description of the implemen-
tation of the blob tracking algorithm and discuss all relevant parame-
ters of this method. We apply this algorithm on isolated and seeded
blob simulations in Sec. IV and compare the results to a conventional
center of mass approach. In Sec. V, we extend this analysis to a model
seeding multiple blobs randomly. We start with the case of identical
amplitudes and starting positions for different levels of intermittency,
extend this analysis to random initial positions, and finally to a model
including random blob amplitudes. In all cases, we compare the results
to the isolated blob simulations. In Sec. VI, we finally apply the blob
tracking algorithm on scrape-off layer turbulence simulations and dis-
cuss the results in comparison to the previous approaches. A summary
and discussion of our results are given in Sec. VII.

II. PHYSICAL MODEL

For our analysis, we choose a standard two-dimensional (2D),
two-field fluid model derived from the Braginskii fluid equations.59–62

We assume for simplicity a quasi-neutral plasma, negligible electron
inertia, isothermal electrons (Te ¼ constant), and cold ions (Ti ¼ 0).
Note that these assumptions for the electron and ion temperatures are
taken for the sake of simplification, as experimental measurements of
scrape-off layer plasmas often show high variations of Te and

Ti > Te.
63–68 Nevertheless, this simplified model still captures the fun-

damental dynamics of the blobs and is therefore sufficient to study
their interaction while keeping the number of free parameters of the
model relatively low.

For our simulations, we use a simple slab geometry to model the
plasma evolution in the two-dimensional plane perpendicular to the
magnetic field, with x and y referring to the radial and the binormal/
poloidal directions, respectively. The normalized electron particle con-
tinuity equation and vorticity equation are given by28,31,34,60–62

dn
dt
þ g

@n
@y
� n

@/
@y

� �
¼ D?r2

?nþ Fn � rðn� nbÞ exp �/ð Þ; (1)

dr2
?/
dt
þ g
n
@n
@y
¼ �?r4

?/þ r 1� exp �/ð Þ½ �; (2)

where n represents the electron plasma density and nb the electron
plasma density background. Moreover, / is the electric potential, g is
the effective gravity, i.e., interchange drive from magnetic curvature,
Fn is the forcing or plasma source term, and D? and �? are the colli-
sional dissipative terms representing particle diffusivity and viscosity,
respectively. The parameter r describes the parallel loss rate of the sys-
tem. The last term on the right hand side of both the particle continu-
ity and electron drift vorticity equations results from modeling the
parallel losses to the material surfaces. The forcing for the turbulence
simulations is

Fn xð Þ ¼ 1

w
ffiffiffiffiffi
2p
p exp � 1

2
x � kð Þ2

w2

 !
; (3)

with w and k providing the width and location of Fn. The source term
represents the cross field transport from the core region, but its magni-
tude and shape chosen here are arbitrary, although convenient. For
seeded blob simulations, Fn represents multiple blobs as

Fn x; y; tð Þ ¼
XK
k¼1

Ak exp �
ðx � xkÞ2 þ ðy � ykÞ2

2d2?k

 !
D t � tkð Þ; (4)

where Ak represents the amplitudes, d?k the widths, xk and yk the ini-
tial positions, tk the arrival time of the blobs, and D denotes the Dirac
delta function.

In order to self-consistently describe order unity relative fluctua-
tion levels, a term given by r ln n � dr2

?/=d t should be added to the
left hand side of Eq. (2). Moreover, the dependence on the electron
density should be included in the collisional diffusion terms. However,
this makes the numerical simulation code much more computer inten-
sive and the simplified model given by Eqs. (1) and (2) has been used
here. Further discussion on this topic, commonly referred to as the
Boussinesq approximation, can be found in Ref. 36. Strictly, the pre-
sented model is derived to describe small density fluctuations and
shows inconsistent blob velocity scaling for large amplitudes compared
to a non-Boussinesq model. A discussion of this scaling correction is
presented in Ref. 35. However, we do not expect this effect to have a
significant influence on the qualitative results presented in this work.

The standard Bohm normalization is used for this model equiva-
lent to that used in Refs. 41, 42, and 60–62 and is not discussed here
for the sake of brevity. In addition, the advective derivative is given by
d=dt ¼ @=@t þ VE � r?, where VE ¼ �r?/� B=B2 is the E�B
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drift. We approximate B to be constant for the E�B drift even though
the effects of magnetic field curvature are considered in the effective
gravity g. A discussion of this approximation can also be found in
Ref. 35.

We apply periodic boundary conditions in the y-direction and
zero gradient boundary conditions in the radial direction for both the
density and vorticity fields. For the plasma potential, we choose fixed
boundary conditions at the radial boundaries /ðx ¼ 0Þ ¼ /ðx ¼ LxÞ
¼ 0. These boundary conditions are commonly used for numerical
reasons,28,65 despite strictly speaking not being appropriate for scrape-
off layer plasmas. The simulation domain is, however, big enough that
the boundary conditions for the potential have no measurable effect
on the dynamics.

The numerical model is implemented in the STORM code,52

which is based on BOUTþþ.69,70 The code uses a finite difference
scheme in the x-direction and a spectral scheme in the y-direction,
and time integration is performed by the PVODE solver.71 We choose
a simulation domain size of Lx¼ 150 and Ly¼ 100 with a resolution of
256� 256 grid points for all runs. The coefficients are representative
of a medium sized machine with g ¼ 1:7� 10�3 and r ¼ 1:8 �10�4.
The parameters for the source term are w¼ 7 and k¼ 30. For all pre-
sented simulations, the background density is set to nb¼ 1. For single
isolated blob simulations in Sec. IV, we choose D? ¼ �? ¼ 2� 10�2,
while for the remaining simulations of Secs. V and VI, we take
D? ¼ �? ¼ 5� 10�3. We choose higher diffusion coefficients for iso-
lated blob simulations in Sec. IV since the blob coherence stays higher
for higher diffusion coefficients and it is more straightforward to test
the blob tracking algorithm.

III. BLOB TRACKING

The blob tracking algorithm is implemented in Python, employ-
ing the xarray library.72 Blobs are identified as positive amplitude fluc-
tuations above a certain particle density threshold. The optimal choice
of the thresholding technique depends on the problem at hand, and in
the case of the isolated blob simulations presented in Sec. IV, we take a
constant threshold nconst across the whole domain as the blob thresh-
old nBT. For Secs. V–VI, however, we add the binormal/poloidal- and
time averaged profile to nconst, which takes the form,

nBTðxÞ ¼ nconst þ
1

Ly ðT � ttrÞ

ðLy
0

dy
ðT
ttr

dt nðx; y; tÞ � nb½ �; (5)

where T stands for the run time of the simulation and ttr for the tran-
sient time before the simulation reaches a quasi-stationary state. This
method is more robust for turbulence simulations due to the radially
varying time-averaged profile.

We label the resulting coherent regions using the multi-
dimensional image processing library scipy.ndimage. The output
data of our simulations is stored as an xarray dataset where the
simulation variables n, / and the vorticity r2

?/ are stored as a three-
dimensional array, two dimensions for the spatial coordinates and one
dimension for time. We then define a field with the same dimensional-
ity as n with the value one in the regions where n exceeds nBT and zero
otherwise. Applying the function scipy.ndimage.label on this
array returns a field where all coherent regions of ones are labeled
from one to the maximum number of coherent structures in the data.
We use this field of labels as the definition of blobs in the datasets.

Note that this implementation requires a relatively high temporal
resolution of the output files since a blob is only labeled as one coher-
ent structure over time if the blob spatially overlaps with itself in the
next frame. The downside of this approach is the resulting large output
files, which slows down the memory bound blob tracking algorithm.
In addition, one has to consider the periodic boundary condition in
the y-direction since the algorithm will label a blob traveling through
the y-boundary of the domain as two different objects. For turbulence
simulations in Sec. VI, the blob tracking algorithm is only applied in
the domain region where x > 0:4 Lx since we do not include the
plasma source region in our analysis.

In order to determine the position and the velocity of the labeled
blobs, we determine the center of mass of the blobs at each time step.
For isolated blob simulations, the x-component of the center of mass
is defined as

XCOM tð Þ ¼

ðLy
0

dy
ðLx
0

dx x n x; y; tð Þ � nb½ �

ðLy
0

dy
ðLx
0

dx n x; y; tð Þ � nb½ �

; (6)

with the y-component defined analogously. For multiply seeded blobs
and turbulence simulations, the blob tracking algorithm determines
the x-component of the blob position by calculating the center of mass
of the plasma region where the plasma density exceeds the threshold,
which takes the form

XBT tð Þ ¼

ð ð
Sblob

dx dy x n x; y; tð Þ � nb½ �

ð ð
Sblob

dx dy n x; y; tð Þ � nb½ �
; (7)

where Sblob represents the region where the blob is detected. The algo-
rithm determines the velocity by a finite difference scheme in time and
requires therefore the blob being detected for at least two consecutive
frames. If a structure is only detected for a single frame, the algorithm
sets the velocity to zero. We estimate the blob size d for each time step
as

d ¼ 1
p

ð ð
Sblob

dx dy

0
@

1
A

1=2

: (8)

Note that this definition is based on the assumption that the blob
is circular so that Sblob ¼ d2p. We choose this definition since it
provides a consistent way to compare the detected sizes to seeded
circular blobs even though the shape of blobs changes significantly
over time. Since this estimate of the blob size varies from the input
parameter for the width of seeded blobs d?, we distinguish
between these two variables by dropping the perpendicular-sign
for the size estimation from the blob tracking algorithm. Due to
this definition, we observe a systematic mismatch between d and
d? when estimating the size of a seeded blob with our implementa-
tion of the algorithm. We further estimate the peak amplitude A of
each blob as
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A ¼ max
Sblob

nðx; y; tÞ � nbð Þ (9)

for each time step. We will use the here defined blob parameters for
our statistical analysis for different forcings. We can then apply this
method with the identical blob tracking parameters on isolated blobs,
statistically seeded blobs and full scrape-off layer turbulence simula-
tions in order to investigate how blob interaction is affected by the
plasma intermittency, and its effect on the blob parameters.

An example of the blob tracking and labeling methods applied
on a turbulence simulation is shown in Fig. 1. This figure shows the
plasma density and the associated blobs detected by our algorithm.
The background is labeled as zero and the individual blobs with
ascending numbers.

IV. ISOLATED SEEDED BLOB SIMULATIONS

We begin the analysis by tracking single isolated blobs, seeded on
a constant plasma background. We initialize the simulation with a
symmetric Gaussian function as a blob as

nðx; y; t ¼ 0Þ ¼ nb þ A0 exp �ðx � x0Þ2 þ ðy � y0Þ2

2d2?

 !
; (10)

where nb represents the background density, A0 the initial amplitude,
d? the initial width, and x0 and y0 the initial position of the blob. We
choose x0 ¼ 0:25 Lx and y0 ¼ 0:5 Ly . The blob amplitude is set to be
as large as the plasma background nb, in this case A0 ¼ nb ¼ 1. We
investigate how the blob velocity evolves over time by estimating the
velocity with the blob tracking algorithm for three different thresholds.
The results of this analysis are shown in Fig. 2 for a relatively small
blob width of d? ¼ 5. The radial velocity is also determined by a con-
ventional center of mass approach shown in Eq. (6).

The velocity estimates from the algorithm are strongly dependent
on the threshold applied for the tracking. For a blob threshold of only
one percent of its initial amplitude, we observe that the measured
velocity remains very close to the center of mass approach for all
widths investigated. This is not surprising since these two implementa-
tions are almost identical for low tracking thresholds. For higher blob
thresholds, it is shown that the determined maximum radial velocity
increases significantly, as the measured radial velocity for a threshold

of 40% of the initial blob amplitude more than doubles the center of
mass results. This can be explained by the fact that for high thresholds,
the algorithm only detects the densest parts of the blob that tends to
propagate faster radially than their less dense regions. This has to be
taken into account for further work when applying the blob tracking
algorithm on more complex models than singular seeded blob simula-
tions. In addition, it is shown that the detected lifetime of the blob for
a higher threshold is lower. This can be simply explained by the fact
that a narrower detected structure dissipates faster and its amplitude
therefore falls below the threshold of the tracking algorithm. The pre-
cision of the blob tracking measurement also decreases with higher
blob thresholds and smaller blobs. Intuitively, the blob tracking algo-
rithm shows the best performance for wide blobs and low blob
thresholds.

We further perform a parameter scan from d? ¼ 2 to d? ¼ 30
for the blob width. The results of this analysis are shown in Fig. 3. For
all different methods of velocity measurements, we see that the size–-
velocity dependence follows the analytical predictions derived in
previous work.11,34 The radial velocity of small blobs, which are in the

FIG. 1. Snapshots of plasma density n and associated blob labels of a turbulence simulation with parameters equivalent to Sec. II. Here, x refers to the radial and y to the
poloidal/binormal coordinate. The colorbar on the right represents the labels of individual detected blobs with the label zero describing the background. The source region on
the left side of the domain is excluded from the blob detection algorithm.

FIG. 2. Radial velocity of an isolated seeded blob width d? ¼ 5. The blue line
refers to the center of mass approach. The other lines refer to the blob tracking
algorithm using different percentages of its initial amplitude as the threshold. The
radial velocity and the blob width are expressed in normalized units.
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so-called inertial limit, increases with the square root of its size. For
large blobs, sheath currents dominate over polarization currents and
the blob velocity is inversely proportional to the square of its size.
These two limits are referred to as the inertial and sheath connected
regimes, respectively.

For all applied blob thresholds, we observe that the scaling
dependence is correctly resolved as is the case with the center of mass
approach. We therefore conclude that these methods are consistent,
which motivates extending our analysis to more complex forcings
with multiple seeded blobs.

V. RANDOMLY SEEDED BLOB SIMULATIONS

The next step of our studies is a more complex model, in which
blobs are seeded with random parameters, in particular, amplitude A0,
width d?, initial poloidal/binormal launch positions x0 and y0, and
waiting time sw between the launch of consecutive blobs. This model
is still artificial but provides valuable insight in blob interaction in a
controlled environment. We start our analysis by only keeping waiting
times and widths as random variables and then gradually adding the
remaining free parameters to the model. In the most complex case, we
sample the waiting times from an exponential distribution of the form,

Psw ¼
1
hswi

exp � sw
hswi

� �
; (11)

amplitudes from a truncated exponential distribution and the initial
poloidal/binormal starting positions and the widths from a uniform
distribution. Note that we choose a uniform distribution for the widths
for illustration. Since we intend to compare the velocity-size depen-
dency of detected blobs in this model to isolated blob studies, we
choose to sample from a uniform distribution for the sizes to increase
the number of large blobs. A snapshot of an example run of this model
is presented in Fig. 4 showing the density field of three seeded blobs
with different widths and amplitudes. The blob at approximately
y¼ 90 propagates in an almost isolated way radially outward. The two
blobs at approximately y¼ 50 show a strong interaction with each
other and merge eventually into one coherent structure. A less inter-
mittent case with numerous blobs is shown in Fig. 5 where individual

blobs interact strongly with each other, resulting in a turbulence-like
density snapshot.

In the following analysis, we choose the same parameters for our
blob tracking algorithm for all runs, in order to keep comparisons
between different models consistent. In order to identify all structures
present, one would choose a relatively low threshold for the blob track-
ing algorithm. Nevertheless, the threshold cannot be set too low in this
model that simulates more than one blob since it would label several
independent but spatially close structures as one blob. We subtract the
time and y-averaged radial profile from the density and apply a blob
threshold of 0.2 density units for the resulting fields. In addition, we
rerun the blob tracking analysis on single isolated blobs from Sec. IV
with these exact parameters to compare these two systems.

A. Single launch-point

We begin our analysis on randomly seeded blobs, keeping the
blob amplitudes constant to A0 ¼ 1 and launching all blobs at
x0 ¼ 0:25 Lx and y0 ¼ 0:5 Ly , which leaves the waiting times and blob

FIG. 3. The dependence of the maximum radial velocity of isolated seeded blobs
on their widths compared to an analytical model. The blue dots refer to the center
of mass approach, while the other dot colors correspond to the blob tracking algo-
rithm that uses different percentages of the initial amplitude of the blob as a
threshold.

FIG. 4. Snapshot of plasma density n of a simulation of randomly seeded blobs
with different amplitudes. The blob at approximately y¼ 90 propagates radially out-
ward almost without interfering with other blobs. At approximately y¼ 40, we see
two blobs merging into one coherent structure.

FIG. 5. Snapshot of plasma density n of a simulation of randomly seeded blobs
with different amplitudes and low intermittency parameter. We observe strong inter-
actions between individual seeded blobs similar to turbulence simulations.
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widths as random variables. In order to quantify the interaction and
overlap of individual blobs, we define a model specific intermittency
parameter in the spirit of Ref. 54 as

I1 ¼
hvxihswi
hdi ; (12)

where hvxi represents the average radial velocity, hswi the average
waiting time, and hdi the average width of a specific run. This model
specific intermittency parameter is introduced in the spirit of previous
work on stochastic modeling of intermittent fluctuations, analyzing
time series,68,73–76 which defines the intermittency parameter as the
ratio of the average duration time of one event above a chosen thresh-
old and the average waiting time between two such consecutive events.
From the definition I1 is, strictly speaking, not constant but a function
of d of each individual blob. This effect is illustrated in Fig. 6, showing
how the blob specific intermittency parameter deviates from the aver-
age value. Here, we calculate I1 for constant hswi where hvxi is given
by the analytical solution for vxðd?Þ in Ref. 34. This has to be taken
into consideration for the following investigation. Note that for the
presented cases, we calculate hvxi and hdi not from input parameters
of the model but from the blob tracking of seeded blobs excluding
structures that only are detected for one frame. We launch blobs for
three different average waiting times, which refer to three different

states of intermittency. The results of the blob tracking algorithm for
these three cases are presented in Fig. 7.

For the most intermittent case of I1 ¼ 11:8, where blobs are the
most spatially separated, we see that the overwhelming majority of
detected structures have parameters corresponding to isolated blobs.
This implies that there is weak interaction between individual blobs.
Some individually detected structures show a higher radial velocity
than their isolated counterparts. This effect arises due to two closely
separated blobs interacting with each other’s electrostatic potential.
Although this has been studied in some detail in previous work,52 we
deliver an illustration of the physical mechanism in Fig. 8. We seed
two identical blobs at different radial positions and apply the blob
tracking algorithm to determine their radial velocity. The electrostatic
potential created by the two separate blobs superposes and results in a
stronger electric field, which increases the E�B drift that pulls the
coherent blob structures radially outward. This effect can lead to the
formation of so-called “blob trenches” in turbulence simulations. We
estimate the radial velocity of the two blobs with the blob tracking
algorithm and observe a clear increase in velocity for the trailing blob,
shown in Fig. 9. The case of two blobs in the poloidal/binormal direc-
tion is also studied in Ref. 52, showing a decrease in the radial velocity
compared to the isolated case. However, blobs in turbulent environ-
ments usually get diverted into the blob trenches by the electrostatic
potential of previous blobs. We, therefore, observe significantly more
cases of blobs in close radial than in poloidal/binormal proximity.

For I1 ¼ 4:9 and I1 ¼ 1:8 in Fig. 7, we observe an increasing
number of blobs with a higher radial velocity than their isolated coun-
terparts. Since the average waiting time decreases, individual blobs
interact strongly through the potentials of nearby blobs and get acceler-
ated radially outward. In addition, the blob tracking algorithm detects
more smaller-sized coherent structures that usually have short life-
times, often only one to two frames. Due to the increasing interactions
and turbulent flow in this model, more of these small structures are
detected by the algorithm, which can be classed as numerical artifacts.

B. Random launch-point

The next random variable of the investigated model added to our
analysis is the poloidal/binormal launch position of the seeded blobs.
We sample the launch position yk from a uniform distribution
Uð0:2 Ly; 0:8 LyÞ to reduce the number of blobs propagating through
the poloidal/binormal boundaries. The initial amplitudes remain a
fixed parameter set to A0 ¼ 1. Seeding blobs from a random poloidal/

FIG. 6. Model specific intermittency parameter dependence on blob width and with
fixed sw illustrated utilizing an analytical model for the radial velocity. This is com-
pared to the average intermittency parameter for all d?.

FIG. 7. Maximum radial velocity measured with the tracking algorithm of randomly seeded blobs with single launch position (blue dots) compared to isolated blobs (orange
dots). The intermittency parameters for the displayed runs are approximately I¼ 11.8 (left), I¼ 4.9 (middle), and I¼ 1.8 (right). Blob widths are sampled from a uniform distri-
bution with d? 2 Uð2; 30Þ and waiting times from an exponential distribution. The average waiting times for the displayed runs are hswi ¼ 200 (left), hswi ¼ 75 (middle),
and hswi ¼ 25 (right).
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binormal position increases the intermittency of the model and leads
to more complex interactions between individual structures. We there-
fore multiply the expression for the intermittency parameter shown in
Eq. (13) with Ly=3hdi resulting in

I2 ¼
hvxihswiLy

3hdi2
(13)

to consider this extension of the model since Ly=3 is the average dis-
tance of two randomly chosen events from a uniform distribution

with length Ly. We run this model for three different intermittency
parameters and present the results from the detected blobs in Fig. 10.
As one might expect, most detected structures in the I2 ¼ 7:6 case fol-
low the isolated blob line but show more spread around this line than
in the single launch point model. In particular, many small blobs are
detected by the blob tracking algorithm that show a significantly lower
radial velocity than their isolated counterparts, with some blobs even
showing a negative radial velocity. We provide an explanation for this
effect in Fig. 11. It is shown that these small blobs deviating from the

FIG. 8. Snapshot of the plasma density of two seeded identical blobs with their electrostatic potential indicated with white lines (left) and the associated blob labels, detected
by the blob tracking algorithm at three different time steps (right). The label zero describes the background particle density. The interaction of the trailing blob by the electro-
static potential of the leading blob is illustrated.
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theoretical predictions have a maximum amplitude significantly lower
than A¼ 1 as the initially seeded blobs have. This indicates that these
small structures result from the complex interaction of the seeded
blobs. Since their amplitudes are significantly lower than the ones of
their isolated counterparts, their radial velocity is also lower. For the
cases of lower intermittency parameters, we observe again an increase
in the average radial velocities and the spread. This remains consistent
with the previous single launch point model and can be explained by
the same blob-interaction mechanism.

We utilize the presented six runs to quantify the interaction of
individual blobs for different intermittency parameters. For each
model, we calculate the average deviation in radial velocity of the
detected structures from the fit function of the isolated blobs. The
result is shown in Fig. 12. The six data points are compared to a fit of
the inverse of I times a constant. This clearly suggests that the inter-
mittency of blobs in the scrape-off layer has a strong effect on their
radial velocity and propagation.

C. Amplitude distribution

We add the final random variable of our model by seeding blobs
with truncated exponentially distributed amplitudes since we only
choose amplitudes with 0:5 < A0 < 3 in order to compare them
more easily with isolated seeded blobs. We perform a parameter scan

for blob widths for isolated seeded blobs with amplitudes A0 ¼ 0:5
and A0 ¼ 3 in order to create reference values for the boundaries of
our model. We then run our model for three different intermittency
parameters and compare the results with the isolated blobs for differ-
ent amplitudes. These results are shown in Fig. 13.

The results are consistent with our previous analysis. Most ran-
domly seeded blobs lie in between the borders established by the iso-
lated blobs. For small blobs, we observe again some data points with a
lower radial velocity than in the isolated case, which can be explained
by the same effect as in Sec. VB. For wider structures, we find some
structures with higher velocities, which can again be explained by the
electrostatic potential of interacting blobs. As expected, the average
velocity is increasing for a decreasing intermittency parameter.

VI. TURBULENCE SIMULATIONS

After investigating randomly seeded blob models, we turn our
attention to a simple self-consistent scrape-off layer model simulating
plasma turbulence. Numerically, the model is equivalent to the seeded
blob simulations but uses the term of Eq. (3) as a plasma source
instead of Gaussian seeded blobs. The density profile in the simulation
domain is built and balanced by the plasma source and the sheath dis-
sipation included in the model. These are unstable due to bad curva-
ture and interchange instability, which leads to coherent structures of
plasma propagating outward radially due to the blob mechanism

FIG. 9. Radial velocity of two seeded identical blobs at two different radial positions
and their isolated counterparts. The Blob, seeded at x0 ¼ 0:25, which is trailing the
blob seeded at x0 ¼ 0:45, shows a significant increase in the radial velocity due to
the electrostatic potential created by the leading blob.

FIG. 10. Maximum radial velocity measured with the tracking algorithm of randomly seeded blobs with the random poloidal/binormal launch position (blue dots) compared to
isolated blobs (orange dots). The intermittency parameters for the displayed runs are approximately I2 ¼ 7:6 (left), I2 ¼ 2:5 (middle), and I2 ¼ 1:3 (right). Widths are sampled
from d? 2 Uð2; 30Þ, initial poloidal/binormal positions from y0 2 Uð0:2� Ly ; 0:8� LyÞ, and waiting times from an exponential distribution. The average waiting times for the
displayed runs are hswi ¼ 120 (left), hswi ¼ 50 (middle), and hswi ¼ 13 (right).

FIG. 11. Radial velocity and widths of detected blobs with an intermittency parame-
ter of I2 ¼ 7:6 are compared to isolated blobs (orange dots). Blobs with a small
maximum amplitude represent most small structures deviating from the scaling
laws of isolated blobs.
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discussed in Sec. I. These blob like structures vary in amplitude and
width and can be detected and tracked by the tracking algorithm.

We exclude the source region for our blob tracking analysis
and only consider coherent structures detected at x > 0:4 Lx since
this unphysical term only serves as a numerical term. In addition,
we only include blobs with an initial center of mass of 0:25 Ly
< yinit < 0:75 Ly in our statistical evaluation in order to exclude
distorted tracked structures because of the periodic boundary con-
ditions in the y-dimension. Even though it is straightforward to
track blobs consistently that traverse the simulation border in this
direction, our numerical implementation for this issue is computa-
tionally more expensive than running the simulation longer and
only considering blobs in the central band of the domain. For such
turbulence simulations, the tracking algorithm identifies numerous
small structures that only appear for one frame. These structures
represent approximately one third of the total number of detected
blobs and are also excluded from our statistical analysis. The
remaining parameters for the tracking algorithm stay the same as
for the randomly seeded blob model. The determined radial veloci-
ties and sizes of the detected blobs in the turbulence simulation are
shown as a 2D histogram in Fig. 14. We choose this type of plot
since the illustrated 4542 blobs are too many to be shown distinc-
tively in a scatterplot. The distribution of the sizes and amplitudes
of the detected structures, as well as the joint probability

distribution functions (PDFs) of these two blob parameters, are
shown in Fig. 15.

These measurements show that the amplitudes lie in between
A¼ 0.2, which is equivalent to the threshold used for the blob tracking
algorithm, and A¼ 0.7. Since blobs with an amplitude smaller than
A¼ 0.2 are not detected and since many small blobs below A¼ 0.4 are
dissipated too quickly to be detected, the shown PDF is not representa-
tive for all structures in the system. Taking these factors into account,
the common assumption of blob amplitudes being exponentially dis-
tributed cannot be falsified by these measurements. The same is valid
for the distribution of blob widths. Nevertheless, we observe a clear
correlation between the amplitudes and widths as the correlation coef-
ficient of these two parameters is q ¼ 0:85. In order to compare the
detected blobs with their isolated counterparts, we perform a parame-
ter scan for blobs with the amplitudes A0 ¼ 0:7 and A0 ¼ 0:3 as the
two edge values of the distribution. Since A0 ¼ 0:2 would be too small
to be detected by the algorithm, we use A0 ¼ 0:3 as the lower border.
These isolated blobs are shown together with their fit in Fig. 14. In this
analysis, no blobs with a higher width than d¼ 30 appear; therefore,
we rarely observe the decreasing radial velocity for bigger and denser
blobs in our velocity–size scaling. Nevertheless, the dataset provides
enough information to discuss the results in comparison to isolated
blob simulations. As in the previous model of randomly seeded blobs
with random amplitudes, we observe that the overwhelming majority

FIG. 13. Maximum radial velocity measured with the tracking algorithm of randomly seeded blobs with the random poloidal launch position and truncated exponentially distrib-
uted amplitudes (blue dots) compared to isolated blobs with A0 ¼ 0:5 (red dots), A0 ¼ 1 (orange dots), and A0 ¼ 3 (green dots). The intermittency parameters for the dis-
played runs are approximately I¼ 10.3 (left), I¼ 7.9 (middle), and I¼ 1.7 (right). The average waiting times for the displayed runs are hswi ¼ 200 (left), hswi ¼ 75 (middle),
and hswi ¼ 25 (right).

FIG. 14. Radial velocity of blobs detected in full turbulence simulations compared
to isolated blobs with A¼ 0.3 and A¼ 0.7. Blobs only detected for one frame are
excluded, as well as blobs close to the poloidal/binormal simulation boundary.

FIG. 12. Average deviation in the radial velocity of theoretical scaling law predic-
tions measured in randomly seeded blob simulations for different intermittency
parameters. The relationship between Dvx and I is compared to a fit of the inverse
of I times a constant.

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 27, 122301 (2020); doi: 10.1063/5.0021314 27, 122301-9

Published under license by AIP Publishing



of detected blob structures lie in between the trends of the isolated
blob simulations. As for the previous model, the algorithm detects a
significant number of structures with a higher radial velocity than the
isolated blobs. We explain these events again by the interaction of
blobs with the electrostatic potential of one another. Due to these find-
ings, we conclude that tracking blobs in a fully turbulent scenario
shows very similar results to models of statistically seeded blobs. While
the theoretical size–velocity scaling of isolated blobs gives a reasonable
order of magnitude estimate, there is an order unity scatter due to
strong interactions between blobs.

VII. DISCUSSION AND CONCLUSION

In this work, we investigated the interaction of blobs in the
scrape-off layer for different models of varying complexity. In particu-
lar, we compared the relation between the radial velocity and the
widths of the blobs with established scaling laws. We started with
studying isolated blobs and extended our analysis on a model of ran-
domly seeded blobs where the parameters are sampled from physically
adequate PDFs. We studied this model for different levels of intermit-
tency and applied the acquired knowledge on fully turbulent scrape-
off layer plasma simulations.

In this process, we developed a blob tracking algorithm as a ver-
satile tool to analyze and understand blob and plasma parameters in
scrape-off layer plasma simulations. We publish our implementation
on github under https://github.com/gregordecristoforo/xblobs. The
current version of the algorithm can be applied on any 2D xarray
dataset with a cartesian grid and constant spacing dx,dy and dt.77

An extension of the algorithm to three dimensions is numerically easy
to implement, but the 2D version of this algorithm can be valuable for
analyzing blob propagation and turbulent transport, in a specific plane
in three-dimensional plasma simulations. We will use this in the future
to study how blob properties depend on specific physical effects or
study the plasma transport in the scrape-off layer.

For isolated blob simulations, we find that the velocity-size scal-
ing dependence is correctly resolved by the blob tracking method. For
the case of non-isolated blobs, we observe a correlation between the
level of blob interaction and the number of blobs deviating from size–
velocity scaling laws of perfectly isolated blobs. Blobs show an increase
in the radial velocity in cases of low intermittency for the randomly
seeded blob model and turbulence model, compared to isolated and
intermittent cases. We explain this observation by the interaction of
blobs with the electrostatic potential of one another. The blob trajecto-
ries are influenced by the electrostatic potential, which gets diverted,
leading to the creation of trenches in which blobs get accelerated by

the potential of ones in front of them. These findings are consistent with
previous work studying the interaction of two seeded blobs.52

Additionally, we find a strong correlation between the blob amplitudes
and sizes estimated by the blob tracking algorithm for full plasma turbu-
lence simulations. For all studied forcings, we observe a systematical
size–velocity relationship consistent with theoretical predictions from
the model. This concludes that despite the significant interaction of
blobs, they still follow established scaling laws and can therefore be
regarded to the lowest order, as isolated structures propagating radially
through the scrape-off layer. We thereby display the relevance of isolated
seeded blob and filament simulations for complex turbulent models.
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