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Abstract 

Global warming has especially detrimental effects on Arctic regions. One major issue is 

permafrost thaw and sub-permafrost methane escape via surface seeps. While the mitigation 

potential of methane-consuming bacteria on marine pingo-like methane seeps is well described, 

terrestrial methane seeps are still understudied. Recently, open system pingos have gained 

attention as terrestrial methane seeps. Lagoon Pingo (N 78°14'22'', E15°45'16''), a near-shore 

open system pingo in the Adventdalen valley, Svalbard, was chosen as a study site to investigate 

the potential impact of methane-oxidizing bacteria on methane evasion from open system 

pingos. During a fieldwork campaign in August 2019, methane fluxes were measured across 

the entire site and compared to the distribution of the site’s methane oxidation potentials. The 

centre of evasion was found at the groundwater-discharging source. The discharged waters were 

carried away by an associated stream, which gradually emitted methane to a distance of up to 

80 meters from the source. While waters from the site were not shown to possess the ability to 

oxidize methane aerobically, an abundance of methane oxidizing bacteria was found in 

sediments that were covered with methane emitting waters, creating the potential to oxidize 

methane. Furthermore, using Lagoon Pingo sediments as inoculum, enrichments have brought 

a methane oxidizing bacterial strain in culture. This novel Methylobacter sp. seems to produce 

exospores, a feature not previously described for cultured Methylobacter species. The new 

knowledge provided by this thesis is a fundament for evaluating the bacterial impact on 

methane evasion from open system pingos. This in turn could be used to improve predictions 

of the contribution of open system pingos to the global methane budget. 
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1 Introduction 

1.1 Methane in the environment 

Arctic soils store large amounts of carbon, which may be released as carbon dioxide and 

methane as a result of global warming (Schuur et al., 2015). The Arctic warms more rapidly 

than other parts of the planet (Stocker et al., 2013), leading to increased methane emissions 

from thermokarst ponds and other landscape features produced by permafrost and glacier thaw 

(Wik et al., 2016). Methane has a stronger climate-warming potential than carbon dioxide 

(Isaksen et al., 2011) and its atmospheric concentration is increasing more rapidly than ever in 

recorded history (Ed Dlugokencky, NOAA/ESRL, link on p. 66). Wetlands are the largest 

natural methane sources, followed by geological seepage from reservoirs (Etiope and Milkov, 

2004). Methane with geological origin is referred to as thermogenic methane, while methane 

with biological origin through methanogenesis is referred to as biogenic methane (Stolper et 

al., 2014). Methanogenesis is a microbial process primarily occurring in anoxic environments, 

such as deeper soil layers, wetlands, lakebeds, and permafrost thaw zones (Chan et al., 2005, 

Kotelnikova, 2002, McCalley et al., 2014). However, these methane-producing environments 

generally also accommodate microbial communities that mitigate the methane transit into the 

atmosphere (e.g. Deng et al., 2016, He et al., 2012, Tveit et al., 2013). 

Besides carbon storage, the Arctic holds large reservoirs of methane as gas hydrates, structures 

of ice-scaffolds that trap gas molecules, predominantly in seabed sediments and terrestrial 

permafrost (Collett et al., 2011, Marín-Moreno et al., 2016). Cold climate environments are 

preserving the stability of these gas hydrates by two means. Firstly by isostatic depression, in 

which sub-glacial pressure and cold temperatures result in gas hydrate accumulation rather than 

gas evasion (Portnov et al., 2016). Secondly, continuous permafrost layers form a cap and 

confine gases to the sub-permafrost (Collett et al., 2011). When glaciers melt and sub-glacial 

pressure is lost, the underlying area is lifted (a process called isostatic uplift) and the gas 

hydrates destabilize, resulting in a gas discharge (Wallmann et al., 2018). Moreover, glacier 

retreat and permafrost thawing as a result of Arctic warming makes the cap more porous, 

enabling underlying free methane gases to escape their trap and seep into the atmosphere 

(Anthony et al., 2012). The resulting locations with high methane seepage, terrestrial or marine, 

are referred to as methane seeps.  
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1.2 Terrestrial methane seeps 

Terrestrial methane seeps have been found across the planet, predominantly in the form of mud 

volcanoes, which were estimated to contribute between 20 to 40 teragrams per year to the global 

methane budget (Etiope et al., 2009a). The total number of onshore mud volcanoes is estimated 

to be higher than 926 (Dimitrov, 2002). Methane discharge through so-called macro-seeps, 

generally visible craters or vents, are categorised in three groups by Etiope et al. 2009: mud 

volcanoes, water seeps and dry seeps. According to this categorization, mud volcanoes 

discharge a mixture of gas, water and sediment. Water seeps discharge gases and water, which 

may be from groundwater, and dry seeps only emit gases (Etiope et al., 2009a). Furthermore, 

mud volcanoes are described to have three forms of gas seepage, macro-seepage, miniseepage 

and microseepage, depending on the gas flux intensity (Etiope et al., 2011, Spulber et al., 2010). 

Recently, another type of geological feature called pingos, which are common permafrost 

structures, have been recognized as potential terrestrial methane seeps. Some of Svalbard’s 

pingos release large quantities of methane, highlighting the need to intensify research into this 

phenomenon (Hodson et al., 2020).  

1.3 Methane consumption at methane seeps 

In marine environments, numerous methane seeps occur as pockmarks, hydrothermal vents or 

mud volcanoes (Hovland et al., 2002, Milkov, 2000, Reeburgh, 2007). However, methane 

emitted from marine seeps does not reach the atmosphere unimpededly. It is consumed by 

microbes inhabiting the sediment and water column, thus reducing methane emissions to the 

atmosphere (Damm et al., 2005, Whiticar and Faber, 1986). The process of methane 

consumption by microbes is referred to as methane oxidation. 

In contrast to the marine equivalent, the consumption of methane within terrestrial seeps is 

poorly understood and its potential estimated to be small. Etiope et al. deem the impact of 

methane oxidation on the emission from mud volcanoes to be insignificant (Etiope et al., 

2009b). This study based on the meta-analysis of carbon isotopic compositions from more than 

150 mud volcanoes, however, did not explicitly address microbial methane oxidation with 

microbiological methods. Nevertheless, the issue of microbial consumption in terrestrial 

methane seeps was lately subject to several studies, particularly targeting the microbial methane 

oxidation potential. These studies on mud volcanoes described methane producing and 

consuming microorganisms similar to those identified in marine methane seeps (Cheng et al., 

2012, Niederberger et al., 2010, Wrede et al., 2012). In both the marine and terrestrial 
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environments, habitats were dominated by archaea involved in methanogenesis or anaerobic 

methane oxidation. However, based on low methanotrophic cell numbers, the microbial 

methane oxidation is assumed to be far less effective in terrestrial than in marine sites (Wrede 

et al., 2012). This assumption supports the Etiope et al. 2009 study. Whether or not methane 

oxidation is low in all terrestrial methane seeps is unknown. Therefore, in order to evaluate the 

methane budgets of terrestrial methane seeps, it is necessary to identify the size and location of 

methanotrophic communities and estimate their activity. 

1.4 Methanotrophs 

1.4.1 Physiology 

Methanotrophs and methane oxidation metabolisms are divided into two distinctive groups 

according to the oxygen availability of the environment: aerobic methane oxidation performed 

by methane oxidizing bacteria (MOB), and anaerobic oxidation of methane by archaea 

(ANME). While MOB are found in oxygenic environments that contain methane, anaerobic 

oxidation by ANME has a major role in consuming sub-seabed methane, transforming the 

sediments into methane sinks (Bowles et al., 2019). MOB and ANME share the ability to use 

methane as a carbon and electron source, a process referred to as methanotrophy (Hanson and 

Hanson, 1996, Knittel and Boetius, 2009). However, this classical separation of bacterial and 

archaeal methanotrophs to either aerobic or anaerobic environments has been disrupted by the 

finding of bacteria, which perform aerobic methane oxidation under anoxic conditions (Ettwig 

et al., 2010, Raghoebarsing et al., 2006). 

Figure 1: Methane oxidation pathways of MOB; figure from Hanson and Hanson, 1996. Abbreviations: CytC, 
cytochrome c; MDH, methanol dehydrogenase; FADH, formaldehyde dehydrogenase; FDH, formate 
dehydrogenase. 
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The fundamental enzymatic reaction of all known MOB is performed by the methane 

monooxygenase (MMO), appearing in a soluble (sMMO) and a particulate (pMMO) form 

(Semrau et al., 2010). Due to the ubiquitous presence of pMMO among methane oxidizing 

bacteria, the gene pmoA, encoding the β-subunit of the enzyme is generally used as a molecular 

marker for the detection of methanotrophs from aerobic environments (McDonald et al., 2008). 

Both pMMO and sMMO catalyze the oxidation of methane to methanol, using reducing agents 

and concomitantly converting molecular oxygen to water. In a further oxidation step, the 

methanol is converted by the enzyme methanol dehydrogenase to formaldehyde, which is either 

integrated into the organism’s anabolic pathways to assimilate new cellular material or further 

oxidized to carbon dioxide. Two major carbon assimilation pathways exist in MOB, the ribulose 

monophosphate pathway (RuMP) and serine pathway. The chain of primary enzymatic 

reactions is depicted in Figure 1. Beside the RuMP and serine pathway, MOB were also found 

to utilize the Calvin-Benson-Bassham cycle for carbon assimilation (Khadem et al., 2011). Due 

to unspecific oxidation of hydrocarbons other than methane by MMOs (Burrows et al., 1984), 

MOB are also of interest for biotechnological applications and bioremediation (Jiang et al., 

2010).  

1.4.2 Phylogeny of methane oxidizing bacteria 

Initially, MOB were grouped into two types based on phenotypical appearances: Type I and 

Type II. Among other phenotypical criteria, Type I MOB possess a bundled membrane-system 

in vesicles, often perpendicular to the cell boundaries, and use the RuMP pathway. Type II 

MOB on the other hand, possess a membrane-system arranged in parallel to the cell’s periphery, 

and use the serine pathway (Davies and Whittenbury, 1970, Hanson and Hanson, 1996). This 

classification was validated by phylogenetic analyses for MOB within the phyla Proteobacteria 

and is therefore still commonly used. However, since the criteria used to describe Type I and II 

MOB are no longer exclusively found in these groups, this distinction may be inadequate to use 

without phylogenetic context (Knief, 2015, Op den Camp et al., 2009). Most described MOB 

cluster within the families Methylocystaceae (Type II) and Beijerinckiaceae of the class 

Alphaproteobacteria, and the family Methylococcaceae (Type I) of the class 

Gammaproteobacteria (Semrau et al., 2010). Exemplary genera of the family 

Methylococcaceae are Methylobacter, Methylomonas, Methylomicrobium and Methylosarcina 

(Bowman, 2016). The two genera of the family Methylocystaceae are Methylosinus and 

Methylocystis (Bowman, 2015). Outside the phylum Proteobacteria, MOB have also been 

found in the phylum Verrucomicrobia (Op den Camp et al., 2009). 
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1.4.3 Adaptations of methane oxidizing bacteria 

Due to their existence in many different habitats, it is not surprising that a broad range of 

adaptations have been found among MOB, enabling them to cope with stressors and survive in 

extreme environments, such as deep-sea environments or high-temperature volcanic areas (Op 

den Camp et al., 2009, Skennerton et al., 2015). Knowing their adaptations to particular 

conditions might help to target the search for MOB on terrestrial methane seeps, which seems 

to be predominantly limited by oxygen availability in mud volcanoes (Alain et al., 2006, Wrede 

et al., 2012).  

The presence of oxygen is crucial for the initial enzymatic reaction of aerobic methane 

oxidation. Nevertheless, active MOB have been found under oxygen-limiting conditions, 

revealing adaptations to bypass the need of a high oxygen availability. Within the 

Gammaproteobacteria, the ability to use oxidized nitrogen as alternative electron acceptors as 

well as having enzymes with different affinities have been suggested as adaptations to low 

oxygen concentrations (Kits et al., 2015, Skennerton et al., 2015). Metagenomic analyses 

brought insight into the genomic repertoire of several Methylobacter species to cope with 

oxygen stress and suggested it to be a highly competitive genus (Smith et al., 2018). Halo- and 

alkaliphilic MOB were found to grow at 1.5 M sodium chloride and pH 10.5, respectively. The 

ability to grow in highly alkalic environments seems to be coupled to the presence of salts and 

changes in the cell wall structure (Kalyuzhnaya et al., 2008, Khmelenina et al., 1999). 

Moreover, some MOB seem to possess cold adaptations. This became evident when true 

psychrophilic MOB, such as Methylobacter psychrophilus (Omel'Chenko et al., 1996) or 

Methylospaera hansonii (Bowman et al., 1997) were isolated, which show optimal growth at 5 

– 10, and 10 – 13 °C, respectively. It was speculated that key adaptations for MOB to cope with 

low temperatures might be the formation of cysts or spores, or cell wall alterations (Trotsenko 

and Khmelenina, 2005). Based on metatranscriptomic data, activity of Methylobacter species 

in the environment during winter was shown, indicating a cold adaptation of members of this 

genus (Smith et al., 2018).  
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1.5 Pingo structures and Lagoon Pingo as a study site 

Pingos are permafrost hills, elevated due to the expansion of an inner ice-core by the freezing 

of water (Gurney, 1998). More than 11000 pingos have been found across the Arctic, including 

Siberia, Arctic Canada, Greenland, Scandinavia (Samsonov et al., 2016). Approximately 80 

were identified on Svalbard (Hjelle, 1993).  

Pingos are classified in two major groups depending on the origin of the pressure that forces 

the ground water towards the surface: open- and closed system pingos. In open system pingos, 

groundwater inflow is supplied by hydraulic head, whereas the pressure from pore-water 

expulsion during freezing supplies the groundwater inflow in closed system pingos (Mackay, 

1998). A groundwater discharge through springs can be associated with open system pingos 

(Yoshikawa, 1998). When the origin of pingos was first hypothesized, it was, among other 

theories, suggested that the rise of methane rich gasses would be responsible for pingo-growth 

[(Bennike, 1998) and references therein]. This suggestion was soon disproved, and the 

investigation of methane gasses evading from terrestrial pingos was not directly pursued until 

recently. However, it was suggested, already in 1995, that the inner-ice core of a pingo on 

Svalbard, named ‘Lagoon Pingo’, is accompanied by gases (Yoshikawa and Koichiro, 1995). 

The evasion of gasses, primarily methane, has been repeatedly described for many pingo-like-

features such as the so-called pockmarks at the seafloor, including the seas surrounding 

Svalbard (Paull et al., 2007, Portnov et al., 2016). Methane discharging pockmarks are not 

limited to offshore environments but also appear in fjords, such as the Adventdalen fjord 

(Forwick et al.). This is of interest in regard to Lagoon Pingo. Lagoon pingo, a nearshore pingo 

in the river-delta of the Adventdalen valley (Figure 2), is most likely derived from a former 

marine pockmark, which transitioned to a terrestrial pingo by isostatic uplift (Gilbert et al., 

2018). It was estimated that only four pingos in Adventdalen are responsible for a 16 % increase 

in terrestrial methane emission of the valley (Hodson et al., 2020). Therefore, it was suggested 

to include pingos in greenhouse gas budgets (Hodson et al., 2019). Furthermore, this gives 

reason to the assumption that not only Lagoon pingo, but many more nearshore pingos 

worldwide are active terrestrial methane seeps and contribute to global methane emissions. 
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Lagoon Pingo is described 

as an open system pingo, 

which is approximately four 

meters elevated from the 

surrounding grounds and 

covered by delta material 

(Yoshikawa and Koichiro, 

1995). The number of 

sources and water 

discharging cracks reported 

varies between three 

(Hodson et al., 2019) and seven with regular new observations of crack formation with water 

discharge (Yoshikawa and Koichiro, 1995).  

The water rising from the pingo core is anaerobic, contains a high concentration of gases, 

particularly methane, and salts. The pH tends to be neutral to alkalic (Hodson et al., 2019). The 

low δ13C-isotopic signature of the methane discharged through the source and the absence of 

other hydrocarbons suggested that the methane is of biogenic origin, even though its source is 

not determined. Moreover, a variability in the methane δ13C-isotopic signature also suggests 

partial oxidation (Hodson et al., 2020). The discharge of groundwater has resulted in the 

emergence of a pond structure, which may constitute a suitable habitat for microbial life, despite 

its seasonal variability from a pond to an 

icing-mound (Figure 3). In winter, the ice 

cover shields the water discharged from the 

pingo from atmospheric influences, resulting 

in a highly concentrated, anoxic environment 

under the ice-lid. In summer, an 

amalgamation of pingo-discharged water and 

meltwater create a pond structure exposed to 

atmospheric influences (Hodson et al., 2019). 

This seasonal variability may substantially 

affect microbial life on Lagoon pingo. 

 

Figure 3: Cross-sectional depiction of LP in winter (A) 
and in summer (C), from Hodson et al., 2019, proposing 
its ice core and the suggested groundwater supply. 
Question marks indicate uncertainties. 

Figure 2: Schematic map of the valley of Adventdalen, depicting Pingos, 
pockmarks and wells. Lagoon pingo (LP) is highlighted with an arrow. Figure 
modified after Hodson et al. 2020. 



 

Page 8 of 69 

Considering the presence of several necessities to support methanotrophy and the variable 

methane δ13C-isotopic signature, Lagoon Pingo may accommodate an active methanotrophic 

community. Therefore, pingos may depict a so far undescribed habitat for methane oxidation, 

rather than a pathway of methane bypassing the gas hydrate seal. Since similar sites were found 

in Adventdalen (Yoshikawa, 1993) and pingos are common features in the Arctic, knowledge 

about methanotrophic activities in these sites is important to future estimates of sub-permafrost 

methane emissions.  

1.6 Aim – Methane oxidizing bacteria on Lagoon Pingo 

With this work I aimed to describe the methane fluxes of Lagoon Pingo (from now on 

abbreviated as LP) during the Arctic summer, whether MOB are present at this site and their 

distribution. Moreover, I aimed to explore the link between the methane flux pattern and the 

microbial methane oxidation potential. In order to achieve these aims, sampling efforts were 

made during a fieldwork campaign in August 2019 and analyses were performed as described 

in chapter 2.  

Finally, my aim was to cultivate MOB from Lagoon pingo, obtaining one or several pure 

cultures of bacteria involved in methane oxidation at this site.  
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1.7 Hypotheses 

Hodson et al. proposed that the groundwater discharge depicts the methane source of Lagoon 

Pingo (Hodson et al., 2019). However, Hodson et al. and Yoshikawa and Koichiro were 

inconsistent in their descriptions of the number of groundwater springs. Moreover, the study of 

Hodson et al. 2019 just provides an extrapolated estimate of methane evasion for the entire 

pingo, even though terrestrial methane seeps may be composed of macro-, mini-, and 

microseepages as described for mud volcanoes (Spulber et al., 2010). Consequently, a more 

complex methane evasion system than the sole emission from one spring was hypothesized:  

1. Methane emissions from Lagoon pingo are not limited to the discharge of the main source. 

It was shown on mud volcanoes, that a methanotrophic filter can exist on terrestrial methane 

seeps and that aerobic methane oxidation may occur in places where oxygen is not limiting 

(Alain et al., 2006, Wrede et al., 2012). However, the existence of MOB on open system pingos 

on Svalbard has not been shown before. Given the fact that LP provides all necessities for 

aerobic methane oxidation in summer and that MOB show many adaptations to cope with 

environmental stressors, it was hypothesized:  

2. Methane oxidizing bacteria are present on LP. 

After the initial methane oxidation results on site, which indicated that only the sediment 

oxidizes methane, it was assumed that the oxidation was caused by MOB. Therefore it was 

hypothesized that the spatial distribution of MOB is likely to be linked to the availability of 

methane, since methane is the primary energy source for all known MOB (Hanson and Hanson, 

1996, Semrau et al., 2010). 

3. High methane availability, predicted by a high methane content in the sediments, results in 

an increased pmoA gene abundance. 
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2 Material and methods 

2.1 Site description 

Lagoon Pingo is located in the proximity of Longyearbyen, Svalbard, and by the delta of the 

Adventdalen river (N 78°14'22'', E15°45'16'', Figure 2). The centre of the pingo forms a crater-

like pond surrounded by dry sediments that were fully covered with salt crystals, as previously 

observed [Figure 4, A; (Hodson et al., 2019, Yoshikawa and Nakamura, 1996)]. No vascular 

plants grow on LP. Vascular plants can depict another mean of transferring subsurface methane 

to the atmosphere (Schütz et al., 1991). Therefore, the absence of vascular plants simplifies the 

system by limiting methane emissions to direct surface-atmosphere interfaces. However, an 

algae-biofilm was visible on the water surface, noticeably growing during the fieldwork 

campaign (Figure 4, B). Extensive algae-biofilms and patches of moss were observed at 

approximately 80 m distance from the source, followed by typical tundra vegetation with sedges 

and grasses (Figure 4, C). The air temperature in 2019 before the fieldwork varied between -

30.3°C and +14.9°C, with an average temperature of +8.4°C in July, the warmest month of the 

year 2019 (Figure 5, for reference see figure text). 

 

Figure 4: Photographs of LP-characteristics. A: the north-eastern borders of the pond and the dry pingo surface 
covered with salt crystals. B: the pond with the algae-biofilm, view towards south east. C: the transition from the 
stream to biofilm-dominated wetlands and the grass-vegetated grasslands in the background; view towards east. 

 

Figure 5: Adventdalen temperature profile from January to August 2019. 
Graph taken from https://www.yr.no. For full link see p. 66. 



 

Page 11 of 69 

2.2 Fieldwork 

To describe the site and investigate whether a microbial filter for methane exists, samples and 

information about environmental parameters were gathered during a fieldwork campaign in 

August 2019.  

Six transects radially stretching outwards from the groundwater source were assigned (Figure 

6). Five transects (named T1 to T5) started at, or close to the source and stretched up to 16 

meters across the different surface types surrounding the pond (Figure 6, orange lines). These 

five transects are referred to as surface transects. Each of these surface transects comprised six 

sampling spots, named C1 to C6. For example, the fourth sampling spot of the second transect 

would be T2C4. At each sampling spot, delineated by the chamber frame used for methane flux 

measurements (see 2.2.1), samples for DNA analysis, chemical description (pH, methane and 

water content) and methane oxidation experiments were collected, and the methane flux was 

measured. The sixth transect with 12 sampling spots followed the water flow from the source, 

along the stream until the point at which the water reached flat, vegetated grounds (Figure 6, 

blue line). For this stream transect (abbreviated as TS), sampling was performed as described 

for the five radial surface transects. Additionally, oxygen concentrations in the stream water 

were measured. 

2.2.1 Methane flux measurements 

Net methane fluxes were measured in a closed system with a continuous measurement, using 

specially tailored acrylic glass chambers with a volume of 3603 cm³. The chambers were 

covered with aluminium foil to decrease sun-induced heating within the chambers during the 

measurement. Each chamber was placed onto an aluminium frame using a putty seal to create 

Figure 6: Overview of the transects; in orange: The 5 radial ‘Surface’ transects starting from the source outwards; 
with transect indices. In blue: Transect ‘Stream’ following the water flow. All sampling spots depicted by black dots 
(see explanation within the figure). The source, from which all transects (except for T3) start, is indicated with an S. 
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a gas-tight chamber. The chambers were connected to a recirculating multiplexer (eosMX-P, 

Eosense; Dartmouth, Canada) transmitting the gases to a laser spectrometer greenhouse gas 

analyser (U-GGA-915, Los Gatos Research, San José, USA) using inert, gas-tight 

perfluoroalkoxy tubing (inner diameter ~ 4 mm, length 7.5 or 10 m, respectively). Chambers, 

tubing, and the analyser were flushed with air prior to each measurement. The methane flux 

measurements had a duration of 5 minutes, except for water-surface measurements, where due 

to high methane emissions measurements were shortened to one minute at the source and to 

three minutes along the stream transect. Due to the short length of individual flux 

measurements, the effect of chamber temperature on the estimated flux was negligible. The net 

methane fluxes were determined based on the linear regression calculated by the eosAnalyze 

software (Version 3.7.9 - custom made; Eosense, Dartmouth, Canada). All methane flux 

measurements were performed in cooperation with Tilman Schmider. 

2.2.2 Oxidation rate estimations 

Closed-batch incubations of sediments and water were used to determine methane oxidation 

rates. Approximately 14 (± 7.5) g of sediment or 12 (± 3.7) mL of water were transferred from 

the respective sampling spot into 120 mL serum bottles, which were thereafter sealed with 

sterile butyl-rubber stoppers (10 x boiled) and crimp-caps. To enrich the headspace of the serum 

bottles, methane was injected into each bottle with a gastight syringe. The amount of methane 

injected corresponded to the expected environmental methane levels: 10 mL of 1000 ppm 

methane for sediment samples from the surface transects and 0.1 mL pure methane for samples 

(water and sediment) from the stream transect and source sediments. Flux measurements had 

indicated the stream to be the carrier of methane while less methane was diffusing through 

surface sediments outside the stream. The rationale was that in order to reliably detect low 

methane oxidation rates by small communities, a low concentration is necessary to give a 

smaller measurement error. However, this approach makes direct comparisons of potential rates 

between the stream and surface transects problematic. The methane concentrations were 

measured in the headspace of all bottles immediately after injection (t0) and at least once every 

24-hours for the next three days. All flasks were incubated for the first 8 hours on site (6 to 

17°C) and the remaining time in the field laboratory incubator at 10°C. All incubations were 

performed in duplicates. Methane concentration measurements were performed with the LGR 

greenhouse gas analyser using ambient air as a carrier (Gonzalez-Valencia et al., 2014). 
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To estimate the oxidation rates (equation 3), the measurements of incubation day two and day 

three were chosen. The headspace volume was estimated using a conversion factor, determined 

on test bottles (see equation 4, p. 69), that calculates the sample volume according to its 

previously assigned category (see 2.4.1) and weight. Using the ideal-gas-law and the averaged 

incubation temperature and headspace-pressure, the amount of methane within the headspace 

was calculated for the two days (see equation 1 & equation 2). The differences in the amount 

of methane in the headspace were then divided by the time in between the measurements and 

the wet weight of the incubated sediment to obtain the oxidation rate (see equation 3).  

 𝐼𝑑𝑒𝑎𝑙 𝐺𝑎𝑠 𝐿𝑎𝑤: 𝑃 ∗ 𝑉 = 𝑛 ∗ 𝑅 ∗ 𝑇 1 

In which P is the pressure, given in bar [bar]; V is the volume, given in litre [L]; n is the amount 

of substance of the respective gas, given in moles [mol]; R is the ideal gas constant 

[~8.314 ∗ 10−2  
𝐿 ∗ 𝑏𝑎𝑟

𝐾∗𝑚𝑜𝑙
 ]; and T is the temperature, given in Kelvin [K]. 

 𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑠𝑢𝑏𝑠𝑡𝑎𝑛𝑐𝑒 𝑛𝑖 =  
𝑃𝑚 [𝑏𝑎𝑟] ∗  𝑉𝑖 [𝐿]

𝑅 [ 
𝐿 ∗  𝑏𝑎𝑟
𝐾 ∗ 𝑚𝑜𝑙

 ] ∗  𝑇𝑚[𝐾]
 2 

In which m indicates the mean of the parameter and i indicates the respective incubation. 

 𝑂𝑥𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 [𝑛𝑚𝑜𝑙 ∗ 𝑔 𝑠𝑜𝑖𝑙−1 ∗ ℎ−1] =
𝑛𝑖=2[𝑛𝑚𝑜𝑙] − 𝑛𝑖=3[𝑛𝑚𝑜𝑙]

𝑚𝑤𝑤 [𝑔] ∗ 𝑡[ℎ]
 3 

In which m is the mass of the sample incubated in wet weight (index ww), given in gram [g]; 

and t is the incubation time in hours [h].  

However, this calculation was based on the timeframe with the highest rate. Therefore, all 

datasets were manually assessed in comparison to the negative control to identify false positives 

and false negatives prior to calculation. All calculations performed with Microsoft® Excel® 

(Office 365, Version 16.0; Microsoft, Redmont, USA). All measurements for the estimation of 

methane oxidation rates were performed in cooperation with Tilman Schmider. 

2.2.3 Determination of physical and chemical sediment properties 

The sediment pH was determined with a 1:5 (w/w) dilution of the sediments with deionized 

water. The water content was determined by drying the sediments from the serum bottle from 

the oxidation rate estimations at 105°C for 20 hours. Oxygen concentrations of the stream water 

were determined using a Clarks type electrode (OX-100, Unisense, Aarhus, Denmark). The 
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methane content of the sediments was determined as follows and is based on the method by 

Magen et al. (Magen et al., 2014): 1 mL of sediment was inserted in an exetainer and 1 mL 

headspace was exchanged with 1 M NaOH for preservation. The exetainers were stored at 6°C 

until further use. In the laboratory, 0.5 mL of fully saturated NaCl solution was added to the 

exetainers, whereby 0.5 mL of the headspace was simultaneously retrieved into a gas-tight 

syringe and injected to a gas chromatograph (GC; Modell: SRI 8610C, SRI Instruments, 

Torrance, USA) equipped with a Flame-Ionization Detector and using hydrogen gas as the 

carrier gas. The oven temperature was set to 40°C. The injection size was 0.5 mL. A reference 

curve was produced using commercial standard gases. The methane content of all sampling 

sites was estimated in duplicates. The measurements named above were performed in a 

collaboration of all group members. Calculations of the methane content of the sediments were 

performed by Dimitri Kalenitchenko and Tilman Schmider. 

2.3 Laboratory 

2.3.1 Total nucleic acid extraction 

Total nucleic acids were extracted using a phenol-chloroform extraction protocol as described 

by Angel et al. 2012 (Angel et al., 2012). Nucleic acids were extracted in cooperation with 

Pernille Fåne. 

From each sampling location, sediment was transferred into sterile plastic tubes and frozen 

immediately in liquid N2. In the laboratory, the frozen sediments were crushed in sterile plastic 

bags. Resulting pieces were mixed, and a subset of randomly chosen pieces were ground using 

sterilized grinding jars made from stainless steel and a tissue lyser (TissueLyzer2, Qiagen, 

Hilden, Germany), in order to achieve a randomized homogenization of the sample. Ground 

samples of approximately 0.2 (± 0.02) g wet weight were transferred into precooled Ribolyser 

tubes (Lysing Matrix E; MP Biomedicals, Santa Ana, USA) and stored at – 80°C until further 

processing. Nucleic acids were extracted in duplicates using a TNS extraction buffer (see p. 

67). The samples were cooled with liquid N2 throughout the entire process. The air-dried 

nucleic acids were resuspended in 50 µL nuclease-free water with 0.5 µL RiboLock RNase 

inhibitor (Thermo Fisher Scientific, Waltham, USA). Nucleic acids were stored at -80°C until 

further use. The DNA content of the extracted nucleic acids was measured with the Qubit® 2.0 

fluorometer and the Qubit® DNA dsDNA HS Assay Kit (Thermo Fisher Scientific) according 

to the manufacturer’s instructions. Qubit® measurements were performed by Pernille Fåne. 
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2.3.2 Quantitative PCR (qPCR) 

The pmoA and 16S rRNA gene were amplified using a quantitative PCR approach. To minimize 

amplification bias and simultaneously decrease PCR inhibition, all samples were adjusted for 

the same DNA amount (0.1 ng) per reaction. The total reaction volume was set to 15 µL 

containing SsoFast™ Evagreen® Supermix (Bio-Rad, Hercules, USA), the respective amount 

of DNA and 0.2 µM of forward and reverse primer. An overview of the amplification 

temperatures is given in Table 1. The standard curve was constructed using triplicates of 106 

to 10 gene copies of Methylobacter tundripaludum DNA. The genome of Methylobacter 

tundripaludum is available and reveals one copy of the pmoA gene and two copies of the 16S 

rRNA gene, which was considered during data analysis. For pmoA amplification the primer set 

189 forward and 601 reverse were chosen (Kolb et al., 2003); for 16S rRNA gene amplification 

the set BAC1369F (Suzuki et al., 2000) and BAC1492R (Weisburg et al., 1991). The primer 

set 189f and 601r was established by Kolb et al. 2003 to target MOBs of the Methylobacter and 

Methylosarcina groups, and therefore represents a limitation to the method. However, this 

limitation was knowingly accepted, because of the general dominance of Methylobacter in the 

environment and the fact that Methylobacter has been found associated to an Arctic methane 

seep and Svalbard soils (e.g. Belova et al., 2014, Smith et al., 2018, Wartiainen et al., 2006). 

Moreover, preliminary data analysis of the sequencing results of the master’s thesis of Pernille 

Fåne verified Methylobacter to be the dominant genus on LP.  

The results are firstly presented as copy numbers per g wet weight, and thereafter presented as 

a ratio of pmoA to 16S rRNA gene copy numbers. The copy numbers of the16S rRNA gene are 

referred to in a shortened name as 16S copy numbers or 16S abundance. For the calculation of 

the gene ratio, results were removed when amplifications of both genes showed more than one 

melt peak, or a melt peak with a melt temperature deviating from the standard. If only the 

amplification of pmoA showed erroneous melt peaks, but not the amplification of the 16S rRNA 

gene, the ratio was set to 0. For further information see appendix, p. 64. Relative copy numbers 

instead of cell numbers were used to avoid misinterpretations due to false assumptions about 

exact copy numbers per cell, since they can vary greatly (Dunfield et al., 2007, Semrau et al., 

1995, Vetrovsky and Baldrian, 2013). Therefore, a greater dominance of MOB was inferred 

from comparably higher copy number ratios. 
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Table 1: Amplification cycles used in qPCR; Reactions were kept similar for the amplification of the pmoA and 16S 
rRNA gene apart from primer-related annealing temperature deviations. 

PCR step pmoA 16S 

Initial denaturation 95°C 02:00 95°C 02:00 

Cycle denaturation 94°C 00:25 94°C 00:25 

Annealing 54°C 00:20 56°C 00:20 

Elongation 72°C 00:45 72°C 00:45 

Plate read 82°C 00:10 82°C 00:10 

Final denaturation 93.5°C 00:05 93.5°C 00:05 

Melt Curve from 60°C to 95°C (0.5°C increment from 60°C to 95°C (0.5°C increment 

 

2.3.3 MOB Enrichment & Isolation 

Two types of environmental 

samples were used to enrich for 

methanotrophic bacteria: (a) Water 

and snow samples from 

Adventdalen pingos (Lagoon, 

Innerhytte, Riverbed; see Figure 7) 

on Svalbard, Norway and (b) 

sediment samples from the Lagoon 

Pingo taken during fieldwork in 

August 2019.  

Water and melted snow samples were filtered in an appropriate dilution through Whatman 

polycarbonate (PC) filters (0.2 µm pore size; Whatman - GE Healthcare Life Sciences, Chicago, 

USA). Appropriate dilutions were estimated based on vacuum-filtered trials with SYBR green 

(Thermo Fisher Scientific) stained cells. The filters were placed on the surface of 10 x diluted 

NMS media (Dunfield et al., 2003, Whittenbury et al., 1970b) pH 7.2, in petri dishes (Svenning 

et al., 2003). The filters were incubated at 20 % methane in ambient air (v/v) at 10°C. After 

Figure 7: Sample origins for enrichment of MOB from 
Adventdalen pingo sites. Modified after Ross et al. (2007). 
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establishing colony growth, a randomly chosen representative colony was used for further 

enrichment. All work was performed at 6°C to reduce stress as the temperatures at the sites of 

origin rarely exceed 10°C (Figure 5, further reference can be found on p. 64). 

Sediment samples with a high observed oxidation rate were used to enrich for MOB from LP. 

The serum bottles, stored at 4°C since the fieldwork, were injected with 15 % methane in the 

headspace and 10 x diluted NMS in a 1:1 weight to volume ratio (1 g : 1 mL). The media was 

adjusted to two pH-values; pH 8.7 to mimic the sample’s origin, and pH 7.2 to simulate a neutral 

environment. After 3 weeks, methane oxidation was verified using gas chromatography (as 

explained in 2.2.3) and slurry was sampled aseptically. A dilution of the slurry in NMS-media 

was filtered onto PC filters (Whatman) as described for the water samples. The filters were 

placed floating on 10x diluted NMS media of the respective pH levels and incubated at 10°C 

in darkness. A reference for the media compositon of NMS can be found on p. 68. 

For all enrichments, isolation was pursued by repeatedly picking, diluting and re-streaking 

colonies onto filters and agar plates, respectively. Isolation in liquid media in serum bottles 

containing 20 % methane in the headspace was attempted but without success as was the 

cultivation on agar plates. 

2.3.3.1 Phylogenetic characterization 

Respective colonies of each sample were lysed in 20 mM NaOH at 99°C for 6 minutes. 

Thereafter, the mixture was spun in a table-centrifuge for approximately 30 seconds. The DNA 

containing supernatant was used for PCR amplification of the pmoA gene with the primer set 

189F/661R (Costello and Lidstrom, 1999). The total reaction volume was 25 µL and composed 

as follows: For each reaction, 11.65 µL H2O, 2.5 µL 10x buffer, 5 µL Q-solution, 0.75 µL 

MgCl2 (50 mM), 0.5 µL dNTPs (10mM), 1.25 µL primers (10 µM), 0.1 µL Taq-polymerase, 2 

µL template (Qiagen, Thermo Fisher Scientific & VWR, Radnor, USA). The gene product was 

separated by gel electrophoresis and purified by cutting the respective band and centrifuging it 

through a glass fibre filter (Whatman). The PCR products were sequenced with Sanger 

technique using the BigDye® Terminator kit (Thermo Fisher Scientific). Labelling reactions 

for sequencing were composed as follows: 2.5 µL H2O, 1.0 µL sequencing buffer, 2 µL 2.5x 

BigDye®, 2 µL forward primer (0.8 µM), 2.5 µL template. PCR and nucleotide labelling 

settings are described in Table 2. 
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Table 2: Amplification cycles of PCR and labelling of pmoA sequences. 

PCR step pmoA (189f & 661r) Big Dye (189f) 

Initial denaturation 94°C 05:00 96°C 01:00 

Cycle denaturation 94°C 01:00 96°C 00:10 

Annealing 58°C 01:00 56°C 00:05 

Elongation 72°C 01:00 60°C 04:00 

Final Elongation 72°C 10:00 - - 

Cool-down 4.0°C 10:00 4°C 01:00 

2.3.3.2 Phylogenetic analysis of the sequences 

The pmoA sequences obtained by Sanger sequencing were analysed for their relationships using 

Mega-X [Version 10.1.1, (Kumar S. et al., 2018)]. Additionally, all sequences were BLAST 

aligned to the online NCBI nucleotide database. Multiple sequence alignment was achieved 

using ClustalW (Thompson et al., 1994). For phylogenetic tree construction, the sequences 

providing the first BLAST search alignments and reference sequences representing related 

isolates, retrieved from the European Nucleotide Archive (links on p. 66 - 67), were used. Tree 

construction was based on the Minimum Evolution method (Rzhetsky and Nei, 1993), obtaining 

bootstrap values from 500 replicates. Pairwise distances were calculated by the p-distance 

model. 

2.3.3.3 Morphological characterization 

Fluorescence in situ hybridization was applied to distinguish the morphology of MOB from 

contaminants. Cells were harvested and fixed overnight at 4°C using paraformaldehyde (4 % 

w/v). Fixed cells were pelleted and resuspended in 1 x PBS and 0.1 % Tergitol NP40 (Sigma-

Aldrich, St. Louis, USA) to wash from media. Thereafter, the cells were again pelleted and 

resuspended in 20 to 200 µL storage solution and an equal amount of 96% pure ethanol. Cell 

suspensions were stored at -20°C until further use.  

Cells were spotted onto poly-L-lysin coated 10-well microscopy slides (Merck, Darmstadt, 

Germany) followed by a dehydration series in ethanol dilutions (50%, 80%, 96%). The air-
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dried cells in each well were then hybridized with 50 ng probe in hybridization solution in dark 

and air-tight chambers at 37°C for 2.5 hours.  

Post-hybridization washes were performed as follows: firstly, the slides were rinsed with pre-

warmed (37°C) washing solution 1, followed by an incubation in pre-warmed washing-solution 

1 at 37°C. Thereafter, cells were counterstained with 4′,6-Diamidin-2-phenylindol (DAPI) at 

RT, before the slides were washed at 37°C in washing solution 2. Before mounting, the cells 

were washed in MQ-water and air dried. For the detection of MOB cells, the Type-I-MOB 

specific probe MG-64 (Bourne et al., 2000) was used, while hybridization effectiveness was 

evaluated using the 16S rRNA probe EUB338 (Amann et al., 1990). For either type of probe 

the SV96 strain of Methylobacter tundripaludum (Type I MOB) was used as a positive control. 

As negatives, the SV97 strain of Methylocystis rosea (Type II MOB) and the archaeal 

Methanobacterium formicum were used for the MG-64 and EU338 probe, respectively. Buffer 

and reagent composition can be found in the appendix, p. 68. 

The hybridization was evaluated using a fluorescence microscope (Axio Observer Z1; Zeiss, 

Oberkochen, Germany). To detect DAPI stained cells, a UV-filter set (Excitation: BP 365, 

Emission: LP 420; Filter Set 02, Zeiss) was used, while for the detection of the Cy3-labelled 

probes a red-filter (Excitation: BP 545/25, Emission: BP 605/70; Filter Set 43, Zeiss) was used. 

Light Microscopy images to determine the homology of cell morphologies were taken using 

the Axiovert 200M Microscope (Zeiss). All image processing performed with ImageJ 2.0.0-rc-

69 (Schindelin et al., 2012). Brightness and contrast were increased in all pictures. 

2.4 Statistical analysis 

For all statistical analyses, a confidence interval of 95% was chosen, so results were accepted 

as significant when p < 0.05. Water samples from the oxidation rate experiment were excluded 

prior to statistical analysis. For univariate analyses, sampling spots with missing values were 

removed. For multivariate analyses, missing values were treated as follows: all measurements 

of T1C1 and T2C2 were removed, due to sparse data collection. The missing water content 

value for T5C1 was replaced by the average of water contents of all source sediments. For 

missing pmoA to 16S ratios, a category average (see 2.4.1) was used.  
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2.4.1 Categorization of the sediment samples 

The sediment samples were assigned one of the categories described in the following Table 3, 

according to the origin of the sediment sample and its physical appearance. The distribution of 

the categories on LP is depicted in Figure 8. 

Table 3: Categorizing of the samples according to their origin and appearance. 

Category Reasoning 

Source Sediment directly bordering the source and being in contact with 

source water 

Still pond  Sediments from water-covered locations that did not exhibit any 

water-movements 

Wet mud Clay-like sediments, not covered by water from the pond but 

appeared water soaked 

Dry soil Soil with no obvious contact to water, generally covered with salt 

crystals and from elevated areas in comparison to the pingo pond 

Miniature source 

(Mini source) 

Sediments taken from locations with subsurface-water discharge; 

much smaller than the main source of the pond 

Pond flow sediment Sediment from locations covered with water flowing towards the 

stream, but still part of the pond 

Stream flow sediment Sediments from beneath the stream 
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Prior to analysing the data in accordance to sediment categories, the sediment samples were 

screened to identify whether the categories were represented by the measured predictor 

variables and to test whether the categories differ significantly. The clustering was performed 

using the least-squares method ‘Ward’s hierarchical clustering’ to create clusters with minimal 

variance as described in Borcard et al. 2011 (Borcard et al., 2011). The predictor variables, 

distance to the source, pH, methane flux, water and methane content were normalized during 

the procedure. The tree was cut at a tree height of 1 after visual examination and three of the 

clusters were extracted. Due to non-normal distributions tested with the shapiro.test() function 

of R, a nonparametric comparison test for multivariate samples to test for significant differences 

was performed using the ‘npmv’ package of the CRAN R project (Burchett et al., 2017). The 

test was based on 1000 permutations and the ANOVA-like statistic. A pairwise comparison 

was performed with the ssnonpartest() function of the same package with a confidence interval 

of 95 %. A table of relative effects was obtained as an output of the latter function. The results 

can be found in the appendix p. 63. 

2.4.2 Statistical testing 

Prior to analysis, normality and homogeneity of the variances were tested using the 

shapiro.test() and bartlett.test() function, respectively. A Kruskal-Wallis was performed to test 

the differences in pmoA abundances between the categories using the kruskal.test() function of 

R. A two-way ANOVA test was performed to test the differences between the pmoA to 16S 

ratios of firstly the pingo surface and the stream, and secondly the sediment categories. 

Student’s t-tests were performed using t.test(), after assessing normality as described above and 

equal variances using var.test(). 

Figure 8: The distribution of the categories allocated to the sediment samples.  
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2.4.3 PCA and linear regressions 

For PCA, missing values were replaced as described above. All variables were log transformed 

to increase normality and linearity. Outliers were not removed to obtain an ordination of all 

sampling spots. The PCA was performed using the prcomp() function of R and as described in 

Borcard et a. 2018 (Borcard et al., 2018).  

Linear regression models were calculated with the lm() function of R. Normality was tested as 

described above. Homoscedasticity was tested with the Breusch-Pagan test and the ncvTest() 

function of the ‘car’ package (Fox and Weisberg, 2019). To optimize the models, the surface 

and stream transects were separated. To test for significant slopes of the linear regressions, an 

ANOVA test was performed on the linear regression using anova() function of R. 

A linear regression was generally accepted when the R2 value was larger than 0.55, 

homoscedasticity was not violated, and a regression ANOVA test verified the slope to be 

significant. Regressions were also rejected when they were skewed by few observations. 

Further information about the regression models can be found in Table 9 (appendix p. 65). 
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3 Results 

3.1 Methane oxidizing bacteria on Lagoon Pingo 

3.1.1 Methane fluxes 

Methane fluxes were measured using closed chambers (nsampling spot = 2). From the water surface 

of the stream transect, average methane fluxes range from - 0.5 to 1650 nmol/m2/s, with most 

measurements detecting fluxes in the magnitude of several hundred nmol/m2/s (blue line in 

Figure 9). A decrease of methane fluxes with increasing distance to the source was observed 

in the stream transect. The average methane flux of the source was 1335.3 (± 260) nmol/m2/s 

(nsource = 9). Among the surface transects (orange lines in Figure 9), the three sampling spots 

T2C4, T4C5 and T5C5 exhibited between one and two orders of magnitude higher methane 

fluxes than the surrounding sampling spots and were therefore called miniature sources. The 

corresponding sediment category has the name ‘Mini source’. T2C4 emitted on average 687.4 

nmol/m2/s, T4C5 emitted on average 375.0 nmol/m2/s, and T5C5 emitted on average 42.0 

nmol/m2/s. In comparison, the average methane flux of the surface transects (excluding the 

source and miniature sources) was 0.7 nmol/m2/s. The appearance of the so-called miniature 

sources varied (see Figure 28, p. 64). T2C4 was a waterlogged area in which methane ebullition 

was observed. T4C5 had a volcano shape with water seeping from the centre. T5C5 was a small 

volcano-like opening in the sediments. Three sampling spots exhibited negative average 

methane fluxes: T4C4, T5C2 and TSC12, with averages of – 0.1, 0.2 and – 0.6 nmol/m2/s, 

respectively.  

CH4 Flux 
[nmol/m2/s] 

Figure 9: Methane fluxes on Lagoon Pingo; Average methane fluxes in nmol/m2/s are depicted as the sizes of red 
and black circles (see legend for sizes). The main source is annotated with an S. For the measurements of T4C4, 
T5C2 and TSC12, the average is given. 
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3.1.2 Methane oxidation 

To investigate the methane oxidation potential of MOB on LP, sediment and water samples 

were incubated in serum bottles under a methane enriched atmosphere. The methane 

concentration change between day two and three was used to estimate the oxidation rate.  

 

No water sample from the stream transect was found 

to oxidize methane under the given conditions 

(Figure 10). On the other hand, the sediment samples 

from the stream transect oxidized with an average 

rate of 3.99 nmol/g/h. Therefore, further analyses 

focused on the sediment samples.  

 

Among the sediment categories from the surface 

transects, the ‘Source’ sediment exhibited the highest 

oxidation rate with an average of 3.15 (± 0.8) 

nmol/g/h (Figure 11). The categories ‘Still pond’ and 

‘Wet mud’ had much lower oxidation rates in 

comparison [0.14 (± 0.11) and 0.055 (± 0.08), 

respectively]. The categories ‘Dry soil’ and ‘Mini 

source’ did not exhibit methane oxidation. The 

stream category ‘Pond flow sediment’ had the highest 

oxidation rate of all categories with an average of 

6.55 (± 3.8) nmol/g/h, whereas the ‘Stream sediment’ 

samples had an average oxidation rate of 1.87 (± 1.3) 

nmol/g/h. TSC12, the sampling spot with the greatest 

distance to the source, was the only stream transect 

sample which did not oxidize methane. 

  

Figure 11: Oxidation rates on LP according to 
their category and divided into ‘Surface 
transects’ and ‘Stream transect’. 

Figure 10: Oxidation rate comparison between 
sediment and water samples from the stream 
transect.  
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3.1.3 Nucleic acid analyses 

3.1.3.1 DNA content 

DNA was extracted from all samples to be used as template for qPCR. However, the amount 

of DNA in the samples is itself a rough indication of the amount of biomass. 

The highest average DNA content per g wet sediment 

was found in the ‘Stream sediment’ category with an 

average of 8.6 (± 3.6) µg/g (Figure 12). The 

categories ‘Still pond’ and ‘Pond flow sediment’ had 

approximately equal average DNA contents, with 4.5 

(± 2.6) and 4.3 (± 3.2) µg/g, respectively. The 

‘Source’ category had an average of 1 (± 0.7) µg/g. 

The lowest DNA contents were found in the 

categories ‘Wet mud’, ‘Dry soil’ and ‘Mini Source’ 

with averages of 0.6 (± 0.3), 0.4 (± 0.3) and 0.2 (± 

0.2) µg/g, respectively. The Kruskal-Wallis test 

indicated that there were significant differences 

between the categories (χ2 =30.11, p = 3.7 ∗ 105). A 

one-tailed Student’s t-test showed that the ‘Stream 

sediment’ category had a significantly higher DNA content than the ‘Pond flow sediment’ 

category (t = - 2.035, p = 0.036). Normality was validated using the Shapiro-Wilk test. 

3.1.3.2 pmoA and 16S abundance 

To estimate the number of MOB and of the total prokaryotic population in the sediments, the 

pmoA and 16S abundances were determined for each sampling spot by qPCR (n = 2).  

Similarly to the DNA content, the pmoA copy numbers of the stream transect were higher on 

average than the pmoA copy numbers of the surface transects (Figure 13). However, the 

difference in pmoA copy numbers between the categories ‘Pond flow sediment’ and ‘Stream 

sediment’ was not as pronounced as the difference in DNA contents between these two 

categories. The highest average copy numbers per g wet sediment of all categories had the 

‘Stream sediment’ category with ~ 3.7 ∗ 108 (± 3.7 ∗ 108) copies/g, followed by the ‘Pond flow 

sediment’ category with ~ 3.1 ∗ 108 (± 3.1 ∗ 108) copies/g. However, the averages of ‘Pond 

flow sediment’ and ‘Stream sediment’ were influenced by outliers. 

Figure 12: DNA contents on LP according to 
their category and divided into ‘Surface 
transects’ and ‘Stream transect’. 
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The highest average pmoA copy number of the 

surface transects was found in the ‘Still pond’ 

category with an average of ~ 1.6 ∗ 108 (± 7.2 ∗ 107) 

copies/g, whereas the lowest was found in the ‘Mini 

source’ category with ~ 5.4 ∗  106 (± 4.6 ∗ 106) 

copies/g. The categories ‘Source’, ‘Wet mud’ and 

‘Dry soil’ had averages of ~ 3.9 ∗ 107 (± 4.1 ∗ 107), 

~ 1.4 ∗ 107 (± 9.6 ∗ 106) and ~ 5.8 ∗ 106 (± 5.6 ∗106) 

copies/g, respectively. The Kruskal-Wallis test 

indicated that there were significant differences 

between the categories (χ2 =30.28, p = 3.5 ∗ 105). A 

two-tailed Student’s t-test on square root 

transformed data showed that there is no significant 

difference in pmoA copy numbers between the 

‘Stream sediment’ and the ‘Pond flow sediment’ 

category (t = - 0.39, p = 0.71). Normality was validated using the Shapiro-Wilk test. 

The pmoA abundances are visualized on the map of LP (Figure 14). Average values higher 

than 2 ∗ 108 pmoA copy numbers per g sediment were only found in the stream transect. The 

source had a lower average pmoA copy number per g sediment (3.9 ∗ 107) than three of the 

surrounding sampling spots, T1C2 (2.4 ∗ 108), T2C2 (1.1 ∗108) and TSC2 (8 ∗ 108). However, 

the source had a higher average copy number per g sediment than the nearby sampling spot 

T4C2 (2.2 ∗ 107). The highest average pmoA copy number per gram sediment overall was found 

Figure 13: pmoA abundance on LP according to 
their category and divided into ‘Surface 
transects’ and ‘Stream transect’.  

pmoA copy nr. 
[copies/g] 

𝟓 ∗ 𝟏𝟎𝟓 

𝟏 ∗ 𝟏𝟎𝟔 

𝟐. 𝟓 ∗ 𝟏𝟎𝟖 

𝟏 ∗ 𝟏𝟎𝟗 

𝟓 ∗ 𝟏𝟎𝟖 

𝟕. 𝟓 ∗ 𝟏𝟎𝟖 

Figure 14: Spatial distribution of pmoA abundance on LP; the size of the blue circles represents the average copy 
numbers in copies/g wet weight. A white centre in the blue circles indicates deviating qPCR products, which had a 
higher melt temperature than expected. For further explanation, the reader is referred to the appendix (p. 64). 
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at TSC12 (1.1 ∗ 109), which is furthest from the source, followed by TSC2 (8 ∗ 108), which is 

approximately two meters downstream of the source.  

The average 16S abundances in the sediment categories (Figure 15) exhibited a similarity to 

the DNA contents of the sediment categories (Figure 12). In comparison to the pmoA 

abundances (Figure 13), the 16S abundances are not approximately equal in the categories 

‘Stream sediment’ and ‘Pond flow sediment’, and TSC2 and TSC12 are not statistical outliers 

of these two categories.  

 

The highest 16S copy number per g sediment was 

found in the ‘Stream sediment’ category of the 

stream transect with 6.5 ∗ 109 (± 2.9 ∗ 109) copies/g. 

In comparison, the ‘Pond flow sediment’ category 

had an average of 4.5 ∗ 109 (± 4.5 ∗ 109) copies/g. Of 

the surface transects, the highest average 16S copy 

numbers per g sediment was found in the ‘Still pond’ 

category with 4.4 ∗  109 (± 4.5 ∗  108) copies/g, 

followed by the ‘Source’ sediment category with 8.6 

∗  108 (± 4.5 ∗  108) copies/g. The categories ‘Wet 

mud’, ‘Dry soil’ and ‘Mini source’ had copy numbers 

of 4.2 ∗ 108 (± 2.4 ∗ 108), 2.1 ∗ 108 (± 1.6 ∗ 108) and 

1.1 ∗ 108 (± 1 ∗ 108) copies/g, respectively.  

A one-tailed Student’s t-test showed that there is no 

significant difference between the ‘Stream sediment’ 

and ‘Pond flow sediment’ categories (t = - 0.88, p = 0.2). Normality was validated using the 

Shapiro-Wilk test. 

  

Figure 15: 16S abundance on LP according to 
their category and divided into ‘Surface 
transects’ and ‘Stream transect’. 
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3.1.3.3 pmoA to 16S copy number ratio 

To estimate the dominance of the MOB in the sediment categories, the pmoA copy numbers 

were compared to the 16S copy numbers and calculated as a ratio of pmoA to 16S copy numbers. 

The ‘Dry soil’ samples could not be amplified appropriately, which had a strong effect on the 

ratios, and are therefore not shown. 

In comparison to the pmoA and 16S copy numbers 

per g sediment, the pmoA to 16S copy number ratio 

is rather similar throughout all categories (Figure 

16). The highest pmoA to 16S copy number ratio was 

found in the category ‘Pond flow sediment’ with an 

average of 0.052 (± 0.04). The average ratio of the 

‘Stream sediment’ category was 0.035 (± 0.037 with 

the large deviation being caused by TSC12). Among 

the categories of the surface transects, the highest 

average ratio had the ‘Still pond’ category with 0.048 

(± 0.023), followed by the ‘Source’, ‘Wet mud’ and 

‘Mini source’ with 0.042 (± 0.029), 0.019 (± 0.013) 

and 0.018 (± 0.017), respectively. To test for 

significant differences between the surface and 

stream, and between the categories, a two-way ANOVA was performed. Normality and 

Homogeneity were checked according to the Shapiro-Wilk and Bartlett’s test, respectively. The 

two-way ANOVA results show that there was no significant difference between the surface and 

the stream [F(1, 23) = 1.196, p = 0.285) and that there were no significant differences between 

the categories [F(4, 23) = 1.233, p = 0.324)].  

Figure 16: Ratio of pmoA to 16S copy numbers 
on LP according to their category and divided 
into ‘Surface transects’ and ‘Stream transect’.  
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3.1.4 Pingo ‘Stream’ 

The stream transect generally exhibited higher methane fluxes, oxidation rates, pmoA and 16S 

abundances and DNA contents than the surface transects. The stream stretched from the source 

towards East, exiting the crater of LP. To identify possible trends, all characteristics (excluding 

the 16S abundance and the pmoA to 16S copy number ratio) of the stream are visualized as a 

function of the distance to the source in Figure 17. 

The methane fluxes exhibited an almost continuously decreasing trend between the first 

(Source) and last sampling spot in the stream, whereas the sediment methane content decreased 

to almost 0 nmol/g within the first 4.5 m. The strong decline in the sediment methane content 

(approx. – 100 nmol/g) was accompanied by the highest methane oxidation rates measured on 

LP. The oxidation rate decreased towards the end of the stream with one peak at 2 m from the 

source. At 7 m from the source, the methane flux was the highest of the stream transect, but 

apart from this, the trend of decreasing methane flux from 0 to 20 m was visible. The source 

water was anoxic, while the stream water was oxygenated. The pH and the sediment DNA 

content did not exhibit a consistent pattern throughout the stream. The pmoA abundance peaks 

twice, firstly at 2 m from the source and secondly at the last sampling spot at 80 m from the 

source (TSC12). However, methane was not oxidized during incubation of sediments from the 

sampling spot at 80 m (TSC12). The average water content at 80 m was 86 (± 0.3) %.  

Figure 17: Average characteristics of the stream transect with increasing distance to the source. All points 
represent the average measured at that distance. The points are connected for the visualization of changes, even 
though there was no continuous measurement. The x axis label accounts for all graphs. Note the differences in y-
axes. Y-axis labels can be found underneath the titles. All sediment weights are given in wet weight. 
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3.1.5 Linear model analysis 

To assess the influence of the environmental parameters on the oxidation rates and pmoA 

abundance, a principle component analysis (PCA) was performed (Figure 18). All pmoA 

abundances were kept for further analysis, since amplification problems occurred almost 

exclusively in the low copy number range. 

The categories of the sediment samples clustered with few overlaps (Figure 18). Judging from 

the angles of arrows, the degree of correlation between variables indicated a correlation of the 

oxidation rate with the methane flux (CH4f) and with the pmoA to 16S copy number ratio 

(pmoA/16S). A correlation between the pmoA abundance (pmoA_CN), the DNA content 

(DNAc) and the water content (Wc) was indicated, while no correlation was indicated between 

the methane content (CH4c) and the DNA content or the pmoA abundance. 

To analyse the influences of all environmental parameters on the oxidation rates and pmoA 

abundance of all sampling spots from LP, two forward stepwise multiple regression analyses 

were performed. The best-fitting model was chosen by the lowest Aikaike information criterion. 

The best-fitting model for the oxidation rates of the entire pingo was an additive model of the 

methane flux and the water content. However, the effect of the water content was insignificant 

[F(1, 34) = 2.1; p = 0.176]. The second best-fitting model to predict the oxidation rates was 

based on the methane fluxes alone, but many sampling spots were outside the confidence 

Figure 18: Biplot presenting the first two principle components explaining 76.3 % of the 
total variance within the dataset; the ordination is presented in scaling 2. Abbreviations: ‘c’ 
= content; ‘f’ = flux; ‘CN‘ = copy numbers; ‘Wc’ = water content; ‘OxR’ = oxidation rate. 

Category 
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interval. No linear model was able to link the pmoA abundance to any predictor variable in a 

meaningful way.  

Separate linear regression analyses were performed to relate methane oxidation rates, methane 

fluxes, and the sediment methane contents to the potential size of the MOB community, 

represented by the pmoA abundance. Additionally, one of the results was compared to the 16S 

abundance to differentiate possible effects on MOB from effects on the general prokaryotic 

community. TSC11 was removed from the pmoA abundance dataset, due to the uncertainty of 

the pmoA amplification. TSC12 was removed as an outlier due to its frequently observed 

deviation from the dataset and its great distance from the source (> 80 m). 

The linear model of the stream transect showed a significant increase in the oxidation rate with 

an increase in pmoA abundance [F(1, 8) = 14.687, p = 0.005], which was not the case for the 

surface transects (Figure 19 A). The log-linear model of the oxidation rate as a function of the 

methane flux predicted a significant positive correlation for the stream transect [F(1, 9) = 

14.111, p = 0.0045], but not for the surface transects (Figure 19 B). On the other hand, methane 

fluxes were not able to predict the pmoA abundances (Figure 19 C). However, the pmoA 

abundance tended to increase with increasing methane flux in the stream transect even if the 

model had an R2 value of 0.24 and a large confidence interval. The sediment methane content 

was not able to predict the pmoA abundance (Figure 19 D). The 16S abundance did not show 

an increase with increasing methane flux (Figure 19 E). As a consequence of this lack of effect 

of the 16S abundance, the pmoA to 16S ratio increased together an increase in the methane flux 

(Figure 19 F), even though homoscedasticity was slightly violated (Table 9, p. 65) 
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Figure 19: Array of linear regression models. A oxidation rate ~ pmoA abundance. B ln(oxidation 
rate) ~ methane fluxes; all zero-observations removed. C pmoA abundance ~ methane flux. D 
pmoA abundance ~ methane contents of the sediments. E 16S abundance ~ methane flux. F pmoA 
dominance ~ methane flux. TSC12 is removed from all datasets. TSC11 is removed from the pmoA 

abundance dataset. 

 

A D 

B E 

C F 
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3.2 Enrichment of MOB from Lagoon Pingo 

MOB were enriched from three different pingos in Adventdalen, Svalbard, and from all 

sampling seasons (April, August and October) (Table 4). The only environmental sample that 

was not successfully enriched for MOB, was a water sample from Riverbed pingo (see Figure 

7) collected in April 2019. 

All colonies grew on polycarbonate filters floating on diluted NMS media. No growth in liquid 

media or on agar plates was observed. From multiple colonies in each culture, pmoA was 

amplified by PCR and sequenced using Sanger sequencing. 

Table 4: Overview of enrichment cultures obtained from pingos in Adventdalen. The seasons refer to high Arctic 
seasons and may differ from seasons elsewhere. 

Name Origin Sample Type Season 

ELOCT18 Ebullition Lake (beside Lagoon Pingo) Water Autumn (October 2018) 

LPOCT18 Lagoon Pingo Snow Autumn (October 2018) 

LPAPR19 Lagoon Pingo Snow Spring (April 2019) 

IHRAPR19 Innerhytte Snow Spring (April 2019) 

LPAUG19a Lagoon Pingo Sediment Summer (August 2019) 

LPAUG19b Lagoon Pingo Sediment Summer (August 2019) 

LPAUG19c Lagoon Pingo Sediment Summer (August 2019) 
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3.2.1 Molecular characterization 

The cultures enriched from three different pingos in Adventdalen were classified on molecular 

level based on their pmoA gene sequences. The best alignments from BLAST searches against 

the NCBI nucleotide database were with uncultured bacteria, and the MOB species 

Methylobacter tundripaludum (Gammaproteobacteria, Methylococcaceae).  

To phylogenetically place the sequences from the enriched cultures, a minimum evolution tree 

was constructed incorporating representatives of six genera belonging to the family 

Methylococcaceae, and rooted upon two representatives of the family Methylocystaceae 

(Figure 20). Additionally, the four sequences with highest percentage identity retrieved after 

BLAST search were incorporated. The pmoA genes from the pingo cultures made up a novel 

cluster within Methylobacter, being most closely related to M. tundripaludum. The closest 

relatives within the Methylobacter genus were a set of environmental sequences that originated 

from the Canadian high Arctic (GenBank: HM564357.1, HM564374.1, HM564355.1, 

HM564371.1; Martineau 2010) and from a Tibetan high plateau (GenBank: MH638940.1; 

Yiang, X. unpublished). 

The phylogenetic distances of the enriched MOB were evaluated with a distance matrix to 

identify at which taxonomic level the MOB clustered (Table 5). According to the distance 

matrix, the sequences of LPAUG19c, LPAPR19 and IHAPR19 are identical or maximally 0.4 

% different. LPAUG19a was distant from all other sequences, with only 60 % sequence 

Figure 20: Tree representation of phylogenetic relationships based on pmoA sequences using the Minimum 
Evolution algorithm. The tree is rooted upon the Type II MOB. Methylocystis parvus and Methylosinus 
trichosporium. The Methylobacter group is highlighted in blue, including the four closest relatives to the enriched 
sequences (highlighted by a darker blue). The enriched sequences are coloured in orange and combined by a 
bracket, within a larger bracket (Methylobacter). Bootstrap values are shown at the nodes of the tree. The scale 
bar indicates the estimated phylogenetic divergence. 
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similarity. The average distance between all sequences from the enrichment excluding 

LPAUG19a was 1.9 %, with the greatest being 5.1 % and the smallest 0 %. Distances to M. 

tundripaludum were on average 7.7 %. 

Table 5: Pairwise distance analysis computed by Mega-X with the p-distance model. Increasing sequence similarity 
is depicted by a colour change from red through yellow to green. The pmoA sequence of Methylobacter 
tundripaludum (here: SV96) was used as a reference. 

 

The sequence similarities with M. tundripaludum were taken from the NCBI BLAST alignment 

to obtain information on whether the enriched MOB represented a novel species or new M. 

tundripaludum strains (Table 6).  

Among the enriched cultures, IHAPR19 and 

LPAPR19 had the smallest sequence 

dissimilarity of 7.08 % to M. tundripaludum, 

while ELOCT18 had the greatest sequence 

dissimilarity with 10.65 %. On average, the 

enriched MOB had a sequence dissimilarity 

of 8.34 %. The query coverages were 

between 94 and 100 %. 

During the sequence examination, the divergence of the sequence of LPAUG19a to the 

remaining sequences became apparent. Beside the approx. 40 % difference to the sequence of 

M. tundripaludum (Table 5), the sequence of LPAUG19a also showed an approx. 40% 

difference to the Type II MOB, Methylosinus trichosporium and Methylocystis parvus (data not 

shown). Moreover, when aligning the sequence to the NCBI database using the BLAST 

algorithm, the closest sequence to the one from LPAUG19a lies within the genome assembly 

of Pseudomonas sp. CC6-YY-74 (GeneBank: CP019947.1). Due to the differences, the 

sequence of LPAUG19a was not included into the phylogenetic tree or compared to M. 

tundripaludum.  

Table 6: Sequence similarities to M. tundripaludum, the 
closest cultured and described relative, and the query 
coverages. 
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3.2.2 Phenotypical characterization 

To distinguish the MOB from contaminants and to determine their morphology, a combination 

of fluorescence in situ hybridization using a Type-I-MOB specific probe (MG-64) and light 

microscopy was used.  

Most cells, indicated by the DAPI stain, showed a double staining (DAPI and probe) in the 

merged picture when the EUB338 probe was used, except for the negative control (Figure 21). 

The only two enrichment cultures showing positive staining with the MG-64 probe were 

LPAUG19c and IHAPR19 (Figure 22). The remaining enrichment cultures appeared like 

LPOCT18, in which only DAPI and EUB338 signals were visible, and therefore, only 

LPOCT18 is shown (Figure 21 and Figure 22). However, cells stained with DAPI, but 

unstained with the MG-64 probe were visible in the enrichment culture LPAUG19c. These cells 

generally appeared smaller than the MG-64 stained cells. Cells of IHAPR19 aggregated 

strongly and were sparsely distributed. In comparison, LPAUG19c exhibited a high cell density 

and a more even distribution. Therefore, LPAUG19c was used to determine the cellular 

morphology of the MOB (Figure 23). The cell length and width were measured on light 

microscopy pictures. 
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Figure 21: Cells stained with the probe EUB338 and DAPI. The DAPI signal is presented in the left column; the 
probe signal is presented in the central column and the merged picture is presented in the column to the left. In 
merged picture: Cells stained with the bacterial EUB338 probe and DAPI appear in purple, DAPI only in blue and 
the probes’ signal only appears in red. Signal intensities are not a comparable due to varying exposure times. 
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Figure 22: Cells stained with the probe MG-64 and DAPI. Arrangement as in Fig. 23. In merged picture: Cells 
stained with the Type-I-MOB-specific probe and DAPI appear in purple, DAPI only in blue and the probes’ signal 
only appears in red. Signal intensities are not a comparable due to varying exposure times. 
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The MOB in the LPAUG19c enrichment had a rod-

shaped cell morphology with a length ranging from 

~ 1.6 to ~ 3.3 µm and a width of ~0.6 to ~0.9 µm. 

Motility was not observed. Round and darker 

shapes were observed within the cells, resembling 

the spores of Methylosinus trichosporium 

(Whittenbury et al., 1970a). The shapes were 

located in various positions within the cells, and the 

observed maximum was twice within one cell 

(Figure 24, white arrow). Possible spore 

germination steps, as described for M. 

trichosporium by Whittenbury et al., were observed (Figure 25). Other cell morphologies than 

the rod-shaped cells labelled with the MG-64 probe were identified within the LPAUG19c 

enrichment using light microscopy (not shown).  

 

  

Figure 23: Cells of the enrichment LPAUG19c stained with DAPI and MG-64. Cells appearing purple in the 
merged picture were defined as methanotrophic.  

Figure 24: LPAUG19c MOB. Pictures taken using 
phase contrast microscopy. An image of a 
germinated spore of Methylosinus trichosporium 
(Whittenbury et al. 1970a) is given at the bottom 
left for comparison reasons 

Figure 25: Possible germination of exospores observed in LPAUG19c using phase contrast microscopy 
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4 Discussion 

4.1 Methane oxidizing bacteria on Lagoon Pingo 

4.1.1 Methane fluxes 

Methane flux measurements on LP have shown that the methane evasion is not limited to one 

specific source and its discharge in late summer, which confirms the first hypothesis. However, 

the information gained represents a snapshot and does not necessarily apply for an extended 

period of time. All fluxes represented in this thesis are net fluxes, which might be composed as 

described in the following equation. Inferences about the composition of the fluxes cannot be 

drawn at this point. 

𝑁𝑒𝑡 𝐶𝐻4 𝑓𝑙𝑢𝑥 = 𝑡ℎ𝑒𝑟𝑚𝑜𝑔𝑒𝑛𝑖𝑐 𝐶𝐻4 + 𝑏𝑖𝑜𝑔𝑒𝑛𝑖𝑐 𝐶𝐻4 − 𝐶𝐻4 𝑜𝑥𝑖𝑑𝑎𝑡𝑖𝑜𝑛 

The methane fluxes measured on LP were strikingly high in comparison to natural methane 

emitting landscapes, such as the Siberian permafrost from the Lena Delta which had an average 

methane flux of ~ 140 µmol/m2/h (Wagner et al., 2003) or wetland soils from West Greenland, 

which emitted on average 14 µmol/m2/h (Christiansen et al., 2015). For example, the main 

source of LP emitted on average ~ 4806 µmol/m2/h and the miniature source T2C4 emitted on 

average 2470 µmol/m2/h. However, as described in the introduction, LP may be classified as a 

terrestrial methane seep and should therefore be compared to such. Following the definitions 

by Etiope et al. mentioned in the introduction, LP may be categorized as a water seep, since 

methane is discharged with water through the main source (Etiope et al., 2009a). If the 

definitions by Spulber et al. 2010 for seepage-types on mud volcanoes were applied to the pingo 

structure, the source and most of the stream water surfaces, as well as two out of three miniature 

sources, can be classified as miniseepage (~ 2.6 ∗ 103 µmol/m2/h). Two sampling spots, the 

miniature source T5C5 and the end stream transect sampling spot TSC11 are in the range of 

microseepage (~ 26 to 260 µmol/m2/h). The methane fluxes of the remaining methane emitting 

sampling spots are below of the seepage-types defined by Spulber et al. No methane flux 

measured on LP was in the magnitude of macro-seeps (~ 2.6 ∗ 106 µmol/m2/h) (Spulber et al., 

2010). However, categorizing LP in zones with different flux intensities as proposed by Hong 

et al. might be advantageous, since the stream is not a stationary system (Hong et al., 2013). 

The highest methane fluxes were measured above the source, followed by the water surfaces of 

the close surroundings of which the flux intensity generally decreased with increasing distance 

to the source. This, combined with the fact that methane was consistently detected in the water 
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(data not shown), suggests that the main source is the predominant methane supplier of the 

system and the water released through the source is its carrier. However, whether or not the 

main source is the only methane supplier to the water remains uncertain, as contradicting 

observations were made along the stream, e.g., low methane fluxes followed by higher methane 

fluxes (see Figure 9 and Figure 17). Therefore, undetected sources may further supply the 

pond and stream. It also remains uncertain whether methane only diffuses from the water into 

the underlying sediment or if the sediment also percolates methane from underneath and thereby 

contributes to the methane fluxes.  

However, methane fluxes were also measured from the sediment surfaces of the surface 

transects, albeit with lower intensities in comparison to the water surface. Among these 

sediment surfaces, those closest to the pond and the so-called miniature sources exhibited the 

highest methane fluxes. These findings raise the question of the origin of the methane emitted 

from the sediment surfaces.  

One explanation may be that the pore water of the sediments of LP trap methane while being 

covered with water from the source and release it during summer. It has been shown before, 

that soils of different properties store and emit methane to different degrees. Of the soil types 

tested in a study by Wang et al., clay soils trapped and stored most methane (Wang et al., 1993). 

The sediments of the ‘Wet mud’ category, found close to the pond area, might resemble clayey 

soils. During summer, when warmer temperatures result in a retracting water coverage, the 

entrapped methane would be emitted during the following drying process, similar to how it can 

be observed for fallow rice fields. However, the methane trapped in fallow rice fields was 

generally released within 12 days (Fitzgerald et al., 2000, Neue et al., 1996). Therefore, this 

explanation would most likely not hold for the entire summer season on LP. 

Another explanation may be that methane is present or produced underneath the pond area. 

Following this, the different surfaces could represent membranes with different porosities for 

the ascending methane, hampering the methane fluxes to different degrees. According to Hong 

et al. 2013, wet mud may even depict an “impermeable cover to gas”, which can decrease 

methane fluxes on mud volcanoes (Hong et al. 2013, p. 7). Cracks in the sediment layers (as 

seen in Figure 30, appendix p. 65), would allow direct water and gas transport to the surface, 

and may hereby increase the methane flux. However, Hong et al. also point out, that the surface 

conditions do not necessarily represent the subsurface conditions, which further complicates 

interpretations. Contrarily, the observation of ebullition from waterlogged mud, could indicate 
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that methane is percolating through the sediments. A summary of the scenario described in the 

second explanation is depicted in Figure 26, which is based on a figure by Hodson et al. 2019 

that suggested the location of ice is right underneath the pond. The conjecture by Yoshikawa 

and Koichiro 1995 that there is gas underneath the pingo supports this scenario. However, the 

two explanations given in this discussion do not contradict each other and might both be valid.  

4.1.2 Oxidation rates 

The incubation experiments brought important insight into the methane oxidation potential on 

LP. Firstly, the parallel incubation of stream water and sediment from the exact same sampling 

spots revealed that, at least under the given incubation conditions, the water does not oxidize 

methane, whereas the sediment does. However, whether methanotrophs are present in the water, 

which may oxidize methane under different (e.g. anoxic) conditions, remains unanswered. 

Since the incubation temperature was chosen to resemble the Arctic summer, it is likely that 

the sediments on site oxidize methane during the summer season. Moreover, within the data 

obtained in this thesis, the methane oxidation rates of the pond and stream sediment seem to be 

positively correlated to the methane fluxes. The methane fluxes, even though influenced by 

microbial oxidation, are possibly predicting the methane availability to the MOB.  

However, even though it seemed reasonable to inject the bottles with two different amounts of 

methane, as described in chapter 2.2.2, it made it impossible to compare between the groups of 

the surface transect, or the pingo surface transects and the stream transect. According to the 

Michaelis-Menten kinetics, the enzyme rate depends on the substrate availability: 𝑣0 =

𝑣𝑚𝑎𝑥
[𝑆]

𝐾𝑚+[𝑆]
 ; in which 𝑣0 is the enzymatic reaction rate, 𝑣𝑚𝑎𝑥 is the maximal reaction rate, [𝑆] 

is the substrate concentration, and 𝐾𝑚  is the Michaelis constant. For high substrate 

concentrations, this term becomes independent of the substrate, and the enzymatic reaction rate 

is highest. In conclusion, the observed differences in methane oxidation rates do not 

automatically represent quantitative differences in oxidation potential. The oxidation 

experiments rather show where MOB are present and possibly active in the sediments of LP. 

That the oxidation potential is not necessarily different between the sediment categories as 

shown in Figure 11, is supported by the finding of similar pmoA copy numbers in the ‘Still 

pond’ sediment category and the stream transect categories. However, the pmoA copy numbers 

based on DNA do not automatically relate to the in situ activity (see 4.1.3). Exceptional is the 

‘Dry soil’ category, which neither exhibited oxidation nor had high pmoA copy numbers. This 

may be due to the distance to the pond water. If the water is the only carrier of methane, the 



 

Page 43 of 69 

‘Dry soil’ does not encounter the substrate needed to establish a methanotrophic community 

and subsequently an oxidation potential. Possible loci of in situ methane oxidation on LP are 

indicated in Figure 26. 

The incubations of sediments from the sampling spot TSC12 did not exhibit methane oxidation, 

despite the high abundance of pmoA. The high pmoA abundance is unlikely an experimental 

error, as a high Methylobacter sequence abundance was also observed in the 16S sequencing 

analysis by the master’s student Pernille Fåne. However, the water content of the sediment used 

for the incubations was at an average of 86 %. Incubation experiments have shown that 

oxidation rates generally decrease with a water content above 50 % (Czepiel et al., 1995, Yang 

and Chang, 1998), although none of these studies incubated soils with a water content as high 

as 86 %. Methane oxidation may have been limited by methane diffusion, and possibly blurred 

with methane production if oxygen diffusion was limited due to the high water content. 

Therefore, it remains unsure if sediments from TSC12 possess the potential to oxidize methane. 

To clearly resolve whether or not samples with high water contents have the potential to oxidize 

methane, the water content could have been adjusted as performed by Nesbit and Breitenbeck 

(Nesbit and Breitenbeck, 1992).  

Overall, the sampling spot TSC12 seems to differ from all other sampling spots, which may be 

explained in two ways. Firstly, since TSC12 is located at the end of the stream, the high pmoA 

abundance may be from cells that are washed up by the stream. In that case, the cells may not 

have the potential to oxidize methane anymore, since they would not be supplied with methane 

by the stream, shown by the absence of a significant methane flux. Secondly, the sampling spot 

may resemble a typical permafrost habitat, in which the MOB of the active layer are supplied 

with methane from methanogenesis (Barbier et al., 2012). 

4.1.3 pmoA abundance and dominance  

The pmoA abundances found on LP (not including TSC12, see explanation in 4.1.2) range from 

~ 5 ∗ 105 pmoA copies/g wet sediment in the dry periphery of the pingo, to ~ 8 ∗ 108 pmoA 

copies g wet sediment in the sediments two meters apart from the main source (TSC2). These 

numbers are generally higher than reported for other permafrost environments. In a permafrost 

(thermokarst) pond in northern Norway ~ 4 ∗ 108 pmoA copies were found in the upper soil 

layers per dry weight (Liebner et al., 2015). However, this number will decrease if it is 

calculated per wet weight, and will possibly be in the range of 104 and 106 pmoA copies/g dry 

weight, as found in the upper permafrost layer of the Canadian Arctic (Frank-Fahle et al., 2014). 
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On the other hand, a study on MOB in a Tibetan wetland, which used the same primer set for 

qPCR amplifications as used in this thesis, found comparable copy numbers of ~ 3.7 ∗ 108 per 

gram wet weight (Yun et al., 2012). Considering that LP represents a so far undescribed habitat-

type, which seems to be fuelled by methane-saturated water, the higher pmoA copy numbers of 

this thesis in comparison to other permafrost studies may be reasonable. 

qPCR amplifications of the pmoA gene from almost all sediments of the ‘Dry soil’ category 

resulted in products with higher melt temperatures. Possibly, a low concentration of the targeted 

gene could have coerced the amplification of unspecific products, which differ in length or GC 

content and therefore show a higher melt temperature. The problem of deviating product sizes 

when amplifying pmoA with a qPCR approach may be a common problem, as it was observed 

multiple times before with different primer sets [(Bodelier et al., 2009, Freitag et al., 2010); 

Bodelier at al. 2009: Appendix S1]. Furthermore, low amplification efficiencies (78.8 %) were 

also observed in a study by Christiansen et al., even though another reverse primer was used in 

their study (Christiansen et al., 2016). Many other studies applying the Kolb et al. 2003 qPCR 

protocol (including modified versions) do not mention the amplification efficiency or do not 

give exact numbers (Bodelier et al., 2009, Yun et al., 2012, Knief et al., 2006, Martineau et al., 

2010). However, as a result, the ratio of MOB in comparison to the entire bacterial population 

is expected to be underestimated, due to the imbalance between the amplification efficiencies 

in this thesis (pmoA ~ 80% and 16S ~ 100%).  

Since the copy numbers of the 16S rRNA genes per genome vary strongly between different 

bacterial species and pmoA has been found in several copies per MOB genome, the copy 

numbers obtained in this thesis were not used to estimate total cell number (Dunfield et al., 

2007, Semrau et al., 1995, Vetrovsky and Baldrian, 2013). Therefore, a stronger MOB 

dominance was simply inferred from a comparably higher pmoA to 16S copy number ratio. 

However, the insignificant differences in the pmoA to 16S copy number ratio between the 

sediment categories indicate that MOB do not clearly dominate stronger in any sediment 

category of LP. 

The ratio of pmoA to 16S copy numbers found in this thesis ranged from 0 to 0.12. These ratios 

deviate strongly from the ratios found in other environments. They deviate drastically from the 

numbers that were obtained from methane oxidizing forest soils (Christiansen et al., 2016) of 

which the highest average ratio was 0.0026. In the thermokarst pond from Northern Norway 

mentioned above, the highest pmoA to total bacterial 16S copy number ratio found was 0.016 
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(Liebner et al., 2015). Even though neither study directly calculated the pmoA to 16S copy 

number ratio, average copy numbers were given. Therefore, an approximation of their pmoA to 

16S copy number ratio could be calculated. A study on Russian permafrost soils found MOB 

to total bacteria ratios of up to 0.26, which is approximately in the range of the ratios found in 

this thesis (Liebner and Wagner, 2007). However, the Liebner and Wagner permafrost study 

quantified the cell numbers microscopically and aimed therefore cellular numbers and not gene 

copy numbers. 

When the sediment categories are compared, the highest pmoA abundances were found in the 

‘Still pond’ category, and the stream transect categories ‘Pond flow sediment’ and ‘Stream 

sediment’. Each of these categories is covered with water that originated from the source. In 

comparison, sediments from the ‘Dry soil’ category had low pmoA abundances and were not in 

contact with water from the source. The tendency of the pmoA abundance to correlate with the 

oxidation rate, supports the reasoning that the oxidation observed is due to the MOB community 

present in the sediments. This was corroborated by a weak positive correlation between the 

pmoA to 16S copy number ratio and the methane flux in the stream transect. The methane 

fluxes, possibly indicating the provision of the MOB with substrate, may reinforce the 

dominance of the methanotrophic bacteria in comparison to the general bacterial population. 

However, the insignificant differences in pmoA dominance between the sediment categories 

indicated that even if methane fluxes promote the MOB community, it does not significantly 

affect the relative abundance of MOB. This might even indicate that the methane is directly or 

indirectly fuelling large parts of the community. The ‘Stream sediment’ category may be an 

exception to this as the average microbial biomass (as indicated by the DNA content) was 

significantly higher than in the ‘Pond flow sediment’ category, despite the methane fluxes, the 

pmoA copy numbers and pmoA to 16S copy number ratio being lower. 

Nevertheless, the pmoA abundance is only estimating the size of the MOB community on LP, 

including active and inactive cells. Inferences about their in situ activity cannot be directly 

drawn from the abundances. The Yun et al. 2012 study examining the abundance and activity 

of pmoA from Methylobacter and Methylocystis in a Tibetan wetland, found Methylobacter to 

be more abundant, but less active than Methylocystis (Yun et al., 2012). Moreover, in a study 

on methane oxidation in peat bogs in Wales, no linear relationship was found between the 

methane fluxes and the bare pmoA abundance, while a trend was observed using the 

gene:transcript ratio (Freitag et al., 2010). This example further supports the importance of 

including transcript data when analysing in situ methane oxidation on a molecular level. 
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However, within the aims of this thesis, to prove the existence of MOB on LP and link their 

presence to methane availability, the application of qPCR on DNA was sufficient. 

4.1.4 Miniature sources 

The scenario introduced in chapter 4.1.1, that methane is rising from underneath the pingo 

through the surfaces, could also explain the existence of the so-called miniature sources, which 

seemed spatially unrelated to the water emitted from the main source. Within the scenario, the 

miniature sources represent highly permeable areas, with a less impeded transit of the methane 

into the atmosphere. The absence of methane oxidation matched the low pmoA copy numbers, 

indicating an inability of the miniature sources to function as a habitat for MOB. The overall 

low DNA content and 16S abundance in the miniature sources may further demonstrate their 

inhabitability in comparison with all other sediment categories. However, it is at this point not 

excluded, that the miniature source harbour small archaeal communities able to oxidize 

methane anaerobically, which would make them a micro-habitat comparable to mud volcanoes.  

4.1.5 Methanotrophy on Lagoon Pingo 

The results obtained within this thesis show the existence of MOB on LP and thus verifies the 

second hypothesis to be true. Moreover, the gene necessary for aerobic methane oxidation was 

found widely distributed in sediments of LP that were in contact with water from the source. 

Even though the activity patterns of MOB in situ are not fully explored, it is likely that the 

observed rates of methane oxidation depict which sediment possess the potential for methane 

oxidation. Additionally, it was shown that the sediments possess the potential to oxidize 

methane under the given conditions, whereas the water does not. However, whether 

methanotrophs are present in the water remains to be answered. 

According to the third hypothesis, the methane content of the sediment can represent the 

methane availability and predict the presence of MOB (by pmoA gene abundance). This was 

not confirmed. Therefore, the hypothesis must be rejected. Contrarily, within the data obtained, 

the methane fluxes were estimated to be the best predictor for methane oxidation. Moreover, in 

the stream, the methane oxidation potential seems to relate exponentially to the methane fluxes. 

Therefore, it may be hypothesized that the methane fluxes represent methane availability and 

can thus be used to predict the methane oxidation potential for the stream. However, the 

methane fluxes are measured at the surface of the water and the pmoA abundance was detected 

within the sediments underneath the water. Therefore, the methane fluxes are presumably 
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proportionally representing 

the methane content in the 

water, which also diffuses into 

the sediment. On the other 

hand, the depiction of the 

sediment methane contents of 

the stream transect, as a 

function of the distance to the 

source, as shown in Figure 17, 

raises the question whether the 

decline of methane in the 

sediments within the first 4.5 

m was due to methanotrophic oxidation. The structure of Lagoon Pingo as a habitat for MOB 

as it may be proposed from the data of this thesis, combined with all proposed methane flux 

origins is presented in Figure 26.  

 

4.2 Enrichment of MOB from Lagoon Pingo 

Psychrotolerant MOB were successfully enriched from three different Adventdalen pingos, 

although none of the enriched MOB (Table 4) were observed as a pure culture. This conclusion 

was underpinned by three observations: a) spreading the culture on sugar-rich media agar plates 

incubated with only atmospheric methane available, always resulted in the growth of colonies 

with one or more morphologies; b) light microscopy revealed more than one cell morphology; 

c) Sanger Sequencing of the 16S rRNA gene did not yield readable sequences. Absence of 

growth on sugar-rich media is a generally accepted method to indicate the purity of a MOB 

culture, since no MOB has been successfully cultivated on sugar-rich media so-far (Rhee et al., 

2019, Svenning et al., 2003).  

4.2.1 Description of Methylobacter sp. 

Relying on the 4% species cut-off value for pmoA sequences suggested by Knief 2015, it can 

be inferred that the MOB obtained from the enrichment cultures all belong to the same novel 

undescribed species within the genus Methylobacter (Knief, 2015). However, this inference 

should additionally be verified with 16S rRNA gene sequences.  

Figure 26: Possible explanation scheme for the methane fluxes and 
oxidation observed on LP during the fieldwork in August 2019. The figure 
is adapted from Hodson et al (2019). Wide red arrows = methane fluxes. 
Thin dark red arrows = possible gas emergence pathways. Black arrows = 
possible diffusion into the sediment. The S indicates the main source, 
whereas MS indicates the miniature sources. Ox. Indicates possible in situ 

oxidation. Question marks indicate uncertainties. 
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Within the cluster of the novel 

Methylobacter species, the sequences 

LPAUG19c, LPAPR19 and IHAPR19 

were almost identical (> 99.5% sequence 

identity) and do not represent different 

strains. Neither are LPAUG19b and 

LPOCT18 (99.5% sequence identity). 

LPAUG19a is possibly a Pseudomonas 

strain and might have been wrongly 

associated with MOB. The sequence 

obtained possibly encodes an ammonia 

monooxygenase, which is related to the methane monooxygenase and can occur in 

Pseudomonas strains (Holmes et al., 1995, Zhang et al., 2011). The sequence of ELOCT18 

shows many ambiguous bases, which could be due to the presence of several pmoA sequences 

in a mixed culture. In conclusion, the number of enriched clones of the novel Methylobacter 

sp. is lowered down to two strains. The terms species, strain and clone are used according the 

definitions provided by Dijkshoorn et al. (Dijkshoorn et al., 2000). However, since only MOB 

were successfully stained with a Type-I-MOB specific probe in LPAUG19c and IHAPR19 

cultures, all remaining strains were possibly lost during isolation attempts. Staining failures of 

the remaining strains are unlikely, since the EUB338 probe successfully stained nearly all cells 

in every culture. Successful staining with the EUB338 probe provides transferable information 

about the hybridization efficiency of the MG-64 probe, since both probes are of similar size 

and composition. Non-specific staining of the EUB338 probe seems unlikely, but cannot be 

excluded since no test using the complementary probe called NON338 was performed (Manz 

et al., 1992). 

The novel Methylobacter species, named Methylobacter sp. LP19, is rod-shaped with an 

average length of 2.4 µm and average width of 0.7 µm. The clone possesses areas of high 

refractive indices, appearing round and dark in phase contrast microscopy. These are 

presumably resting stages in the form of exospores, since observations were made, which 

resemble the germination of M. trichosporium spores (Whittenbury et al., 1970a). Resting 

stages in Methylobacter were described as cysts resembling those found in Azotobacter 

(Bowman et al., 1993, Whittenbury et al., 1970a), which differ from the ones observed in M. 

sp. LP19. Alternatively, the observations could be storage granules. Under starvation, some 

Table 7: Comparison of the Methylobacter species found on 
Adventdalen pingos to the type strain of the closest relative, 
M. tundripaludum, based on preliminary indications. Question 
marks depict uncertainties. 
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MOB store carbon in inclusions, commonly poly-β-hydroxybutyrate (PHB), which due to the 

high refractive index can appear dark when observed through a phase contrast microscope. The 

formation of such storage inclusions can be triggered by nitrogen limitation (Whittenbury et 

al., 1970b), and the characteristics presented in Figure 24 resemble PHB inclusions within M. 

trichosporium under nitrogen-limitation (Xin et al., 2007). However, the ability of Type I MOB 

to produce PHB storage compounds has not been proven beyond doubt [reviewed in (Pieja et 

al., 2011)]. Moreover, M. trichosporium is a Type II MOB and therefore a very distant relative 

to the Methylobacter genus. In conclusion, observations between M. trichosporium and M. sp. 

LP19 should not be compared without questioning, especially since neither exospores nor PHB 

inclusions were proven before within a Methylobacter species (Collins et al., 2017). 

4.2.2 Methylobacter sp. on Adventdalen pingos 

The novel Methylobacter sp. LP19 was enriched several times from pingo structures in the 

Adventdalen valley, the clone from Lagoon Pingo being identical to the clone of the Innerhytte 

pingo, further up the valley. Nevertheless, these occurrences do not necessarily imply that this 

species is common to all pingos or that it is limitedly occurring on pingos.  

The dark features observed with light microscopy, may be an adaptation to the environment 

suiting either explanation, that the features are resting stages or storage granules. If the species 

develops resting stages, it may be an adaptation to the strong seasonal changes and the cold 

temperatures on Svalbard as proposed by Trotsenko and Khmelenina, 2005. If the species 

develops storage granules, it may be an adaptation to store carbon compounds for periods of 

starvation. Either case might be necessary to survive the winter in which the water underneath 

the ice lid becomes anoxic (Hodson et al., 2019). The species may benefit from such adaptations 

to changing environments, which possibly enables it to outcompete other species. Even though 

it is not verified that the enriched species is the dominant species on LP, it is nevertheless likely. 

A low diversity of the methanotrophic community with few active species was suggested before 

for another Arctic environment, peat soil (Graef et al., 2011), and the repeatedly enrichment of 

the same species that exhibits great adaptation skills from different seasons supports this 

suggestion. Whether or not the species is the dominant active species in situ and not only the 

most easily enrichable species, could be tested with metatranscriptomic studies on RNA.  

4.2.3 Significance and outlook of the enrichment  

Overall, the enrichment and characterization of a novel MOB is of considerable scientific 

significance. Particularly if it is shown to be a dominant member of methane seep communities, 
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significantly affecting methane emissions from these systems. The full description of a novel 

species would improve the quality of metagenomics and metatranscriptomic approaches by 

providing a reference, but also broaden the understanding of MOB phylogeny and 

biogeography. The finding of either PHB granules or exospores would further describe the 

range of adaptations to which Methylobacter species are capable. Moreover, an isolated species 

that can tolerate greatly fluctuating temperature, salt and oxygen concentrations could greatly 

contribute to biotechnological applications. However, in order to enable these applications, 

isolation needs to be pursued further, followed by an in-depth characterization of the species. 

5 Conclusions 

Within this thesis it has been shown that methane is seeping in various positions on Lagoon 

Pingo and that the water is the main carrier of methane. Beside the main source, miniature 

sources were shown to exist as areas of high methane ebullition. Moreover, methano oxidizing 

bacteria were shown to exist on Lagoon Pingo. However, since water has been shown to most 

likely not oxidize methane, the aerobic microbial mitigation on Lagoon Pingo seems limited. 

However, in case the methane is percolating through the sediment from a larger source 

underneath, the mitigation of the aerobic microbial community may have a large effect on the 

contribution of Lagoon Pingo to local methane emissions.  

6 Outlook 

This thesis has successfully laid the foundation for further in-depth research about the 

methanotrophic community on Lagoon Pingo by giving evidence with several methods that 

MOB are present. It is worth pursuing the further isolation of the psychrotolerant MOB from 

Lagoon Pingo to better understand the local organisms, and for enabling possible 

bioprospecting or biotechnological applications. The investigation of Lagoon Pingo’s 

ecological importance will be continued in several consecutive fieldwork campaigns and the 

associated laboratory work. During this investigation, it is important to test to what extent the 

MOB are active in the field and how much they mitigate methane emissions, by for example 

reverse-transcriptase qPCR or metatranscriptomic studies. Higher temperature incubation 

experiments may help understanding how the system will adapt to climate change and see 

whether the oxidation potential can possibly increase with temperature. Moreover, to better 

understand the methane fluxes on Lagoon Pingo, it may be helpful to determine the origin of 

the gas and test whether it is oxidized by ANME even before reaching the surface.  
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Appendix 

Additional results 

Categorization 

Figure 27: The blue cluster 

combines source categories 

(‘Mini source’ and ‘Source’) 

and stream samples (‘Pond flow 

sediment’ and ‘Stream 

sediment’). The cluster 

highlighted in orange contains 

‘Dry soil’ samples and one 

‘Stream sediment’ sample, 

TSC12. The cluster highlighted 

in green contains only ‘Still 

pond’ and ‘Wet mud’ samples. Not among these clusters: T4C6, T5C5 and TSC11. 

Table 8: Table of relative effects of the predictor variables onto the three clusters obtained from the cluster analysis. 
Cluster names are derived from the colour-code in figure 28. The table can be read as in the following example: 
The probability that a randomly chosen sampling spot from the orange cluster has a higher pH than any randomly 
chosen sampling spot is 0.819, so approx. 82 %.  

 Distance to 

the source 

pH Methane Flux Water Content Methane 

Content 

Orange 0.689 0.819 0.230 0.213 0.458 

Green 0.306 0.525 0.385 0.586 0.387 

Blue 0.517 0.228 0.810 0.653 0.629 

 

The non-parametric multivariate comparison test verified significant differences between the 

three colour-coded clusters surrogating the categories. The pH and methane fluxes have a strong 

influence onto the category forming, since the differences in relative effects between the 

clusters are large (Table 8). The relative effect of the water content of the ‘Dry soil’-cluster is 

the lowest effect of all. The average water content of the ‘Dry soil’ sediments was 16 (± 5) %; 

Figure 27: Clustering of sediment samples based on standardized 
predictor variables; three clusters are highlighted. Bootstrap values for 

the clusters are given above the nodes.  
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average water content of all other sampling spots was ~ 40 (± 7) %. Based on the significant 

inequality of the clusters, the decision was made to continue using the previously assigned 

sediment categories. This decision implies that certain observations were not given to the 

clustering (e.g. presence or absence of a water cover). 

Pictures of the miniature sources 

 

Technical issues of the qPCR 

‘Dry soil’ samples and 

samples with low total DNA 

content frequently exhibited 

deviating pmoA products 

(Figure 29, A).The pmoA 

amplification of the sample 

T5C5 showed a peak at a 

different melt temperature than the standard and most samples. ‘Dry soil’ samples often showed 

two melt peaks, one at the expected temperature and one at higher temperatures. Two products 

were also observed with gel electrophoresis. All 16S rRNA gene amplifications exhibited 

singular peaks, but the melt temperature varied slightly (Figure 29, B). Moreover, low 

amplification efficiencies were observed for the pmoA qPCR. They were either 82 %, or approx. 

64 %. The amplification efficiencies of the 16S rRNA amplifications were between 97.4 – 111.8 

%. The R2 values of the standard curves varied between 0.98 and 0.99, with one exception of 

0.97. 

 

Figure 28: Pictures of the three miniature sources: A shows T2C4; B shows T4C5; C 
shows T5C5. T5C5 had a small volcano-like opening, which drowned by the 
accumulating water before the picture was taken. The inside of one chamber side is 

20 cm long. The area inside has 400 cm2. 

Figure 29: Exemplary qPCR output. A: melt peaks of pmoA amplification 
products; B: melt peaks of 16S amplification products. One melt peak curve 
from the sampling spot T5C5 is highlighted in A.  

pmoA 16 S standard 

samples 

standard 
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Statistical criteria of the linear regression models 

 

Picture of T4C2 

The sampling spot T4C2, from the ‘Wet mud’ sediment 

category, exhibited cracks throughout the area used for methane 

flux measurements. Moreover, the consistence of the sediment 

resembled clayey soils. 

 

 

 

 

List of Protocols  

Phenol-chloroform extraction total for nucleic acids as in Angel et al. (Angel et al., 2012); for 

modifications see 2.3.1. 

 

 

 

 

Table 9: Statistical criteria and parameters of the linear regression models. The last model of the table is the 
best-fitting model according to the stepwise forward selection, which is not shown graphically in chapter 3.1.5. 
pmoA = pmoA abundance, pmoAr = pmoA to 16S copy number ratio, CH4 = methane flux, CI = confidence 
interval, OxR = Oxidation rate, CH4c = methane content, 16S = 16S abundance.  

Figure 30: Picture of T4C2 as an 
example for cracks in the sediment 
layer. The white scale bar 
represents ~ 10 cm. 



 

Page 66 of 69 

Links 

References 

Ed Dlugokencky, NOAA/ESRL (www.esrl.noaa.gov/gmd/ccgg/trends_ch4/)  

Temperature profile of Adventdalen  

https://www.yr.no/nb/historikk/graf/1-

2759929/Norge/Svalbard/Svalbard/Longyearbyen?q=2019  [02.05.2020, 18:15] 

Sequences for the construction of the phylogenetic tree 

Methylomonas trichosporium: https://www.ebi.ac.uk/ena/data/view/AAA87220 [03.03.2020, 

13:15] 

Methylomicrobium alcaliphilum: https://www.ebi.ac.uk/ena/data/view/CCE22213 

[03.03.2020, 13:30] 

Methylomonas methanica: https://www.ebi.ac.uk/ena/data/view/ACN73464 [03.03.2020, 

13:40] 

Methylobacter psychrophilus: https://www.ebi.ac.uk/ena/data/view/AAX48776 [04.03.2020, 

09:50] 

Methylobacter marinus: https://www.ebi.ac.uk/ena/data/view/ACE95886 [04.03-2020, 16:50] 

Methylococcus capsulatus strain BL4: https://www.ebi.ac.uk/ena/data/view/AF533666 

[04.03.2020, 16:50] 

Methylosinus sporium: https://www.ebi.ac.uk/ena/data/view/ABD13902 [04.03.2020, 17:00] 

Methylomicrobium pelagicum: https://www.ebi.ac.uk/ena/data/view/AAC61804 [04.03.2020, 

17:05] 

Methylomicrobium album BG8: https://www.ebi.ac.uk/ena/data/view/ACN73465 

[04.03.2020, 17:05] 

Methylomonas koyamae https://www.ebi.ac.uk/ena/data/view/QCI03775 [04.03.2020, 17:10] 
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Methylomonas lenta https://www.ebi.ac.uk/ena/data/view/CCW45942 [04.03.2020, 17:10] 

Methylocaldum marinum https://www.ebi.ac.uk/ena/data/view/BAO51827 [04.03.202017:15] 

Methylocaldum gracile https://www.ebi.ac.uk/ena/data/view/AAC04380 [04.03.2020] 

Methylocaldum tepidum https://www.ebi.ac.uk/ena/data/view/AWM95755 [04.03.2020] 

uncultured Methylococcus sp. https://www.ebi.ac.uk/ena/data/view/AVZ01024 [04.03.2020, 

17:20] 

Methylococcus sp. LS7-MC https://www.ebi.ac.uk/ena/data/view/ALO24369 [04.03.2020] 

Methylosarcina lacus https://www.ebi.ac.uk/ena/data/view/AAG13081 [11.03.2020, 14:00] 

 

Buffer and Media Compositions and Reagents 

for nucleic acid extraction 

TNS - extraction buffer modified from (Henckel et al., 1999) 

500 nM TRIZMA (M.W. 121.14 g/mol; 15.76 g), 100 mM NaCl (M.W. 58.44 g/mol; 1.17 g), 

10% SDS (M.W. 288.38 g/mol; 20g), 200 mL RNase-free water, dissolve and autoclave 

PEG-6000  

37.4g NaCL & 120 g of polyethylene glycol in 400 mL DEPC-treater water 

Phenol Chloroform Isoamylalcohol 

ratio = 25:24:1; pH 6.6-7.9 

Chloroform Isoamylalcohol 

ratio = 24:1 
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for enrichment and isolation 

NMS – Nitrate Minimal Media – DSMZ medium 921 

Used at a 0.1 x dilution. For buffer composition follow: 

https://www.dsmz.de/microorganisms/medium/pdf/DSMZ_Medium921.pdf 

TGGA agar plates  

5 g Tryptone, 2.5 g Yeast extract, 1 g Glucose, 20 g Agar, fill up to 1 L with water, mix, 

autoclave 

for FISH 

PBS – Phosphate buffered saline 

0.4 M NaCl (Merck, Darmstadt, Germany), 0.03 M NaPO4 

Storage Solution  

0.1 % Tergitol NP40 (Sigma-Aldrich) with 4% (v/v) 1M (VWR, Radnor, USA) pH 7.5 

Hybridization solution (20% formamide)  

0.9 M NaCl, 0.1 M Tris pH 7.5, 20% (w/v) Formamide (VWR, Radnor, USA), 10% (w/v) 

SDS (Merck, Darmstadt, Germany) 

Washing solution 1  

0.9 M NaCl, 20 mM Tris pH 7.5, 0.01% (w/v) SDS 

Washing solution 2  

0.18 M NaCl, 20 mM Tris pH 7.5, 0.01% (w/v) SD 

 

 

 



 

Page 69 of 69 

Primer & probe sequences 

 Type Sequence (5’ to 3’) Publication 

BAC1369F primer CGGTGAATACGTTCYCGG (Suzuki et al., 2000) 

BAC1492R primer GGTTACCTTGTTACGACTT (Weisburg et al., 1991) 

A189F primer GGN GAC YGG GAT TTC TGG (Holmes et al., 1995) 

Mb601R primer ACRTAGTGGTAACCTTGYAA (Kolb et al., 2003) 

Mb661R primer CCGGMGCAACGTCYTTACC (Costello and Lidstrom, 

1999) 

Mg64 probe CCGAAGGCCTRTTACCGTTC  (Bourne et al., 2000) 

EU338 probe GCTGCCTCCCGTAGGAGT (Amann et al., 1990) 

 

Additional information 

Weight to volume conversion factor 

 𝑊𝑒𝑖𝑔ℎ𝑡 𝑡𝑜 𝑣𝑜𝑙𝑢𝑚𝑒 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 =
𝑉𝑠.𝑏.[𝑚𝐿] − 𝑉𝑟.𝑠.[𝑚𝐿] − 𝑉ℎ𝑒𝑎𝑑𝑠𝑝𝑎𝑐𝑒[𝑚𝐿]

𝑚𝑠𝑎𝑚𝑝𝑙𝑒  [𝑔]
 4 

With V being the volume, m being the mass; “s.b.” shortens the index “serum bottle” and 

“r.s.” shortens the rubber stopper. Only the part of the rubber stopper that is inside the serum 

bottle is regarded for this equation.



 

 

 


