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Methane is the final product of the anaerobic decomposition of organic matter. The
conversion of organic matter to methane (methanogenesis) as a mechanism for energy
conservation is exclusively attributed to the archaeal domain. Methane is oxidized
by methanotrophic microorganisms using oxygen or alternative terminal electron
acceptors. Aerobic methanotrophic bacteria belong to the phyla Proteobacteria and
Verrucomicrobia, while anaerobic methane oxidation is also mediated by more recently
discovered anaerobic methanotrophs with representatives in both the bacteria and the
archaea domains. The anaerobic oxidation of methane is coupled to the reduction of
nitrate, nitrite, iron, manganese, sulfate, and organic electron acceptors (e.g., humic
substances) as terminal electron acceptors. This review highlights the relevance of
methanotrophy in natural and anthropogenically influenced ecosystems, emphasizing
the environmental conditions, distribution, function, co-existence, interactions, and
the availability of electron acceptors that likely play a key role in regulating their
function. A systematic overview of key aspects of ecology, physiology, metabolism, and
genomics is crucial to understand the contribution of methanotrophs in the mitigation
of methane efflux to the atmosphere. We give significance to the processes under
microaerophilic and anaerobic conditions for both aerobic and anaerobic methane
oxidizers. In the context of anthropogenically influenced ecosystems, we emphasize
the current and potential future applications of methanotrophs from two different angles,
namely methane mitigation in wastewater treatment through the application of anaerobic
methanotrophs, and the biotechnological applications of aerobic methanotrophs in
resource recovery from methane waste streams. Finally, we identify knowledge gaps
that may lead to opportunities to harness further the biotechnological benefits of
methanotrophs in methane mitigation and for the production of valuable bioproducts
enabling a bio-based and circular economy.

Keywords: methanotrophy, application, methane, resource recovery, microbial ecology, climate change,
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INTRODUCTION TO METHANE AND
METHANE MICROBIOLOGY

Methane
Methane represents the most reduced form of carbon, is an
important fuel for the global economy, and a greenhouse gas
(GHG) in the atmosphere. It has a higher heat retentive capacity
compared to CO2, estimated at 34 times higher in a 100-
year timeframe and 86 times higher in a period of 20 years
[Intergovernmental Panel on Climate Change (IPCC), 2018].
Furthermore methane concentration has been continuously
increasing to approximately 1857 ppb in 2018, 2.6 times higher
than in the preindustrial times (Saunois et al., 2020) making it a
critical environmental concern for climate change (Myhre et al.,
2013; Etminan et al., 2016; Dean et al., 2018).

Methane originates from abiogenic, thermogenic and
biogenic microbial sources. In this work, we focus on biogenic
methanogenesis by methanogenic archaea; which liberate
methane as the end-product from biological decomposition of
organic matter as a mean of energy conservation (McInerney and
Bryant, 1981; Conrad, 2009; Drake et al., 2009). Methanogenic
archaea are present in diverse environments such as wetlands,
peatlands, rice agriculture soil, livestock (enteric fermentation
in ruminants), landfills, oceans and termites; representing
approximately 70% of all sources of methane emissions to the
atmosphere (Conrad, 1996; Kirschke et al., 2013). Among these
methane sources, agriculture (e.g., rice paddy fields), livestock
farming, waste and wastewater treatment (WWT), and fossil
fuels are subject to significant human-driven intensification,
linked to an expanding global population that demands for
supply and in return produce more waste and increase emissions
[Intergovernmental Panel on Climate Change (IPCC), 2015;
Wolf et al., 2017].

Most recent estimations from data over the past decade
(2008–2017) indicate a total average net methane production
of 737 Tg CH4 year−1 from all sources (ranging from 594 to
881 Tg CH4 year−1) (Figure 1), whereas total terrestrial and
aquatic sinks are estimated at an average of 625 Tg CH4 year−1

(ranging from 500 to 798 Tg CH4 year−1) leaving a positive
net average balance of 112 Tg CH4 year−1 escaping into the
atmosphere (Saunois et al., 2020). However, the net emissions
may be underestimated because of methane emissions from
the novel and environmentally damaging practice of shale gas
extraction (fracking) (Umeozor et al., 2018; Howarth, 2019).
Similarly, estimations of methane emissions from wastewater
treatment are scarce and accurate determinations are limited
(Nguyen et al., 2019) (in detail in Section “Fate of Methane
and Application Potential of Anaerobic Methanotrophs in
Wastewater Treatment”). In addition, methane estimations are
likely to vary significantly with increasing global temperatures,
making the estimations, control and mitigation of methane of
crucial importance to control global warming (Collins et al.,
2018). From all anthropogenic sources, livestock, waste and
WWT, and rice cultivation represent approximately 57% of the
total anthropogenic methane emissions indicating the need for
better understanding and development of methane mitigation

strategies and the microbial processes that regulate the methane
cycle (Conrad, 2009). Interestingly, methane has been postulated
as the most cost-effective carbon feedstock for microbial chemical
production, surpassing the cost competitiveness of chemical
methanol or glucose from plant-derived sources. This opens
opportunities for the application of methanotrophs to counteract
methane emissions while producing valuable compounds derived
from their metabolism (Section “Applications of Aerobic
Methanotrophs in a Circular Economy”) (Comer et al.,
2017). The following sections provide an overview of both
methanogenesis and methanotrophy as microbial processes
regulating methane fluxes worldwide.

Methanogenesis
During the degradation of organic matter, commonly referred as
anaerobic digestion (AD), a limited number of archaeal groups
are known to produce methane in the final stage of AD, namely
methanogenesis, using CO2, hydrogen, acetate, or methylated
compounds as substrates coupled to the generation of energy
for growth and carbon fixation (Liu, 2010; Sieber et al., 2010;
Conrad, 2020). Despite substrate variation, methanogenesis is in
all cases carried out through the action of the Methyl coenzyme
M reductase (McrA) enzyme (Thauer, 1998).

Until very recently, only seven orders from the
Euryarchaeota phylum were recognized as methanogenic
archaea: Methanobacteriales, Methanocellales, Methanococcales,
Methanomicrobiales, Methanomassiliicoccales, Methano-
sarcinales, and Methanopyrales (Liu, 2010; Enzmann et al.,
2018). Today, it is known that putative methanogenic
archaea are spread beyond the Euryarchaeota. Through
the application of in-depth genomic sequencing the
classification and diversity of methanogenic archaea has
rapidly evolved. Currently, methanogenic archaea have
representatives in 4 recognized superphyla: Euryarchaeota,
TACK (Thaumarchaeota, Aigarchaeota, Crenarchaeota, and
Korarchaeota), DPANN (Diapherotrites, Parvarchaeota,
Aenigmarchaeota, Nanoarchaeota, and Nanohaloarchaeota),
and the Asgard superphylum (Evans et al., 2015; Lloyd, 2015;
Vanwonterghem et al., 2016; Castelle and Banfield, 2018; Zhou
et al., 2018; Berghuis et al., 2019; Dombrowski et al., 2019;
Macleod et al., 2019).

Methanotrophy
Methanotrophic microorganisms oxidize methane to harness
energy under oxic and anoxic conditions using a range of diverse
electron acceptors. Methanotrophy was initially reported in 1906
as an oxygen-dependent process and for almost a century, aerobic
methanotrophy was considered as the only biological pathway
to oxidize methane and that all methanotrophs belonged to
the Proteobacteria phylum (Figure 2; Whittenbury et al., 1970;
Hanson and Hanson, 1996). However, discoveries in the last
two decades have broadened the view of methanotrophy with
the identification of microorganisms outside the proteobacteria
phylum and even in the archaea domain, capable of oxidizing
methane anaerobically using alternative electron acceptors such
as sulfate, nitrite, nitrate, iron and manganese (Figure 2). In
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FIGURE 1 | Methane emissions from 2008 to 2017, using a bottom-up approach (based on Saunois et al., 2020). Only average values are shown. The category
“Human primary activities” is the focus of this review, methanotrophs receive special attention in wastewater treatment regarding their potential to mitigate GHG
emissions and valorization of waste (Sections “Fate of Methane and Application Potential of Anaerobic Methanotrophs in Wastewater Treatment” and “Applications
of Aerobic Methanotrophs in a Circular Economy”).

the next sections aerobic and anaerobic methanotrophy and
metabolic pathways are described in chronological order.

Aerobic Methanotrophs
Aerobic methane oxidation is catalyzed by particulate and soluble
methane monooxygenases (pMMO and sMMO, respectively).
These enzymes oxidize methane to methanol, and subsequently,
methanol dehydrogenases (MDHs) further oxidize methanol
to formaldehyde (Keltjens et al., 2014). After formaldehyde,
two more oxidation steps are involved and the intermediates
are used for carbon assimilation, for a detailed description
on methanotrophy see Dedysh and Knief (2018). Aerobic
methanotrophs belong to the Gammaproteobacteria (Type
I, with families Methylococcaceae and Methylothermaceae),
Alphaproteobacteria (Type II, with families Methylocystaceae
and Beijerinckiaceae), and the Verrucomicrobia phyla (family
Methylacidiphilaceae) (Figure 2, based on van Teeseling
et al., 2014; Dedysh and Knief, 2018). Verrucomicrobial
methanotrophs are likely to play a critical role in methane
oxidation in extreme environments where they were initially

discovered (i.e., geothermal and volcanic environments)
(Dunfield et al., 2007; Pol et al., 2007; Islam et al., 2008),
whereas proteobacterial methanotrophs are also found and
active in environments with extreme conditions besides volcanic
soils (i.e., acidic wetlands, thermal springs, thermal lakes, and
peat soils) (Kolb and Horn, 2012; Islam et al., 2020, 2021;
Kaupper et al., 2020; Hogendoorn et al., 2021). While most
aerobic methanotrophs possess the pMMO, Methylocella and
Methyloferula (Alphaproteobacteria, Beijerinckiaceae) harbor
only the sMMO (Dedysh and Dunfield, 2016). Proteobacterial
methanotrophs can be distinguished based on their taxonomy,
carbon metabolism, morphology, and ecological life strategies
among other features (Hanson and Hanson, 1996; Ho et al.,
2013a; Knief, 2015; Dedysh and Knief, 2018; Hakobyan and
Liesack, 2020). All pMMO-containing methanotrophs use
copper as the catalytic metal in the first step of methane
oxidation to methanol; in methanotrophs harboring both the
pMMO and sMMO, copper suppresses the expression of the
sMMO (Knapp et al., 2007; Trotsenko and Murrell, 2008)
which require iron as they belong to a diverse enzymatic
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FIGURE 2 | 120 years of methanotrophy depicted in a clock-based timeline, each hour on the clock represents one decade. The most relevant findings are depicted
highlighting all recognized methanotrophic groups categorized according to their phylogenetic classification. Seven major milestones in methanotrophy are included,
representing the most noteworthy microbial discoveries. (1) In brown, the discovery of aerobic canonical methanotrophy in 1906. On the right, all the known genera
according to phylogenetic classification are listed (based on Dedysh and Knief, 2018). (2) In yellow, the discovery of sulfate-dependent anaerobic oxidation of
methane (S-dAOM). This process is performed by three defined groups of AN-aerobic ME-thanotrophic archaea (ANME) within the Euryarchaeota phylum. (3) In red,
aerobic methanotrophy within the Verrucomicrobia phylum. (4) In blue, nitrate-dependent anaerobic oxidation of methane (N-dAOM) by Methylomirabilis bacteria.
(5–7) In green, nitrate-, iron-, and manganese-dependent anaerobic oxidation (N-dAOM and Metal-dAOM) of methane by diverse cultured species of the
Methanoperedenaceae family.

family of di-iron carboxylate enzymes (sDIMO) (Crombie and
Murrell, 2014; Nichol et al., 2019). Strikingly, Verrucomicrobial
methanotrophs and specific proteobacterial methanotrophs (e.g.,
Methylocella) rely on lanthanide metals for the second step of
methanol oxidation as the catalytic driving force in MDHs from
the XoxF family (Pol et al., 2014; Farhan Ul Haque et al., 2019;
Smith and Wrighton, 2019). For a detailed review on the diversity
of sDIMO methanotrophs, see Farhan Ul Haque et al. (2020).

Anaerobic Methanotrophs
The Anaerobic Oxidation of Methane (AOM) was first observed
in marine sediments where methane consumption was linked to
the presence of sulfate (Knittel and Boetius, 2009). However, the
biology of this process was never fully characterized likely due
to the lack of advanced cultivation and genomic technologies;
furthermore, archaea were not yet discovered at the time thus
a potential consortium of bacteria was hypothesized (Reeburgh,
1976; Reeburgh and Heggie, 1977; Zehnder and Brock, 1980).
Two decades later, with the reclassification of living organisms

(Woese and Fox, 1977; Fox et al., 1977), archaea were identified
as the most likely cause for methane consumption based on
carbon isotope studies (Hinrichs et al., 1999). Shortly after,
the microbiology behind this process was described as sulfate-
dependent anaerobic methane oxidation process (S-dAOM) by
a microbial consortium consisting of sulfate-reducing bacteria
(SRB) and methanotrophic archaea (Boetius et al., 2000). The
identity of the Anaerobic Methanotrophic archaea (ANME) was
confirmed soon after, currently classified as ANME 1, 2, 3
(Figure 2; Hinrichs et al., 1999; Boetius et al., 2000; Orphan
et al., 2001; Niemann et al., 2006). The mechanism behind
the oxidation of methane was identified as a reverse reaction
of the canonical final step in the methanogenesis pathway
(Krüger et al., 2003; Hallam et al., 2004). Interestingly, the
reversibility of the last step of methanogenesis can also be
encountered in canonical methanogens where iron minerals
are known to stimulate methanotrophy in methanogens (Bar-
Or et al., 2017). Furthermore, model methanogens such as
Methanosarcina barkeri are known to oxidize methane through
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extracellular electron transfer (EET), referred as electrogenic
anaerobic methane oxidation (Yu et al., 2021).

With the identification of archaea as the responsible
microorganisms for the S-dAOM process in marine ecosystems,
it became evident that methanotrophy is possible with alternative
electron acceptors besides oxygen. In freshwater ecosystems,
nitrogen oxyanions such as nitrite and nitrate are more abundant
than sulfate, and thermodynamically suitable to support other
microbial processes using methane as the energy source, a process
commonly referred as nitrogen-dependent anaerobic methane
oxidation (N-dAOM) (Reeburgh and Heggie, 1977; In ’t Zandt
et al., 2018a). After initial indications of methane oxidation
occurring under anoxic conditions coupled to denitrification in
WWT (Sollo et al., 1976), a microbial consortium of bacteria from
the novel NC10 phylum (Holmes et al., 2001) and archaea from
the former ANME-2d group performing this process (currently
Methanoperedenaceae), was identified from anoxic sediments in
agricultural soil (Raghoebarsing et al., 2006). The bacterium
from the NC10 phylum, “Candidatus Methylomirabilis oxyfera”
(Figure 2) was identified as the microorganism capable of
oxidizing methane at the expense of nitrite as electron acceptor
(nitrite-dAOM) (Ettwig et al., 2008). “Ca. M. oxyfera” harbored
all the genes necessary to perform conventional aerobic methane
oxidation via pMMO and MDH enzymes (Ettwig et al., 2010).
The presence of these genes was inconsistent for a bacterium
of anaerobic nature and highly susceptible to oxygen, it was
then postulated that oxygen was formed from the dismutation
of nitric oxide produced from nitrite reduction, this oxygen
produced intracellularly, would then be used to oxidize methane
via an intra-oxygenic pathway (Figure 3) (Wu et al., 2011;
Ettwig et al., 2012). To date, the accurate characterization of

the putative nitric oxide dismutase enzyme remains elusive and
limited to the detection of these enzymes in environmental
samples and candidate genes in enrichment cultures (Wu
et al., 2015; Zhu et al., 2017, 2020; Versantvoort et al., 2018).
Furthermore, the relevance of lanthanides as an essential metal
for the oxidation of methanol, extends into the NC10 phylum
where lanthanide-dependent MDH enzymes are seemingly more
important and widespread than previously thought (Wu et al.,
2015). To date, all bacteria capable of performing nitrite-
dAOM with a potential intra-oxygenic pathway belong to the
Methylomirabilis genus of the NC10 phylum (Versantvoort
et al., 2018). Methylomirabilis bacteria are widespread in diverse
environments, including freshwater and marine ecosystems (He
et al., 2015; Padilla et al., 2016; Vaksmaa et al., 2016; Graf et al.,
2018; Thamdrup et al., 2019), and in engineered ecosystems
such as wastewater treatment plants (WWTPs, Section “Fate of
Methane and Application Potential of Anaerobic Methanotrophs
in Wastewater Treatment”) (Ettwig et al., 2009).

The archaeal partner was identified as a member of the
new Methanoperedenaceae family (formerly ANME-2d)
from the Euryarchaeota phylum and named “Candidatus
Methanoperedens nitroreducens,” capable of coupling the
reduction of nitrate to ammonia with nitrite as intermediate, to
the oxidation of methane (nitrate-dAOM) via the reverse last step
from methanogenesis (Haroon et al., 2013). The intermediate
production of nitrite during the reduction of nitrate to ammonia,
has demonstrated to be the common link that enables both “Ca.
M. nitroreducens” and Methylomirabilis bacteria to coexist in
laboratory enrichments and their simultaneous detection from
environmental samples (Figure 3; Vaksmaa et al., 2017; Gambelli
et al., 2018). Furthermore, “Ca. M. nitroreducens” has been

FIGURE 3 | Schematic representation of the nitrate- and nitrite-dependent Anaerobic Oxidation of Methane (N-dAOM). Methylomirabilis bacteria (process in blue)
reduce nitrite and through an intra-aerobic pathway, oxidize methane to CO2. “Ca. M. nitroreducens” (process in green) reduce nitrate, with nitrite as an intermediate,
while oxidizing methane anaerobically using nitrate as terminal electron acceptor. Furthermore, Methanoperedens archaea are capable of producing ammonia
through dissimilatory nitrate reduction (DNRA).
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demonstrated to be capable of performing methane oxidation
using iron and manganese (ferrihydrite and birnessite) in the
absence of nitrate (Ettwig et al., 2016) while other novel members
of the Methanoperedenaceae family “Ca. M. ferrireducens,” “Ca.
M. manganireducens,” and “Ca. M. manganicus” (Figure 2), do
so exclusively with iron and manganese lacking the necessary
genetic traits to use nitrate as terminal electron acceptor
(Cai et al., 2018b; Leu et al., 2020a). In all members of the
Methanoperedenaceae family, a complex and abundant network
of cytochromes for direct electron transfer is likely to enable
methane oxidation (Leu et al., 2020b). After an overview
on methanogenesis and methanotrophy, the next section
focuses on the environmental prevalence and relevance of
the methanotrophs.

ENVIRONMENTAL PREVALENCE AND
RELEVANCE OF METHANOTROPHS
UNDER MICROAEROPHILIC AND
ANAEROBIC CONDITIONS

The ubiquity of (an)aerobic methanotrophs is attributable to
their metabolic versatility, thriving in broad temperature (4–
95◦C) and pH (1–8) ranges (Trotsenko and Khmelenina, 2002;
Pol et al., 2007). Particularly, aerobic methanotrophs have
been the focus of previous reviews covering environmental
detection, prevalence, and relevance in widespread habitats, as
well as potential applications (Semrau et al., 2010, 2018; Ho
et al., 2013a; Knief, 2015; Strong et al., 2015; Kwon et al.,
2019; Kalyuzhnaya et al., 2020). However, more recent evidence
indicates that aerobic methanotrophs can thrive under oxygen-
limitation, and even under anoxic conditions challenging the
conventional view of aerobic methanotrophy. Here, we focused
on this aspect to provide a novel perspective of aerobic
methanotrophy in environments which may not usually support
their physiological requirements. Furthermore, we discuss recent
aspects of microbial ecology and novel physiological aspects of
anaerobic methanotrophs.

Aerobic Methanotrophs Under
Micro-Oxic Conditions
The oxidation of methane to methanol by the MMO-containing
methanotrophs requires molecular oxygen serving as the
electron acceptor (Ross and Rosenzweig, 2017). Therefore,
aerobic methanotrophs are typically active at oxic-anoxic
interfaces where methane and oxygen gradients overlap (e.g.,
soil-overlaying water interface in rice paddies and peatlands;
Reim et al., 2012; Kaupper et al., 2021). However, the methane-
oxygen counter gradient is dynamic, and oxygen could be
rapidly depleted by oxygen-respiring organisms. To facilitate
methane oxidation under micro-oxic conditions, some aerobic
gammaproteobacterial methanotrophs (e.g., Methylobacter)
may possess high-affinity cytochromes (e.g., cytochrome bd
ubiquinol-oxidoreductase), enabling methane oxidation at
low oxygen levels in the nM range (Skennerton et al., 2015;

Smith et al., 2018; Smith and Wrighton, 2019). The pMMO-
containing aerobic methanotrophs also possess hemerythrin,
a non-heme oxygen-binding protein acting as an oxygen
scavenging transporter to the pMMO which appears to be
a widespread feature among pMMO-containing aerobic
methanotrophs (Kao et al., 2008; Rahalkar and Bahulikar, 2018).
Hemerythrins, initially discovered in Methylococcus capsulatus
Bath (gammaproteobacterial methanotroph; Kao et al., 2004),
have since been detected in other aerobic methanotrophs
(e.g., Methylomicrobium alcaliphilum; Kalyuzhnaya et al.,
2013). The correlation between the expression of pMMO
and hemerythrin (Chen et al., 2012) and the increase in
hemerythrin expression under oxygen-limited conditions has
been reported (Kalyuzhnaya et al., 2013; Yu et al., 2020).
Strikingly, some gammaproteobacterial methanotrophs
(e.g., Methyloterricola, Methylomagnum, Methylomonas,
Methylobacter, and Methylomicrobium) encode relatively higher
hemerythrins and hemerythrin-containing domains compared
to than alphaproteobacterial methanotrophs (Rahalkar and
Bahulikar, 2018). Numerous environmental studies employing
stable isotope probing (SIP) or mRNA-based analyses, showed
that gammaproteobacterial methanotrophs are predominant and
thrive at oxic-anoxic interfaces with rapid oxygen fluctuations
(e.g., lake sediments, mangrove sediments, rice paddies, and
peatlands; He et al., 2012; Reim et al., 2012; Shiau et al., 2018;
Kaupper et al., 2020, 2021). For instance, vertical stratification
along an oxygen gradient in a stratified lake has been observed,
supported by metagenomic analysis revealing the genetic
potential for aerobic methane oxidation under micro-oxic
conditions, with the gammaproteobacterial methanotrophs
(e.g., Methylobacter) present at the oxic-anoxic interface, and
alphaproteobacterial methanotrophs present and stratified at the
oxic water layer (Blees et al., 2014; Rissanen et al., 2018, 2020).

Altogether, it seems aerobic methanotrophs are equipped
to function under micro-oxic conditions albeit with altered
metabolic capabilities. Moreover, under micro-oxic conditions,
the gammaproteobacterial methanotroph Methylomonas
denitrificans can couple methane oxidation to nitrate reduction
as an energy conservation strategy, and releasing nitrous oxide
(Kits et al., 2015). Methylomonas sp. has been detected in
anaerobic cultures of nitrate-dAOM microorganisms, where
the expression of the pmoA gene increased upon exposure
to 5% oxygenv/v, highlighting the survival and latency of
aerobic methanotrophs under anoxic methane/nitrate-rich
conditions (Guerrero-Cruz et al., 2018). Besides nitrate, methane
oxidation coupled to iron (in the form of ferrihydrite) and
manganese reduction through direct electron transfer via
cytochromes, or via an artificial organic electron acceptor
(e.g., anthraquinone-2,6-disulfonate) have been implicated for
both gammaproteobacterial (Methylococcus, Methylomonas)
and alphaproteobacterial (Methylosinus) methanotrophs under
hypoxia (Oswald et al., 2016; Tanaka et al., 2018; Zheng et al.,
2020). Proteobacterial methanotrophs (e.g., Methylomicrobium
alcaliphilum and Methylocystis-affiliated) excrete methane-
derived organic compounds (e.g., acetate, lactate, succinate)
during oxygen-limited growth (Costa et al., 2000; Kalyuzhnaya
et al., 2013). The released organic compounds likely fueled
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and fostered a complex network of interacting microorganisms
comprising both the methanotrophs and non-methanotrophs
(He et al., 2020). A complex regulatory mechanism involving
an interplay of carbon metabolism (methane and methanol
oxidation), denitrification, quorum sensing, and production of
secondary metabolite (tundrenone), mediated by the signaling
molecules nitric oxide and oxygen has been implicated in the
response of Methylobacter to hypoxia (Yu et al., 2020). The
metabolic versatility exhibited by these aerobic methanotrophs
may become advantageous traits in dynamic environments,
with rapidly fluctuating oxygen availability. In addition,
alphaproteobacterial methanotrophs (Methylosinus species) have
been co-cultivated alongside strictly anaerobic methanogens
under oxygen limitation (In ’t Zandt et al., 2018b). Therefore, it
is noteworthy that aerobic methanotrophs likely showed species-
or even strain-specific metabolic versatility, if parallels are drawn
from their N-metabolic capabilities (Hoefman et al., 2014), to
cope under oxygen limitation.

Interestingly, Methylobacter has been detected to form
an active methane-oxidizing community in prolonged dark-
anoxic incubations of a sub-Arctic lake sediment, ruling
out the possibility that photosynthetic organisms helped
sustain aerobic methane oxidation (Martinez-Cruz et al., 2017).
Nevertheless, aerobic methanotrophs can thrive in anoxic
environments by closely associating with photosynthetic (micro)
algae serving as oxygen source (van der Ha et al., 2011;
Milucka et al., 2015). Rissanen et al. (2018), demonstrated that
light stimulated methane oxidation by gammaproteobacterial
methanotrophs, including Methylobacter, in the anoxic water
layers of an oxygen-stratified lake. More recently, light-induced
stimulation of aerobic methane oxidation was detected in
a field-based study of a boreal lake (van Grinsven et al.,
2021). Similarly, aerobic methanotrophs may also rely on
Sphagnum for molecular oxygen, enabling their proliferation
in anoxic niches in peatland ecosystems (Raghoebarsing et al.,
2005; Ho and Bodelier, 2015); or independently relying
on incomplete denitrification (van Grinsven et al., 2020).
The interaction of aerobic methanotrophs with their biotic
environment, appears to be relevant in modulating community
functioning, and may help confer resilience during disturbances
prompting the use of alternative strategies and the formation
of synergistic/antagonistic interactions (Ho et al., 2014, 2016,
2020; Veraart et al., 2018; Chang et al., 2020; He et al., 2020;
Kaupper et al., 2021). Here, such interactions expand the habitat
range of the aerobic methanotrophs to encompass unexpected
environments which usually do not meet the physiological
requirements for aerobic methane oxidation.

Anaerobic Methanotrophs, Physiology
Dictates Prevalence
Environmental Studies
Anaerobic methanotrophic archaea (ANME) differ vastly in
regard to taxonomy (75–92% 16S rRNA similarity) (Knittel et al.,
2005; Knittel and Boetius, 2009), cell shape and aggregation
mode (Orphan et al., 2002), and even lipid composition
(Chevalier et al., 2014). ANME archaea performing S-dAOM

are responsible for 80% of methane oxidation in marine
ecosystems where sulfate concentrations are abundant (Hinrichs
and Boetius, 2002; Boetius and Wenzhöfer, 2013). Recently,
the versatility of ANME archaea has expanded by their use
of humic substances, natural components of organic matter
with redox-active functional groups such as quinone moieties,
that could enable Humic-dAOM. Several studies have used the
humic acid analog anthraquinone-2,6-disulfonic acid (AQDS)
to demonstrate Humic-dAOM (Coates et al., 1998; Cervantes
et al., 2000). Humic-dAOM has been observed in ANME2a and
ANME2c in the presence of humic acids and AQDS as electron
acceptors in the presence of chelated ferric iron (Scheller et al.,
2016). Furthermore, humic substances were shown to stimulate
methane oxidation linked to N2O reducing microbes in coastal
sediments in microbial communities composed by Acinetobacter
and archaea from the Rice Cluster I and an uncultured member
of the Methanomicrobiaceae (Valenzuela et al., 2020).

Regarding N-dAOM microorganisms, environmental surveys
yielded simultaneous detection of both Methylomirabilis bacteria
and “Ca. M. nitroreducens” in a widely diverse range of
environments such as, sandy riverbeds (Shen et al., 2019), lake
sediments (Lomakina et al., 2020), stratified lakes (Deutzmann
et al., 2011, 2014; Graf et al., 2018), various wetlands including
peatlands, paddy fields swamps, canals and groundwater
(Raghoebarsing et al., 2006; Zhu et al., 2012, 2015; Vaksmaa
et al., 2016), estuary and coastal sediments (Chen et al., 2014)
among others. For a broad summary on environmental detection
see Ding and Zeng (2021). Intriguingly, the first detection of
Methanoperedens archaea came from the Gulf of Mexico (Mills
et al., 2003, 2005); however, N-dAOM in the marine environment
was long underestimated due to their low abundance. Recently
“Ca. M. nitroreducens” and “Ca. M. oxyfera,” were identified in
cold seeps and in gas hydrate-bearing sediments of the deep sea
which suggests N-dAOM is an overlooked sink for methane in
marine environments (Jing et al., 2020). However the availability
of nitrate and nitrite in the marine environment is much lower
than sulfate, and is dependent on the fluxes of nitrogen deposition
or degradation of organic matter present in the sediments.

Iron (Fe) as the most abundant element on earth by
mass, is widely spread in marine (Beal et al., 2009; Wankel
et al., 2012; Egger et al., 2015) and freshwater environments
(Sivan et al., 2011; Nordi et al., 2013) indicating the potential
environmental relevance of Methanoperedens archaea capable
of Fe-dAOM (Aromokeye et al., 2020). In this sense, microbial
13C carbon assimilation into Methanoperedens-like archaea
under iron-rich, sulfate-depleted sediment incubations, has
been reported (Weber et al., 2017). In addition, sulfate-
rich environments could support S-dAOM mediated by
Methanoperedens archaea, with the possible involvement of
iron+3 or manganese+4 according to geochemical evidence
and the detection of these archaea in sulfate-rich freshwater
lake Cadagno (Schubert et al., 2011). A follow-up study
proposed S-dAOM to be carried out by M. nitroreducens in
a consortium with Desulfobulbaceae (Su et al., 2020). The
debate whether metal oxides alone can be used as electron
acceptors or serve a stimulatory role to support S-dAOM,
persists since no genome of the Methanoperedens archaea
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known to date, contains dissimilatory sulfate reductases
(Leu et al., 2020b).

Laboratory Enrichments
Despite the widespread prevalence of AOM microbes in
various environments, since their discovery, highly enriched
laboratory cultures are very scarce and no pure culture has
been reported, limiting physiological experiments. Through
optimizations in bioreactor enrichments and cultivation media
design, a limited number of cultures with enrichments from
20–83% of Methanoperedens archaea and/or Methylomirabilis
bacteria, are available (Haroon et al., 2013; Guerrero-Cruz et al.,
2018; Lu et al., 2018).

Mechanistic and enzymatic machinery to utilize diverse
electron acceptors has been reported in several highly enriched
laboratory cultures. The duality of “Ca. M. nitroreducens” to
perform Nitrate-, Fe-, and Mn-dAOM in short term batch
cultivations has been shown (Ettwig et al., 2016). However, metal
mineral forms cannot be transported over cellular membranes,
indicating the need for an extracellular electron transfer (EET)
mechanism when no syntrophic partner is involved. “Ca. M.
nitroreducens” genome encodes for a high number of multi-
heme c-type cytochromes (Haroon et al., 2013; Arshad et al.,
2015), which could facilitate the electron transfer, but to date, no
direct conclusive intermediate interspecies electron transfer has
been shown for “Ca. M. nitroreducens.” Other Methanoperedens
archaea utilize iron and manganese in the absence of nitrate
reducing genomic traits, where the involvement of cytochromes
to mediate electron transfer was proposed based on genomic
and transcriptomic experiments (Cai et al., 2018b; Leu et al.,
2020a). In transcriptomes of “Ca. M. manganicus” and “Ca. M.
manganireducens,” 23 of the 33, and 9 of the 19 multiheme
c-type cytochromes were highly expressed, respectively. These
studies propose Menaquinone as electron carrier based on the
identification of menaquinone biosynthesis pathway in all the
Methanoperedens strains. Comparative genomics of 16 genomes
of Methanoperedens strains revealed that about 88% of genomes
contained more than one of the menaquinone cytochrome
oxidoreductase complexes and about 63% have at least four
(Leu et al., 2020b).

An alternative mechanism for electron transfer is based
on conductive nanowire structures (Leu et al., 2020a), similar
to “Ca. M. nitroreducens” Mnv1 strain (Guerrero-Cruz et al.,
2018), where upregulation of archaellum related genes was
shown under oxidative stress. “Ca. M. manganicus” and “Ca.
M. manganireducens” genomes encode for genes of the major
subunit flagellin (flaB), part of the archaellum. Two of the four
flaB genes were highly expressed during Mn-dAOM experiments
in “Ca. M. manganicus,” suggesting the involvement of these
conductive appendices in electron transfer. In addition to
archaellum-mediated AOM, Humic-dAOM has been reported
in an enrichment culture of both N-dAOM microorganisms
where AQDS and anthraquinone-2-sulfonic acid (AQS) acted
as electron acceptors for methane oxidation (Bai et al., 2019).
These examples demonstrate with specific evidence the broad
versatility of Methanoperedens archaea; however, other studies
report AOM with alternative electron acceptors with inconclusive

results. Hexavalent chromium (Lu et al., 2016), selenate (Luo
et al., 2018; Shi et al., 2020), and bromate (Luo et al.,
2017), have been suggested to mediate AOM in cultures
containing N-dAOM microorganisms; however, the enrichment
and reported activity of side populations of Geobacter or
canonical aerobic methanotrophs, make the involvement of
N-dAOM microorganisms, debatable.

Laboratory bioreactor systems have been fundamental in the
discovery and isolation of important novel N- and metal-dAOM
microorganisms, yet these systems alter the natural conditions
thus opening the possibilities for mutations and induced
evolution. Are these changes, natural overlooked features or are
these features introduced in vitro thus altering natural occurring
features? Mn-dAOM representatives, “Ca. M. manganicus” and
“Ca. M. manganireducens” strains, were enriched (up to 50%
enrichment) from parent pre-enriched inoculum of “Ca. M.
ferrireducens” (25% enrichment) and a minimal proportion of
“Ca. M. manganicus” (Leu et al., 2020a). Similarly, the nitrate-
dAOM archaeon “Ca. M. nitroreducens,” has several strains
described over the last 8 years since its original isolation and is
the only member of the Methanoperedenaceae family encoding
for narGHI genes necessary for nitrate reduction while having
the capability to perform iron- and manganese-dAOM under
nitrate-depletion (Haroon et al., 2013; Ettwig et al., 2016).

Similarly, “Ca. M. oxyfera” enrichments have been subject to
adaptation triggered by laboratory conditions since its original
isolation, as a result making correlations to natural environments
challenging. Early reports established that “Ca. M. oxyfera”
harbored the canonical aerobic methane oxidation pathways
(Ettwig et al., 2010) including methanol dehydrogenase (MDH).
MDH in “Ca. M. oxyfera” was reported as a heterodimer
formed by Calcium-dependent MxaI-encoded small subunit and
a XoxF1-encoded large subunit, furthermore, did not possess the
complete PQQ synthesis genes, necessary for the coordination
of methanol in the active site of MDH (Wu et al., 2015).
XoxF-type enzymes are known to incorporate lanthanide metals
in their active sites in order to catalyze the oxidation of
methanol (Keltjens et al., 2014). Recent studies have shown that
other species of Methylomirabilis bacteria have evolved under
laboratory conditions from an Methylomirabilis-rich inoculum
(Ettwig et al., 2009), cultivated with elevated amounts of
Cerium. These conditions resulted in the enrichment of “Ca.
Methylomirabilis lanthanidiphila,” the second highly enriched
cultivated member of NC10 phylum, encoding only one XoxF-
type MDH highlighting the potential involvement of lanthanides
such as cerium in methanol oxidation (Versantvoort et al.,
2018). In deep freshwater lakes, other species of Methylomirabilis
bacteria have been identified harboring lanthanide-dependent
MDH although yet uncultured (Graf et al., 2018). These recent
findings highlight the MDH gene redundancy in the original
“Ca. M. oxyfera,” if the role of Calcium-dependent MDH is
a metabolic trait in the natural environment or triggered by
enrichment conditions where lanthanides were not originally
supplied, remains an open question.

Overall, quantification of the AOM rates linked to various
electron acceptors is often based on laboratory batch incubations
where a single process is investigated. At times, soils are
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preincubated to allow depletion of naturally occurring electron
acceptors; this however, may affect the community and
functioning of the original inoculum.

FATE OF METHANE AND APPLICATION
POTENTIAL OF ANAEROBIC
METHANOTROPHS IN WASTEWATER
TREATMENT

The fate of methane relies on physical conditions such as gradient
pressure, depth, and the presence and activity of the diverse array
of methanotrophic microorganisms functioning as a biofilter.
If the right conditions are met with availability of suitable
electron acceptors, methanotrophs will consume methane before
it escapes into the atmosphere. A perspective on the fate of
methane focusing on the anaerobic methanotrophs and their
role in human-influenced ecosystems is given, using wastewater
treatment systems as a model.

Carbon Removal in Wastewater
Treatment
In wastewater (WW), pollutants are transported from households
and/or industrial discharge into wastewater treatment plants
(WWTPs). Since modern WWT developed in the late 1800s
and formally implemented in the early 1900s, organic carbon
removal is performed through microbial aerobic oxidation
commonly known as activated sludge (AS) (Alleman and
Prakasam, 1983). The AS process takes place in oxidation tanks
requiring massive amounts of energy in the form of aeration
through mechanical or pneumatic infrastructure. Organic
matter (including sludge from AS), is also degraded through
anaerobic digestion (AD), which is a sequential set of microbial
conversions under reducing conditions in the absence of oxygen
namely: hydrolysis, acidification, fermentation, and ultimately
methanogenesis (Section “Methanogenesis”). The development
of AD was halted for decades due to the lack of fundamental
understanding of the microbiology behind methanogenesis at
the time (Buswell and Hatfield, 1936; McCarty, 1982). In
the 1980’s, researchers achieved the decoupling of the solid
retention time (SRT) from the hydraulic retention time (HRT)
with the implementation of granular growth. Through the
implementation of fluidized bed reactors with granular biomass
configuration, the Up-flow anaerobic sludge blanket reactor
(UASB) became one of the golden standards in AD technology for
full-scale applications (Lettinga et al., 1980; Lettinga and Hulshoff
Pol, 1991; Lettinga, 1995). Today, the methane produced from
AD in full-scale sewage treatment, is collected as a methane-
rich gas mixture termed biogas with remaining environmental
concerns (Section “Wastewater Treatment as a Source of
Methane Emissions”). Biogas represents a sustainable use of waste
for the production of electricity from methane and is one of the
first circular economy examples of energy recovery from waste
(Bachmann, 2015).

The complexity of the microbial communities in AD, the large
volumes of wastewater, and the variations in organic matter load;

pose particular disadvantages prompting to bioaugmentation
protocols for biogas. Bioaugmentation is needed to remediate
the variation in methane content, and the presence of toxic
bioproducts such as hydrogen sulfide (Nzila, 2017; Okoro
and Sun, 2019). Carbon removal either through AS or
AD is a complex combination of microbial processes under
highly concentrated nutrient load and accelerated enrichment
conditions, however, the complexity of microbial populations
remains vastly unexplored (Ho et al., 2013c; Wu et al., 2019). Only
recently, global attempts to characterize WWT microbiology
through sequencing technology, were initiated (Karst et al.,
2018) aiming at the construction of novel taxonomy databases
applied to WWT called MiDAS4 (Nierychlo et al., 2020)
for the further understanding of microbial ecology in WWT
including anaerobic digestion (AD). With these advancements,
we anticipate that microbial engineering of AD will be unraveled
and can provide custom-made solutions for waste degradation.
This, combined with biotechnological production of tailored
products from the wide array of resources contained in WW
including volatile fatty acids (VFAs) and methane as a building
blocks however, this possibility at the moment remains a black
box in WWT engineering. Additionally, biogas represents a low-
value and renewable feedstock for a sustainable and circular
economy through the application of methanotrophs capable of
producing valuable compounds and biopolymers from methane
(Section “Applications of Aerobic Methanotrophs in a Circular
Economy”) (Wang et al., 2020).

Nitrogen Removal in Wastewater
Treatment
Nitrogen as a form of pollution, is mainly represented by
ammonia and has traditionally been removed through the
canonical nitrification-denitrification process (N/dN). In N/dN,
ammonia is oxidized to nitrate and subsequently reduced
dinitrogen gas (N2) covering a large portion of the entire
nitrogen cycle in one treatment process (Figure 4A). As in the
activated sludge process, nitrification requires large amounts of
energy in mixing and sufficient aeration to oxidize all nitrogen-
compounds to nitrate. Furthermore, denitrification may require
organic carbon (typically methanol) under poor carbon/nitrogen
ratios as electron donors for the reduction steps from nitrate
to N2 (Figure 4A). Moreover, under specific conditions nitrous
oxide (N2O), a potent GHG, is produced and released to the
atmosphere and current estimates report that 5% of the total N2O
annual emissions come from WWT [Intergovernmental Panel on
Climate Change (IPCC), 2014] (a full review on N/dN is given
by Thakur and Medhi, 2019). The additional requirements for
organic carbon, the large-scale tanks for N/dN processes, and the
potential for GHG emissions, render this process unsustainable.

Analogously to the development of the N-dAOM, ammonia
oxidation can also occur using nitrite as electron acceptor,
a process known as nitrite-dependent anaerobic ammonia
oxidation (anammox) performed by anammox bacteria from the
phylum Planctomycetes, discovered and isolated from sewage
sludge (Mulder et al., 1995; Van De Graaf et al., 1996; Strous
et al., 1999a). Soon after their discovery, a series of fundamental
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FIGURE 4 | Traditional Nitrification/denitrification process (N/dN) (A) and anammox-mediated removal of ammonia coupled to partial nitritation (B). (A) Shows the
input and byproducts of the N/dN process: aeration (blue bubbles) for the complete oxidation of ammonia by aerobic ammonia oxidizers (AOB, in yellow) and nitrite
oxidizing bacteria (NOB, in purple including complete ammonia oxidizers), organic carbon as electron donor for denitrification, and the production of sludge, and
potential release of GHG gases (N2O) represented in dark gray. Potential emissions of N2O during nitrification (yellow, broken line) could take place under oxygen
limitation (Caranto et al., 2016; Thakur and Medhi, 2019). (B) The partial-nitritation/anammox process (PN/A), where nitrite from partial-nitrification by AOB (in yellow)
requiring less aeration (blue bubbles), is used to oxidize ammonia directly by anammox bacteria (in red), without performing the complete nitrification-denitrification
(broken lines, light gray). Aeration control is crucial to balance nitrite production and the prevention of N2O from oxygen-limited nitrification.

physiology research studies enabled the anammox process to find
technological applications to remove ammonia from wastewater.
In full-scale applications, half of the ammonia is oxidized
to nitrite by aerobic ammonia oxidizers (partial nitritation),
which is then used by anammox bacteria to oxidize the
remaining ammonia to N2, a combination known as partial
nitritation/anammox (PN/A) (Figure 4B). The PN/A process
offers significant advantages over N/dN and biologically, the
anammox process represents a shortcut to the nitrogen cycle that
has revolutionized ammonia removal worldwide (van der Star
et al., 2007; Agrawal et al., 2018). For a full description of the
historical developments of anammox, see Kuenen (2020).

Wastewater Treatment as a Source of
Methane Emissions
The need for innovative methane removal technologies originates
because despite the significant advancements in AD and the
possibility of recovering biogas for energy production from
waste, some challenges remain. Waste and wastewater treatment
technologies remain with open loops that call for novel
microbiology-based technologies for GHG mitigation (Figure 5).
Biological WWTPs, have received recent attention as a source
of GHG (Weissenbacher et al., 2010; Daelman et al., 2012,
2013). In anaerobic sludge liquor, methane can be present at
levels up to 26 grams per cubic meter (Chen et al., 2015)
whereas other calculations from anaerobic systems predict up
to 45% methane dissolved in effluents at maximum methane
production capacity (Liu Z.H. et al., 2014). Effluents from

WWTP, in particular from AD, carry a fraction of the methane
dissolved which subsequently escapes to the atmosphere without
control measures (Guisasola et al., 2008; Kampman et al.,
2014; Schaum et al., 2016; Nguyen et al., 2019; Ribera-Guardia
et al., 2019). Furthermore, in low-temperature waters, up to 60
per cent of methane can remain dissolved in the water and
subsequently released into the atmosphere (Noyola et al., 2006;
Souza et al., 2011).

With the evidence of methane emissions from WWT, current
trends include attempts to estimate the contribution through
the implementation of methodologies aiming to accurately
determine the footprint of WWT (Guisasola et al., 2009;
Rodriguez-Garcia et al., 2012). Current estimations indicate
that WWT represents 2.8% of the total global GHG emissions,
however the uncertainties in estimations range between 3% to
9% of total anthropogenic emissions (Stern and Kaufmann,
2014; Saunois et al., 2020). In the next section, an overview of
the potential application of anaerobic methane and ammonia
oxidation is given, emphasizing the research gaps needed
to explore the possibilities of implementing a combined
process where nitrogen (ammonia) removal and fugitive carbon
emissions (methane) can be addressed simultaneously.

Potential Applications of Anaerobic
Methanotrophs in Wastewater Treatment
Wastewater treatment represents the ideal niche with the highest
loads of nitrogen and carbon input suitable for N-dAOM
methanotrophs and anammox to thrive. Anammox bacteria
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FIGURE 5 | Schematic representation of the detrimental emissions from
WWT. In brown, sewage transport and activated sludge systems produce
nitrogen, sulfur and carbon gas emissions and large quantities of sludge. In
yellow, canonical N/dN nitrogen removal systems can release nitrous oxide as
the main concern, PN/A systems representing improvements in nitrogen
removal (Figure 4). In grey, anaerobic digestion systems where primarily
methane emissions take place from dissolved methane in effluents, and in
blue, post treatment where dissolved emissions escape to the atmosphere
and residual sludge is disposed with additional GHG emissions.

incorporated in PN/A systems are a clear example of a technology
that developed from a novel microbial process characterized in
laboratory-scale enrichments, and through physiology studies,
reached full-scale realization (Van De Graaf et al., 1997; Strous
et al., 1999b; Kuenen, 2020). Some of the microbial aspects
relevant for the application of an anaerobic process in wastewater
systems are growth, inhibition, and physiology; this knowledge
is achieved through the combination of fundamental research on
microbial physiology, engineering, genomics and even modeling
(Strous et al., 1997; Carvajal-Arroyo et al., 2013; Lotti et al.,
2014). Recently, the possibility to remove ammonia from WW
coupled to electricity production was demonstrated for anammox
bacteria (Shaw et al., 2020), capable of direct extracellular electron
transfer (EET) similar to methanogens (Section “Anaerobic
Methanotrophs”). EET anammox technology could potentially
replace oxygen-limited systems such as PN/A circumventing
the requirement for aeration, however this process is at
early developmental stage in laboratory systems. EET in
Methanoperedens archaea has been proposed as a decoupling
mechanism from Methylomirabilis bacteria (Ding et al., 2017),
however the reported enrichment is accompanied by the
enrichment of canonical methanotrophs and geobacter under
short term incubations. Furthermore, the implementation of
EET-dAOM would require high quality methane supply based
on the kinetic limitations of Methanoperedens archaea, e.g., in
hollow membranes (Zhang et al., 2020) (Section “Methane Supply
and Reactor Configuration”). For this purpose EET-dAOM is not
further discussed.

Nitrogen-dependent anaerobic methane oxidation in
WWT was considered a suitable application for simultaneous
methane and nitrogen removal almost four decades ago
(Davies, 1973; Sollo et al., 1976). Today, after the discovery
of the microorganisms responsible for this process in diverse
environments including WWT, and their enrichment in
laboratory-scale reactors (Ettwig et al., 2009; Hu et al., 2009;
Luesken et al., 2011b; Haroon et al., 2013), N-dAOM as a
potential application has re-emerged (Wang et al., 2017).
The N-dAOM process has significant potential benefits if
the microorganisms responsible for this process can be
integrated into oxygen-limited systems for ammonia removal
(Figure 6). This concept is proposed based on laboratory scale
bioreactor enrichments where both N-dAOM and anammox
microorganisms co-exists with nitrite as a common link
(Figure 7). Bioreactor systems supplied with nitrate, methane
and ammonia; have resulted in a coculture of N-dAOM archaea,
N-dAOM bacteria and anammox in diverse proportions (Shi
et al., 2013; Stultiens et al., 2019). However, when supplied
with nitrite, methane and ammonia only a combination of
both bacterial partners (N-dAOM bacteria and anammox)
was achieved (Luesken et al., 2011a). Based on these reports,
models have been developed indicating that both anaerobic
processes can coincide and could reach a practical application
and performance in WWT (Winkler et al., 2015).

In short, the simultaneous removal of methane and ammonia
in oxygen-limited systems relies in the concerted interaction of
4 microbial processes (Figure 6) driven by key microbial groups
(Figure 7):

(i) Aerobic ammonia-oxidizing bacteria (AOB) oxidize half
of the ammonia available to nitrite (partial nitritation,
PN), requiring half the aeration energy compared to
N/dN (Figure 6B).

(ii) Anammox bacteria, oxidize the remaining ammonia
using the nitrite produced by AOB. Anammox however,
produces nitrate as a side reaction during carbon fixation
(Figures 4B, 6B).

(iii) Methane is oxidized by nitrite-dAOM bacteria using
nitrite most likely under competition with anammox
bacteria. Both producing nitrogen gas as final nitrogen-
product (Figure 6C).

(iv) Nitrate-dAOM archaea, will compete with
Methylomirabilis bacteria to oxidize methane using nitrate
(Figure 6C). Nitrate can originate from anammox side
reactions or undesirable complete nitrification of ammonia
to nitrate or from other nitrate-rich effluents (Figure 6A).

Dissolved methane from diverse effluents, more importantly
anaerobic digestion, and biogas mixtures that otherwise would
not be used for electricity production; represent an ideal energy
source for the combined process (Bandara et al., 2011; Wang
et al., 2017), reaching up to 45% in some cases (Liu Z.H.
et al., 2014). To successfully combine both processes, physiology
and microbial ecology aspects are of vital importance. These
aspects include competition for nitrite as an intermediate
substrate, doubling times in a mixed culture, affinity and
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FIGURE 6 | A schematic representation of the combination of partial-nitritation/anammox (PN/A) and N-dAOM processes in WWT. (A) Canonical denitrification
where space, energy, and organic carbon, are needed for complete nitrogen removal in WWT. Denitrification produces sludge and GHG emissions as by-products
under unfavorable conditions. (B) Partial-nitritation/anammox process, as a short cut to complete denitrification. AOB (in yellow) oxidize ammonia to nitrite,
anammox bacteria (in red) oxidize ammonia anaerobically using nitrite as electron acceptor. (C) Incorporation of N-dAOM processes to PN/A, where both achieve
the simultaneous removal of ammonia and methane (represented in green and blue for nitrate- and nitrite-dAOM, respectively). Broken arrows indicate competing
processes that are deemed undesirable or processes that are circumvented by the implementation of the PN/A and N-dAOM processes. Adapted from
Guerrero-Cruz (2018).

FIGURE 7 | Interactions between anaerobic methane oxidizers performing N-dAOM with anaerobic ammonia oxidation (anammox) incorporated into
partial-nitritation systems (PN/A). In existing PN/A systems for ammonia removal, aerobic ammonia oxidizers (AOB, in yellow) oxidize ammonia to nitrite, anammox
bacteria (in red) use nitrite to oxidize ammonia to dinitrogen gas, while producing residual nitrate from carbon fixation. “Ca. Methanoperedens nitroreducens” (in
brown with red outline) converts nitrate to nitrite as common intermediate while oxidizing methane to carbon dioxide and can produce ammonia. Nitrite either
produced by AOB or M. nitroreducens, is used by Methylomirabilis bacteria (in green) for the oxidation of methane to carbon dioxide. Aerobic methane oxidizers (in
grey) compete for oxygen with AOB, and can oxidize methane, in competition with anaerobic methane oxidizers.

competition for methane by aerobic and anaerobic methane
oxidizers, competition for oxygen between aerobic ammonia and
methane oxidizing microorganisms (Figure 7) under oxygen-
limited conditions, and more importantly the inhibition of
anaerobic microorganisms upon the exposure to oxygen. Most
of these microbial metabolic aspects are known for anammox

bacteria (Strous et al., 1999b) but remain to be determined
for N-dAOM microorganisms mostly due to the lack of highly
enriched cultures. For a summary on the laboratory enrichments
and environmental detection of N-dAOM microorganisms since
2006, culture conditions, inoculum sources, and environmental
detection see Ding and Zeng (2021). In the following sections, an
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overview on the recent discoveries relevant to application is given
highlighting the research gaps that need further investigation to
point N-dAOM research in the right direction towards becoming
a full-scale application.

Nitrite and Nitrate as a Central Link for Anaerobic
Ammonia- and Methane-Oxidizers
Nitrite is the common terminal acceptor for Anammox and
Methylomirabilis bacteria to oxidize ammonia and methane
respectively (Figure 7; Strous et al., 1999a; Ettwig et al., 2010),
and is the intermediate byproduct during nitrate reduction
coupled to methane oxidation by M. nitroreducens (Figures 3, 7;
Gambelli et al., 2018). This has been corroborated in several
laboratory enrichments where nitrite was the defining factor
between the co-existence of both N-dAOM microorganisms
with anammox bacteria (Ding et al., 2014; Stultiens et al.,
2019). The competition for nitrite is dependent on the
affinity, whereas inhibition is subject to the formation of
nitrite from ammonia oxidation (Figure 7) and is the main
engineering parameter that can influence the out-competition
of Methylomirabilis bacteria as anammox bacteria have a higher
affinity for nitrite (Table 1; Winkler et al., 2015). Inhibition
would originate from a surplus of nitrite formation under
an excess in oxygen supply. Methylomirabilis bacteria have
a tolerance of approximately 500 µM of nitrite (Guerrero-
Cruz, 2018) whereas anammox bacteria have a tolerance
ranging in the mM range (>10-fold higher) (Lotti et al., 2012;
Table 1).

Growth of N-dAOM Microorganisms
Growth rates, doubling times and yield (the amount of
biomass obtained from the energy source) of N-dAOM
microorganisms are lower compared to canonical aerobic
heterotrophic microorganisms. N-dAOM microorganisms have
doubling times estimated from weeks to months based on the
quantification of 16S rRNA gene over time from environmental
studies and long-term incubations (Ettwig et al., 2009; Vaksmaa
et al., 2017). Recently, from a limited number of highly enriched
cultures of N-dAOM microorganisms, data on growth and
substrate kinetics has become available. Methylomirabilis bacteria

can double every 5 days under maximum SRT conditions
(10 days) and exhibit an estimated yield at steady state of
0.077 ± 0.027 Cmole CH4 mole

−1, as determined by indirectly
comparing the expected biomass decay versus the total
biomass content while monitoring side populations through
fluorescent microscopy (Guerrero-Cruz et al., 2019). For “Ca.
M. nitroreducens” indications of a doubling time between
14–21 days have been obtained under continuous bioreactor
incubation under an SRT of 20 days (Guerrero-Cruz, 2018). For
comparison, aerobic methanotrophs generally exhibit a doubling
time of∼30 min to hours (Ogiso et al., 2012). Anammox bacteria
have reported doubling times as low as 3 days and a biomass
yield of 0.066 ± 0.01 C-mole/ammonium mole (Strous et al.,
1998; van der Star et al., 2007). Table 1 gives a summary of
relevant parameters in literature for anammox bacteria and
N-dAOM microorganisms.

Another feature crucial to microbial growth is the capability
to form granular biomass structures. Granular growth is
essential to ensure the decoupling of SRT from HRT, preventing
biomass washout. In addition, granular growth enables a
multi-layer growth in oxygen limited systems resulting in
the compartmentalization where, anaerobic microorganisms are
protected at the core of the granular unit and aerobic bacteria
secure the consumption of oxygen in outer layers (Winkler
et al., 2015; Speth et al., 2016). Granular growth held a game
changing role in the implementation of novel technologies
relying on multiple processes occurring simultaneously such as
in AD, NEREDA

R©

, and PN/anammox (Lettinga et al., 1980;
Lackner et al., 2014; Pronk et al., 2015; Chen et al., 2020;
Trego et al., 2020).

Methanoperedens archaea and Methylomirabilis bacteria have
the natural capacity to develop granular growth under dynamic
conditions in SBR reactors (Luesken et al., 2011a; Guerrero-Cruz
et al., 2019). Under continuous stirring in a membrane bioreactor,
Methanoperedens archaea achieved higher enrichment levels in
a granular ultrastructure from a sediment inoculum (Gambelli
et al., 2018; Guerrero-Cruz, 2018). With the relevance of granular
growth and the potential to form multi-layered microbial
processes under oxic conditions, the next section describes the
current knowledge of the oxygen effect on these microorganisms.

TABLE 1 | Summary of relevant physiological parameters of both anaerobic ammonia and methane-oxidizing microorganisms.

Anammox bacteria Methylomirabilis bacteria Methanoperedens archaea

Doubling time (days) 10 – 12b 11a 3f 25e 14c 5i 14–21 d at SRT of 10 d−1−h (40% archaea enrichment)

µMax(d−1) 0.33f 0.0495g 0.14i ND

Yield (C-mol/energy source) 0.066 ± 0.01a 0.077 ± 0.027i ND

Methane affinity NA 92 ± 5 µMe >1000 µMd (S-dAOM)

Methane Vmax NA 97 µMe 2.6 ± 0.7 ± µMi ND

Ammonia affinity <5 µMa NA NA

Nitrite affinity 0.2–5 µMb 910 ± 90 µMe 7 µMi ND

Nitrate affinity NA NA 150 ± 29 µMj

Nitrite inhibition 400 gNO2-N m3b 40 g NO2-N m3e Estimated at 500 µMh Estimated at 500 µMh

Values from both real enrichments and mathematical models (underlined) are shown, NA = not applicable, ND = not described. All data has been collected from aStrous
et al. (1998); bvan der Star et al. (2007); cEttwig et al. (2009); dMeulepas et al. (2009); eHe et al. (2013); f Lotti et al. (2015); gWinkler et al. (2015); hGuerrero-Cruz (2018);
iGuerrero-Cruz et al. (2019); jLu et al. (2019).
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Oxygen and N-dAOM Microorganisms
Methanoperedens archaea perform the reverse action of
methanogenesis and the McrA complex is highly sensitive
to oxygen (Thauer, 1998). As such, Methanoperedens has
been enriched under strict anoxic conditions. Recently, it was
demonstrated that an enriched culture of Methanoperedens
archaea (83% of the total community) expressed the genetic
capacity to counteract the adverse effects of oxygen-stress
upon 5% v/v oxygen exposure (Guerrero-Cruz et al., 2018).
Although further research is needed to characterize how the
recovery after oxygen exposure would occur, especially in
natural environments. The resent findings corroborate that
under oxygen-limited conditions Methanoperedens archaea
could adapt to partial aeration most specifically in multi-layered
granular growth.

Methylomirabilis bacteria are inhibited by oxygen exposure
as low as 2% (Luesken et al., 2012) and have demonstrated
the capacity to recover methanotrophic and nitrite reduction
capacity after exposure to <1.1% oxygen (Kampman et al.,
2018). The successful implementation of N-dAOM is subject to
oxygen exposure in engineered ecosystems under high hydraulic
dynamics conditions, however, the combination with oxygen-
limited systems where aerobic ammonia oxidizers consume
oxygen for the production of nitrite could be a suitable coupling
under granular microbial growth.

Metals and N-dAOM
Metals are essential for microbial activity and growth, aerobic
methanotrophs and anaerobic Methylomirabilis bacteria are not
an exception, requiring copper for the catalytic activity of the
pMMO enzyme (Bollinger, 2010; Ho et al., 2013b; Semrau et al.,
2018). Recent studies provide direct evidence of the effect of
copper on methane oxidation by Methylomirabilis bacteria, in
laboratory enrichments a concentration of 5–6 micromolar of
copper salt in the trace elements, triggered an increase in methane
oxidation rates (Hatamoto et al., 2018). Furthermore, higher
concentrations of copper and other metals seem to enable higher
enrichment ratio of these difficult to cultivate bacteria (Guerrero-
Cruz et al., 2019). Besides copper, lanthanide metals are also
relevant for the intra-aerobic Methylomirabilis methanotrophs
such as the novel enriched species “Ca. Methylomirabilis
lanthanidiphila” and its uncultured environmental analog “Ca.
Methylomirabilis limnetica” encoding for only a lanthanide-
dependent MDH in a way that is not redundant as the first species
reported in 2010 (Graf et al., 2018; Versantvoort et al., 2018).
This change in MDH enzymes was discussed previously in this
review (Section “Anaerobic Methanotrophs, Physiology Dictates
Prevalence”), but the concentration of cerium in the trace
elements during cultivation is a noteworthy factor. Moreover,
iron is perhaps one of the most essential metals in life enabling
formation of complexes and a wide spectrum of redox reactions
that are crucial to enzymatic processes (Liu J. et al., 2014). Iron
is present in cytochrome proteins, essential and highly abundant
in different Methanoperedens archaea (Arshad et al., 2015; Leu
et al., 2020b). Furthermore, increasing iron concentrations has
resulted in higher laboratory scale enrichments. Initial attempts
to enrich Methanoperedens archaea included iron concentrations

below 5 micromolar (Vaksmaa et al., 2017), and concentrations of
80 micromolar have resulted in a two-fold increase in enrichment
under laboratory scale conditions (Guerrero-Cruz et al., 2018;
Lu et al., 2018). Evidently, metals (e.g., copper, cerium, and
iron) are crucial for the activity and enrichment of anaerobic
N-dAOM microorganisms. To date limited studies have directly
compared the effect of trace metal concentrations in enriching
these microbes, potentially due to low concentrations in the
nature and lack of bioavailable forms. The future applications of
these microorganisms must thus account for the role of metals
in mix cultures and under varying conditions anticipated in
wastewater treatment.

Methane Supply and Reactor Configuration
Methane has a relatively low water solubility (0.03464 Bunsen
coefficient at 20◦C or 1.237 mM at standard conditions,
Wiesenburg and Guinasso, 1979; Haynes, 2011). The poor
solubility of methane in effluents from wastewater treatment is a
major contributor to methane emissions (Section “Wastewater
Treatment as a Source of Methane Emissions”), and this
translates to laboratory conditions where the supply of methane
is the main limitation for the development of enrichment
cultures. Diverse forms of bioreactor design have been
implemented to ensure sufficient supply of methane, such
as high methane flow, pressurized reactors, membrane-fed
reactors or batch incubations. Table 2 provides a summary of
relevant configurations in literature. It is important to note
that due to the slow growth of N-dAOM microorganisms,
most enrichments are achieved after months or even several
years. Furthermore, these enrichments typically are achieved in
bioreactors, with volumes not exceeding 10 L.

Laboratory scale membrane bioreactors (MBR) have been
proposed as an ideal setup for the enrichment of N-dAOM
microorganisms, usually accompanied by anammox bacteria
(Table 2). MBRs ensure methane supply and biomass retention,
however, relying on the external supply of artificial high-
purity methane mixtures (>95%), which are costly. Pressurized
systems have been used to enrich S-dAOM methanotrophic
archaea and have demonstrated to enable higher growth and
activity rates by ensuring the availability and saturation of
methane above normal conditions of methane (Nauhaus et al.,
2002; Timmers et al., 2015). The combination of pressurized
reactors and membrane configurations has indeed shown an
increase in the activity of N-dAOM microorganisms (Cai et al.,
2018a), and these studies highlight the application potential,
however the external supply of high-purity methane remains the
main obstacle for full-scale application in WWT. When high-
quality external supply of methane is required, the potential
use of intrinsically-produced methane from AD is overlooked
and deviates from the prospective application of N-dAOM
microorganisms to mitigate GHG emissions from effluents
of AD in WWT (Wang et al., 2017), where commonly a
dual treatment configuration is proposed with partial PN/A
and N-dAOM as a second step or in combination with
anammox (Stultiens et al., 2019). Moreover, membrane-based
reactors provide a suitable surface for biofilm growth (Cai
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TABLE 2 | Summary of diverse laboratory-scale bioreactor studies combining N-dAOM microorganisms under different bioreactor conditions.

Reactor type Microbial community Performance Limitation Reference

Membrane biofilm reactor
(MBfR). Methane supply at
2 atm Oxygen 100 to 700 mL
d−1 (50 d period).

Derived from Haroon et al.
(2013).

1.5 Kg N m3d−1 (98% removal
efficiency) Methane removal
was not the focus.

External methane supply (95%). Liu et al., 2019b

Membrane Granular Sludge
Reactor Methane supply at
0.1 atm.

N-dAOM archaea (32%) and
bacteria (9%), with anammox
(27%) approximately.

16.53 kg N m−3 d−1 Methane
removal was not the focus.

External methane supply (95%). Fan et al., 2019

Membrane biofilm reactor
(MBfR), increase methane
pressure 1.44 atm.

N-dAOM archaea and bacteria,
with anammox, proportions
similar to Haroon et al., 2013.

≈ 2-fold N-dAOM archaea
activity increase (26.1 mM N
d−1). ≈ 5-fold N-dAOM
bacteria activity increase
(41.4 mM N d−1). Methane
removal was not the focus.

External methane supply (90%). Cai et al., 2018a

Membrane bioreactor (MBR)
19–25 mg methane L−1

35.7 mg NH4
+ L−1.

Not accurately characterized. 60% nitrogen removal in
anaerobic conditions 95%
methane removal.

Methane from the effluent of an
UASB reactor.

Sánchez et al., 2016

Membrane biofilm reactor
(MBfR). Methane at a flow from
0.1 to 0.5 atm.

N-dAOM archaea (74.3%) and
bacteria (11.8%), with
anammox (5.6%).

1.3 mM nitrate d−1 and
2.1 mM d−1 ammonia.
Methane removal was not the
focus.

External methane supply (95%). Fu et al., 2017

Membrane biofilm reactor
(MBfR). Methane supply at
2.46 atm.

N-dAOM archaea (50%) and
bacteria (20%), with anammox
(20%).

48.8 mM N d−1 overall.
(1.2 Kg N m3d−1) Methane
removal was not the focus.

External methane supply (95%). Xie et al., 2017

Membrane biofilm reactor
(MBfR).

N-dAOM archaea (50%) and
bacteria (20%), with anammox
(20%).

48.8 mM N d−1 overall.
Methane removal was not the
focus.

External methane supply (90%). Cai et al., 2015, derived from
Shi et al. (2013)

Sequencing batch reactor,
batch methane pressure 0.4
Mpa.

N-dAOM archaea (29%) and
bacteria (12%), with anammox
(21%).

4.84 mM d−1 Nitrate Methane
removal was not the focus.

External methane supply (95%). Ding et al., 2014

Membrane biofilm reactor
(MBfR).

N-dAOM archaea (20–30%)
and bacteria (20–30%), with
anammox (20–30%)

13.6 mM N d−1 Methane
removal was not the focus.

External methane supply (90%). Shi et al., 2013

et al., 2018a) as opposed to granular-based growth (Guerrero-
Cruz et al., 2018). Thus, the stratification proposed as crucial
factor for the implementation of anaerobic processes under
micro-aerophilic conditions is likely to not occur (Winkler
et al., 2015). Furthermore, studies where oxygen exposure at
a constant level of 0.01 mg L−1 have shown no negative
effects on N-dAOM/partial nitritation/anammox systems (Liu
et al., 2019b), but the small scale does not anticipate
the effects under high volume of effluent input in real
applications.

In this section, relevant aspects affecting the performance and
growth of N-dAOM microorganisms were described. Currently
the advancement of N-dAOM-based technology is faced with
bottlenecks in the following aspects:

(i) Most work relies on methane-rich artificial gas mixtures
(>90 percent). There are no studies with real wastewater,
except for one study where in a 50 L pilot plant,
dissolved methane was removed (95% removal, 78%
methane-containing biogas from a UASB reactor at
a rate of 31 L per day) coupled to denitrification
(1.43 mM total nitrogen removal). However the role
of N-dAOM microorganisms in a dual post-treatment
containing oxic and anoxic compartments was not fully

characterized next to the use of synthetic media (Silva-
Teira et al., 2017). The bioaugmentation of biogas,
and removal of toxic sulfur compounds could improve
the use of waste biogas to enable the application
of N-dAOM microorganisms when not suitable for
electricity production.

(ii) Studies to optimize fundamental aspects of
growth and enrichment conditions are lacking.
Currently, evidence on the role of iron, copper, and
lanthanide is available (Hatamoto et al., 2018; Lu
et al., 2018; Guerrero-Cruz et al., 2019); however,
further studies on the requirements of these
micronutrients, including up-scaling and modeling
aspects in large-scale applications, are still lacking.
The availability of these metals could improve
the activity, growth, competitiveness, and enable
the application of N-dAOM microorganisms in
oxygen-limited WWT systems.

(iii) Methane supply and the gas-liquid transfer are crucial
for the successful implementation of N-dAOM
microorganisms where Methylomirabilis bacteria
compete with aerobic methane oxidizers in regard to
their methane affinities (Guerrero-Cruz et al., 2019),
Methanoperedens archaea would need the assistance
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of pressurized systems to increase methane saturation
above 1.3 mM and reach an equilibrium for the McrA
complex to perform methane oxidation at sustainable rates
(Cai et al., 2018a).

(iv) Bioreactor configuration is a limiting factor, where
membrane-based bioreactors rely on biofilm formation
rich in N-dAOM microorganisms which lacks spatial
niche differentiation (Cai et al., 2018a; Liu et al., 2019b).
This prevents the formation of compartments that
allow for both aerobic and anaerobic processes to
co-exists as in the case for granular growth (Winkler
et al., 2015; Gambelli et al., 2018; Guerrero-Cruz
et al., 2018). Furthermore, biofilm formation is
a limiting phenomenon in large scale-membrane
systems whereas granular-based bioreactors have
successfully been implemented in large-scale applications
worldwide (Lettinga et al., 1980; Lackner et al.,
2014). A combination of granular-based N-dAOM
microorganisms with adequate methane-transfer
adaptation through membrane systems or pressurized
reactors, could offer significant advantages to apply the
N-dAOM process.

After highlighting the diverse factors affecting the
performance of N-dAOM microorganisms and knowledge
gaps in the research, it is evident that reactor configuration
and more importantly the synergistic combination with other
processes are crucial research questions. Exploring these aspects
can reveal the true value whether N-dAOM microorganisms
could be applicable and biotechnologically beneficial. Anaerobic
microbes and processes in anoxic compartments are undoubtedly
applicable under granular configurations where both aerobic and
anaerobic processes occur simultaneously in WWT (Pronk et al.,
2015; Winkler et al., 2015). Thus research on complex microbial
ecology and interactions is needed for the realization of more
integrated WWT technologies. Moreover, diverse operational
challenges such as aeration resulting in gas stripping, play a
crucial role in the release of methane into the atmosphere. To
circumvent these aspects, membrane-based and/or pressurized
systems have been discussed as a means of enabling methane-rich
conditions for the implementation of N-dAOM microorganisms.
Currently, there is no “one fits all” solution that fully integrates
all the aspects that challenge the application of N-dAOM from
both points of view: microbial ecology and the engineering
limitations. Nevertheless, the collection of high quality biogas for
membrane-based configurations or biofilm-based oxic/anoxic
systems; remain as potential solutions (Liu et al., 2019a).
Indisputably, biomass stratification and the controlled supply
and retention of methane in the system, are crucial requirements
for the coexistence of both aerobic and anaerobic processes
(Liu et al., 2019b). Moreover, efficient biogas collection and
bioaugmentation are important steps to secure high-quality
biogas feed for integrated systems that aim to remove methane
and nitrogen contaminants simultaneously where biogas is
otherwise not fitted for heat and electricity production. The next
section describes alternative uses for methane-rich mixtures.

APPLICATIONS OF AEROBIC
METHANOTROPHS IN A CIRCULAR
ECONOMY

Currently natural gas is the primary source of methane for
industrial and chemical production of methanol and other
industrial compounds. However natural gas reservoirs are
finite and is thus a non-renewable fuel source. Furthermore,
the industrial production of methanol and olefines is not
environmentally friendly, requiring large amounts of energy,
metal catalysts, and high temperature and pressure conditions
(Da Silva, 2016). Methanotrophic microorganisms are natural
catalyzers that can perform many biochemical conversions at
ambient temperatures and without the need of high energy
input compared to industrial processes, making their potential
applications relevant sustainable alternatives (Wang et al., 2020).
Biogas from AD, is a low-value feedstock for new technologies
that harness the potential of methanotrophic bacteria to produce
valuable compounds such as methanol, formaldehyde, or short
chain fatty acids, and biopolymers (Comer et al., 2017).

The fate and use of methane can follow several paths, and
depends on infrastructure, policy, and the adoption of a waste-to-
value culture (Figure 8). The production of valuable compounds
from methane by methanotrophs has three differentiable targets:
(i) Methanotrophs produce methanol as a valuable intermediate
compound; (ii) Methanotrophs produce biopolymers as a carbon
storage molecule; and (iii) Methanotrophs utilize methane as
the building block for cell constituents (lipids or proteins). The
application of aerobic methanotrophs for bioremediation and as
bio-catalysis for a range of compounds can be found in Strong
et al., 2015. Moreover, capitalizing on novel mechanistic insights
of the aerobic methanotrophs under oxygen-limiting conditions,
the methanotrophs can potentially be applied to produce volatile
organic compounds (e.g., acetate, lactate; Kalyuzhnaya et al.,
2013), and in methane-driven bioelectrochemical systems (Zheng
et al., 2020). Accordingly, aerobic methanotrophs may also drive
denitrification in WWTP, either in synergistic interaction with
other microorganisms being a source of electron donor (e.g., by
excreting acetate under oxygen limitation; Costa et al., 2000) or
as a coping strategy under hypoxia (Kits et al., 2015; Zhu et al.,
2016). Hence, emerging applications of aerobic methanotrophs
may rely on their metabolic capability under oxygen limitation,
but this aspect of methanotroph biotechnology needs further
exploration. Here, we focus on the role of aerobic methanotrophs
under predominantly oxic conditions in the production of value
in the form of biopolymers and two examples of valuable
chemical intermediates with current proof of principle and with
proven potential at industrial scale.

Methane as Energy Source and
Chemical Building Block
Methanol
Methanol for industrial use is mainly produced from natural
gas and to a lesser extent from CO2 exhaust waste streams
through unsustainable thermochemical processes, at a rate of
110 million metric tons per year. Methanol is one of the
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FIGURE 8 | Schematic representation of the fate of methane. (1) No action leads to methane-GHG release to the atmosphere (red arrow). (2) Methane can be
neutralized into CO2, a less harmful GHG (in a short timescale) (yellow arrow). Methane oxidation can occur aerobically or anaerobically depending on the availability
of electron acceptors and the microorganisms present. (3) Methane can be collected and used as a biogas for heat and electricity production (green arrow). (4)
Methane can enter bio-based and circular economy models through the application of aerobic methanotrophs for the production of various chemicals, biodiesel,
bioplastics, protein, and even the potential recovery of precious metals (blue arrows).

most important building blocks for nearly 50000 different
chemicals. Approximately one third of it is used for formaldehyde
production, followed by synthesis of olefins for the plastic
industry (Da Silva, 2016). Biogenic methane from anaerobic
digestion could be a source for methanol production through
the application of methanotrophs when methane-rich biogas
for electricity production is rendered non cost-effective in
the near future.

Aerobic methanotrophs oxidize methane to methanol, and
its recovery requires the inhibition of the further methanol
oxidation step. Ammonium chloride, phosphate, cyclopropanol,
CO2, NaCl, and EDTA are known MMO inhibitors that
could potentially aid in the recovery of methanol from
methanotrophic cultures (Wang et al., 2020). For a summary
of culturing and recovery strategies see Bjorck et al. (2018).
Methylosinus trichosporium OB3b, is the most extensively studied
methanotroph for methanol production using Na-formate and
NaCl to inhibit MDH activity reaching 7.7 mM of methanol
in 36 h (Sang et al., 2004) or cyclopropanol with methanol
levels of 152 mmol g−1 DW cells with a methanol conversion
efficiency of 61% (Takeguchi et al., 1997). Regarding methane
conversion efficiency in M. trichosporium OB3b, studies have

reported 64% (Duan et al., 2011) and 80% yields but the
production of methanol at higher efficiency remains a challenge
(Han et al., 2013). A species from the genus Methylocaldum,
was reported to produce methanol from methane-biogas upon
500 ppm of hydrogen sulfide exposure in batch cell suspensions,
with a methane conversion efficiency of up to 34% and methanol
yields of up to 343 mg L−1 over 105 h incubations (Zhang
et al., 2016). Although the application of methanotrophs for the
production of methanol seems promising based on laboratory
scale evidence, industrial applications are unlikely at this stage
due to the need of external electron donors during MDH
inhibition, e.g., formate (Sheets et al., 2016), negatively affecting
the feasibility of large-scale applications and the continuous
performance of methanotrophs.

Proteobacterial methanotrophs have been widely studied,
however their mesophilic nature and implementation in non-
sterile conditions are still a bottleneck. Verrucomicrobial
methanotrophs, are known to thrive at low pH and
extremely high temperatures, making them a promising
alternative; however, the feasibility to produce methanol
from Verrucomicrobia has not been investigated in depth.
Attempts to produce methanol through the inhibition of
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MDH’s requires external supply of electron donors and growth
conditions under multiple inhibition strategies, rendering
the application of these extremophiles unclear at the low
pH these bacteria are known to inhabit (Hogendoorn et al.,
2020). Nevertheless, the exploration of Verrucomicrobial
strains for methanol production from biogas, could be
advantageous when using biogas mixtures that contain
hydrogen sulfide as canonical proteobacterial methanotrophs
are known to be intolerant to this toxic byproduct of AD
biogas (Börjesson, 2001). Another feature of interest in
using Verrucomicrobial methanotrophs is the possibility
to reduce culture contamination by having operating
temperatures as high as 55 degrees and/or lower pH values
(Chen and Jiang, 2018). Research in efficient methanol
recovery without a negative impact on microbial growth
that could compromise culture yields, is crucial to explore
biological methanol production, however, remains to be the
bottleneck due to metabolic constraints for cellular growth and
energy conservation.

Ectoine
Ectoine and hydroxyectoine are molecules produced in response
to osmotic stress in numerous bacteria, their chemical properties
protect cells during osmotic stress and assist stabilization and
preservation of cell integrity without altering cell function.
These properties result in a wide spectrum of applications in
the cosmetic industry, medicine, dermatology, nutrition, and
pharmaceuticals as well as in preservation products for a broad
range of cell biology applications (Pastor et al., 2010; Wang
et al., 2020). Ectoines are valued at one thousand United States
dollar per kilogram, and the current global need is 15 million
Kg a year, representing the most profitable market at 15 billion
United States dollars a year (Strong et al., 2016). Among
the methanotrophs, Methylomicrobium alcaliphilum shows the
highest reported accumulation of ectoine, at 8.3% of ectoine
per gram of biomass (Cantera et al., 2017). Heterotrophic
bacteria, however, showed 3 orders of magnitude higher ectoine
production rates than methanotrophs (Salar-García et al., 2017).
Some of the factors that affect the efficiency of methanotrophs
to accumulate ectoine is the susceptibility to mechanical stress
in culture enrichments (Cantera et al., 2016). Also, the presence
of specific metals is crucial for enzymatic performance. To this
end, Methylomonas has shown increased activity in the presence
of copper, enhancing ectoine production (Cantera et al., 2016).
With the significant financial market, the use of methanotrophs
seems like a suitable application using methane waste streams
while enabling the creation of value from waste.

Methane as Source for Microbial
Biopolymers
Biodiesel From Methane-Derived Lipids
Biodiesel production has gained attention as a more
environmentally friendly alternative to diesel, currently
produced from diverse crops in marginal lands, with particular
environmental debate over the use of land in competition with
food agriculture [Intergovernmental Panel on Climate Change
(IPCC), 2012]. Conversely, biodiesel can be produced from

membrane lipids of methanotrophic bacteria. Methanotrophs,
in comparison to other heterotrophs, have an increased lipid
content due to the stacked internal membranes, rendering them
attractive for biotechnological applications after a culture fed
with methane has reached optimal growth yields to secure the
maximum ratio of biomass from mol of methane.

Methylomicrobium buryatense 5GB1, a Type I methanotroph,
is used as the model microorganism for the production
of membrane lipids. Typical to Type I methanotrophs, this
microorganism assimilates carbon through the RUMP pathway
and fatty acids are produced from Acetyl-CoA (Wang et al.,
2020). Up to 95% of the total fatty acids from membrane-bound
phospholipids were recovered in Methylomicrobium buryatense
corresponding to a total fatty acid content of 10% of dry
cell weight achieved in batch reactors (Dong et al., 2017).
Furthermore, a glycogen knockout strain AP18, has shown to
have a higher lipid yield due to the suppression of glycogen
production leading to a better feedstock for lipid conversion to
biodiesel (Fei et al., 2018). Fatty acids are then extracted using
an alkaline hydrolysis at 150◦C followed by a hexane extraction
where recoveries can reach up to 95% of the methanotrophic
culture’s total lipids. Lastly, a chemical upgrading of the fatty acids
takes place using palladium catalysts for the hydrodeoxygenation
process that transforms the lipids into long chain hydrocarbons
rich in pentadecane (up to 88% efficiency) (Furimsky, 2000).
Chemical upgrading of methanotrophic lipids is essential to
remove reactive oxygen (carbon saturation) from the lipid
molecule, conveying less reactivity and viscosity, and increasing
the calorific capacity of the final product.

Bioplastics
Polyhydroxy alkanoates (PHAs) have become an important
biopolymer in the past years as a replacement to chemically
produced plastics (Amaro et al., 2019). PHA is a collective
term encompassing approximately 100 types of monomeric
compounds, all of them being linear polyesters with different
degrees of polymerization reaching up to 30 thousand
units. Under the right conditions, several types of bacteria
can accumulate up to 90% of PHA making bacteria-
derived PHA a cost-effective strategy to produce bioplastics
(Madison and Huisman, 1999).

Several microbes such as Haloferax mediterranei and
Alcaligenes latus produce high PHA levels, reaching more
than 50% of the cells’ dry weight. Genetically modified
Escherichia coli expressing PHA biosynthesis genes (phbA,
phbB, and phbC), accumulate PHA from lactose (Park et al.,
2001). However, the feedstocks used in the production of
PHAs from engineered microbes are expensive and rely on
glucose and other carbohydrates, posing additional concerns
regarding the sustainable supply chain, and land use for crop
production which competes with crops destined for human
consumption. Methane is a naturally occurring carbon source
for microbial production of PHAs, and some methanotrophic
bacteria are efficient at accumulating PHA without the need for
genetically engineered metabolism. The possibility to use a cheap
carbon source through the application of bacteria to produce
bioplastics while mitigating methane emission, broadens the
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use of methanotrophs in a circular and bio-based economy.
Bioplastics produced from poly-3-hydroxy butyrate-co-3-
hydroxyvalerate [P(3HB-3HV)] can be degraded within weeks to
a few years depending on the environmental conditions. These
timescales are significantly lower than for non-biodegradable
plastics such as polypropylene (Mergaert et al., 1994). Diverse
products have been manufactured using PHA, for a summary
with numerous patents with inventions from P(3HB-3HV)
see Madison and Huisman (1999).

The accumulation of PHAs in methanotrophs is a survival
response under nutrient starvation which re-routes methane
into PHA production instead of converting it to carbon dioxide
under normal conditions (Karthikeyan et al., 2015). In nature,
the accumulation of PHA occurs under fluctuating nutrient
(nitrogen, carbon) availability. In proteobacterial methanotrophs,
only Type II are known to possess the genetic capability to
express enzymes that produce PHA and contain pathways to
direct the TCA cycle into PHA production (Pieja et al., 2011a).
The genes phaA, phaB, and phaC encode for the enzymes
that perform the condensation of two molecules of Acetyl-
CoA, their reduction into (R)-3-hydroxybutyl-CoA, and finally
the polymerization into the final PHA molecule, respectively
(Peoples and Sinskey, 1989).

Overall, the growth conditions that lead to the accumulation
of PHAs are: (i) absence of ammonia or nitrate as nitrogen
source, (ii) copper deprivation and (iii) a regime of fed-batch to
induce storage of carbon in the cell. Methylocystis sp. Rockwell,
Methylocystis sp. WRRC1, Methylosinus trichosporium OB3b,
Methylomicrobium album BG8, and Methylomonas denitrificans
FJG1 have been subjected to studies aiming to determine the
preferred nitrogen (ammonia or nitrate) and carbon (methane
or methanol) source (Tays et al., 2018). In general ammonia
and methane are preferred as nitrogen and carbon source,
respectively; however, the in-depth characterization of each
strain is crucial before the application for industrial use where
maximum yields, minimum inhibition and maximum efficiency
of product are needed. Using a combination of continuous
culture, followed by nitrogen limitation under fed-batch has
proven to be successful in the enhancement of PHB accumulation
in Methylocystis sp. GB25 DSM 7674, reaching 51% of cell mass
as PHB (Wendlandt et al., 2005). Another key regulator are
metals, in particular lanthanides which modulate the activity of
the MDH, and play a crucial role in the carbon flow within the
cell which have implications on the routes to carbon storage in

the form of PHA (Akberdin et al., 2018). Inherent to the vast
diversity of methanotrophs, nutrient conditions and in particular
micronutrients, require finetuning according to the metabolic
needs of particular strains. Table 3 provides a summary of those
requirements in individual culture cases.

The use of augmented biogas from wastewater is already
applied at full-scale (Mango Materials

R©

). However, more research
on lower quality biogas use is needed to exploit emerging
opportunities with biogas as a substrate while mitigating GHG
emissions from waste management.

Single Cell Protein (SCP) From Methanotrophs
Another methanotroph-derived biopolymer includes proteins
from single cells (SCP). SCP can be purified from all
methanotrophs as all carbon fixation pathways yield structural
proteins that form new cells during microbial growth, and its use
dates back to the early 1960s as the first bio-based product from
methane (Bewersdorff and Dostálek, 1971).

All proteins are formed by polymers of amino acids and
depending on their quaternary structure and function, harbor
cofactors such as vitamins and metals, making them a suitable
feed source for diverse animals regardless of their origin (Skrede
et al., 1998, 2003; Øverland et al., 2010). Proteins of microbial
origin have better yields compared to other protein sources and
offers comparable nutritional quality when used as feed according
to FAO recommendations (Anupama and Ravindra, 2000; Ritala
et al., 2017). The expanding population growth and the need to
feed nearly 10 billion people by 2050 (FAO, 2009), demand for
sustainable protein sources. These are crucial in replacing the
massive exploitation of marine and freshwater resources where
the increase in aquaculture is a recent example of a sustainable
practice that still requires significant amounts of protein as feed
for produce (Ritala et al., 2017).

Ideal SCP methanotrophic strains should have a fast growth
rate with high protein production capacity and easy to cultivate.
Furthermore, the methanotrophs should be able to tolerate a
wide range of pH and temperatures. The use of methane from
natural gas for the production of SCP, is already approved for
animal feed in agriculture (Wang et al., 2020). Currently SCP
is produced from methane-rich natural gas and commercially
applied at an industrial scale (Strong et al., 2015). Other sources
deemed ideal for the production of SCP include a variety of solid
and liquid waste streams (Wang et al., 2020), whereas biogas from
AD remains overlooked.

TABLE 3 | Summary of selected laboratory enrichments and the conditions involved for the production of PHA in methanotrophic bacteria.

Organism Cultivation condition Effect Reference

Methylocystis sp. GB25 DSM 7674 Enriched culture (86%) Potassium
deficiency.

45% PHB yield per g of methane. Helm et al., 2008

Methylocystis sp. GB25 DSM 7674 Continuous and fed-batch alternation,
nitrogen limitation.

55% PHB yield per g of methane. Wendlandt et al., 2005

Methylocystis parvus OBBP Reducing substrates methane and formate Enable PHB utilization as carbon source. Pieja et al., 2011b

Methylocystis sp. WRRC1 Flasks cultures with Valerate or n-propanol
additions. Copper deprivation conditions.

Decrease in melting temperature and
crystallinity of PHB-co-HV 67% PHB per g
of methane.

Cal et al., 2016

For more reports on PHB efficiencies, see Pieja et al. (2017).
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A challenge for the successful application of methanotrophs
is the poor solubility of methane in the aqueous phase (Bennett
et al., 2018). Different reactor configurations that enhance the
mass transfer have been tried successfully at a laboratory scale.
Petersen et al. (2017) used a forced flow U-loop reactor to
study the effects of gas transfer and reported higher efficiencies
when compared to canonical stirred tank reactors (STR) or
even tubular reactors (Petersen et al., 2017). This application is
available at a commercial scale using natural gas as a carbon
source for the methanotrophs by UniBio A/S and Calysta Inc., for
the production of UniProtein R© and FeedKind R© respectively. The
methanotrophs used are commonly composed of a mix culture
with unknown ratios. Methylococcus capsulatus or Methylomonas
sp. as the most common strains described in the literature. For
more examples of SCP from bacteria at an industrial scale, see
Jones et al. (2020). Current trends are moving from methane-
rich sources such as natural gas, to more circular economy
approaches using waste streams such as wastewater. The concept
of using co-cultures i.e., Methylococcus capsulatus with algae
C. sorokiniana, has been proposed and research under conditions
with supplementation of artificial waste biogas (60% methane) for
SCP production showed promising results (Rasouli et al., 2018).
Implementation of SCP production at a pilot-scale under real
wastewater conditions has not been proven successful to date.

After the description of the relevance of anaerobic
methanotrophs to counteract GHG emissions, and the role of
aerobic methanotrophs in a bio-based and circular economy
for a sustainable future, the value offered by methanotrophs
seems immeasurable.

CONCLUDING REMARKS

After nearly 120 years of discoveries, diverse (an)aerobic
methanotrophs have been identified in widespread environments
as key drivers of Earth’s carbon fluxes, playing a crucial role as
the sole biological methane sink. Methanotrophs determine the
fate of methane in both natural and human-impacted ecosystems,
where the mitigation of greenhouse gas emissions is recognized
as one of the most important environmental development goals.
Importantly, methanotrophs have the potential to transform
methane into valuable products.

Application of methanotrophs for both climate change
mitigation and resource recovery in a circular economy
face parallel challenges, namely limitations inherent to using
methane as a substrate, and the need to revolutionize
current chemical-based industrial practices to bio-based
solutions. Past research on methanotroph ecology, physiology,
and genomics yielded exciting discoveries. Future research
direction on novel engineering solutions incorporating methane
waste streams from human-influenced ecosystems (WWT),
could lead to a new era of methanotrophic biorefineries,
move waste management and production systems close to
zero net emissions, and reconcile human intervention in
the carbon cycle.
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