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Abstract

The thermal evolution of sedimentary basins is usually constrained by maturity data, which is interpreted 

from Rock-Eval pyrolysis and vitrinite reflectance analytical results on field or boreholes samples. 

However, some thermal evolution models may be inaccurate due to the use of elevated maturities measured 

in samples collected within an undetected metamorphic contact aureole surrounding a magmatic intrusion. 

In this context, we investigate the maturity and magnetic mineralogy of 16 claystone samples from Disko-

Svartenhuk Basin, part of the SE Baffin Bay volcanic margin. Samples were collected within thermal 

contact metamorphic aureoles near magma intrusions, as well as equivalent reference samples not affected 

by intrusions. Rock-Eval pyrolysis (Tmax), and vitrinite reflectance (Ro) analysis were performed to assess 

the thermal maturity, which lies in the oil window when 435°CTmax470°C and 0.6-0.7%Ro1.3%. In 

addition, we performed low (<300K) and high temperature (>300K) investigations of isothermal remanent 

magnetization to assess the magnetic mineralogy of the selected samples. The maturity results 

(0.37%Ro2%, 22°CTmax604°C) show a predominance of immature to early mature Type III organic 

matter, but do not reliably identify the contact aureole when compared to the reference samples. The 

magnetic assemblage of the immature samples consists of iron sulfide (greigite), goethite, and oxidized or 

non-stoichiometric magnetite. The magnetic assemblage of the early mature to mature samples consists of 

stoichiometric magnetite and fine-grained pyrrhotite (<1 μm). These results document the disappearance of 

the iron sulfide (greigite) and increase in content of magnetite during normal burial. On the other hand, 

magnetite is interpreted to be the dominant magnetic mineral inside the contact aureole surrounding 

dyke/sill intrusions where paleotemperatures indicate mature to over-mature state. Interestingly, the iron 

sulfide (greigite) is still detected in the contact aureole where paleotemperatures exceeded 130°C. 

Therefore, the magnetic mineralogy is a sensitive method that can characterize normal burial history, as 

well as identify hidden metamorphic contact aureoles where the iron sulfide greigite is present at 

temperatures beyond its stability field. 

Keywords: thermal maturity, magnetic mineralogy, claystones, burial depth, magma intrusion.

1. Introduction

The thermal evolution of sedimentary basins is often modelled based on maturity parameters extracted 

from field or well data (e.g., Haxby et al., 1976; Welte and Yukler, 1981; Palumbo et al., 1999). When 

considering organic-rich rocks, Rock-Eval pyrolysis (Tmax) and the vitrinite reflectance (Ro) are standard 

geothermometers that provide parameters to infer the maturity of organic matter (e.g., Espitalié et al., 1986; 

Burnham and Sweeney, 1989; Bordenave, 1993; Suggate, 1998). However, both methods have significant A
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uncertainties in terms of estimated temperatures; which are often the results of different maturities that are 

measured on both re-worked and in situ organic matter in the same sample (Sweeney and Burnham, 1990). 

In addition, both methods are also lithology-specific and are mostly restricted to organic-rich sediments 

such as claystones, siltstones, and marls. Furthermore, thermal modelling is more complex in volcanic 

basins, which are sedimentary basins intruded by large volumes of magma. Indeed, the maturation levels of 

volcanic basins can vary locally or on a basin-scale depending on the duration, number, and timing of 

successive emplacement events, fluid and organic type and content in the country rocks, as well as 

structuring and lithological properties influencing hydrothermal circulations patterns (Aarnes et al., 2010). 

In addition to contact metamorphism, the thermal maturation of strata in volcanic basins is also a product of 

burial. Therefore, using thermal indicators that are independent to the type and composition of organic 

matter would provide better maturity constrains where the standard geothermometers fail.

The aim of this study is to constrain the maturity history of sedimentary sequences based on their 

magnetic mineralogy to distinguish if maturity is due to normal burial or is a combination of burial and 

contact metamorphism around magmatic intrusions. The magnetic mineralogy approach must be sensitive 

enough to identify rocks within a contact aureole, even if no intrusive has been intersected by drilling. Our 

rationale is based on the principle that the formation of new minerals carrying a remanent chemical 

magnetisation reflects the thermal history of a rock (e.g., Kars et al., 2012; Aubourg et al., 2014). In 

particular, changes in magnetic assemblages are often the result of precipitation of iron that is released 

during the alteration of pyrite (Brothers et al., 1996) or clays (Katz et al., 1998) during early diagenesis 

(Roberts and Weaver, 2005; Rowan and Roberts, 2006; Rowan et al., 2009; Roberts, 2015), thermal 

maturation of sedimentary rocks (Banerjee et al., 1997) and increasing burial (Aubourg et al., 2012). 

Laboratory experiments have demonstrated that heating claystones from 50° C to 250 °C leads to the 

formation of new magnetic minerals (Cairanne et al., 2004; Moreau et al., 2005; Aubourg et al., 2008; 

Aubourg and Pozzi, 2010; Kars et al., 2012), with greigite, goethite, magnetite and pyrrhotite defining the 

contours of the magnetic diagenesis (Aubourg et al., 2012). In natural conditions, greigite is derived from 

the microbial alteration of detrital iron oxides in the anoxic environment that is located up to several tens of 

meters below the surface (Roberts et al., 2011). Goethite is also present in immature claystones in which 

burial temperatures did not exceed 90°C (e.g., Abdelmalak et al., 2012a). Burial re-magnetization is 

interpreted to be controlled by the crystallization of ultra-fine-grained stable single domain (SD) 

superparamagnetic (SP) magnetite between 50 °C to 250 °C (Aubourg and Pozzi, 2010; Kars et al., 2012). 

Coincidentally, the formation of magnetite falls within the temperature range of the oil generation window, 

which is between 60-90°C to 120–150°C (e.g., Elmore et al., 1987; Jackson et al., 1988; McCabe et al., 

1989; Katz et al., 2000; Elmore et al., 2006). Fine-grained monoclinic pyrrhotite forms from 150 °C to 

~ 350 °C (e.g., Aubourg and Pozzi, 2010; Roberts, 2015). All of these neoformed minerals coexist in A
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ranges of depths that are still not resolved. For example, greigite becomes unstable at temperatures above 

200 °C, which corresponds to a burial depth >8 km for a geothermal gradient of 25°C/km (Roberts et al., 

2011). In addition, magnetite is consumed during the formation of micron-sized pyrrhotite, and may totally 

be absent at depths >12 km. Consequently, these newly formed magnetic minerals have been used as 

proxies for interpreting the burial history of sedimentary formations (Bishop and Abbott, 1995).

In the case of sedimentary basins affected by volcanism, several studies have connected the occurrences of 

magnetite, hematite, and pyrrhotite with specific degrees of thermal and hydrothermal alteration in the 

contact metamorphic aureoles surrounding individual sill and dyke intrusions (e.g., Katz et al., 1998; Gillett, 

2003; Aubourg et al., 2014) or around larger intrusions (Just et al., 2004; Petronis et al., 2011). Indeed, the 

formation of these magnetic minerals is controlled by the fugacity of oxygen and sulfur that are specific to 

thermal aureoles (Gillett, 2003). Alternatively, recognizing these diagnostic minerals can help to identify 

hidden thermal aureoles developed in clay-dominated sedimentary sequences (mud-stones, claystones and 

siltstones).

In this contribution we present a detailed rock magnetic study on reference Cretaceous/Palaeocene 

claystones from the SE-Baffin Bay not affected by volcanism, as well as on equivalent sedimentary 

sequences intruded by magmatic dykes and sills. For comparison, we further used the standard Rock-Eval 

pyrolysis and vitrinite reflectance analyses to evaluate the thermal evolution of the sedimentary basin. Our 

results are relevant for hydrocarbon exploration since potential source rock intervals may be over-mature in 

the aureole, and in the oil window few tens of meter away. Therefore, the magnetic mineralogy approach 

should help to avoid misinterpreting the anomalous contact metamorphic maturities as representing the 

burial history of a basin.

2. Geological setting and burial history

The Disko-Svartenhuk Basin is located in Central West Greenland at the termination of the SE Baffin Bay 

volcanic margin, (Geoffroy, 2001; Abdelmalak, 2010; Abdelmalak et al., 2012b). The geological record 

and apatite fission track data indicate that the Disko-Svartenhuk Basin was uplifted and eroded during 

several episodes in the Cenozoic (Japsen et al., 2005; Bonow et al., 2006; Japsen et al., 2006; Japsen et al., 

2009; Japsen et al., 2010). Consequently, the border faults along the basement, the Cretaceous-early 

Paleocene sedimentary strata, and the overlapping and sealing of the sedimentary basin by Paleogene 

volcanism are exposed on land in an area of about 200 by 300 km (e.g., Abdelmalak et al., 2019). The 

Central West Greenland is a unique area with excellent exposures that documents in outcrop the transition 

between a sedimentary basin to a volcanic-type passive margin.
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The Cretaceous sedimentary sequences form a delta system that fanned out from Disko (in the south) to the 

West and the North-West of Nuussuaq (e.g., Chalmers and Pulvertaft, 2001; Dam et al., 2009) (Fig. 1). The 

Albian proximal fluvial Kome Formation (sample G46) and the lacustrine Slibestensfjeldet Formation 

(sample G14, Fig. 1a) are the oldest exposed sediments. The Albian to early Campanian period is 

characterized by the deposition of the fluvio-deltaic Atane Formation in Disko and Nuussuaq (sample G19 

in the north and samples G49, G50 and G51, Fig. 1b) to the south, and the Upernivik Næs Formation to the 

north (e.g., Dam et al., 2009). The proximal near coastal areas of Upernivik Næs Formation claystones 

were sampled in Upernivik Ø (samples G20 and G44), in Qeqertarsuaq Island (sample G33) and at Itsaku 

(sample G31). Northward, the fluvio-deltaic facies of the Atane Formation becomes the time equivalent of 

the distal deep marine claystones of the Itilli Formation, which is exposed in the north of Nuussuaq 

(samples G15 and G48) and in Svartenhuk Halvø (samples G29 and G38). 

The Maastrichtian to Lower Paleocene was a tectonically active period witnessing the uplift and erosion of 

the underlying sediments (Dam et al., 2000). An uplift over than 1.3 km is interpreted to reflect the impact 

of the Iceland plume in the early Paleocene (Dam et al., 1998a). This uplift was responsible for the 

formation of subaerial incised valleys that are connected to a submarine canyon system to the west (Dam et 

al., 2000; Dam, 2002). Sediments filling the valleys correspond to the proximal Quikavsak Formation, 

while the distal and marine sediments are referred to the Agatdalen and Kangilia formations in Itsaku 

(sample G25). This early Paleocene uplift event was followed by rapid subsidence of at least 1 km (Japsen 

et al., 2005) just before the extrusion at ~ 62 Ma of the Paleocene hyaloclastites into a residual lacustrine 

basin, and the subaerial lava sequences of Vaigat and Maligât Formations (Fig. 11) (e.g., Abdelmalak et al., 

2019). The volcanic front moved eastward giving rise to the syn-volcanic lacustrine deposits of the 

Atanikerluk Formation (sample G52). The presence of the marine sediments within the Palaeogene 

sequence on Disko and Nuussuaq, exposed today at 1 km above sea level, demonstrates that the Palaeocene 

subsidence was followed by a major post-Palaeocene uplift (Piasecki et al., 1992; Green et al., 2011).

The apatite fission track data from Nuussuaq and Disko indicate a minimum of three cooling episodes 

during Cenozoic times (e.g., Japsen et al., 2005). The first episode occurred during the Eocene-Oligocene 

transition (36-30 Ma) after the Paleocene–Eocene post-rift subsidence episodes. The paleogeothermal 

gradient for this first episode was estimated to be between 40 and 50°C/km (Japsen et al., 2005). The other 

two cooling episodes occurred at 11-10 and 7-2 Ma in the late Neogene (Green, 2003; Japsen et al., 2005; 

Bonow et al., 2006; Japsen et al., 2009). The paleogeothermal gradient during these two periods of 

exhumation decreased to a value close to the present 30°C/km (Japsen et al., 2006). The 1.5 to 2 km of 

eroded section was estimated based on fission track data, which agrees well with the ca. 1.9 km thickness 

based on vitrinite reflectance data of Bojesen-Koefoed et al. (1997) from the Gro-3 well (see location in Fig. 

1a).  A
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3. Methods 

3.1. Sampling strategy

The sampling strategy was designed to characterize the magnetic mineralogy of claystones affected by 

contact metamorphism around sill and dyke intrusions; hence we also collected reference samples that 

recorded the background thermal history of the Disko-Svartenhuk Basin before and during magmatism. 

Furthermore, we sampled the sedimentary basin from the proximal continental and shallow marine 

formations to the distal and deeper marine settings in the different parts of the basin to characterize the 

magnetic mineralogy with increasing burial depth (Table 1). The quality of the outcrops in Greenland is 

excellent, which allowed us to collect fresh claystone samples away from weathering effect of running 

water from rivers and streams, or any fluid contamination from fracture zones. 

For samples collected within the metamorphic contact aureoles of magmatic intrusions, we chose proximal 

continental claystones from Qeqertuarssuq (G33) and Upernavik Ø (G44), and distal marine samples from 

Itsaku (in Svatenhuk Halvø peninsula) (G25 and G29) (Fig. 2). Samples G20 and G44 belong to the same 

sedimentary formation and were sampled at the same stratigraphic level (Table 1). However sample G44 is 

located between two dykes with a thickness of 3 m and 3.5 m respectively. The distance between these two 

dykes is about 5 m. Sample G25 was located at ~15 to 20 m above a sill thicker than 20 m. Sample G29 

was collected 5 m above a ~10 m thick sill. Sample G33 was sampled in Qeqertarsuaq island, few hundred 

meters away from a kilometer scale dolerite intrusion or laccolith (Fig. 2). We assumed that all of these 

samples collected within two thickness of an intrusion are within the contact aureole, which can vary 

between 30% and 250% of the intrusion thickness (e.g., Aarnes et al., 2010). Based on visual inspections, 

we avoided sampling too close to the intrusion in order to prevent any hydrothermal alteration that could 

complicate the magnetic records (e.g., Katz et al., 1998). Here, all the distances separating a sample from 

the closest intrusion are maximum estimates, and hence include the possibility of a closer hidden intrusion 

that could be buried behind the outcrop surface. From the collected material, we selected 16 claystone 

samples for thermal maturity assessment by Rock-Eval pyrolysis (Tmax), vitrinite reflectance (Ro) and 

magnetic mineralogy (Fig. 1).

3.2. Rock-Eval and vitrinite reflectance

Total Organic Carbon (TOC in wt%), Hydrogen Index (HI in mg of HC/g TOC where HC stands for 

hydrocarbons), Oxygen Index (OI in mg of CO2/g TOC) and Tmax (expressed in °C) were determined by 

Rock-Eval pyrolysis with a model 6 device from the Vinci Technologies (Lafargue et al., 1998) (Table 1) at 

ISTO (Institut des Sciences de la Terre d’Orléans, University of Orleans, France). The analyses were 

carried out on 100 mg of crushed samples under standard conditions. Tmax is the temperature at maximum A
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pyrolytic hydrocarbon generation and varies as a function of the natural thermal maturity of the organic 

matter (e.g., Espitalié et al., 1986). A petrographic study of the organic matter was performed using a Leica 

DMR XP microscope under reflected light using an oil immersion objective (x50), following the 

International Committee for Coal Petrology procedure (ICCP, 1971). This study determines the type and 

shape of organic matter, and measure reflectance of vitrinite particles in each sample. The vitrinite 

reflectance measurement is one of the most widely used parameters for thermal reconstruction of 

sedimentary basins maturation, where temperature and time are considered as the main factors influencing 

vitrinite reflectance values (Burnham and Sweeney, 1989). One of the main uncertainties related to vitrinite 

reflectance measurements is if the vitrinite is in situ or reworked (Lo, 1992) (Fig. 3). Autochthonous 

vitrinite particles are mainly characterized by angular fragments generally larger than 50 µm (Lo, 1992) 

(Fig. 3), and often contain framboid pyrite inclusions. Reworked vitrinites particles are smaller than 50 µm, 

display a rounded shape attributed to extensive transport, and never contain framboid pyrite inclusions. 

Particles smaller than 15 µm² are not taken into account in the measurements. The vitrinite reflectance 

values are reported in Table 1 with a fair to good confidence, and are based on a total of 100 random 

measurements on in situ vitrinite per sample. 

3.3. Magnetic mineralogy measurements

In this section, we present the methods from a series of different magnetic measurements performed at 

room temperature, high-temperature above 300 Kelvins (K) (performed at the University of Cergy Pontoise, 

France) and low-temperature below 300 Kelvins (K) (performed at the Institute of Néel, Paris, France) for 

the selected 16 claystones. The magnetic mineralogy is characterized without ambiguity based on 

prominent magnetic transitions at specific temperatures in the demagnetization curves at high temperature 

(HT, >300K) and low-temperature (LT, <300K), while room temperature experiments provide variations in 

magnetic contents and mineralogy. 

3.3.1 Room temperature (RT) experiments 

The natural remanent magnetization (NRM), the magnetic susceptibility (χ), and the isothermal remanent 

magnetization (IRM) were measured at room temperature (Table 2). The NRM and IRM are measured 

using a JR6 spinner magnetometer (Agico-Ltd). The susceptibility (χ) was measured on bulk samples with 

KLY3-CS3 Kappabridge apparatus operating in a weak magnetic field of 4.10-4 T at the basic frequency of 

920 Hz with a sensibility of 5.10-8 SI. The susceptibility (χ) is used to determine variations in magnetic 

content. The IRM was imparted by an impulse magnetizer ASC SCIENTIFIC model IM0 following 

Lowrie’s protocol (1990) along x, y, z axes of a standard 10.8 cc core at 0.1 Tesla (low), 0.5 Tesla 

(medium), and 1.2 Tesla (strong) magnetic fields respectively to obtain information about the magnetic 

mineralogy. This device allows to define saturation curves up to 1.7 T.A
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3.3. 2. High-temperature (HT) experiments

The temperature dependency of remanence is probably the best method to identify trace amounts of 

magnetic minerals, in particular monoclinic pyrrhotite and magnetite at ~320°C and ~580°C (the Curie 

temperature), respectively (e.g., Dunlop, 1995; Dunlop and Özdemir, 1997). The IRM acquired at room 

temperature is thermally demagnetized at HT using a magnetically shielded in-house built furnace. 

Temperatures were increased at 25°C or 50°C steps from room temperature to 600°C. Thermal 

demagnetization reveals the spectrum of unblocking temperature and coercivity, which are diagnostic of 

magnetic minerals. 

3.3. 3. Low-temperature (LT) experiments

Low-temperature experiments prevent the chemical transformations from heating above room temperature 

(e.g., van Velzen and Zijderveld, 1992), and hence are well-adapted for identifying the magnetic 

assemblage in rocks where organic matter coexists with iron sulfides. At low temperature, stoichiometric 

magnetite is firmly identified by the Verwey transition at ~ 120 K (e.g., Özdemir et al., 2002). This 

transition is the expression of a solid-state phase change from cubic above 120 K to monoclinic below 120 

K (e.g., Muxworthy and McClelland, 2000; Walz, 2002). Pyrrhotite is characterized by a magnetic Besnus 

transition at ~35 K (Dekkers, 1989; Rochette et al., 1990). Aubourg and Pozzi (2010) proposed that fine-

grained pyrrhotite (<1µm) is identified through a Néel-like type of magnetic transition at ~35-32 K, named 

hereafter the P-transition and referred later as P-behaviour (Kars et al., 2011). Generally, the Néel transition 

is the signature of a mineral which is paramagnetic at room temperature and ferromagnetic below the Néel 

temperature.

We measured the IRM of claystone samples using a magnetic properties measurement system (MPMS) 

XL5 Ever Cool. The measurements were done on 400 mg of rock powder manually crushed and sealed in a 

gel capsule. Two types of results are extracted, corresponding graphically to the cooling of a RT-SIRM 

(room temperature IRM at saturation) and the warming of a LT-SIRM (low temperature IRM at saturation).

For the RT-SIRM, a 2.5 T field was applied at 300 K to impart the IRM and then switched off. The samples 

were cooled down to 10 K within an upward magnetic field of 5 μT (∼1/10 of the Earth′s magnetic field) at 

about 5 K steps. This procedure allows the detection of magnetic transitions for temperatures <50K 

(Aubourg and Pozzi, 2010; Kars et al., 2011). For the LT-SIRM, we applied a magnetic field of 2.5T at 

10K and monitored the remanence in a zero magnetic field. The samples were subsequently warmed back 

to 300 K at 10 K steps. 

4. Results A
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 4.1. Vitrinite reflectance (Ro) and Rock-Eval data

The vitrinite reflectance (Ro) and Rock-Eval data are presented in Table 1. The TOC values of the 

claystone samples collected away and within the contact aureole of magmatic intrusions are moderate to 

high, ranging between 1.02 to 10.25 wt%. The HI versus OI diagram indicates a predominance of type III 

“terrestrial” organic matter (OM) (Fig. 4a). The HI values are generally low (< 120 mg HC g -1 TOC). The 

OI shows a wide range of values that are spread between 5 to 73 mg CO2 g -1 TOC. As a whole, the results 

of samples collected away from a sill or dyke intrusion are consistent with a normal burial trend. The latter 

is characterized by an initial decrease in OI values, and subsequent decrease of both OI and HI values 

indicating advanced diagenetic processes (Espitalié et al., 1986). The same trend in OI and HI values is 

observed for the samples collected within the thermal aureoles surrounding magmatic intrusions (Fig. 4a), 

hence indicating that the TOC, OI, and HI results did not identify the thermal aureoles. 

Tmax and Ro also support a type III OM in the samples (Fig. 4b, where the grey area represents the range 

of values from Teichmüller and Durand (1983)). Immature type III OM is characterized by Ro  0.6-0.7% 

and Tmax 435°C. Mature type III OM is in the oil window when 0.6-0.7%Ro(oil window) 1.3%, and 

435°CTmax(oil window) 470°C. Over-mature type III OM is characterized by Ro > 1.3% and Tmax≥ 470°C 

(Espitalié et al., 1985; Bordenave, 1993). For the samples away from the magmatic intrusions, the Tmax 

ranges from 422°C (G38) to 550°C (G48), and Ro varies from 0.37% (G46) to 1.57% (G48). These results 

show that most of the samples are immature to early mature, with one over-mature sample. The claystones 

identified as immature are from the proximal formations in the south and east of Nuussuaq (G51, G50, G49, 

G46), and to the eastern border of the sedimentary basin (G20, G31) (Fig. 1). These samples contain well-

preserved plant debris and large vitrinite particles identified in their corresponding polished sections (Fig. 

3), indicating that the reflectance values were confidently measured on in situ vitrinite particules. Therefore, 

the vitrinite reflectance values reported in Table 1 represent the maturity of the corresponding formation. 

The increasing values of Ro and Tmax from the proximal G46 to the distal G15 and G48 are probably the 

consequences of increasing burial depths to the western edge of the basin. In addition to the increased 

reflectivity, the vitrinite in the corresponding samples is also smaller in size (Fig. 3). G52 is sampled in the 

vicinity of the main border fault of the sedimentary basin and may have been altered by hydrothermal fluids.

Samples collected within a contact aureole show higher values of Ro (0.77-2%) and Tmax (442-604 °C) 

and are characteristic of mature to over-mature sediments (see Table 1), with the highest maturity closer to 

an intrusion. Sample G44, located between two dykes, shows a higher value of Ro (1.22%) and Tmax 

(446 °C), both characteristic of mature sediments. Sample G20, belongs to the same formation and same 

stratigraphic level of G44, but immature (Ro = 0.58% and Tmax = 432 °C). G33, from Qeqertarsuaq island 

indicates mature sediment with Ro value of 0.77% and Tmax value of 442 °C. G25 and G29 samples A
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collected in vicinity of magmatic intrusions are characteristic of mature to over-mature sediments (Table 1). 

We noticed an increasing thermal effect of magma intrusion from G25 (Ro of 0.89 and Tmax of 475°C) to 

G29 (Ro> 2% and Tmax of 604°C), corresponding to small vitrinite particles with an inhomogeneous 

reflectance pattern (Fig. 3).

Ro and Tmax values are sensitive to the duration and peak temperature of a heating episode, both of which 

can be estimated using the transfer functions of Sweeney and Burnham (1990). Values of Ro less than 0.32% 

and greater than 4% cannot be assigned to a specific maximum paleotemperature with confidence, and such 

values are given a maximum limit of 50°C and a minimum limit of 250°C. Here, organic matter of type III 

that experienced a peak burial temperature for 10 Ma and 100 Ma have corresponding oil windows in the 

ranges 110°C-160°C and 95°C-140°C, respectively. For background samples, the maximum 

paleotemperature derived from Ro is estimated to be between 55°C and 170°C when assuming heating rates 

of 1°C/Ma and cooling rates of 10°C/Ma (e.g., Green, 2003; Japsen et al., 2005) (Table 1). Therefore, the 

maturity (Tmax and Ro) as well as the maximum burial paleotemperature is well constrained for the 

background samples (Table 1). Since samples collected within a contact aureole are more sensitive to the 

peak temperature, the maximum paleotemperature is derived from Ro, and is estimated to be between 

115°C to over >190°C, with the highest values closer to the intrusions.

4.2. Magnetic mineralogy

In this section and later discussion, we present the results from the magnetic experiments by separating the 

samples collected within and away from contact aureoles. The magnetic mineralogy is compared to the 

samples maturity as defined in Table 1. 

4.2.1. Effect of burial depth

The magnetic mineralogy of the samples taken far from the thermal aureole of magma intrusions 

characterizes the background burial thermal history (G46, G50, G31, G51, G49, G20 G14, G19 G38, G15 

and G48 in Table 2). The measured magnetic parameters are indicated in Table 2. The measured NRM 

intensity of the background claystone taken away from the thermal aureole has low values in the range of 

10−3 to ~10−5A m–1. The magnetic susceptibility (χ) measured at room temperature shows values ranging 

between 21 μSI (for G19) and 547 μSI (for G51). Generally, the highest magnetic susceptibility (χ) is 

measured in the immature samples (Fig. 4c), and low values of magnetic susceptibility characterize the 

early mature to over mature samples. Furthermore, a clear magnetic susceptibility trend is noticed with a 

decreasing value from the proximal sediments to the distal sediments (Fig. 4c). 
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Measurements of the acquired IRM at room temperature indicate different patterns for immature and 

mature samples (Fig. 5). For the immature samples (e.g., G20, G46 and G31), only 70 to 90% of 

saturation is reached at 0.3T and specimens continue to acquire remanence at greater field strength (1.2 

Tesla) (Fig. 5a), thus supporting the presence of high coercivity minerals such as hematite and/or goethite. 

On the other hand 90 to 95% of saturation is is reached at ~0.3 Tesla for the early mature and mature 

samples (G14, G19, G38, G15 and G48, Fig. 5b), thus indicating the presence of low coercivity minerals 

such as SD magnetite.

The representative immature (G46 G31 and G20) and early mature to mature samples (G19 and G15) are 

shown in figure 6. The maturity of these samples is characterized by an increase of Ro values (Fig. 6a), 

while the Tmax values indicate an immature stage. Such Tmax and Ro relationship illustrates the need of 

additional criterion to confidently constrain the maturity of claystones. The HT demagnetization of the IRM 

(Fig. 6b) outlines two distinct behaviors for the immature and the early mature/mature claystones: 1) a 

stepwise decrease of magnetisation up to 600°C with a slow slope-break around 350°C for the immature 

samples and: 2) a continuous decrease up 600°C with no slope-break around 350°C for the early mature 

samples (Fig. 6b).

For the immature samples, the composite IRM is dominated by low to medium coercivity (Fig. 6c). For 

sample G31, the drop of IRM1.2Tesla at 120°C corresponds to the Néel temperature of goethite (e.g., Özdemir 

and Dunlop, 1996). For the immature samples, a ~70% to ~90% drop of the IRM at 350°C (Fig. 6b) for all 

coercivities suggests a contribution to the remanence of iron sulfides such as greigite (Fe3S4) or monoclinic 

pyrrhotite (Fe7S8). Above 350°C, the steady decrease of the remanence of IRM up to 600°C indicates a 

contribution from magnetite (Fig.6b and c).

The RT-SIRM curve is characterized by an increase of remanence on cooling from 300 to 10K (G46, G31 

and G20). This behaviour is indicative of goethite (-FeOOH) or ultrafine-grained hematite (e.g., Maher et 

al., 2004). However, these samples are fully demagnetized at 600°C, well before the unblocking 

temperature of hematite (670°C), thus supporting the presence of high coercivity goethite. A marked drop 

of remanence in the slope for the LT-SIRM curve below 35/40K (Fig. 6d) could indicate the occurrence of 

ultra-fine superparamagnetic magnetic minerals in the immature samples (e.g., Guyodo et al., 2003). 

However, the absence of a Verwey transition at 120K for both RT-SIRM and LT-SIRM curves suggest the 

magnetite to be possibly oxidized or not stoichiometric (Özdemir et al., 2002).

The magnetic assemblage of the early mature samples is markedly different (Fig. 6). The HT 

demagnetisation of IRM for the G19 and G15 samples is continuous up to 600°C. The composite IRM in 

these two samples is dominated by low coercive minerals (Fig. 6c), supporting that the IRM is essentially A
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carried by magnetite. The medium and high coercive minerals for these two samples are quite similar in 

shape and values, thus indicating the contribution of other magnetic minerals to the remanence. For the RT-

SIRM experiments, we did not notice any increase of remanence (Fig.6d) unlike the immature claystones. 

By contrast, we measured 1) a well-developed Verwey transition at 120K, indicative of stoichiometric 

magnetite, and 2) a P-behaviour that develops below 40K. The LT-SIRM curve shows a two-step decrease, 

with a break-in-slope at ~35K and ~120K, the latter corresponding to the Verwey transition of magnetite. 

The large drop of LT-SIRM below 35K could be the result of the contribution of fine-grained pyrrhotite 

(<1µm) and magnetite, which are in a superparamagnetic state at room temperature, and in ferromagnetic 

state at 10K.

The PM parameter, defined by Aubourg and Pozzi (2010), is used to estimate the contribution of magnetite 

over pyrrhotite, and is expressed as PM = (LT-SIRM10K−LT-SIRM35K) / (LT-SIRM10K). When PM is 

close to one, the pyrrhotite transition is well developed. When PM is near zero (i.e. small drop of LT-SRM), 

the magnetite overcomes the pyrrhotite contribution. Our results show an increase in PM values from the 

proximal and immature samples G20 (PM=0.55), G46 (PM = 0.73) and G31 (PM = 0.47) to the distal and 

mature samples G15 (PM=0.94) and G48 (PM=0.96) (Table 2).

4.2.2. Contact aureole samples

The magnetic mineralogy within contact aureoles was defined by samples G25, G29, G33, and G44. The 

measured NRM intensity of these samples has values ranging between 10−2 to 10−4A m–1, which is a 

magnitude higher than in the background samples (Table 2). The magnetic susceptibility measured at room 

temperature shows values ranging between 86 μSI and 164 μSI (Table 2). The saturation is reached 

between 0.3 and 0.5 Tesla for G25 and G29, thus indicating the presence of low coercivity minerals such as 

magnetite (Fig. 5c). For samples G44 and G33, the saturation is not reached, and both specimens continue 

to acquire remanence at greater field strength (1.2 Tesla) (Fig. 5c), indicating the presence of high 

coercivity minerals. Representative HT and LT demagnetisation curves are shown in figure 6 for G44, G25, 

and G29. 

The HT demagnetisation of sample G44 shows a 82 % loss of the remanence at 350°C, thus supporting a 

contribution of iron sulfides. The steady decrease of IRM from 350°C up to 600°C indicates a contribution 

from magnetite (Fig. 7a). The composite IRM is dominated by low to medium coercivity typical for 

magnetite and possible minor contribution of iron sulfides to the remanence (Fig. 7b). The RT-SIRM curve 

is characterized by an increase of remanence when cooling from 300 to 10K. This behaviour is indicative of 

goethite. The LT-SIRM curve marked a drop in remanence until room temperature is reached (Fig. 7c), 

with a gentle break-in-slope in remanence below 35/40K. The absence of both a magnetic transition at 35K A
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when cooling down the RT-SIRM (Fig. 7c), and of a Verwey transition at 120K for both RT-SIRM and 

LT-SIRM curves suggest that magnetite is oxidized or is not stoichiometric.

The high temperature demagnetisation of sample G25 is characterised by a continuous decrease of IRM up 

to 600°C indicating the presence of magnetite. Similarly to G44, the composite IRM is dominated by low to 

medium coercivity phases (Fig. 7). In this case, a contribution of iron sulfides is supported by a 65 % loss 

in remanence at 350°C. The RT-SIRM and LT-SIRM curves are comparable to G44 sample. The HT 

demagnetisation of IRM for sample G29 outlines a stepwise decrease up to 600 °C with a gentle slope-

break at around 350°C. The composite RT-IRM is dominated by the presence of low to medium coercive 

minerals, thus indicating that RT-IRM is essentially carried by magnetite and iron sulfides (greigite or 

pyrrhotite). A well-developed Verwey transition at 120K during the RT-SIRM and LT-SIRM experiments 

supports the presence of stoichiometric magnetite, and a P-behaviour that develops below 35/40K.

5. Discussion

The Svartenhuk-Disko Basin in the SE Baffin Bay volcanic margin is a case example where the effects of 

magmatic intrusions on country rocks are superimposed on burial and could be studied in detail. The 

thermal maturity analysis established for several samples in the area indicates a type-III immature to mature 

organic matter (Fig. 4). Generally, the immature samples are situated in the eastern and south-eastern parts 

of the basin where fluvial system and delta plain depositional environments dominate the sedimentary 

record (Fig. 1). The mature and over-mature samples characterize both the delta front and the pro-delta 

sedimentary successions in the western edge of the basin. Our maturity data are consistent with those 

reported in borehole GRO-3 (Fig. 8a), which reveal a depth-dependent increase in maturity with Ro values 

of 0.8% in the shallower sequences to 2.3% in the deepest units intersected in the well (Green, 2003). The 

maximum 40 to 50°C/km paleogeothermal gradient in the study area (Japsen et al., 2005) indicates a 1500 

to 2000 m eroded sedimentary thickness in the area (Fig. 8a). Similarly to the maturity of the sediment, the 

maximum burial paleotemperatures increase westward. However, local increases in maturity reflect the 

thermal effects of magma intrusions, as for example in the Umiivik-1 well situated in the SE of the 

Svartenhuk-Halvø peninsula (Dam et al., 1998b) (see Figs. 1 and 2).

5.1. Burial effect on magnetic mineralogy

In the study area, the different magnetic assemblages are specific to proximal and distal sedimentary facies, 

and are consistent with increasing vitrinite reflectance values with maximum burial temperatures. Previous 

well-documented studies show that specific changes in magnetic mineral assemblages record an increase in 

burial depth (Aubourg and Pozzi, 2010; Aubourg et al., 2012; Kars et al., 2012; Blaise et al., 2014). The 

association of iron sulfide, goethite, and oxidized or non-stoichiometric single domain magnetite A
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characterizes the immature samples. Iron sulfides are produced during early to late diagenesis by bacterial 

alteration of the detrital magnetic minerals (e.g., Canfield and Berner, 1987), while the presence of pyrite 

and greigite are attributed to the dissolution of fine-grained magnetite (e.g., Roberts and Turner, 1993; 

Rowan and Roberts, 2006; 2009). Here, thermal demagnetisation of the samples indicates that ~70% to ~90% 

of the IRM is destroyed at 350°C. The lack of a magnetic transition at 35K (Fig.6d) indicates that pyrrhotite 

is absent (e.g., Dekkers et al., 1989). Therefore, our results show that the iron sulfide involved in the 

immature claystones stage is most likely greigite, diagnosed with both a Curie temperature close to 350°C 

and a lack of low temperature magnetic transition (e.g., Roberts et al., 2011) (Fig. 8b). Greigite is naturally 

stable only in specific chemical environments (sulfur-rich and reducing) and therefore is not necessary 

present in all sedimentary basins (e.g., Roberts et al., 2011). In addition, greigite is a typically unstable 

mineral, readily transforming into pyrite, and therefore its preservation through diagenetic and post-

diagenetic processes tends to be rare (e.g., Blanchet et al., 2009). Below 282ºC, this mineral could be used 

as a valuable marker of peak temperatures reached in specific settings (Skinner et al., 1964).

The presence of goethite in our immature claystone samples (Fig. 8b) is rather unexpected because 

generally, goethite is commonly found in soils, eolian dusts, and laterites (e.g., Maher et al., 2004; Till et al., 

2015). Chemical weathering onshore Greenland is typically limited to reworked moraine and glacial 

sediments along pro-glacial and non-glacial streams, and mostly selective to carbonate minerals (Deuerling 

et al., 2019). Therefore, the typical fresh exposures in Greenland where our samples were collected suggest 

that goethite was not formed as a result of chemical alteration during weathering. Furthermore, the presence 

of the greigite, formed in anoxic conditions, together with the absence of hematite, a classic marker of 

oxidizing environment, collectively do not support a weathering process for the formation of goethite. The 

presence of goethite in our immature claystone samples is interpreted to be either inherited or formed 

during burial. Inheritance of goethite is unlikely since bacterial activity and redox conditions within the 

first meters of sediments lead to the alteration of iron oxide, including magnetite, hematite and goethite 

(Rowan et al., 2009). Instead, we can safely propose here that the goethite is formed during burial. In 

addition, goethite is most likely nano-sized based on the absence of a break in the slope near 120°C, 

corresponding to the Néel temperature of goethite (Özdemir and Dunlop, 1996), and because goethite in 

our samples does not carry a significant portion of the natural remanence.

We identified a nano-sized pyrrhotite (< 1μm) and stoichiometric magnetite assemblage with a typical P-

behavior in the early mature to mature argillaceous samples (Fig. 8b). Magnetite and fine-grained pyrrhotite 

are likely neoformed during burial as suggested by laboratory heating experiments of claystones at 95°C 

(Aubourg et al., 2008; Aubourg and Pozzi, 2010). The formation of micron-sized pyrrhotite in sediments is 

generally related to a temperature increase in anoxic conditions (Rochette, 1987).A
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Interestingly, we noticed a lower value of magnetic susceptibility at room temperature (Table 2) in the 

samples showing an increase in burial depth (G46, G50, G31, G51, G49, G20, G14, G19 G38, G15 and 

G48 see Fig. 4c and Tables 1 and 2) without any thermal influence of magma intrusion. This enigmatic 

decrease in magnetic susceptibility could be due to changes in mineralogy, concentration, and magnetic 

grain size distribution (e.g., Katz et al., 1998). Here, the HT demagnetization of the IRM shows the 

disappearance of the iron sulfide greigite (Fe3S4) and rise in magnetite (Fe3O4) following an increase in 

burial depth, from G46, G20, G38, G19, to G15 (Fig.9a). We observe a decrease in influence of iron 

sulfides on the magnetic signature at 350 °C, from ~80% (G46, G20 and G38) to 70% for G19 and 42% for 

G15. The RT-SIRM curves show a different trend between the immature samples and the early/to mature 

samples (Fig. 9b). For the LT-SIRM (for the increasing burial samples) (Figure 9c), we notice a decrease of 

remanence from 10K to 300K. The LT-SIRM shifted downward (more than two order of magnitude for 

G48) with increasing burial paleotemperatures. Aubourg and Pozzi (2010) and Kars et al., (2012) obtained 

similar results in heating experiments from 50°C to 130°C. The magnitude of this drop is larger for the 

deepest sample (high Ro and consequently high paleotemperature). 

In the study area, magnetite was detected in almost all samples that experienced a burial temperature above 

250 °C. Many studies reported also the occurrence of SD magnetite in rocks that experienced similar 

temperatures (e.g., Aubourg and Pozzi, 2010; Abdelmalak et al., 2012a; Blaise et al., 2014), and even wider 

temperature range from ~60 °C to >200 °C, or from the oil and beyond the gas windows (e.g., Cairanne et 

al., 2004; Aubourg et al., 2012; Kars et al., 2012). In addition, we also observed a P-behavior in our 

samples, indicating the occurrence of micron-sized pyrrhotite (<1 μm). Our results further show that 

temperatures did not exceed 200°C, with Ro values suggesting a maximum paleotemperature at around 

170°C (G48) for background samples. The absence of a Besnus transition at 35 K in our samples indicates 

that> 1 μm pyrrhotite is absent (Aubourg et al., 2012), and that the paleotemperature in the study area did 

not exceed 350°C (Aubourg et al., 2019).

An increase in values of PM from 0.47 to 0.96 is noticed (Table 2) from the proximal samples (G46, G50, 

and G31, with the exception of G51) to the distal and deeper samples (G19, G15, and G48). The increase of 

PM values with increasing burial temperatures has been observed by Aubourg and Pozzi (2010) and Kars et 

al., (2012). Aubourg and Pozzi (2010) proposed a model of PM evolution with temperature characterized 

by a PM-up branch with an increase of PM value from ~50°C to a maximum value of ~90°C followed by 

PM down branch with a decrease of PM values from ~90°C to 250°C. Unfortunately, the limited number of 

samples in this study does not allow us to draw a clear evolution trend for the PM parameter. 

5.2. Magma intrusion effect on magnetic mineralogyA
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With an additional thermal effect caused by magma intrusions, the magnetic signature of the samples 

became more complex. The vitrinite reflectance (Ro) of the proximal shallow marine claystone samples 

generally indicates that the sediments are immature, with values below 0.5%, except for the samples G33 

and G44 collected within contact aureoles, with mature Ro values of 0.77% and 1.22%, respectively. The 

samples in more distal and deeper basinal settings G25 and G29 are mature to over-mature with respective 

Ro values of 0.89% and >2%, thus indicating an estimated maximum paleotemperature between 130°C to 

more than 190°C.

The HT-IRM demagnetization curves for samples G25, G44, and G29 show about 65 to 80% loss of 

magnetisation between room temperature and 350°C. The maximum unblocking temperature ranges 

between 500 and 600°C (Fig. 9d). These results indicate that the mineral assemblage in our samples is a 

mixture of iron sulfide (greigite) and magnetite. Sample G29 shows a Verwey transition at 120K indicative 

of stoichiometric magnetite, and a P-behaviour below 35/40K supporting the presence of micron-sized 

pyrrhotite (Fig. 9e).

The RT-SIRM curves show a similar trend for G33, G25, and G44 samples, but a different behavior is 

observed in sample G29 (Fig. 9e) with a decrease of the LT-SIRM from 10K to 300K (Fig. 9f). The 

increasing thermal effect could be the most likely explanation of the large drop of LT-SIRM (more than 

one order of magnitude) for sample G29 collected in the contact aureoles. Magnetite is interpreted to be the 

dominant magnetic mineral inside the contact aureole of the dyke/sill intrusions. The changes of magnetic 

signature at HT and LT could indicate a complex change in magnetite concentration in the heated 

sediments around an intrusion. 

Similarly, Katz et al. (1998) showed that authigenic magnetite is the dominant magnetic phase in claystone 

within contact aureoles around intrusions. In addition, pyrrhotite may also be present closer to the intrusion 

contact where paleotemperatures were above 220°C, (Katz et al., 1998). In the East Greenland volcanic 

margin, Aubourg et al. (2014) reported the occurrence of >1μm pyrrhotite, characterized by a well-

developed Besnus transition at 35 K, in sediments sampled in the thermal aureole of a magmatic intrusion. 

Therefore, the pyrrhotite detected in our samples is most likely related to contact metamorphism where 

paleotemperature exceeded 250 °C. In the Siberian Tunguska Basin, the Norilsk Nickel type of massive 

iron-sulfide deposits are composed of ca. 90% of pyrrothite (Malitch et al., 2014). These ore deposits are 

several tens of kilometers long and up to 45 m thick, andare located within the contact aureoles or inside 

the intrusions. In the outer Vøring Basin offshore mid-Norway, magnetotelluric data showed the presence 

of a highly conductive anomaly in heavily sill intruded sedimentary strata (depth ranging between 8–13 km 

and temperature between 250 and 400°C) (Corseri et al., 2017). These authors interpreted this geophysical 

anomaly to represent thick pyrrhotite-dominated ore bodies within the intrusion's contact metamorphic A
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aureoles. A study of the magnetic behaviour of natural pyrrhotite in the KTB ultra-deep borehole in 

Germany suggests that pyrrhotite overwhelmingly dominates at depths >8000 m or when in-situ 

temperatures exceed 230°C (Kontny et al., 2000). In our samples, the maximum temperature did not exceed 

200°C, a conclusion based on a P-behavior indicative of micron-sized pyrrhotite (<1 μm) and elevated 

vitrinite reflectance value for G29 (Ro > 2%).

An important question relates to the origin of magnetite in the sediment samples near the magma intrusions, 

where chemical processes are either dominated by hydrothermal circulations or by heating. Hydrothermal 

fluids can cause alteration and subsequent precipitation of authigenic magnetite in a contact aureole (Ferry, 

1991), or during alteration episodes (e.g., Jackson et al., 1988). In our samples, hydrothermal fluids had at 

best a negligible influence since the maturity of the organic matter are directly related to the thermal 

influence of the intrusion with changes in parameters following the normal heat diffusion distribution, as 

opposed to more random distribution that would be caused by fluid circulation with the contact aureole.

Despite the increase of temperatures, the iron sulfide greigite is still present in samples G25, G44, and G29 

collected within the contact aureoles (Fig. 7), while samples affected only by burial processes have their 

greigite transformed into magnetite and fine-grained pyrrhotite (Figures 6 and 9a). Such observation has 

not previously been reported in lab simulations where the heating rates (1°C/mn) are very different from 

the natural heating rates, which are on the order of 5°C/My (e.g., Sweeney and Burnham, 1990). In addition, 

all of the experiments were performed at atmospheric pressure (0.1 MPa) (e.g., Kars et al., 2012), thus not 

simulating realistic burial conditions. Therefore, the differences between the lab experiments and our field 

samples on magnetic assemblage could be explained by the increase of the confining pressure (e.g., Bruijn 

et al., 2013). 

5.3. Implications

The reconstruction of the thermal evolution of sedimentary basins is of key importance for evaluating 

their burial history and hydrocarbon potential (e.g., Suggate, 1998). Therefore, the thermal maturity of 

sediments should be measured using methods that collectively provide reliable results in both sedimentary 

and volcanic basins. The most common routine geothermometers include Rock-Eval pyrolysis (Tmax) and 

vitrinite reflectance (Ro) data, since both parameters allow inferring the maturity of organic matter in 

sedimentary sequences. Tmax and Ro values are sensitive to the type of organic matter in the sediments, 

and to the temperature evolution (e.g., Sweeney and Burnham, 1990). Therefore, these geothermometers 

are lithology-specific methods that are mostly applicable to organic rich sequences. In addition, our results 

show that Tmax and vitrinite reflectance are not reliable in the case of volcanic basins for confidently 

identifying contact aureoles. Similarly, Senger et al (2014) did not observe a clear trend in their Tmax data 

towards a dolerite intrusion on Svalbard. Instead, contact aureoles are defined by a combination of changes A
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that increase towards the intrusions, in particular with organic matter depletion, occurrence of metamorphic 

minerals, increase in carbon isotope fractionation, increase in fracturing, and drop in micro-porosity 

(Senger et al., 2014). These changes are attributed to be the result of devolatilization and decarbonation 

reactions by heating the country rocks (Aarnes et al., 2010; Aarnes et al., 2011; Senger et al., 2014).

The maturity parameters should also be independent from the type and content of organic matter in 

order to provide more reliable constraints on the basin’s thermal history (Abdelmalak et al., 2012a; Blaise 

et al., 2014; Maré et al., 2014). To this effect, Aubourg and Pozzi (2010) proposed that magnetic mineral 

assemblage of claystones can be diagnostic of peak temperatures during burial. Furthermore, Aubourg et al. 

(2012) showed that the contours of a magnetic paragenesis define three successive magnetic windows in 

which greigite, magnetite and pyrrhotite occur with increasing burial depths. In this contribution, we 

suggest that the magnetic mineralogy of sediments can be used to confidently evaluate both the thermal 

maturity of sediments by burial (Fig. 8b) and by contact metamorphism. As opposed to the routine Tmax 

and vitrinite reflectance parameters, the magnetic mineralogy method does not appear to be influenced by 

the composition of sediments in organic matter, and furthermore seems to work in both volcanic and non-

volcanic basin settings.

The use of the magnetic mineralogy method to estimate the thermal maturity of sedimentary sequences 

is relevant since volcanic basins are very common along conjugate margins that were formed by continental 

breakup and ocean opening. There, the (heavily intruded) pre-breakup sedimentary sequences and prolific 

source rock intervals may be over-mature in a contact aureole, and in the oil window just a few tens of 

meter away. This contributions shows that the magnetic mineralogy appears to be a good tool to 

confidently identify a metamorphic contact aureole in a borehole when the related magmatic intrusion have 

not been intersected in a borehole, or when the magmatic intrusion is bellow seismic resolution (i.e. vertical 

dyke or thin sill).

6. Conclusion

We have investigated the thermal effects of magmatic intrusions superimposed on normal burial processes 

on the magnetic mineral assemblages for samples collected in the Disko-Svartenhuk Basin situated in the 

central west Greenland. The magnetic properties of the samples form a trend following burial depth. The 

magnetic mineral assemblage consisting of greigite, goethite and oxidized or non-stoichiometric magnetite 

characterizes the immature samples, while stoichiometric magnetite and fine-grained pyrrhotite are typical 

for the early mature to mature samples. In addition, with increasing burial depth and subsequently 

paleotemperature, we noticed the disappearance of greigite following a rise in magnetite content.
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In the metamorphic contact aureole of sill and dyke intrusions, magnetite is interpreted to be the dominant 

magnetic mineral when the temperatures did not exceed 200°C. In the proximal and shallow samples 

affected by magma intrusions, iron sulfides are still detected at temperature above 130°C. Intrusion-induced 

heating effect could be considered as analogue to burial heating, but some differences might exist when 

shallow sediments are intruded. Furthermore, the magnetic mineralogy is an effective geothermometer that 

appears to work in a wide range of basin settings since the method is independent of organic matter type 

and content. Therefore, this method can be used to build confidence on constraining the evolution of 

sedimentary basins by evaluating the thermal maturity of sediments given by the more standard Rock-Eval 

pyrolysis and the vitrinite reflectance methods. 
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Figures caption

Figure 1. (a) Simplified geological map of the Disko-Svartenhuk Basin (based on the Geological Survey of 

Denmark and Greenland maps and Chalmers et al., 1999). The locations of the 16 claystones samples are 

indicated. (b) Paleogeographic reconstruction of the studied area during the Cretaceous time (Abdelmalak, 

2010). The proximal sedimentary facies are situated to the south and eastern part of the studied area and 

consist mainly of the fluvial channel and the delta plain deposits. The distal sedimentary facies are located 

to the west and northwestern part of the studied area and consist mainly of the delta front and the prodelta 

deposits. Arrows indicate the direction of the sediment transport.

Figure 2. Lithostratigraphic position of the samples in the Itsako and Qeqertarsuaq islands (Dam et al., 

2009) shown in log and in the AB cross section. The location of the Umiviik-1 borehole is indicated. The 

proximal samples are represented by G20, G31, G33 and G44; the distal samples are represented by G25, 

G29 and G38. Samples G44, G33, G25 and G29 are comprised within the thermal aureole effect of magma 

intrusions.

Figure 3. Microphotographs of dispersed organic matter in samples from this study. Immature samples 

contain well-preserved plant debris (G31, G46 and G50), and large and angular vitrinite particles (G46, 

G49 and G31) with pyrite and framboid pyrite particles. Mature samples contain smaller virtinite particles 

(G15, G48 and G38). Microphotographs of samples G29, G25 and G44 show dispersed organic matter in 

samples collected within the metamorphic contact aureoles. Vitrinite (1) is autochthonous, and vitrinite (2) 

is reworked and allochthonous. 

Figure 4. (a) Hydrogen index (HI) versus Oxygen index (OI) diagram. The burial trend and the different 

types of organic matter (OM as marine-derived type II and the higher plants derived type III) are indicated. 

(b) Tmax (°C) versus Vitrinite reflectance Ro (%) diagram. The grey shaded area corresponds to the 

Ro/Tmax correlation for type III OM after Teichmüller and Duran (1983). The oil window is indicated by a 

black box. The samples affected by thermal aureole are represented in red. (c) Dimensionless magnetic 

susceptibility χ (μSI) versus Vitrinite reflectance Ro (%) diagram. 

Figure 5. Isothermal Remanent Magnetization (IRM) acquisition curves for the: (a) immature samples, (b) 

early mature to mature samples and (c) mature samples taken in the thermal aureole of magma intrusions. 

We plot the normalized IRM to the value of IRM at 1.2T.

Figure 6. Representative results of immature claystones (G46 G31 and G2) and early mature (G19 and 

G15). (a) Histogram of the reflectance of vitrinite (Ro%). The Tmax from Rock-Eval analysis are indicated. 

(b) Normalized demagnetization of isothermal remanent magnetization (IRM). (c) The high temperature A
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magnetic curves from warming of a composite IRM acquired at room temperature following Lowrie’s 

(1990) protocol. (d) The low temperature magnetic curves from RT-SIRM demagnetization curve on 

cooling and LT-SIRM demagnetization curves (10K-300K) on warming. We normalized RT-SIRM and 

LT-SIRM to the value of RT-SIRM at 300 K and LT-SIRM at 10 K respectively.

Figure 7. Magnetic signature for samples taken in the thermal aureole of magma intrusion. (a) Normalized 

high temperature demagnetization of isothermal remanent magnetization (IRM). (b) High temperature 

magnetic curves from warming of a composite IRM. (c) Low temperature magnetic curves from RT-SIRM 

demagnetization curve on cooling and LT-SIRM demagnetization curves (10K-300K) on warming. The 

Tmax values from Rock-Eval analysis are indicated.

Figure 8. (a) paleotempereature and vitrinite reflectance data of the Gro-3 well (See Fig. 1 for location) 

situated west of Nuussuaq based on the Christiansen et al. (1999) well data assuming a geothermal gradient 

ranging between 40 and 50 °C/km (Japsen et al., 2005). The removed section is indicated and the depth is 

corrected. (b) Model showing the formation of magnetic mineral as a function of organic matter maturity 

and temperature using samples of this study.

Figure 9. (a) Normalized high temperature demagnetization of isothermal remanent magnetization (IRM) 

with increasing burial. (b) RT-SIRM evolution of samples with increasing burial. (c) LT-SIRM evolution 

of samples with increasing burial. (d) Normalized high temperature demagnetization of IRM with 

increasing effect of magma intrusion. (e) RT-SIRM evolution of samples with increasing magmatic thermal 

effect. (f) LT-SIRM evolution of samples with increasing thermal effect from magma intrusions. The 

paleotemperature (on c and f) and the PM parameter (on b and e) are indicated. 

Tables caption

Table 1: Sample location, Rock-Eval, Vitrinite reflectance results, and estimated paleotemperatures.

Table 2: Magnetic data of the claystone samples. 
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  Table 1:             

Sample 

    Location   Rock-Eval   Vitrinite 
Paleotemperature 

 (°C) 
Maturity Sedimentary 

facies 
 Lat  (° N) Long (° W) 

Elevation 

(m) 
 

Tmax 

(°C) 
TOC HI OI 

 

Ro 

(%) 
±std N 

  
 

 

  

              

 

G46 Proximal 

In
creasin

g
 b

u
rial d

ep
th 

70° 37.52' 52° 20.94' 203 
 

429 4.01 43 73 

 

0.37 0.12 91 55 immature 

G50 Proximal 70° 18. 02' 52° 54.74' 64 
 

433 6.38 33 53 

 

0.46 0.09 100 64 immature 

G31 Proximal 71° 43.81' 53° 46.97' 134 
 

429 2.19 44 54 

 

0.47 0.07 100 67 immature 

G51 Proximal 70° 03.27' 52° 17.18' 0 
 

433 3.71 69 25 

 

0.49 0.10 100 71 immature 

G49 Proximal 70° 22.35' 53° 35.00' 0 
 

431 9.24 63 23 

 

0.48 0.08 100 69 immature 

G20 Proximal 71° 10.02' 52° 29.22' 0 
 

432 2.13 32 56 

 

0.58 0.10 100 89 immature 

G14 Proximal 70° 45.87' 53° 03.39' 212 
 

432 6.52 83 15 

 

0.59 0.09 100 90 immature 

G19 Distal 70° 44.43' 52° 44.83' 0 
 

428 3.49 119 12 

 

0.6 0.11 100 92 mature 

G38 Distal 71° 33.97' 53° 55.20’ 175 
 

422 7.09 32 33 

 

0.62 0.13 100 96 mature 

G15 Distal 70° 45.16' 53° 22.35' 55 
 

430 4.38 79 8 

 

0.91 0.15 100 130 mature 

G48 Distal 70° 47.28' 53° 45.62’ 0 
 

550 6.55 22 5 

 

1.57 0.14 60 170 overmature 

 

  

             

  

G33 Proximal 

In
tru

sio
n

 

effect 

71° 37.06' 53° 26.52’ 0 
 

442 2.75 89 18 

 

0.77 0.08 84 115 mature 

G25 Distal 71° 42.77' 53° 47.09' 698 
 

475 1.02 7 38 

 

0.89 0.25 100 130 mature 

G44 Proximal 71° 09.45' 52° 56.92' 0 
 

446 2.15 64 13 

 

1.22 0.26 100 155 mature 

G29 Distal 71° 38.22' 53° 47.30' 0 
 

604 3.18 3 11 

 

>2 
 

40 >190 overmature 

 
  

         
 

 
   

 

G52 Proximal Alteration 70° 04.37’ 52° 10.16' 447 
 

436 10.75 122 27 

 

0.68 0.09 100 105 mature 
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Table 2         

     

χ (μ) 
300K RT-NRM 

A/m 

300K RT-IRM 

A/m 

Per cent 

350° C 

300K RT-SIRM 

mAm²/Kg 

10K LT-SIRM 

mAm²/Kg 

35K LT-SIRM 

mAm²/Kg 
PM 

Sample Mass (g) 

   
  

     G46 4.38 215 8.84E-04 1.76E-01 83 553 1.60E-02 4.37E-03 0.73 

G50 5.6 142 7.45E-04 1.05E-02 - 43 1.32E-03 3.45E-04 0.74 

G31 4.38 106 1.24E-03 6.99E-03 93 74 7.01E-04 3.74E-04 0.47 

G51 4.62 547 1.17E-03 6.23E-02 98 80 1.47E-02 8.90E-04 0.94 

G49 4.6 107 1.07E-03 4.14E-02 52 34 2.73E-03 1.06E-04 0.96 

G20 6.19 151 5.88E-04 3.91E-02 89 14 1.93E-03 8.66E-04 0.55 

G14 5.66 47 6.80E-04 3.58E-03 53 14 3.49E-04 3.84E-05 0.89 

G19 6.09 21 7.12E-04 4.60E-03 70 21 4.95E-04 5.50E-05 0.89 

G38 2.85 54 1.12E-03 1.91E-02 80 80 1.03E-03 5.45E-04 0.47 

G15 9.8 61 1.30E-03 2.44E-02 42 41 1.80E-03 1.04E-04 0.94 

G48 2.94 43 3.37E-04 4.95E-03 74 13 1.65E-03 6.57E-05 0.96 

   
  

     G33 2.13 98 1.22E-03 7.61E-03 - 55 9.53E-04 2.66E-04 0.72 

G25 7.08 164 1.44E-02 1.32E-02 65 51 3.86E-03 3.18E-04 0.92 

G44 3.53 159 7.19E-04 2.40E-02 82 68 1.71E-03 5.66E-04 0.67 

G29 4.57 86 1.26E-03 9.00E-03 78 20 1.36E-03 7.81E-05 0.94 

 
  

  
  

   

 
Tmax: temperature at maximum release of hydrocarbons; TOC: Total Organic content (wt%); HI: Hydrogen Index (HI, mg HC/g TOC); OI: Oxygen Index (OI, mg 

CO2/g TOC); Ro: vitrinite reflectance; std: standard deviation; N: number of measurements per sample.  
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G52 2.81 97 7.36E-04 9.67E-03 85 253 1.77E-03 6.43E-04 0.64 

      
  

 

        

 χ: magnetic susceptibility (dimensionless); RT-NRM:  room temperature natural remanent magnetization; RT-IRM: room temperature isothermal remanent 

magnetization; Per cent 350° C: drop of magnetisation at 350° C; RT-SIRM: room temperature IRM at saturation; PM=(LT-SIRM10K−LT-SIRM35K) /LT-SIRM10K 

(Aubourg and Pozzi, 2010).  
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