

Complete Genome Sequences of 12 Quinolone-Resistant *Escherichia coli* Strains Containing *qnrS1* Based on Hybrid Assemblies

💿 Håkon Kaspersen, a Thomas H. A. Haverkamp, b Hanna Karin Ilag, b Øivind Øines, a Camilla Sekse, a 💿 Jannice Schau Slettemeåsa

^aDepartment of Animal Health and Food Safety, Norwegian Veterinary Institute, Oslo, Norway ^bDepartment of Analysis and Diagnostics, Norwegian Veterinary Institute, Oslo, Norway

ABSTRACT In total, 12 quinolone-resistant *Escherichia coli* (QREC) strains containing *qnrS1* were submitted to long-read sequencing using a FLO-MIN106 flow cell on a MinION device. The long reads were assembled with short reads (Illumina) and analyzed using the MOB-suite pipeline. Six of these QREC genome sequences were closed after hybrid assembly.

The presence of quinolone-resistant *Escherichia coli* (QREC) in the animal reservoir is a potential public health concern, especially related to plasmid-mediated quinolone resistance genes, as they might spread to more pathogenic bacteria. The *qnrS1* gene is known to be situated on plasmids with different incompatibility (Inc) groups (1, 2). Here, we aimed to select QREC strains encoding *qnrS1* on plasmids with different Inc groups to complete circular plasmid contigs.

We previously sequenced 280 QREC isolates from broilers, pigs, red foxes, and wild birds, collected through the NORM-VET program from 2006 to 2017, using short-read sequencing (Illumina, San Diego, CA) (3). The samples were either selectively isolated on MacConkey agar containing 0.06 mg/liter ciprofloxacin or randomly collected from *E. coli* isolated on MacConkey agar. In total, 12 QREC isolates encoding *qnrS1* from these four animal species were selected for long-read sequencing. Here, we report the hybrid assembly of these isolates, including six closed genome sequences. The hybrid assemblies were further analyzed using MOB-suite (4).

Extraction of genomic DNA was performed using the Genomic-tip 100/G kit (Qiagen, Hilden, Germany). Bacteria were enriched overnight at 37°C in 2 to 3 ml heart infusion broth (Difco, Omagh, UK). The DNA concentration was determined using the Qubit double-stranded DNA (dsDNA) broad-range (BR) assay kit (Thermo Fisher Scientific, Waltham, MA, USA), and the DNA was quality assessed using a NanoDrop One spectrophotometer (Thermo Fisher Scientific). Approximately 400 ng of high-guality DNA was subjected to library preparation using a rapid barcoding kit (SQK-RBK004; Oxford Nanopore Sequencing [ONT], Oxford, UK). Four samples were run with smaller amounts (104, 154, 324, and 369 ng), as only a maximum volume of 7.5 μ l of template was allowed into the library preparation reaction. The constructed libraries were indexed using barcodes RB1 to RB12, loaded onto a FLO-MIN106 flow cell on a MinION device (Oxford Nanopore Sequencing), and run for 40 h. The raw sequence data were base called separately after the run using Guppy v.3.4.5 (5) and demultiplexed using qcat v.1.1.0 (ONT, https://github.com/nanoporetech/qcat). The sequence quality of the demultiplexed data sets was checked with NanoPlot v.1.30.0 (6). Default parameters were used for all software unless otherwise specified.

Canu v.1.9 (7) was used to improve the accuracy of the long reads, followed by Filtlong v.0.2.0 (https://github.com/rrwick/Filtlong) to remove reads of <1,000 bp from the corrected long reads. Hybrid assemblies were generated using Unicycler v.0.4.8 (8),

Citation Kaspersen H, Haverkamp THA, Ilag HK, Øines Ø, Sekse C, Slettemeås JS. 2021. Complete genome sequences of 12 quinolone-resistant *Escherichia coli* strains containing *qn/S1* based on hybrid assemblies. Microbiol Resour Announc 10:e01190-20. https://doi.org/10.1128/MRA.01190-20.

Editor David Rasko, University of Maryland School of Medicine

Copyright © 2021 Kaspersen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

Address correspondence to Jannice Schau Slettemeås, jannice.schau-slettemeas@vetinst.no.

Received 28 October 2020 Accepted 9 January 2021 Published 28 January 2021

	No of Illumina Data for Nanonce		No of Illumina	- your color	Data for Nanonore	Davee a								
			reads for:		reads:								ENA accession no. for:	no. for:
Strain	Plasmid Inc type (pMLST)	ST ^a	Read 1	Read 2	No. of reads	Avg length (bp)	No. of contigs	Total size (Mbp)	Replicon size (bp)	GC content (%)	No. of genes	Coverage (×)	Raw reads	Assembly
2015-01-2097		1421	818,798	865,881	331,312	5,292.7	2 ^c	4.68		50.8	4,507	275.1	ERR4592247	LR881940.1
	IncX1 ^b								21,374	44.5	28	437.9		LR881941.1
2015-01-466		10	761,941	819,989	211,523	5,227.7	5°	4.87		50.6	4,695	247.4	ERR4592248	LR882052.1
	IncF (F-:A1:B1)								113,096	52.6	137	256.3		LR882053.1
	IncH								87,822	47.9	96	164.3		LR882054.1
	IncF ^b (F2:A-:B-)								50,909	53.0	63 71	316.1 204 r		LR882055.1
2016-02-324	IIICAT	7036	654,152	713,188	258,316	4,232.1	2 [⊂]	4.90	con'0+	40./ 51.0	4,656	213.1	ERR4592249	LR882050.1
	IncF ^b (F-:A-:B53)								94,955	52.8	108	225.2		LR882051.1
2016-02-418		58	596,773	650,657	174,481	2,309.8	29	4.96		50.8	4,786	191.0	ERR4592250	CAJGEF01
	IncX1 ^b								46,447 ^d	42.9	55	310.5		
2016-02-522		1011	795,118	867,426	166,584	4,176.7	4	4.94		50.6	4,596	255.6	ERR4592251	CAJGEG01
	$IncY^{b}$						1		78,634	50.3	103	244.5		
2016-02-620	400	694	676,465	740,782	438,687	3,794.8	5	4.71		50.8	4,494 50	227.8	ERR4592252	CAJGEH01
	IncX3 ⁶								44,425	46.3	59	0.1.62		
2016-17-164		7593	654,299	713,350	588,805	2,983.2	8	4.93		50.8	4,672	211.0	ERR4592253	CAJGEI01
	IncF ^{<i>v</i>} (F89:A-:B53)								118,361	50.1	133	106.0		
2016-17-292		23	695,093	720,319	310,224	5,196.4	3,	4.99		50.4	4,849	217.5	ERR4592254	LR882493.1
	IncF (F24:A-:B1)								97,083	48.7	66	121.3		LR882494.1
	Incl2								59,944	42.1	83	136.4		LR882495.1
2016-17-363		48	761,196	825,502	404,780	2,644.6	5	4.67		50.7	4,478	258.2	ERR4592255	CAJGWN01
	IncH ^b (unknown)								86,214	48.5	100	221.7		
2016-17-550	4	2165	988,537	1,058,892	218,828	4,398.6	2 [€]	4.82		50.8	4,559	326.5	ERR4592256	LR883965
	IncY ^o	1					L	t t	104,732	48.0	118	128.2		LR883966
8582-10-6102	Inc X 2 ^b		388,300	418,338	066,621	0.104,6	<u>0</u>	-14 	39630	46.0	4,899 50	98.U 337 3	1C226C4N3	CAJGWPUI
2014-01-7375		453	472,494	482,585	209,994	4,667.7	5°	5.27	000100	50.6	5,119	34.1	ERR4592258	LR882057.1
	Incl1								98,997	49.4	110	62.5		LR882058.1
	IncF (F-:A-:B56)								82,142	47.8	89	46.4		LR882059.1
	IncX1 ^b								47,686	43.1	56	64.0		LR882060.1
	IncF (F-:A-:B114)								42,660	52.5	54	88.3		LR882061.1
^a ST, sequence type. ^b Plasmid with <i>qnr</i> S. ^c Genome closed.	pe. rS.													
^d Plasmid not circularized.	ularized.													

ession numbers of the auinolone-resistant Escherichia coli anrS1 strains TARIF1 Characteristics and :

followed by Prokka v.1.14.5 (9) to annotate the hybrid assemblies. The GC content of each assembly was calculated using the EMBOSS v.6.6.0 (10) commands "union" and "infoseq." MOB-suite v.1.4.9 (4) was used to predict plasmid sequences from the hybrid assemblies and identify their respective replicon types. Each plasmid FASTA file generated by MOB-suite was subjected to ResFinder v.4.0 (11), VirulenceFinder v.2.0 (12), and PlasmidFinder v.2.1 (13). Plasmids containing *qnrS1* were confirmed by genome annotation with Prokka. The Illumina reads were mapped back to the assembly using BWA v.0.7.17 (14), and the depth of coverage was calculated using SAMtools v.1.10 (15) using the depth (genome-wide) and coverage (replicon) options.

The characteristics and accession numbers are presented in Table 1. The plasmid assemblies with Inc groups that allowed further typing were run on pMLST v.2.0 (13) on the Center for Epidemiology Genomics website to further determine the respective replicon types.

Data availability. All data sets are deposited in ENA under accession number PRJEB40547 (Table 1).

ACKNOWLEDGMENTS

Illumina sequencing was provided by the Norwegian Sequencing Centre (www .sequencing.uio.no), a national technology platform hosted by the University of Oslo and Oslo University Hospital, supported by the Functional Genomics and Infrastructure programs of the Research Council of Norway and the South-Eastern Norway Regional Health Authority. The work was performed on resources provided by UNINETT Sigma2, the National Infrastructure for High Performance Computing and Data Storage in Norway.

This work was part of the One Health EJP project, which has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement number 773830 (2018 to 2022).

REFERENCES

- 1. Dobiasova H, Dolejska M. 2016. Prevalence and diversity of IncX plasmids carrying fluoroquinolone and beta-lactam resistance genes in *Escherichia coli* originating from diverse sources and geographical areas. J Antimicrob Chemother 71:2118–2124. https://doi.org/10.1093/jac/dkw144.
- Dolejska M, Villa L, Minoia M, Guardabassi L, Carattoli A. 2014. Complete sequences of IncHI1 plasmids carrying bla_{CTX-M-1} and qnrS1 in equine Escherichia coli provide new insights into plasmid evolution. J Antimicrob Chemother 69:2388–2393. https://doi.org/10.1093/jac/dku172.
- Kaspersen H, Sekse C, Zeyl Fiskebeck E, Slettemeas JS, Simm R, Norstrom M, Urdahl AM, Lagesen K. 2020. Dissemination of quinolone-resistant Escherichia coli in the Norwegian broiler and pig production chain and possible persistence in the broiler production environment. Appl Environ Microbiol 86:e02769-19. https://doi.org/10.1128/AEM.02769-19.
- Robertson J, Nash JHE. 2018. MOB-suite: software tools for clustering, reconstruction and typing of plasmids from draft assemblies. Microb Genom 4:e000206. https://doi.org/10.1099/mgen.0.000206.
- Ueno Y, Arita M, Kumagai T, Asai K. 2003. Processing sequence annotation data using the Lua programming language. Genome Inform 14:154–163.
- De Coster W, D'Hert S, Schultz DT, Cruts M, Van Broeckhoven C. 2018. NanoPack: visualizing and processing long-read sequencing data. Bioinformatics 34:2666–2669. https://doi.org/10.1093/bioinformatics/bty149.
- Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. 2017. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 27:722–736. https://doi.org/10 .1101/gr.215087.116.
- 8. Wick RR, Judd LM, Gorrie CL, Holt KE. 2017. Unicycler: resolving bacterial

genome assemblies from short and long sequencing reads. PLoS Comput Biol 13:e1005595. https://doi.org/10.1371/journal.pcbi.1005595.

- Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069. https://doi.org/10.1093/bioinformatics/btu153.
- Rice P, Longden I, Bleasby A. 2000. EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet 16:276–277. https://doi.org/ 10.1016/s0168-9525(00)02024-2.
- Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, Aarestrup FM, Larsen MV. 2012. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 67:2640–2644. https://doi.org/ 10.1093/jac/dks261.
- Joensen KG, Scheutz F, Lund O, Hasman H, Kaas RS, Nielsen EM, Aarestrup FM. 2014. Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. J Clin Microbiol 52:1501–1510. https://doi.org/10.1128/JCM.03617-13.
- Carattoli A, Zankari E, Garcia-Fernandez A, Voldby Larsen M, Lund O, Villa L, Moller Aarestrup F, Hasman H. 2014. *In silico* detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 58:3895–3903. https://doi.org/10.1128/ AAC.02412-14.
- Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760. https://doi.org/10 .1093/bioinformatics/btp324.
- Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup. 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078–2079. https://doi.org/10.1093/bioinformatics/btp352.

A Microbiolog