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a b s t r a c t 

Diagrammatic reasoning (DR) problems are well known. However, solving DR problems represented in 

4 × 1 Raven’s Progressive Matrix (RPM) form using computer vision and pattern recognition has not 

yet been tried. Emergence of deep learning techniques aided by advanced computing can be exploited 

to solve such DR problems. In this paper, we propose a new learning framework by combining LSTM 

and Convolutional LSTM to solve 4 × 1 DR problems. Initially, the elementary geometrical shapes in 

such problems are detected using a typical CNN-based detector. Next, relations of various shapes are 

analyzed and a high-level feature set is produced and processed in the LSTM framework. A new 4 × 1 DR 

dataset has been prepared and made available to the research community. We believe, it will be helpful 

in advancing this research further. We have compared our method with some of the existing frameworks 

that can be used for solving RPM-guided DR problems. We have recorded 18–20% increase in the average 

prediction accuracy as compared to the prior frameworks when applied to RPM-guided DR problems. 

We believe the CV research community will be interested to carry out similar research, particularly to 

investigate the feasibility of solving other types of known DR problems. 

© 2020 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Abstract reasoning or diagrammatic reasoning requires visual

epresentations of objects or diagrams. It involves the understand-

ng of concepts and ideas from images with the patterns that are

sed in visual IQ tests [1] . Solving such diagrammatic reasoning

roblems using artificial intelligence can help us to understand

omplex patterns of objects in images. Typically, a test in diagram-

atic reasoning consists of a set of questions. The questions are

sually of multiple choices. These questions generally consist of a

eries of pictures, each of which is different. The task is to choose

nother picture from a number of options to complete the series.

or examples, Fig. 1 shows a typical diagrammatic reasoning prob-

em, where the first row represents the question and the second

ow contains four options out of which only one is correct. The

bjective is to learn the rules that can be applied to a sequence
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nd then use them to pick an appropriate answer. Solving a ques-

ion requires analyzing a sequence of shapes or patterns known as

he Raven’s Progressive Matrices (RPM) [2] . This is also known as

bstract or inductive reasoning test. 

.1. Related work 

Reasoning is the ability to make sense of things by verifying

acts and applying logic. We refer to machine learning-based meth-

ds for reasoning as artificial reasoning (AR). AR uses knowledge

ompletion, value approximation, and goal-oriented reasoning to

olve different forms of reasoning [3] . Knowledge completion uses

nowledge graphs to express the facts and it extracts a common

ense knowledge. It is used in various machine learning guided

easoning such as image captioning and question answering [4] .

alue approximation is a method for extracting numeric facts. It

s used in quantitative question answering from natural language

exts and images [5] . Goal-oriented reasoning is a top-down ap-

roach that heuristically searches for a solution to achieve a goal.

t is popular in robotics, intelligent agent, and case-based reason-

ng [6] . Data and knowledge-driven statistical methods [7] , logic
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Fig. 1. A typical example of a diagrammatic reasoning problem. The first row 

presents the first three objects of a sequence of four objects in a particular order. 

The second row presents the multiple choices typically shown to an examinee. Op- 

tion D is the right answer for the above problem. 

Fig. 2. Visual reasoning datasets. (a) How many objects are either small cylinders or 

red things? (b) There is exactly one big yellow square not touching any edge (True/False) 

(c) How many slices are there in the pizza? (d) Is the umbrella upside down? . (For 

interpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 
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programming [8] , and neural network-based approaches [9] are

also popular for solving various reasoning problems. 

AR methods are complex in nature and such methods require

logical representation of data, common sense, statistical informa-

tion, and learning techniques. Hence the learning guided reasoning

methods need further improvement through the fusion of knowl-

edge representation, reasoning and learning techniques [10] . For

examples, statistical/relational learning [11] and knowledge base

reasoning [12] are used in various reasoning problems. Statisti-

cal reasoning may be defined as making sense of historical data.

It is widely used in psychology, health, economy, etc. In logical

AI, first-order logic (FOL) and relational representations are used

to gain knowledge. To know more about relational ML, the re-

view work presented in [13] may be consulted. A thorough anal-
Fig. 3. Examples of various RPM-based DR problems. (a) Example of a 2 × 2 matr
sis of the literature reveals that the existing systems still suf-

er from a few drawbacks. For example, they often demand hand-

rafted rules in the form of first-order logic, as such systems do

ot learn from examples [14] . Deep learning has been widely used

o learn and represent the features. However, majority of the ex-

sting representations rely on low-level features and they do not

onsider high-level representations such as logic or knowledge. Re-

ently, Serafini et al. [15] have proposed a logic tensor network

o learn the data-driven logic. Similarly, Kazemi et al. [16] have

roposed a deep neural network known as relational neural net-

orks (RelNNs) to learn the reasoning directly from the FOL. Re-

ently, Garcez et al. [17] proposed a neural-symbolic computing

pproach to combine neural networks with symbolic representa-

ion and reasoning-based learning approach. The method opened

p new insights of intractability in AI. Mao et al. [18] used a simi-

ar concept to learn abstract knowledge from visual representation

nd language embedding. However, similar tasks in visual reason-

ng have not yet been tried by the CV community. Visual reason-

ng is not straight-forward as compared to the other types of rea-

oning due to the difficulty in interpreting the objects and their

elations [19] . Therefore, existing logic and statistical AI methods

annot directly be applied to solve visual reasoning problems. Two

imilar domains of reasoning that have received the attention of

V research community are visual question answering [20] and vi-

ual reasoning [5] . Visual question answering consists of images

nd questions that can be answered from the images. To answer

he questions, we may require prior knowledge about the objects,

heir colour, position, etc. In addition to these features, visual rea-

oning may also require shape information, count, orientation, etc.

ig. 2 (a) depicts an example of visual reasoning taken from the

opular Compositional Language and Elementary Visual Reason-

ng (CLVR) [5] dataset. CLVR dataset is used for reasoning colour,

hape, quantity, and size. Fig. 2 (b) depicts Cornell Natural Language

isual Reasoning (NLVR) synthetic dataset that is primarily used

o categorize comments. The questions on NLVR demand under-

tanding of natural language, shape, position, color, etc. Fig. 2 (c)

resents an example from the Visual Question Answering (VQA)

ataset containing open-ended questions about the images [21] .

hese questions require an understanding of vision, language and

ommon sense to answer. Fig. 2 (d) presents reasoning of image

airs [22] . These questions require reasoning about the relation of

bjects. 

Visual IQ questions that are based on RPM [2] vary in na-

ure and diverse in complexities. Answers of RPM-based reason-

ng requires common sense, idea about the shapes, and knowl-

dge of mathematics. There exist different types of DR problems.

or examples, Fig. 3 (a) represents a typical 2 × 2 DR problem and

ig. 3 (b) represents a typical 3 × 3 DR problem. DR problems of

he order 3 × 3 are considered as formal RPMs and their solu-
ix reasoning problem. (b) Example of a 3 × 3 graphical reasoning problem. 
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Table 1 

Summary of Raven’s Progressive Matrices (RPM) Solving Methods. 

Ref. Problem Type Feature Method 

Kunda et al. [25] 2 × 2 High-level(Symbol) Model-based 

Lovett et al. [26] 3 × 3 High-level (Object) Model-based 

Ragini et al. [27] 3 × 3 High-level (Structure) Model-based 

Mcgreggor et al. [28] 3 × 3 High-level (Object) Model-based 

Lovett et al. [29] 3 × 3 High-level (Structure) Model-based 

Santoro et al. [23] 3 × 3 Low-level (Raw Image) Learning-based 

Hill et al. [24] 3 × 3 Low-level (Raw Image) Learning-based 

Zhang et al. [30] 3 × 3 Low-level (Raw Image) Learning-based 

Proposed 4 × 1 High-level (Relation) + Low-level (Raw Image) Learning-based 
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Table 2 

Visual Reasoning Dataset. 

Dataset Pattern 

Abstract Reasoning [23,30] 3 × 3 

Scanned Images [28] 3 × 3 

Digital Images [31] 3 × 3 

Proposed 4 × 1 
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ions are addressed in [23] using neural network and in [24] us-

ng relational structure. Kunda et al. [25] have used two computa-

ional algorithms, namely Â Fractal Encoding Algorithm (FEA) and

ffine-Extended Algorithm (AEA) to solve RPMs. FEA decomposes

he images of a problem into a set of small images by applying a

et of specific affine transformations (copy, rotation, or flip). Next,

he algorithm generates fractal solutions to RPMs by considering

ll possible pairwise transforms. Lovett et al. [26] have used com-

utational model to solve RPMs. The method uses structural infor-

ation such as shape, texture, etc. It then uses Structure-Mapping

ngine to find the pattern variance among images. Finally, a set of

ules is applied to find a solution. Ragni et al. [27] have proposed

 goal-oriented rule-based method to solve RPMs. The method first

rocesses consecutive cells of the matrix to identify the goal (rule

nd texture) and then processes the solution image by analyz-

ng the difference. McGreggor et al. [28] have proposed a con-

dence score for solving such problems. Firstly, each cell of the

atrix is represented using relational fractal representations (fea-

ure similarity). Then, an image is expressed as a transformation

union, rotation, etc.) of a single image or multiple images. The

nswer is then chosen based on maximum similarity with the op-

ions. The work can be considered as a preliminary step toward

tructural representation of the features. Lovett et al. [29] have

roposed computational model-based solution. Images are com-

ared via structure mapping, aligning the common relational struc-

ure in 2 images to identify commonalities and differences. Barrett

t al. [23] have released a dataset and proposed a neural network-

ased learning method to solve DR problems. Hill et al. [24] have

xtended the method using a neural network. They conclude that

he state-of-the-art image-based deep neural networks fail to solve

omplex problems. However, if the rule is extracted correctly, the

earning methods perform better. Zhang et al. [30] have proposed a

odel to generate different RPMs. They have shown that the state-

f-the-art structural similarity-based, rule-based, and deep neural

etworks can achieve a maximum of 65% accuracy on the dataset.

ifferent approaches for solving RPMs can be categorized by the

hoices of problem types, features, and the solution approaches.

tate-of-the-art approaches either use raw images as features or

xtract high-level information such as texture, shape, colour, etc.

here are broadly two types of solution approaches, computational

odeling approaches with rule-based system and learning-based

pproaches. A few methods that are similar to our work are sum-

arized in Table 1 . 

Moreover, the existing approaches try to solve 2 × 2 and 3 × 3

PMs using computational models or low-level image-based learn-

ng methods. In this paper, we have considered 4 × 1 diagram-

atic problems and use high-level features for learning and rea-

oning. We have made the following research contributions: 

• We have introduced a new feature representation that can be

used by typical learning frameworks to solve diagrammatic rea-

soning problems. 
• We propose a problem classifier and solver to address the solu-

tion extraction of typical 4 × 1 DR problems. The method can

learn a concept with a knowledge-base using less number of

training samples. 
• We have introduced a new dataset containing 4 × 1 DR prob-

lems represented in the form of RPMs. The dataset contains

state-of-the-art RPMs that can be generated using rules as well

as complex problems. The dataset has been made available to

the research community for further investigation. 

.2. Datasets and benchmarks 

The ultimate goal of visual reasoning is to learn image under-

tanding and interpretations. Lack of datasets makes it difficult at

his stage to apply computer vision techniques to solve DR prob-

ems. Despite the advancement of deep learning frameworks, train-

ng the networks with a sufficient amount of data is a challenge.

o the best of our knowledge, only a 3 × 3 DR dataset has re-

ently been released by Barrett et al. [23] . The dataset is referred

o as Procedurally Generated Matrices (PGM) dataset. McGreggor

t al. [28] have used a small dataset collected from scanned im-

ges. Table 2 presents summary of various datasets. Therefore, at

his juncture, we thought to prepare and release a DR dataset

o the research community so that the area can advance further.

hus, we have collected images of diagrammatic reasoning from

he web and prepared a dataset of 4 × 1 diagrammatic reason-

ng problems. The dataset contains 619 problems. We have cate-

orized these problems into four groups, namely (i) Rotation (RT),

ii) Counting (CT), (iii) Shape Scaling (SS), and (iv) Other Type (OT).

ig. 4 depicts a sample question with possible answers from each

ategory and Fig. 5 depicts the distribution of the problems across

he various categories in our dataset. 

Rest of the paper is organized as follows. In Section 2 , we

resent the proposed DR solving method. Experiment results are

resented in Section 3 . Conclusion and future work are presented

n Section 4 . 

. Proposed architecture 

The proposed method is based on a set of features and an al-

orithmic pipeline. Majority of the reasoning problems are tack-

ed with relational learning [11] and reasoning capabilities [12] ,

hereas the image-centric neural network-based learning applica-

ions do not require relational learning. We have introduced a new
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Fig. 4. Examples of four types of typical DR problems that are present in our dataset. (a) Example of a rotation problem (RT), where a pattern is rotated as compared to 

the first image with relative rotations that may be mentioned in a DR question as {0 ◦ , 90 ◦ , 180 ◦ , ?}. The prediction should be 270 ◦ and the correct answer is option B. (b) 

It is a typical problem of number series prediction (CT). The question consists of a set of filled circles. Here, the number of circles varies as 2, 4, 6, ?. Our task is to predict 

the picture with 8 filled-circles. The correct answer is option B. (c) Third one is an example of typical shape and scaling problem (SS). The pattern can be interpreted as 

{ < Cicle, Large Triangle > , < Circle, Big Triangle > , < Circle, Small Triangle > , < ? > }. Our task is to predict < Circle, Tiny Triangle > which is option B. (d) The 

fourth one is a typical pattern understanding problem. We have categorized such problems into Other Type (OT). Our task is to predict the 4 th pattern. The correct answer 

is option A. 

Fig. 5. Distribution of different DR problems in our dataset. 
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method to extract the relational features (RF) of image sequences

to solve one specific type of DR problems. The proposed method

consists of two major steps. During the first level of processing,

the question and options are passed through a knowledge acqui-

sition tool to construct the knowledge base. The knowledge con-

sists of a set of image features extracted from the individual im-

age and a set of relational features extracted from the sequence

of images in the question and the options. Next, the problem type

is identified using a supervised learning method. We define two
Fig. 6. Architecture of the proposed framework. The architecture consists of an RCNN m

a solution module. We take raw question sequence and the options as input and cons

knowledge is used to classify the problems into 4 categories and select the suitable LS

produces a complete sequence of four patterns/images. 
ypes of Long Short Term Memory (LSTM) networks. Each one of

hem is responsible to solve one specific type of problems. One

STM takes text-based features (for RT, CT, and SS type) and the

ther one takes image-based features (for OT types). Unlike the

est-based reasoning problems [11] , where the reasoning needs to

e defined by knowledge or FOL [32] , we learn the logic using

STM through training. Fig. 6 depicts the proposed framework in

etail. The pipeline consists of (i) a Knowledge extraction mod-

le, (ii) a problem classifier and LSTM chooser module, (iii) two

STMs, and (iv) a matching module. Let the problem space (P)

e defined in (1) , where the question contains a set of images

(Q ) = { I 1 , I 2 , I 3 } and the options are grouped in the solution space

(O ) = { I 4 , I 5 , I 6 , I 7 } . Diagrammatic reasoning is to predict the an-

wer such that I answer ∈ O . First, we represent the problem using

 high-level knowledge structure. The individual modules are de-

cribed hereafter. 

 = { I 1 , I 2 , I 3 , . . . , I 7 } (1)

.1. RCNN Module 

First, each image of P is passed through an RCNN module to

xtract the shapes and the bounding box information. We have
odule, a knowledge module, problem classifier module, two LSTM modules, and 

truct a knowledge base by taking the output from the RCNN module. Next, the 

TM. Finally, it predicts the best possible option out of the four input options and 
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Fig. 7. We represent the rotation problem as a set of 7 images or patterns. In rotation problems, we consider the first image (red) as the reference image with 0 ◦ rotation 

and extract the rotation relation of other images. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 8. Sample images after applying rotations on the first image of P . Depiction of how a possible match is found at 90 ◦ for a given query image. 
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onsidered 7 common geometrical shapes, namely circle, triangle,

ectangle, square, diamond, star, hexagon that are usually present

n various DR problems. All the shapes are classified as either

mpty (only edges) or filled. We have experimented with the state-

f-the-art RCNN to detect these shapes. YOLO [33] has been found

o be a good recurrent classifier as compared to Resnet50/101 [34] ,

GG 16 [35] , or GoogleNet [36] . 

Architecture and Training: YOLO predicts the bounding boxes

nd class confidence of a given image. It consists of 53 no. of

uccessive 3 × 3 and 1 × 1 convolutional layers. We have used

 transfer learning approach [37] to train the RCNN. We have

sed ImageNet as the base model. For training, we have gener-

ted 14 types of images (class) consisting of 7 types of shapes

ith filled and unfilled objects. The synthetic dataset consists of

0 0,0 0 0 shape images similar to the FourShape 1 . It is generated by

he varying size and applying rotation. The model has been trained

ith 30 0 0 epochs with the default parameters of YOLO V3. 

.2. Knowledge acquisition module 

Knowledge acquisition has been carried out during training and

olution generation. The knowledge base ( κ) is extracted from the

equence of images in the given problem and the set of options.

e have considered the types of shape, number of shapes, and size

f the shapes as the relative features. First, the shapes in each im-

ge in P and the bounding boxes are extracted using the RCNN. We

hen introduce a new feature extraction method for solving 4 × 1

R problems. The feature is referred to as the relational feature

RF). Unlike image-based features such as color, texture, shape or

dge that are typically used in various computer vision applica-

ions, we have extracted three relational features (RF), namely ro-

ation ( ρ), counts ( χ ), and scaling ( σ ) from the set of the given
1 https://www.kaggle.com/smeschke/four-shapes . 

l  

l  

s  
mages. The feature-set is given in (2) . Various components of the

eature-set (k) are described hereafter. 

= < ρ(I k ) , χ(I k ) , σ (I k ) >, ∀ k, k ∈ P (2)

Rotation: In a typical rotation diagrammatic reasoning problem

 Fig. 7 ), the solution lies in rotating the figure correctly to complete

he sequence. We assume the first image ( I 1 ) as the reference with

 rotation of 0 ◦. All the other images (I 2 , . . . , I 7 ) are expressed us-

ng rotation angle with respect to the reference image. To achieve

his, 360 images are generated by incrementally rotating the base

mage by r ◦, where r = 1 . A few samples of the rotated images

orresponding to the DR problem described in Fig. 7 are shown

n Fig. 8 . This set is denoted by R = { I 1 , I 2 , . . . , I 360 } . The similar-

ty score ( ψ) is defined in (3) . First, a ResNet50 [34] network with

verage pooling has been used to extract features of images. The

etwork uses pretrained imagenet as the weight vector. The score

as been estimated between a query image and all images of R

sing the ResNet50 by considering chi-square distance, where I j is

uery image and I k is the image in R . 

 jk = Similarity (I j , I k ) (3)

The relative rotation ρ( I k ) of each image of P is then extracted

ith respect to each image I j belonging to R . If the images in P are

ifferent from each others, we categorize the question as a non-

otation problem and the not applicable (NA) flag is set. A thresh-

ld has been used to decide about the success of matching. ρ( I k ) is

et to the value of rotation if the matching score returned by the

esNet50 is above the threshold. However, in the event of multi-

le images being categorized above the threshold, the image that

ives the highest value is selected and its rotation angle is taken as

he final input. In the event that none is found suitable, the prob-

em is categorized as a non-rotation diagramatic reasoning prob-

em. For example, the relative rotations of the diagrammatic rea-

oning problem depicted in Fig. 4 (a) are {0 ◦, 90 ◦, 180 ◦} for the op-

https://www.kaggle.com/smeschke/four-shapes
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Fig. 9. A typical counting DR problem with 7 pictures. The first three patterns represent the sequence given in the question 2, 4, 6, ? and the next four patterns represent 

the options for the probable answer with 8 as the correct option. 

Fig. 10. (a) Detection of shapes achieved by YOLO. (b) The bounding boxes are grouped using DBSCAN. Each color represents a group of same size shapes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 1 Scaling-based feature extraction. 

Input: Problem Space (P) as defined in equation~(1) 

Output: Relational scaling (σ ) of each image 

1: S=DetectShapes( I k ), ∀ k, I k ∈ P 

2: ShapeGroup=DBSCAN(S) 

3: Extract number of cluster (c) from ShapeGroup 

4: Rearrange group and assign label L 1 , L 2 , . . . , L n , where 

area (L 1 ) < area (L 2 ) . . . < area (L n ) 

5: if c = 6 then 

6: L = { Extremely Large, Very Large, Large, Medium, Small, Tiny } 
7: else if c = 5 then 

8: L = { Very Large, Large, Medium, Small, Tiny } 
9: else if c = 4 then 

10: L = { Large, Medium, Small, Tiny } 
11: else if c = 3 then 

12: L = { Large, Medium, Small } 
13: else if c = 2 then 

14: L = { Large, Small } 
15: else if c = 1 then 

16: L = { Normal } 
17: else 

18: L = { Nil } 
19: end if 

20: σk = Shape Label (I k ) 

21: Return σ

2

 

t  

m  

t  

c  
tions in the question and {180 ◦, 270 ◦, 0 ◦, 90 ◦} for the options in

the answer. 

Counting: Counting is a reasoning problem where the solution

is to extract the correct number of shapes present in the problem

sequence. First, the shapes are detected and the number of the

same types of shapes is estimated. For example, Fig. 9 depicts a

typically filled circle detection and counting using RCNN. Each im-

age of the problem space is expressed using the count of shapes in

a sequence as {2, 4, 6, ?}. The predicted missing number is needed

to select from the set {6, 8, 4, 10}. 

Scaling: Relative scaling ( σ ) is then extracted from the bound-

ing box of the detected shapes. First, the bounding boxes are ex-

tracted from the shapes in P . Each shape in the question image

sequence and the options are represented by width ( w ) and height

( h ) of the bounding box. Next, each type of shapes are grouped

using unsupervised density-based spectral clustering with appli-

cation to noise (DBSCAN) [38] using w and h . The groups are

then rearranged in increasing order of the area ( w × h ) such that

area (L 1 ) < area (L 2 ) . . . < area (L n ) . These groups are labeled using

rules as extremely large, very large, large, normal, medium, small

and tiny based on the number of clusters. The grouping and label-

ing of shapes are described in Algorithm 1 . 

Fig. 10 (a) depicts a DR problem where size of the pattern is

used as a clue for the solution. The DBSCAN algorithm can identify

four classes or groups, where the problem has been expressed as

{ < VeryLarge > , < Large > , < Small > , ?}, and the solution

options are { < Nil > , < Tiny > , < VeryLarge > , < Small > }. 

Representation of knowledge base: For a given problem space

P , the shapes are detected and the relational features (RF) are

extracted as mentioned earlier. The knowledge base consists of

four sets, namely shapes, rotation ( ρ), counting ( χ ), and scal-

ing ( σ ). Shapes store information about the structures and other

sets represent various components of the relational features.

Table 3 shows the knowledge extracted from four different 4 × 1

problems. 

c  
.3. Problem classification module 

Problem classification plays an important role as it is used

o select the appropriate LSTM module. Failure in classification

ay lead to a wrong solution selection. The knowledge base of

he relative features extracted in the previous step is used to

lassify the problem and based on the problem category a spe-

ific feature is chosen to represent the problem. We call the fea-
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Table 3 

Typical examples of knowledge base extracted using the features described earlier (The first 3 rows are correctly ex- 

tracted, the last row is failure case). 

DR Problem Constructed knowledge base 

Shapes = { F il l edtriangl e , T riangle } 
ρ = { 0 ◦, 90 ◦, 180 ◦, 180 ◦, 90 ◦, 0 ◦, 270 ◦} 
χ = { < 1 , 1 > < 1 , 1 > < 1 , 1 >, < 1 , 1 >, < 1 , 1 >, < 1 , 1 >, < 1 , 1 > } 
σ = { < N, N >, < N, N >, < N, N >, < N, N >, 

< N, N >, < N, N >, < N, N > } , where N is Normal. 

Shapes = { Filled circle } 
ρ = { NA } 
χ = { < 2 >, < 4 >, < 6 >, < 6 >, < 8 >, < 4 >, < 10 > } 
σ = { < AN >, < AN >, < AN >, < AN >, < AN >, 

< AN >, < AN > } , where AN is All Normal. 

Shapes = { Filled triangle } 
ρ = { NA } 
χ = { < 1 >, < 1 >, < 1 >, < 1 >, < 1 >, < 1 >, < 1 > } 
σ = { < Ver yLar ge >, < Large >, < Small >, 

< Nil > , < Tiny > , < VeryLarge > , < Small > } 

Shapes = { Filled triangle } 
ρ = { NA } 
χ = { < 4 >, < 4 >, < 4 >, < 4 >, < 4 >, < 4 >, < 4 > } 
σ = { < AN >, < AN >, < AN >, < AN >, < AN >, 

< AN >, < AN > } , where AN is All Normal. 

Table 4 

Details of the predicted knowledge and answers. 

Predicted answer Predicted knowledge Detected category Correct? 

ρ = { 270 ◦} Category 1 (RT) Yes 

χ = { < 8 > } Category 1 (CT) Yes 

σ = { < T iny > } Category 1 (SS) Yes 

Not Applicable Category 2 (OT) No 

t  

a  

t  

t  

u  

(  

S  

g  

c

α

 

p

ure as active feature ( α). First, the three images of the problem

re chosen and κ is extracted for those images. Next, the rota-

ion ( ρ) and counting ( χ ) is replaced by ”Equal/Not Equal” if all

he values are equal or not. Next, all the features are encoded

sing the one-hot encoder and a supervised k-nearest neighbor

KNN) is applied to classify the problem into 4 classes (CT, RT,

S, and OT). We have empirically chosen k = 10 and it produces

ood results. Based on the problem type, the active feature is
hosen as given below: 

= 

⎧ ⎪ ⎨ 

⎪ ⎩ 

ρ if class = RT 
χ if class = CT 
σ if class = SS 
I if class = OT 

Table 4 shows reference feature prediction (answer) of the

roblems shown in Table 3 . 
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Fig. 11. Interpolation model for solving Category 2 problems. E: Encoder, D: Decoder. 

Fig. 12. Prediction model for solving Category 1 problems. Knowledge extractor is used to represent sequence of images to sequence of features ( ρ , χ , σ ). Depending on the 

problem type corresponding feature is taken as the input (active feature) to the LSTM. 
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2.4. LSTM-based solution generator 

The final stage is to learn the pattern from the question im-

ages and predict the correct answer from the given options. We

have used two variations of LSTM to predict the answer option.

In the case of Category 1, a simpler variation of LSTM is used as

proposed in [39] . The method has been used to generate a caption

from the images. We have not used the image as input. We have

used the neural architecture of the language learning and genera-

tion part in the proposed method. Rather than using the conven-

tional image-based features [40] , we have used relational features

(RF) extracted by the knowledge extractor. The method is depicted

in Fig. 12 , where the knowledge extractor (KE) is the process of

extracting RFs as discussed earlier. At the beginning, the relational

features (RF) are extracted from all training samples and the active

feature ( α) is chosen. Next, a text-based LSTM corresponding to

Category 1 ( α is the input to the LSTM) is trained to build the pre-

diction model. In the testing phase, a similar knowledge base and

the active feature are extracted from the test samples. Unknown

problems (Category 2) are solved by a variation of the LSTM, called

Flexible Spatio-Temporal Network (FSTN) proposed in [41] . Origi-

nally the method predicts the future video frames from a set of

observed sequences. In this method, image-based features are se-

quentially passed through a convolutional-LSTM. Fig. 11 depicts the

method in detail. The method consists of a sequence of convolu-
ional and pooling layers and LSTM modules. The method takes a

equence of images and features after convolution and pooling are

assed through the LSTM. The network is trained using the image

equences consisting of the problem and correct answer images. 

Model architecture and training : Category 1 LSTM is mod-

lled by an RNN considering p(S t | K, S 0 , S 1 , . . . , S t−1 ) , where K is the

nowledge, S is the word representing knowledge words, and t is

he time step ( t = 4 ). The hidden state or memory ( h t ) is updated

fter receiving the input ( x t ) by nonlinear function f : 

 t+1 = f (h t , x t ) (4)

o make the above network applicable to our domain, two crucial

esign choices are to be made: (1) What is the exact form of f ?

nd (2) How are the images and words fed as inputs x t ? For f , we

se a Long-Short Term Memory (LSTM) network, that has shown

tate-of-the-art performance on sequence classification. The LSTM

ses state-of-the-art modules [42] for hidden layers and the final

rediction layer defined in (6) , where U and V are input and output

eight vectors and b is the bias. 

 t = σ (b i + x t U i + h t−1 V i ) (5)

The hidden unit is combined with forget gates and output gates

nd the final layer is a softmax layer as given in (6) . 

p t+1 = Sof tmax ( last layer ) (6)
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Table 5 

Results of shape detection. 

Algorithm Accuracy 

ResNet50 (baseline) 57.19 

ResNet101 [34] 62.19 

VGG16 [35] 71.11 

GoogleNet [36] 77.22 

YOLO [33] 86.76 
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Fig. 13. The confusion matrix for classifying DR problem. R: Rotation, C: Counting, 

S: Scaling, O: Other. 
n our case, we have used a multi layer LSTM with 512 units per

ayer consisting of 2 LSTM layers. Moreover, we denote the input

roblem by P and the sequence of active features for the image by

 = (S 0 , S 1 , S 2 , S 3 ) . The approach uses the steps as given in 7 –(9) , 

 −1 = Active Feature (α) (7) 

 t = W e S t , t ∈ { 0 , ., N − 1 } (8)

p t+1 = LST M(x t ) , t ∈ { 0 , ., N − 1 } (9)

here each knowledge descriptor word ( S t ) uses one-hot word em-

edding ( W e ). We have used sequence loss function minimization

n each step as given in (10) . 

oss (K, S) = 

N ∑ 

t=1 

log p t (S t ) (10)

he model has been trained using supervised active features ex-

racted from the training sets. The problems have been solved by

he volunteers to obtain the ground truths and the active features

re recorded and used for training. For example, the training se-

uence used for the first three problems described in Table 4 are

0 ◦, 90 ◦, 180 ◦, 270 ◦}, { < 2 > , < 4 > , < 6 > , < 8 > }, and

 < VeryLarge > , < Large > , < Small > , < Tiny > }. The pro-

osed LSTM is then trained to learn and predict from the active

eatures of the training samples. 

Category 2 RNN is a Convolutional LSTM that consists of a

patio-temporal autoencoder, which in turn consists of an image-

ased encoder-decoder with an LSTM cell acting as a temporal

ncoder. The encoder ( E ) contains one convolutional layer, leaky

eLU non-linearity, and a spatial max-pooling layer. The decoder

 D ) mirrors the encoder, except for the non-linearity layer, and uses

patial upsampling to bring the output back to the size of the orig-

nal input. The proposed method uses 64 × 64 input image se-

uences with 5 × 5 kernel and 3 × 3 pooling layer with batch

ormalization. The LSTM modules are multilayered (we have used

 layers) time distributed layer. We have used two types of losses

s reported in [43] and [41] . The first loss is a l 2 loss applied on de-

oder output as L 

D 
t = ‖ ̂  X t+1 − X t+1 ‖ 2 2 , where X is input image and

ˆ 
 is predicted image. The second loss is an encoder loss applied on

ncoder output as L 

E 
t = ‖ E ( ̂  X ) t+1 − E (X t+1 ) ‖ 2 , where E ( ̂  X ) is en-

oder feature output and E ( X ) input feature to the encoder. The

lobal loss is defined in (11) . 

 = 

∑ 

i 

L 

E + L 

D (11)

he network has been trained using the image sequences of other

ypes of problems (OT) with the supervised correct answer image.

he method has been trained using a learning rate of 0.1 in 30 0 0

pochs. 

.5. Solution module 

The solution module consists of an active feature matching

odule and an image similarity module. In the case of Category

 problems, the predicted active feature is matched with the ac-

ive feature of the available options. For example in the first prob-

em presented in Table 4 , if α = ρ and the predicted solution is

70 ◦, the match module searches for the option when ρ = 270 ◦,
.e. option 4 is the correct answer. In the case of Category 2 prob-

ems, the predicted image is compared with all the option images

sing ResNet50 feature extractor. The solution is chosen based on

he maximum matched image options. 
. Experiment results 

We present the experiment results in this section. The pro-

osed architecture starts with a shape detection method followed

y problem classification and solution selection. 

.1. Shape detection results 

The first step of the method is to detect shapes from a

iven image. We have experimented with state-of-the-art convo-

utional networks including ResNet50, ResNet101 [34] , VGG16 [35] ,

oogleNet [36] and YOLO [33] . YOLO has been found to be the best

rchitecture for the present case. 70% of the data have been used

or training and 30% for testing across all experiments. Results us-

ng 10-fold cross validation have been reported. Table 5 summa-

izes the shape detection results. 

.2. Problem classification 

In the next stage, an analysis of the results of classification

as been carried out. The confusion matrix for four types of

roblems is depicted in Fig. 13 . It may be observed that the

NN with the proposed feature can successfully classify the prob-

ems with reasonably high accuracy. We have performed a 10-fold

ross-validation and observed that the proposed classifier classi-

es counting and rotation problems with 92% and 87% accuracy

espectively. The accuracy of scaling and other types of problems

as been found to be 88%. This decline in accuracy is due to the

omplex nature and diverse variety of the problems in the other

roup. In our proposed method, the identification of scaling prob-

ems involves scaling factor identification and clustering. A failure

n any step may affect the classification outcome. Moreover, ma-

ority of the complex other type of problems can be classified with

1% accuracy. 
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Table 6 

Comparative results of DR problem solving. 

Algorithm Rotation (RT) Counting (CT) Scaling (SS) Other (OT) Average 

Image + LSTM (baseline) 57.12 42.13 62.11 36.5 49.46 

Image + Encoder/Decoder [40] 62.11 41.12 61.11 37.89 50.55 

Image + Deep feature [44] 64.39 47.19 41.91 42.86 49.08 

Image + RNN [45] 56.80 41.19 54.91 32.20 46.27 

Image + FSTN [41] 66.11 37.19 66.91 34.90 51.27 

Proposed RF + LSTM 76.21 77.00 74.31 66.81 73.58 

Fig. 14. A few samples from the our DR dataset when the proposed method correctly identifies the answers. The green boxes represent the ground truths and/or the 

correctly chosen answers. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 15. A few samples taken from our DR dataset where the proposed method fails to choose the correct option. The green boxes represent the ground truths and the red 

boxes represent wrongly predicted answers. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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3.3. Solution selection 

In the final stage, LSTM is used to find the correct solution. We

have compared the proposed architecture with the state-of-the-

art image-based reasoning solvers. The results are summarized in

Table 6 . Fig. 14 depicts some success cases, where (a) and (d) rep-

resent rotation problems, (b) and (f) represent counting problems,

(e) represents a typical scaling problem and (c) represents other

type problems. It may be observed that the proposed method can

solve different types of DR problems with better accuracy when

compared with existing techniques. Fig. 15 presents some failure

cases. It has been observed that the FSTN is applicable when the

sequence of the image contains continuous visual changes such

as human motion in video or completeness problem as shown in
ig. 14 (c). It is not suitable for reasoning problems that contain

igh-level logic information. Reasoning for high-level concepts de-

ands knowledge of shape, counting, relation, etc. It may be ob-

erved that the proposed method has failed to learn complex pat-

erns of reasoning problems. 

There are problems which are more complex than counting,

caling, and rotation, such as involving XOR and AND operations or

attern-based problems involving line or figures [28] . Such prob-

ems may be solved using rules [23] . These types of problems fol-

ow simple patterns and neural network can easily learn the logic

nd apply it to unknown problems. The others type of problems

ay be related to completeness ( Fig. 15 (a) and (c)), where each

gure is incrementally completed or reversed by adding or sub-

racting different parts or may be mixed problems ( Fig. 15 (d)) that
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re usually combinations of various complex concepts. Solving such

roblems demands a higher degree of cognitive skills that humans

ossess. To solve such problems, neural networks not only require

raining on how to deal with the problems, but also need to apply

he knowledge of numbers, operators, logic, visual patterns, and

athematical rules to obtain results. 

.4. Comparative analysis 

Computational model-based approaches such as structure- 

apping [26] , cognitive modeling [27] , reasoning-based [28] , and

odelling approach [29] are based on a set of fundamental rules

or solving RPMs. The methods use high-level features and are

estricted to specific types of reasoning problems that can be

olved by a set of well-defined rules. These methods aim to model

he rules to automate the solving process. Such methods are not

earning-based methods. Various rule-based problem generators

uch as relation preserving model [23] , rule-based structure gen-

rator [24] and analogical reasoning [30] are proposed in litera-

ure. The authors generate a large volume of dataset by apply-

ng a set of rules and use a single neural network to solve vari-

us types of DR problems. The methods utilize low-level image-

ased features for learning that demands a large volume of train-

ng samples. We have made a bridge between the modeling-based

ethods and learning-based reasoning. We have used a new fea-

ure representation of the RPMs, referred to as relational feature

RF) to construct a knowledge-base. RF shares similar fundamental

oncept of feature representation used in modeling-based meth-

ds discussed earlier. The features are extracted from low-level im-

ges using computer vision methods. They are then represented in

 structured manner such that they can be used in a typical learn-

ng framework such as LSTM. Our method can learn new knowl-

dge via training and solve the RPMs without computational mod-

ling and rules. We have also found that different neural networks

esult into different accuracy for different problems, and there is

o clear winner. It has been observed that high-level features are

ighly suitable for solving reasoning problems. However, extract-

ng high-level information from low-level images can be complex.

t has also been observed that different learning methods can be

sed to learn the low-level features such as the image and also

he high-level features such as objects and relations. We have ad-

ressed the problem of extracting high-level features from low-

evel images, representation of the features as knowledge, and pro-

osed a framework for learning low-level and high-level features. 

The concept of relational feature is new and the proposed

ethod can be useful in various image understanding problems in

omputer vision [5,22] . Further, the proposed framework can be

seful for different artificial reasoning tasks such as intelligent tu-

or, digital assistant [46] , intelligent robot [47] , etc. 

. Conclusion 

In this paper, we have introduced a new dataset for solving

 × 1 DR problems using machine learning and computer vision.

he dataset can be used by the CV research community for extend-

ng the research in this domain. We have experimented with sev-

ral state-of-the-art learning frameworks to solve a variety of 4 × 1

R problems. It has been observed that the image-based analy-

is usually fails to answer correctly in many cases. We have intro-

uced a new feature-set referred to as relational features to solve

 × 1 DR problems. Supervised learning with the help of LSTM

as been used to classify the DR questions. Results reveal that the

roposed framework outperforms existing image-based analysis. 

It has been observed that the algorithmic pipeline defined in

his work can be highly effective as it requires less samples for

earning. However, the knowledge-base proposed in this work is
elatively simple in nature and it may not be sufficient to solve

omplex DR problems. Therefore, it may be necessary to rede-

ne the feature-set for solving complex DR problems. In particu-

ar, other types (OT) of DR problems need further attention of the

esearch community. 
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