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Abstract
The arctic tundra is one of the ecosystems that is most affected by climate
changes. The effects of these changes on the wildlife in the arctic are therefore
critical to monitor. To monitor the changes, small computing devices with
sensors and cameras, known as Observational Units, can be used.

Using a cluster network of interconnected observational units, so that data can
be reported from the most distant nodes to a homebase, introduces problems
as the node’s local clocks tend to skew away from each other based on the
environment they are in. This thesis aims to address the problem of clock
synchronization in cluster networks that are disconnected from constant power
and the internet.

This thesis describes how we designed, built, and tested a prototype software
solution for an interconnected Wireless Sensor Network using observational
units built for arctic climates. We designed and built a two-phased systemwhere
the nodes dynamically join a network and synchronize their duty cycling and
clocks with each other, creating a synchronized cluster of nodes that allows
for data to be propagated, where any of the nodes can become sink nodes
if they have a connection to a homebase. The nodes use a built-in clock
synchronization operation to achieve synchronized clocks across the cluster
network.

The prototype system can perform the operations as planned. However, the
results show that the system scales poorly when introducing new sinks to the
network while running in the operational phase, as the paths shared scales
exponentially, in contrast to when a sink is introduced in the starting phase of
the system, where the transmissions grow linearly with a degree based on the
number of nodes in the network. The time synchronization experiments also
showed that the network is able to remain synchronized, although transmission
number is a concern when the network does not have any sink nodes.
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1
Introduction
The arctic tundra is one of the ecosystems that is most affected by climate
changes[28]. Therefore it is important to monitor the changes that are hap-
pening to be able to understand the consequences that they have and what it
means for the wildlife in the arctic tundra.

To be able to monitor the effect of climate changes on the wildlife correctly
and efficiently, it is important to monitor the wildlife with non-intrusive units
that do not interfere with the wildlife itself so that ecologists can get a good
understanding of the effects on the wildlife in their natural habitat.

The Fram Center created a long-term research project called The Climate-
Ecological Observatory for Arctic Tundra, also known as COAT[16]. COAT
is a Norwegian research group that aims to observe how climate change
impacts the lives of wildlife in the arctic tundra and contributes to nature’s
perseverance.[17] To perform the research, the COAT group uses environmental
sensors and wildlife cameras to monitor the wildlife in their natural habitat. A
problem with monitoring in remote areas such as the arctic tundra is that there
is no infrastructure to handle "off-the-shelf" monitoring devices, thus creating
the need for specialized equipment.

1



2 chapter 1 introduction

1.1 Observational Units
The monitoring can be done by Observational Units(OU’s), which are small
battery-powered computers able to record different environmental parameters
such as temperature, oxygen, humidity, water levels, and take pictures using
IR cameras. The OU’s can store these parameters persistently so that they
can be accessed at a later time. They also have networking capabilities that
enable them to send and receive data to and from a remote server at the cost
of increased energy consumption.

A Problem with the OU’s is that since they are placed in very remote areas, they
need to survive for a long time without any connection to the outside world.
This means that if the OU’s fail early in the deployment cycle, the researchers
will not be able to notice it until the OU’s are being fetched at the end of the
deployment cycle. Thus the need for a connected network of OU’s that can
report status reports back to a homebase, by routing the data through other
OU’s, i.e., use multi-hop routing.

1.2 Problem with OU Networks
One of the biggest problems with the interconnected network of OU’s(similarly
to Wireless Sensor Networks) is that since the OU’s are battery-powered, and
the infrastructure for constant power and internet does not exist, the OU’s does
not have any place to synchronize their local clocks with. This means that
the OU’s internal clock will tend to skew away from each other at different
speeds, dependant on the environmental effects on that node, one of which is
temperature[33].

To be able to adhere to the non-intrusive requirement of the monitoring units, it
is not possible to host a standard Wi-Fi solution with multiple hotspots spread
across the monitoring area due to the Wi-Fi requiring antennas and constant
power to function optimally. This means that all synchronization needs to
happen between the nodes or to an on-site homebase. This creates the need
for a system-integrated synchronization job that is built into the system.

1.3 Limitations
This thesis focuses mainly on the simulated node network itself and the clock
synchronization between the nodes in the cluster network. As this is a simulator,
the data that is recorded is not actual data but only simulated. To be able to
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validate and test the time synchronization algorithms, all the local clock skewing
is also simulated based on a randomly generated factor within a boundary,
which will be explained in further detail in chapter 7.

1.4 Overview of Contributions
This prototype has been worked on by two people: Erlend Karlstrøm, and
Sigurd Karlstad, the author of this thesis. Both are master students at UiT The
Arctic University of Norway.

Throughout this project, Erlend Karlstrøm and Sigurd Karlstad have cooperated
closely. This is due to the requirements of the projects being very similar, which
has lead to some parts of the code being written into a merged solution
between the students. Therefore, it is necessary to include the contributions
that Erlend Karlstrøm made to this project in order to give a clear description
of the entire project and what contributions the separate theses have. In the
following section, I shall describe what has been done by Erlend Karlstrøm,
what has been done by Sigurd Karlstad, the author of this thesis, and what has
been as cooperation between the students. The distribution is as follows:

1.4.1 Erlend Karlstrøm
Erlend Karlstrøm is writing a thesis about ’General Monitoring of Observational
Units in the Arctic Tundra’[11] which means that he needed a way to handle the
messages bundled together to reduce the amount of data that is transmitted.
This is work that the author of this thesis(Sigurd Karlstad) does not take any
credit for but uses to handle message transmitting:

• Bundling and Partial Bundle Policy

• Content Propagation and Debug Report Generation

1.4.2 Sigurd Karlstad
The parts that this thesis takes full credit for is:

• Time synchronization operations and all uses of it

• Node network clock stability
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• A description of relevant observational node networks(WSNs), routing
techniques, and clock synchronization techniques

• An evaluation of the time synchronization operation in the system

• A discussion of weaknesses and improvements of the current system

• Thoughts on future work of the system

1.4.3 Collaboration
The rest of the project has been worked on by both Sigurd Karlstad and Erlend
Karlstrøm, and both should have shared credit for it. The following parts are
considered a collaboration:

• Path Handling

• Path Score calculation

• Mailbox handling

• General System Architecture

• General Network Validation and Experiments

• Homebase Architecture

• All other support-code such as: Server Script, etc.

1.5 Overview of Project
• Chapter 2 - Background: Describes the background, motivation, and aim

of the project.

• Chapter 3 - Design Guidelines: Describes the guidelines for designing
the system.

• Chapter 4 - Related Work: Describes the related work done in fields such
as other observational node networks, path score calculation, and Time
Synchronization.
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• Chapter 5 - Architecture: Describes the Software architecture of the
system.

• Chapter 6 - System Design: Describes how the architecture was built
into the system.

• Chapter 7 - Implementation: Describes the programming languages
used, and different simulation aspects of the prototype.

• Chapter 8 - Validation: Describes the validation setup, metrics used to
validate the implemented system.

• Chapter 9 - Experiments: Describes the experimental setup, metrics
used to evaluate the implemented system and the results from the exper-
iments.

• Chapter 10 - Discussion: Discusses several main parts about the system,
some in-depth discussion about the time synchronization, and addresses
some weaknesses of the system as a whole.

• Chapter 11 - Future Work: Describes some features that could be added
to further improve the current system.

• Chapter 12 - Conclusion: Concludes the thesis.





2
Background
Based on the previous research done by the COAT research group, which has
been monitoring the effects of climate changes in areas such as Varager and
the Svalbard islands. When monitoring the effects of climate changes, COAT
has been using cameras, sensors, and such. In other environmental monitoring
situations, Wireless Sensor Networks(WSN) has been used[21].

WSNs are networks that can consist of up to thousands of low-cost sensor nodes,
usually meant to monitor and record environmental data. The deployments
done by COAT do not have this number of nodes per deployment, as seen in
figure 2.1. This example deployment, extracted from the coat website[15] has
six camera nodes deployed. However, many of the deployments have more
nodes deployed(up to around 30 nodes).

A common problem with WSNs is that since they usually are deployed remotely
and are not connected to any constant source of power or internet, the internal
clocks in them tend to skew away from the real-time, up to 10 seconds per
day[30]. This creates the motivation for a standalone WSN system that can
stay synchronized, even without an authoritative time in the network.

7
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Figure 2.1: Example deployment in Varager, extracted from the coat website [15]

2.1 Motivation
The motivation behind this thesis is based upon the fact that the monitoring is
performed in very remote areas(Svalbard and Varanger), and each deployment
cycle can last for months[25]. This, in turn, means that the monitoring nodes
are rarely visited by the ecologists – or the ones that are responsible for the
nodes.

The lacking infrastructure in these remote areas, together with the consid-
eration of the rarely visited nodes, creates a motivation for having a system
that can provide remote access to the most remote monitoring nodes while
remaining stable, and having a built-in local clock synchronization algorithm,
which is able to remain synchronized without an internet connection.

2.2 Aim
As these monitoring devices can be spread out in uneven terrain, partly un-
derground or fully underground, meaning that there is no guarantee that the
nodes will be fully connected to the network. This means that the nodes must
be able to survive without any connection and handle joining a network if a
sudden node appears, tying the nodes together.

This thesis aims to create a prototype network of nodes that is stable in the
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sensor of synchronized sleep schedules, able to synchronize the local clocks
with and without a connection to an authoritative time(homebase), and can
propagate data through the network towards a homebase using multi-hop
routing.





3
Design Guidelines
This thesis was inspired by the previous research done by the COAT research
group, which is currently working with cameras-traps and sensors located
in the arctic tundra. By following the research plan from COAT[9], which
frame some design guidelines for their equipment in the field, and framing
some features required for creating a stable node network in the field that
enables clock synchronization internally in the network. The following sections
describe these features and design guidelines.

3.1 Power Preservation and Duty Cycling
To preserve the power of the OU’s so that they are able to survive in deployment
for up to a year, or at least two to six months.[25] The amount of power used
while deployed must remain as low as possible.

To optimize the node’s battery life, they are required to periodically sleep for
long periods, only waking up to record sensor readings, synchronize clocks,
and propagate data towards the sink node. The sleep schedule should be
synchronized with the other nodes so that they all wake up at the same time.
The number of transmissions between the nodes should also remain as low as
possible, and the content sent between the nodes should be optimized.

11
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3.2 Data Transmission
To be able to propagate data between nodes so that the data recorded, even in
the most distant nodes, can be sent to the researchers of the COAT group for
processing, the OU’s need to be able to both transmit and receive data, to and
from other nodes. This connection between the nodes needs to be wireless so
that the OU’s can be placed wherever the researchers want to monitor.

To be able to propagate data to a sink node means that the nodes need
to have an understanding of the neighboring nodes, as well as knowledge
of the paths to the sink node. The knowledge shared between neighboring
nodes should be shared along with normal dataflow to reduce the number of
transmissions needed but increase the data size. While a wireless connection
is not directly needed for the OU’s, the connection between the nodes would
normally be wireless as the nodes would be separated by long distances in
deployment. Therefore, the time synchronization will also have to work with
these conditions.

3.3 Dynamic Topology Management
To allow the OU’s to be connected in a well-mannered way, it should support
dynamic topology management, which means that nodes should be able to
join the network without requiring a reconfiguration of the whole network.
Allowing the nodes to be added into the cluster seamlessly allows for paths to
gradually be shared while constructing the network. Which, in turn, reduces
the overall transmissions.

3.4 Heterogeneous Communication
To allow heterogeneous nodes to communicate with each other, should the
communication interface between the OU’s be standardized. This will allow all
nodes, even if they have different hardware, software, and sensors, to interface
with each other as long as they are built using the same design model.

3.5 Non-Interference
When monitoring the wildlife in the arctic tundra, it is critical to consider the
legal limitations that are required by research in the arctic tundra. Naturmang-
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foldsloven, §35, 2009, states "Forskriften skal [...] sikre en uforstyrret opplevelse
av naturen"[20], this means that the OU’s should not disturb the wildlife in
their natural habitat. While this law does not directly create a guideline for
the design of the software and is more relevant to the hardware, it indirectly
creates criteria that the system needs to adhere to. This law enforces the use
of self-contained batteries and limited internet connections, as it prohibits the
use of external antennas and such, and therefore, enforces the use of multi-hop
routing.

3.6 Persistent Data Storage
The OU’s must be able to persistently store the data that is recorded locally, so
they have a secured copy of it. While also be able to temporarily store the data
that is propagated from other nodes. The size of the persistent storage must
be large enough to be able to handle the recorded data that has accumulated
through months of operation. While also handling temporary storing data that
has been propagated through the node until delivered to the next node on the
way to the homebase.

Even if the network experiences a critical failure, something that the nodes are
not able to recover from, the sensor readings should still be stored persistently
so that at the end of the deployment cycle, the recorded data can still be
fetched directly from the OU itself. Under no circumstances must any of the
other guidelines impact the device’s ability to record and store. The device
must prioritize the local persistent storage of the recorded data over anything
else.

3.7 Network Clock Stability
When a homebase is in the network, all nodes in the network should try to
achieve synchronization either directly or indirectly with that homebase. How-
ever, when a homebase is out of reach for the network, the nodes should still
be able to remain synchronized with the rest of the network. This means dis-
carding the "actual" clock and rather keeping the sleep schedule synchronized
so that they can wake up at the same time.





4
Related Work
This chapter presents some related work in fields relevant to this thesis. Those
fields include existing observational node networks, routing and communica-
tion in node networks, score-based routing, and time synchronization.

4.1 Existing Observational Node Networks
Observational node networks are not a new subject to research, and there has
been a lot of research done. In the research done by Alan Mainwaring et al.
in [13], they created a solution for monitoring the wildlife on The Great Duck
Island. Alan et al. deployed a solution with 32 very-low-powered microcon-
trollers with limited battery life. The nodes use a direct connection to a gateway
node, which transmits the data further on to a fixed base station. The base
station had a satellite internet connection that connected to a server remotely.
In contrast with the research done on The Great Duck Island, our approach
does not have such low-powered nodes, and data is required to route via other
nodes in the network.

In [24] Wolf-Bastian Pottner et al. presents Data Elevators, a delay-tolerant
WSN solution where they recorded weather temperatures from the top of a
15 story building and propagated the data recorded through a node that was
located in an elevator, down to the third floor. When the elevator left the third
floor, the node in the elevator left that hosted network. Then, when it reached

15
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the 15th-floor, it joined the 15th-floor network. Data Elevators assumes that
each node can connect to a constant power source. However, this cannot be
guaranteed in our approach.

Research for monitoring volcano tomography has been presented by Dennis E.
Phillips in [22]. This presents a node network that aims to study the seismic
activity in volcanos, so eruptions can be caught early so that the surrounding
areas can be evacuated. Sensor nodes record the seismic activity and com-
municate directly to an external homebase, which uses an external satellite
link to send data to a remote server for processing and evaluation. In contrast
with our solution, the volcano tomography uses external antennas to send the
sensor readings directly to the homebase, as well as having solar panels for
recharging the nodes and the homebase.

In [32] Deepak Vasisht et al. presented an IoT(Internet of Things) solution for
Data-Driven Agriculture, called Farmbeats. In Farmbeats, they used sensors to
record specific characteristics and having the sensors report their readings to
an IoT Base station that hosts a WiFi network for all the sensors to connect
to. This Basestation is connected to a solar panel and uses TVWS(TV White
Space) to propagate data back to the Farmbeats gateway, which is connected
to a constant power supply and internet. The problem with using a solution
similar to Farmbeats is that on the arctic tundra, a node with a solar panel
cannot be deployed, as it would go against the design guidelines and the fact
that the sun is not up all year. However, using TVWS to fetch data from a node
could be an interesting research topic.

4.2 Routing and Communication in Node
Networks

Routing techniques in observational sensor node networks are something that
has been researched extensively. Many solutions for propagating data between
interconnected wireless sensor nodes have been proposed, but many of these
solutions are not useful because of assumed connectivity to constant power
and constant internet.

To propagate data through a Wireless Sensor Network(WSN) solutions such as
Low-Energy Adaptive Clustering Hierarchy(LEACH) have been proposed. LEACH
is introduced in [8] by Heinzelman et al. and uses Cluster-heads which are
nodes that are directly connected to a fixed base-station, the nodes in the
network volunteer to become a cluster-head. The nodes in LEACH organize
themselves into small local clusters, where each local cluster has a cluster-head.



4.2 routing and communication in node networks 17

All the nodes in each localized cluster send their data to the cluster-head,
which then propagates it to the basestation. LEACH uses a two-phased solution
the first phase is to connect to the neighboring nodes, and the second is for
operating normally. Using LEACH in the arctic introduces some problems such
as an assumed fixed base-station that is reachable from all the local clusters,
the random volunteering to become a cluster-head assumes that all nodes are
able to connect to the basestation, and that all nodes can reach a cluster-head
node in a localized cluster.

In [12] by Lindsey, S., and Raghavendra, C.S., they introduce PEGASIS, a Power-
Efficient GAthering System, which is another solution that is an improvement on
the LEACH algorithm. PEGASIS tries to improve LEACH by making the nodes in
the network only communicate with close neighbors in a "chain" structure. This
means routing data through neighboring nodes so that the data is closer to the
cluster-head and can then be transmitted to the fixed base station. PEGASIS
also improves LEACH’s cluster-head election by changing it so that the nodes
in the network take turns transmitting to a fixed base station. In contrast with
our approach, PEGASIS has a fixed base station, that similarly to LEACH, is
assumed to be able to contact all nodes in the network so that the nodes may
rotate the cluster-head role. This cannot be guaranteed with deployment in
the arctic.

Due to the environmental problems that are introduced when working with
monitoring wildlife in the arctic tundra, constraints such as global knowledge
about the node network, fixed basestations, and a fully interconnected node
network cannot be guaranteed. However, custom solutions for monitoring the
arctic tundra have been proposed by other students at UiT The Arctic University
of Norway. Solutions that also have considered the requirements of the COAT
research group and the environment of the arctic tundra.

Camilla Stormoen proposed in her thesis [29] a solution for a WSN located in
the arctic tundra. Stormoen created a Peer-To-Peer network of sensor nodes that,
similarly to LEACH, uses cluster-heads as stationary, static nodes in localized
clusters so data can be routed to a base station. However, this solution assumes
that all the nodes in the network will be able to contact each other. This cannot
be guaranteed in the arctic tundra. She also rotates the job of the cluster
head around in the system, something that requires an election, which in turn
requires extra communication.

Øystein Tveito, in his master thesis [31] created a solution that uses microcon-
trollers to create an event-based system that is able to record the environmental
parameters that the COAT research group is interested in. Tveito deployed his
microcontroller solution in the field, where he found out that he was only able
to reach some of the nodes deployed. Tveitos solution uses LTE communication
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to communicate directly with an external server via cell towers. If a connection
is established, the data will be sent to the server and deleted from the node. In
contrast to our solution, Tveito’s solution did not have any connections between
the nodes, which means that if the nodes were deployed in areas where the
LTE connection was bad, they would not be able to send data to an external
server.

4.3 Score Based Routing
To reliably and efficiently propagate data through the network solutions such
as score-based routing has been proposed. Score Based Reliable Routing or
SBRR introduced in [34] by Yousefi, Hamed et al. have proposed a solution
where each node decides on a path by rating them based on a score, which, in
turn, is based on four factors: hop-count, sensor energy level, the error rate of
links, and free buffer size of sensors. The solution by Yousefi et al. also contains
path-awareness(or Path Knowledge) which is knowledge of internal parameters
of every node in the path. SBRR makes sure that each node has two disjoint
paths to the sink node. This means that if a node fails in one of the paths, the
other pathø would most likely work. The full path-awareness, together with
the full path knowledge of our system, would not be a good match for nodes
in the arctic. This makes a point of only having Neighborhood Knowledge, to be
able to perform relatively smart choices but without adding so much overhead
in transmissions.

4.4 Time Synchronization
Clock synchronization between nodes in a distributed networks is a very
known problem, and there has been a lot of research trying to find an optimal
solution for dealing with it. How the sensors are connected andwhat limitations
the network has frames some different strategies for dealing with the time
synchronization problem.

The most known and adopted solution for synchronizing local clocks and
limiting the local skew is the Network Time Protocol(NTP), which is introduced
by Mills, D.L. in [14]. NTP is a protocol that is created so that machines are able
to fetch a correct time from an external time-server which, in turn, is connected
in a set of hierarchically structured computers and timekeeping devices. These
timekeeping devices are divided into sections known as stratum, which is
directly connected to the accuracy achievable by the nodes(a higher stratum
means lower accuracy). The time that is extracted can still be considered as a
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"correct" time. The reason that NTP is not suitable for use on the arctic tundra
is that it uses the time servers to fetch the time from. This, in turn, means that
to have NTP support in a system, a constant connection to the internet would
be needed, or an NTP time-server must have been hosted in the local network
itself(and considered correct).

The Gossiping Time Protocol(GTP) introduced by Iwanicki et al. in [10] is created
for large scale decentralized systems, assumes that there is at least one node
in the network that has an accurate and robust time source. In GTP, each node
regularly exchanges clock settings with another node from the network, based
on the quality of the clock. Introducing GTP into a WSN raises multiple issues,
such as: Assuming that a node in the network has a correct and accurate clock
is a problem due to making the whole network rely on a single node. GTP is
created for large decentralized networks, something that is way too large scale
compared to a WSN in the arctic. GTP does also not consider the energy aspect,
and therefore is not suitable for deployments in the field.

I [2] Elson. Jeremy. et al. presents Reference-Broadcast Synchronization(or RBS),
which is a synchronization algorithm designed for a receiver-receiver-based
systems. RBS uses a broadcast message to send a message directly to the other
nodes in the system, and the receiving nodes use a timestamp recorded when
the message was received to calculate a reference point to use as an offset for
its local time. In contrast with our solution, RBS considers the latency to be
close to 0. This cannot be guaranteed when the connection between OU’s is
wireless and unstable.

Timing-Sync Protocol for Sensor Networks also referred to as TPSN is a synchro-
nization algorithm introduced in [4] by Ganeriwal, Saurabh et al. and is an
improvement upon the RBS algorithm and is designed for a sender-receiver
approach in low-cost sensor networks. With the use of the sender-receiver
approach – something that this system is based upon. The TPSN algorithm
is able to record four different timestamps, which are used to calculate the
offset of the node. These timestamps are used to create the offset between the
nodes, which is used to adjust the time with. However, TPSN does not support
multi-hop communication. This, in turn, means that TPSN requires that all
nodes can communicate directly with an authoritative time-server.

An overview by Ill-Keun Rhee et al. introduces in [26] multiple existing tech-
niques of handling the clock synchronization in WSNs. Techniques such as
Reference Broadcast Synchronization (RBS), Timing-Sync Protocol for Sen-
sor Networks (TPSN), Delay Measurement Time Synchronization for Wireless
Sensor Networks (DMTS), Flooding Time Synchronization Protocol (FTSP),
Probabilistic clock synchronization service in sensor networks, Time Diffusion
Synchronization Protocol (TDP). Ill-Keun Rhee et al. also states several advan-
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tages and disadvantages with these techniques, which has helped a lot when
deciding on how to handle the time synchronization in this system.



5
Architecture
This chapter describes the main building blocks of the system, which are
framed based on the background of the project(chapter 2), and the design
guidelines(chapter 3).

5.1 Architechtural Roles
The system frames many different roles which, are all connected in some way.
These roles are: Sink-node, Homebase, and node. These roles will consistently
be used throughout this thesis:

• A node(also referred to as OU) is one of the monitoring nodes in the
network, focuses on recording data and propagating that data towards
a sink node.

• A Sink-node is a node that has established a connection to a homebase.
This enables the node to propagate data outside of the network.

• A Homebase is an external server, which is connected to the sink node.
This external server receives the data directly from the sink nodes and is
considered to be the authoritative time in the network.

21
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Figure 5.1: Figure showing the Node’s Life cycle. This figure is shared with Erlend
Karlstrøm

5.2 Node Life-Cycle
The system is split up into two phases, which are the starting phase, and the
operational phase. The starting phase handles initializing variables and jobs,
such as creating a separate thread for handling the receiving of messages,
introducing itself to the neighboring nodes, and waiting for other nodes to join
the network.

The operational phase assumes that the network is already set up after being
in the starting phase. However, if there are no other nodes in the known
neighborhood, it will still operate normally. After entering the operational
phase, the system starts to perform the duty cycling – The periodical sleep
schedule –. When the system is awake, it synchronizes with the neighboring
nodes based on the known topology of the network, receives and sends data
based on the content of the mailboxes, and reads/writes data to persistent
storage. While the nodes are awake, they also propagate data towards other
nodes based on a score calculated.
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5.2.1 Duty Cycling
When nodes are running in the operational phase, as shown in the node life
cycle figure 5.1, they sleep for most of the time. The nodes duty cycle to preserve
power, only waking up to record environmental data, propagate data, and
synchronize their local clocks with the other nodes. As the nodes in this thesis
are all simulated processes, the system simulates the duty cycling by sleeping
for a set period(explained in chapter 7). This would, however, be replaced with
a separate microcontroller in a real-world implementation.

5.3 Neighbor Discovery

Figure 5.2: Figure showing how the nodes use an Ad-Hoc hosting range to connect to
neighboring nodes.

When nodes are initialized they start by broadcasting an introduction to any
neighboring nodes, within their hosted ad-hoc network distance(simulated
distance, see chapter 7 for more details) – as shown in figure 5.2–. If there
are any neighboring nodes active, they will introduce themselves back and,
both nodes will gain a new neighbor. When the nodes are introduced, they
share some local knowledge about each other, such as sharing paths to sink
nodes(if any in the network), calculating a score so that a more optimal
path can be chosen, and sharing local states. All the knowledge about other
nodes is stored locally at each node and is continually updated along with the
normal transmissions and communications between the nodes in the form of
metadata.
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As we see in figure 5.2, which is an example of the connections in the simulated
ad-hoc network, the blue stippled line around node zero is an example of the
ad-hoc hosting distance. This allows node one and node two to be tied together
through node zero, which, in turn, creates another route for the propagation
of data.

5.4 Topology

Figure 5.3: Figure showing a network topology with multiple sink nodes. The blue
nodes are sink nodes.

After all the nodes have introduced themselves to each other, they form an
interconnected mesh network of standalone nodes. The system is created so
that each node has the ability to become a sink node, as it only needs a
connection to the homebase to become a sink. This allows for multiple sink
nodes in the network at once. This, in turn, allows for the nodes to propagate
data in whichever direction is considered the best, based on the locally known
knowledge about the node’s neighbors and their score calculations.

By allowing the use of multiple sink nodes and allowing all the nodes to
become sink nodes, the system also removes any requirement for consensus
and elections. All the nodes decide locally and individually which node it should
propagate the data to.

In the example network shown in figure 5.3, there are shown two sink nodes
in the same network, node 0 and node 5. The same network is shown in figure
5.4, except this figure shows some of the local knowledge about the network.
Here we can see that although the nodes don’t know about the whole network,
it still knows the different paths to the network sink nodes.
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Figure 5.4: Figure showing the same network topology as figure 5.3, and showing the
sink paths from each node.

5.5 Score Based Routing
To have the nodes decide on a path to propagate the data through, or decide
what node to synchronize the local clock with, it uses score-based routing
calculation based on local knowledge of the neighboring nodes. The score-
based path choosing is done for load balancing purposes in the network so
that the same path is not always chosen, and the battery usage of the nodes
is spread across the neighboring nodes. The score-based path calculations are
based on three different metrics, two directly connected to information about
the neighboring node and one metric for the whole path. These metrics are
Round Trip Time (RTT), Path length, and neighbor battery percentage.

The RTTmetric calculates the time it takes to send and receive a message to and
from the neighboring node, which is relevant and useful to limit the number
of retransmissions needed when propagating data, and useful for reducing the
difference in time when extracting the clock for time synchronization. The
Neighbor battery metric is used for load balancing the transmissions. The path
length metric is used to evaluate which path is optimal because the longer
the path is, the more battery would be used in total – because the overall
transmission number would increase.

5.6 Event-Driven
The nodes are event-driven, meaning that, to make the nodes perform an
operation, an event needs to trigger it. An event can be something like a timer
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being reached or messages received from other nodes. As explained earlier,
the nodes simulate the duty cycling by sleeping. This, in turn, means that
the node is waiting for a wake-up timer-event to occur. If the wake-up timer
event occurs, it starts up as it should, performing the normal operations. The
simulation simulates that an IR-Camera event happens while it is sleeping so
that the node simulates taking a photo and storing it persistently.

5.7 Message-Oriented Priority Mailboxes
The nodes consist of 3 mailboxes which are prioritized in a specific order based
on the content of the mailboxes. The mailboxes are divided into Management,
Inbox, and Outbox. The Management mailbox is used to handle the network
stability and the network knowledgemessages and is mostly used for intra-node
communication explained in the next section.

The inbox is the mailbox that the receiver thread writes all the content propaga-
tion data to. The operational phase reads from this mailbox and does not write
to the mailbox except before and after waking up(when the receiver thread
is disabled), shown in Figure 5.1. The outbox is the mailbox containing the
data that should be propagated to another node or the homebase, and is very
similar to the inbox. The management mailbox is, as the name states, created
for containing the network maintenance messages.

The priority of mailboxes is as follows:

1. Management

2. Inbox

3. Outbox

Prioritizing the different mailboxes allows the management mailbox to focused
on before processing any other content messages that are to be sent to other
nodes. This allows for network stability to remain one of the most important
aspects of communication. The inbox is the second-most important mailbox due
to it being important to temporarily store the messages that were received if it
was not able to propagate all themessages further before the next sleep schedule
is reached. The outbox is the least important mailbox, as it is a collection of
messages that either should be sent or stored until the next cycle.
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5.8 Intra-Node Communication
To maintain the network stability and be able to get updated information
about the other reachable nodes, communication is needed between the nodes.
Communication that would share information such as the knowledge about
new nodes, dead nodes, new paths, new sink nodes, loss of sink nodes, and
many other messages can be shared between the nodes.

While many different intra-node messages exist, most of them will only be
used on special occasions. Some messages, such as the dead-node message
is something that is only used when nodes unexpectedly die or when a node
enters a Low-Power state.

5.9 Content Propagation
When a sink exists in the network and the nodes in the network propagate
data through other nodes based on a score as explained in section 5.5, except
if the node is a sink as it will send all the messages to the homebase. When
the nodes send messages to other nodes, they use a bundling algorithm to
merge the messages together, this algorithm is created by Erlend Karlstrøm
and is a part of his master thesis[11], so I will not go into detail about that
algorithm.

5.10 Adaptive Time Synchronization
The nodes have adaptive time synchronization, which means that if a sink node
with a homebase connection exists in the network, it will use an immediate
adjustment algorithm to synchronize the local clock towards that sink node.
This will make the network follow a "real"-clock. When the network does not
contain any sink nodes, it uses a gradual adjustment algorithm, which means
that the nodes focus on remaining synchronized with the other nodes and
disregards the "real"-clock. The nodes use the gradual adjustment algorithm
because it allows a single node to skew its local clock based on the clock of
other neighboring nodes without requiring a consensus algorithm to decide
on a temporary leader node.
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5.11 Safezones In Time Synchronization
When the network contains at least one sink node, a calculation to estimate a
"depth" in the network can be done. If the node is able to calculate an estimated
depth based on the paths in the network, it uses this depth to calculate safe
zones when it should synchronize with its calculated parent. Each node gets a
safe synchronization zone that is skewed with a constant based on the depth
in the network. Using the safe zones allows the "parent" nodes to fetch the
accurate time from its "parent" node, which, in turn, leads to a more accurate
clock in the nodes in the network and reduced failed time synchronization
requests.

5.12 Forced Time Synchronization
When the presence of a sink node is in the network, the nodes in the network
are able to estimate what "children" they have. By using the estimated children,
the nodes are able to request that child nodes synchronize with their parents
if the synchronization has not happened in a while. This will enforce that the
network remains stable, even if the clocks internally are not correct.



6
System Design
This chapter describes how the building blocks of the system, which were
explained in chapter 5, was used to create the design of the monitoring system
framed by the background and design guidelines.

The system design is based on two main phases as stated in the Architec-
ture section 5.2. The two phases are: The starting phase, and the operational
phase. In all the flowcharts located in this chapter, the ellipses that are inside
the flowcharts are links to another flowchart. I.e., An ellipse containing "To
Time Synchronization" is a link to the Time Synchronization Flowchart, this
is done because the flowcharts are together quite large, and some parts and
functionality are shared between the different parts of the system.

All the flowcharts(except the Time Synchronization Flowchart, figure 6.12) in
the following sections are shared between Erlend Karlstrøm, and the author
of this thesis, as they describe the fundamental architecture and design of
the system. The credit of the flowcharts should therefore be split, where both
deserve 50% credit for it.

6.1 General Functionality
The following sections explain some general functionality and parts of the sys-
tem that is relevant to both the starting phase and the operational phase

29
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Figure 6.1: Figure showing a network topology with all the paths from an ordinary
node to a sink node present, each colored arrow is a different path

6.1.1 Operational Configuration
In the starting phase, the nodes read some initial values that are set in a
configuration file. This file handles the environmental running values, which
the system is based upon. Since the system is currently running on a timer-
based configuration, it means that it uses durations of time to decide on what
to do rather than timestamps. The system extracts these global configurations
so the system can be run and so that the environmental running options can
be decided before starting a network. Some of the things that are located in
the configuration file are:

• Weight configurations for score-based path calculation.

• Timer constants, such as quarantine time, thresholds, etc.

• Time synchronization settings

• Bundling settings (I will not go into detail due to this being a part of
Erlend Karlstrøms thesis [11])
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6.1.2 Path Structure
After a sink has entered the network, either in the starting phase or a node in
the operational phase has gained sink node privileges, paths will propagate
throughout the network. As the paths are created, shared, and stored in the
different nodes, multiple paths routing through the same nodes may exist,
although there cannot exist more than one path that is the same. As we see
in figure 6.1, the routes of node 5 are all shown as arrows leading to the sink
node(node 0). By allowing all the available paths to be shared between all
the nodes in the network, redundancy can be assumed. However, this comes
at the cost of increased transmissions and reduced network longevity. This is
experimented on in chapter 9

In figure6.1 we can also see that node 0, 1, 2, and 3 form a cycle. This cycle is
something we refer to as a topological cycle, which in turn means that it ties
together two separate parts of the network, so paths are shared between the
nodes, enabling routing that way.

6.1.3 Neighbor Metadata Knowledge
To be able to update the local knowledge about neighboring nodes, data has
to be shared between them. All communication between nodes will contain
metadata about the nodes, which allows the amount of transmissions needed
to keep updated knowledge to be reduced, but increases the size of a single
transmission. Some of the metadata that is shared is:

• An updated battery status

• When the node was last synchronized with

• Storing a timestamp of last communication(used to check for dead nodes)

• Which node is the preferred parent node

By storing the metadata about the other nodes locally, the nodes can perform
the necessary calculations to try to keep the network stable and operational.
This also allows the nodes to re-calculate the score based on the newly received
metrics.
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6.1.4 Score Calculation
As stated in chapter 5, section 5.2 the nodes uses a calculated score to select a
path. This score consists of the normalized metrics: a Battery percent metric,
a Round Trip Time(RTT) metric, and a Path length metric. Where two of the
metrics are based on the neighboring node(the first step in a path), and the
third metric is based on the whole path length.

The battery percentage knowledge metric is acquired through the use of neigh-
bor metadata knowledge sharing, as explained in the previous section. The
RTT is calculated by measuring the time it takes to send a message to the node
and receiving a response. The Path score metric is found by comparing the
path length to the longest known path. The metrics are normalized by using
the following formulas:

BatteryScore =
100.0 − batteryPercentaдe

100.0

RTTScore =
LastKnownRTTinSeconds

LonдestRTTRecorded

PathScore =
PathLenдth

LonдestKnownPath

By using these three normalized metrics a total path score can be calculated,
this is done by following this formula:

TotalPathScore =
A ∗ BatteryScore + B ∗ RTTScore +C ∗ PathScore

3

When the total path score is calculated per viable path in the node, the system
picks the path that has the lowest score, as this is deemed most optimal. The
A, B, C that are in the TotalPathScore formula are weights that are set in the
global configurations file. This is done so the calculation of the path can be
weighted in a specific direction so that one of the metrics can be preferred.
By default, the weights are set to A = 4, B = 1, 2 = 1. The battery weight is
set to 4 so that the battery life of the nodes would be preferred over the other
metrics.

By calculating a score per path, the system can select a specific path for content
to be propagated through. This also means that the systemmight route through
other nodes instead of routing directly to a sink node if the connection to the
sink is bad, as it might reduce the retransmission amount. This score-based
path choosing is a simple approach to score-based path selection, and it is
far from optimal. To read more about the score-based pathing see chapter 11,
section 11.7.
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6.1.5 Path Handling
The following sections explain how paths are generated, accepted, distributed
while in the starting phase, and re-distributed after receiving a message about
new paths.

6.1.5.1 Path Generation

When a node gains a connection to the homebase it starts to consider itself
as a sink node. This means that the node will start to propagate messages
to the homebase directly and not via other nodes. Since the connection to
the homebase is established, the other nodes in the network need to gain
knowledge of the newly available paths so they can route to this sink(possibly
load balancing other sink nodes). The node starts by sharing a path to all the
neighboring nodes by sending them a new path message only containing itself.
The message is handled in the same way as explained in section 6.1.5.4. This
ensures full sink-path knowledge in the network, and in turn, load balances
the other sinks in the network, if there are any.

6.1.5.2 Path Acceptance

When a node receives paths from other nodes, it must accept them before
further propagating them to other nodes. When the node receives them, it
checks if its name is contained within those paths. If the node is in one of the
paths, it rejects that path. However, if it is not in those paths, it propagates
them further.

6.1.5.3 Path Distribution

When a node connects two different parts of an existing network together
while running in the starting phase, forming a topological cycle, the node then
starts to share the paths with the other nodes it recently connected to. The
newly discovered paths, which it received from the other nodes in the network,
are propagated to each other, with the only condition being that the node does
not send a path back to where it was received from. How a node re-distributes
that path is explained in the following section.
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6.1.5.4 Path Redistribution

Listing 6.1: Code showing how the re-distrubution of the acquired paths is done
func handleNewPathMsg (msg MBItem) {

pathsReceived := unpackData ( s t r i n g (msg . content ) )
var newPaths [ ] [ ] s t r i n g

fo r _ , path := range pathsReceived {
// Check i f the path i s r e l e van t f o r t h i s node or i f i t a l ready has

the knowledge about tha t mode
i f ( ! l i s t E x i s t s (node . s inkPaths , path ) ) && ( ! s t r E x i s t s ( path , node . name)

) {
// Add to our path and the newPaths
node . s inkPaths = append(node . s inkPaths , path )
pathThroughUs := append ([ ] s t r i n g {node . name} , path . . . )
newPaths = append(newPaths , pathThroughUs )

}
}

// Send the new path l i s t tha t was rece ived to the other neighbors by
f i l t e r i n g out which neighbor should have what path

fo r _ , ne i := range node . neighbors {
var pathsToForward [ ] [ ] s t r i n g

fo r _ , path := range newPaths {
i f ! s t r E x i s t s ( path , ne i .Name) {

pathsToForward = append( pathsToForward , path )
}

}
i f len ( pathsToForward ) == 0 {

cont inue
}

// Now we know tha t there i s something tha t needs to be sent
e r r := sendToRecip ients ( pathsToForward , " new_path " , [] s t r i n g { nei .Name

})
i f e r r != n i l {

dmError ( " Fa i l ed sending new paths to neigbor with e r ro r : %v " , e r r )
cont inue

}
}

}

When a node receives a new path message from the neighboring nodes, it
parses the message using the code shown in listing 6.1. The first thing the node
does is check if the sink path(s) are worthy of being accepted, which is done by
checking if the node is in the path or if it has the path already. If none of those
requirements are true, it is added to the sink-path list. Before re-distributing
the newly acquired paths, the node makes sure to only propagate the paths to
the node that does not exist in the path already. This will ensure full coverage
of sink paths.
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Figure 6.2: Flowchart showing how the path selection is done, with the help of a path
score. This figure is shared with Erlend Karlstrøm

6.1.5.5 Path Selection

Assuming there is a sink in the network(if not, the content will not be propa-
gated). Following the flowchart shown in figure 6.2. When deciding on which
path the node should propagate the content, the node first considers if itself is
a sink node because if it is, all the content messages would be directly sent to
the homebase. However, if the node is not a sink, it will need to path via other
nodes.

Finding a path to route via is done using the score of the different paths, as
explained in section 6.1.4. Here the node calculates a score for each viable
path and selects the path with the lowest score. The content is then sent to the
first step in the path. While selecting the path, the node also sets the preferred
parent, which is done to stabilize the forced time synchronization explained
in section 6.3.2.1. Read about improving the pathing in chapter 11.
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Figure 6.3: Flowchart showing how the starting phase works. This figure is shared
with Erlend Karlstrøm
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Figure 6.4: Flowchart showing how the receiver thread works. This figure is shared
with Erlend Karlstrøm

6.2 Starting Phase
The starting phase(shown in the flowchart in figure 6.3) has the job of initializ-
ing the node by extracting the initial configuration, spawning a receiver thread,
trying to connect to neighbors, and synchronizing the sleep schedule for the
nodes in the network. The nodes perform these tasks by using two different
modes, the introduction mode, and the reactive gossip mode.

6.2.1 Receiver Thread
At the start of the starting phase, the system initializes a receiver thread(seen in
figure 6.4). This receiver thread is an API that listens for incoming transmissions
and handles the requests accordingly. The API extracts the message content
supplied from the neighboring nodes and places the messages into the correct
mailbox, which is based on the message type(content propagation in the inbox
and network management messages in the management mailbox). While also
extracting the metadata and updating the local knowledge about the other
neighboring nodes. When responding to the requests, it also sends metadata
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to make sure the other nodes are updated, as explained in section 6.1.3.

6.2.2 Introduction Mode
After extracting the initial configuration and spawning the receiver thread, the
node enters the introduction mode, as seen in figure 6.5, in this mode, the
node broadcasts an introduction message to a range of addresses, where it
tries to introduce itself to as many nodes as possible. If the node can reach any
other nodes by sending the introduction message, it gets a response, and the
other node is added to a neighbor list. This is a simulated event, which will be
outlined in detail in chapter 7.

When the node is sending the introduction message, it first checks if it has a
connection to the homebase to check if it is a sink node. If a homebase connec-
tion is established, it sends the introduction message with a body containing
the path to the sink – Only containing the address to itself in this case.

If a node introduces itself to a network that already contains a sink node, it will
receive paths distributed from the other nodes. As this is the first connection
to the other nodes, all the paths can be accepted. After a node has introduced
itself to the neighboring nodes, it tries to distribute paths between nodes that
might not have been connected, assuming that there is at least one sink in the
existing network. If there are no sink nodes in the system, this step will be
skipped completely.

Figure 6.6 is an example of how a node connects two different nodes together.
At the start, the two nodes are not connected. The blue circle is a sink node, and
the white node is not. When a node introduces itself to both of the nodes and
receives a path from one of them and not from the other, it distributes the path
it received from one node to the other. This connects all three nodes together
so that the edge node can propagate data through the newly joined(green)
node to the sink node.

Introducing itself this way and gradually propagating the paths as more nodes
join the network allows the nodes to reduce the number of transmissions
needed when introducing multi-hop paths. However, when introducing new
topological cycles, the network’s total transmission amount would increase, as
all paths are needed to be shared through the same newly joined node.
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Figure 6.5: Flowchart showing how the introduction mode works. This figure is shared
with Erlend Karlstrøm
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Figure 6.6: Figure showing how a node is able to connect two different nodes that
are not connected together initially.

6.2.3 Reactive Gossip Mode
After the node has introduced itself to the network, it enters the reactive gossip
mode. By Following the flowchart shown in figure ??, we can see that the nodes
continuously check for introduction messages from new nodes, new paths from
known nodes, or a notification message from known nodes, and only reacts
when actively sent something to.

When a new node introduces itself to the node running in the reactive gossip
mode, it will store the information about that new node in a local knowledge-
store, and try to extract a body from that message. If the message has a body
containing a sink path, then it means that a sink node has joined the network.
The path to the sink will be extracted from the message and directly added
to the known sink-path list. After it has been added to the sink-path list, it is
propagated to the other neighboring nodes, in the same way as explained in
section 6.1.5.4. Allowing all paths to enter the sink-path list allows for path
redundancy and will not create duplicate paths, as it is a new node.

When the node receives a new path message, it checks if it should accept the
path or reject it, this happens the same way as specified in section 6.1.5.2, where
it checks if itself is in the path and propagates it if it is not.

When the first node in the network reaches the timer-limit for the starting phase,
which is a configurable timer set in the configuration file, it starts flooding
the network with a notification message, which is a message containing a set
timestamp for when the nodes should enter the operational phase. As soon as
this message is received in a node, it extracts the timestamp and spreads the
message further on. The node then proceeds to leave the reactive gossip mode
while shutting down all communication.

The reactive gossip mode allows the nodes to react to other nodes joining the
network, allowing them to propagate newly acquired paths and synchronize
their sleep schedules.
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Figure 6.7: Flowchart showing how the reactive gossip mode works. This figure is
shared with Erlend Karlstrøm
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6.2.4 Local Cleanup
After receiving a notification message, flooding the network with the same
message to the other nodes, and stopping all communication, the node enters
the local cleanup. This mode prepares the node for the operational phase by
finding a preferred parent if the network contains a sink node(How this is
done will be explained in the operational phase section 6.3). The nodes also
remove all temporarily stored messages, so it is prepared to start fresh in the
operational phase.

6.2.5 Synchronized Sleep Schedule
After preparing to start the operational phase, the nodes will wait until the set
timestamp that was received from the notification message has been reached.
This enables all the nodes to enter the operational phase at the same time.
This step would not be needed in a "real-world" implementation, as the system
would need to go from a timer-based system to a clock-based system, and all
the nodes could just skip straight to sleeping.

6.3 Operational Phase
The operational phase(shown in the flowchart in figure 6.8) has the job of main-
taining the network’s health, recording environmental data(simulated, will be
explained in chapter 7), propagating data, and duty cycling(also simulated,
see chapter 7). The operational phase consists of 4 modes which are: Post-sleep
preparation, Awake cycle, pre-sleep operation, and Low-Power mode.

Before entering the post-sleep preparation mode, the node sleeps for a while,
simulating how duty cycling would work in a system with designated hardware.
This mode also simulates recording environmental data such as oxygen, and
humidity, based on simulated equipment, while also simulating taking pictures.
All of which are explained in chapter 7.

6.3.1 Post-Sleep Preparation
Following the flowchart in figure 6.8 we can see that after waking up and
generating a status report, the node starts to prepare itself for the awake cycle.
It does this by calculating a partial send policy which is related to the bundling
aspect of the system and is created by Erlend Karlstrøm. Therefore, I will not go
into detail about the algorithm. However, I will state that it is used to calculate
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Figure 6.8: Flowchart showing how the operational phase works. This figure is shared
with Erlend Karlstrøm
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which node should be allowed to send non-optimized bundles.

In this mode, the node also restores previous not sent messages from the disk
so that it might be able to propagate content this cycle. While restoring the
data from the disk, the node also tries to optimize new bundles by merging the
data from what was restored and the newly created status report. I will also
not go into detail on how the content is merged, as this is created by Erlend
Karlstrøm, and is directly connected to his thesis. However, I will state that the
bundles are messages that contain more data than a single status report.

When preparing for waking up, the nodes will also check if they should enter
the low-power mode the next cycle. If this is the case, the node will issue a
message around in the network that will trigger the other nodes to remove this
node from their sink-paths list and consider the node as inactive. This will be
described in the awake cycle section 6.3.2.

In this mode, the nodes also check for a connection to the homebase. If it
has a connection, it spawns a message that will be propagated throughout
the network to share the new sink path and perform a time synchronization
immediately to the sink. This, in turn, means that as it enters the awake cycle,
the node will be updated, which will make it easier for the other nodes to
synchronize and fetch an updated clock. How the time synchronization is
performed will be outlined in section 6.4.

6.3.2 Awake-Cycle
After preparing for the wake-up, the node enters the awake cycle as we see
in figure 6.9. Here the nodes start accepting messages from other nodes but
wait with sending something until a timer has been reached. This is to limit
the number of retransmissions that might happen in the case of neighbors
sleeping(which might happen if they have skewed a bit, making them wake up
later).

The first thing a node does is to check if it should synchronize with a parent
node. The time synchronization will be explained in detail in section 6.4.

After trying to synchronize with its parent, the node will check how long ago
it was since its last connection with all the neighbors were (A timer can be set
in the configuration file). If the node has not recently been in contact with the
other nodes, it will issue a global neighborhood ping message. This, in turn,
means that the node will send a ping message to all neighboring nodes even if
they are marked as dead or inactive. This will exchange neighbor knowledge
as explained in section 6.1.3, or if they were tagged as dead, mark them as
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Figure 6.9: Flowchart showing how the awake cycle works. This figure is shared with
Erlend Karlstrøm
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alive again(Explained in section 6.3.2.6).

6.3.2.1 Forced Time Synchronization

Halfway through the awake cycle, the nodes will check if there any nodes that
should have synchronized with it by now. It does this by estimating which nodes
are children of the node, which it does by checking the neighbor knowledge
and seeing if the node is set as the preferred parent of any neighbors. By
estimating what nodes are children and using these nodes to see if they have
contacted the node with a synchronization request within a set timer, all the
estimated children which have not synchronized yet are found.

Using the newly discovered list of non-synchronized children the node can
issue a force synchronization request, which will in turn trigger one of two
different outcomes. Either a synchronization request by the children nodes or
a notification that tells the node that it is no longer the preferred parent(as
the preferred parent is calculated based on the path-score and can change
quickly).

This is done to ensure that the nodes in the network remain synchronized
with their parents because if a node tries to synchronize three times and
fails all times, it will not be allowed to synchronize that cycle, known as
quarantined.

This will force the children nodes to update, even if they have failed the
set number of times, which might have happened due to a significant skew
difference, where one node has its local clock skewed into the future and
another node skewed further in the back, compared to the real-time.

6.3.2.2 Management Mailbox Priority

As stated in chapter 5, the management mailbox in the system is prioritized
over the other mailboxes. This is to ensure that the network health messages
are processed and propagated before handling any content.

Following the awake cycle figure 6.9 which shows that after handling the
synchronization and ping, the node checks the management mailbox. Which
is shown in figure 6.10.

Here the nodes try to check if it has any non-processed messages that it needs
to process locally before propagating to the neighboring nodes. If there are
any non-processed messages, the node extracts the data and type of message
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Figure 6.10: Flowchart showing how the management mailbox is prioritized. This
figure is shared with Erlend Karlstrøm
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and starts to perform the local changes, if they are required – changes such
as removing dead nodes from the sink path list or start distributing messages
about a newly gained homebase connection.

After the node has processed the messages locally, they start by distributing
the same messages to the neighboring nodes. If the node fails to send the
messages, it enters a temporary quarantine state. This means that the node will
stop trying to communicate for a bit and resume after a while, this is to reduce
the number of retransmissions needed in case of a sleeping neighbor.

6.3.2.3 Content Propagation

Following figure 6.11 we see that before sending any content, the inbox is read,
and all the non-processedmessages are moved over to the outbox, but first, they
are optimized with the bundling algorithm. To understand how the bundling
algorithm works, read Erlend Karlstrøm’s master thesis[11].

After bundling the newly arrived messages trying to create optimal bundles,
the node starts trying to propagate the content. Before starting to transmit the
content, it makes sure that there are sinks in the network because if there are
no sinks, it will not send any messages.

But if there are sinks in the network, the node will try to calculate the most
optimal path towards one of those sinks. How this is done is explained in
section 6.1.5.5. After fetching an optimal path, it will extract the first step in the
path and start sending the optimized messages that way. If a node has been
allowed to send partial bundles, as explained at the start of the operational
phase section, it will do so here. If the sink node is trying to propagate content,
it will send only the optimized bundles directly to the homebase and is not
allowed to send partial bundles.

If the nodes fail to send, they will enter a temporary quarantined state and
stop sending messages for a bit so that the connection will hopefully stabilize.
However, if a node fails to sendmessages a set amount of times in a row (amount
configurable in the configuration), it will enter a constant quarantined state.
In the quarantined state, the node is not allowed to send any more data and
will wait until the next cycle before resuming data propagation again(similarly
to the time synchronization from the previous section).
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Figure 6.11: Flowchart showing how the content propagation works. This figure is
shared with Erlend Karlstrøm
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6.3.2.4 Dead Node Discovery

When a node fails to send a message to another node, it checks its local
knowledge about that targeted node to see if it should be marked as dead. This
operation checks if the node has reached some threshold values(configurable),
the checked values are a measure of battery life and the last contact timestamp.
If any of the set thresholds are reached, the node will spawn a dead node
message that will be flooded over the network.

When a node receives a message about a dead node, it removes all paths that
lead through that specific node from its sink path list while also tagging the
node as inactive in its local knowledge store(if it was a part of the knowledge
previously). This is done to prevent the nodes from trying to route through a
node that is dead. It then propagates that same message until all nodes in the
network know about the dead node.

6.3.2.5 Leaving the Network When Entering Low-Power Mode

After the node has decided that it should enter the low-power mode the next
cycle due to being lower than 10% battery(configurable), it creates a message
that will be sent to all other nodes in the network, signing itself out of the
network. This message is handled in the same way that the dead node message
is handled, shown in the previous section 6.3.2.4. This enables the other nodes
to stop propagating data through this node.

6.3.2.6 Wrongly Marked as Dead

Due to the environment, some connections may disappear for a while, then
resurface again due to things such as snow or bad weather. This can lead to
nodes being considered as dead and removed from the known sink-path lists
across the network. As stated earlier, the nodes issue a global ping to all known
neighboring nodes, even if they are tagged as dead. If this leads to contact
between two nodes, they will share their local knowledge and update it. This
will also make sure that the nodes are marked as alive. If a node was previously
marked as dead, another message will be spawned, forcing the node to share
its paths with the wrongly marked node. This will ensure that nodes can leave
and join the network, only requiring that they joined the operational network
in the starting phase.
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6.3.3 Pre-Sleep Preparation
After the awake cycle(as seen in figure 6.9) has run for its designated time, the
node shuts down all communication and enters the pre-sleep preparation. In
this mode, the node processes the remaining messages in the inbox, transfers
them to the outbox, and stores all the non-sentmessages persistently(temporary
as they will be deleted when sent). This is done so the other nodes do not
have to retransmit their original status report when transmitting towards the
sink/homebase. After storing the data and finishing the preparation for the
duty cycling, the node enters a sleep mode until it reaches the designated
wake-up timer again and starts the whole cycle all over again.

6.3.4 Low-Power Mode
When a node has left the network and has entered the low-power mode, all
connections are stopped. The node will no longer try to remain synchronized
with its neighboring nodes and will not try to send anything. This mode is
designed to dedicate all the remaining battery life to recording environmental
data and take photos while also storing the status reports persistently.

6.4 Time Synchronization
When the time synchronization operation is invoked, we can see by following
the figure 6.12, the first thing the node does is check if there is a sink in the
network. If there is a sink in the network, it will use the immediate time
synchronization algorithm. If there are no sinks in the network, it will use the
gradual algorithm. The immediate- and gradual algorithms will be explained
in the following sections.

6.4.1 Immediate Time Synchronization

OneWayLatency =
Abs((TA2 −TA1) − (TB2 −TB1))

2

CalculatedTB2Time = TB2 +OneWayLatency

When entering the time synchronization operation after establishing a connec-
tion to the sink, or when finding out that there was a sink in the network, the
node uses the immediate time synchronization.
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Figure 6.12: Flowchart showing how the time synchronization works. This figure is
not shared
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Figure 6.13: Figure showing how the timestamps are recorded while using the time
synchronization operation

Figure 6.14: Figure showing how the Latency-based algorithm offsets timer TB2 with
the latency, to calculate the correct time.
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The immediate algorithm is created as a variation of the Timing-Sync Protocol
for Sensor Networks(TPSN)[4] algorithm, where it uses the same timestamp
fetching way(shown in figure 6.13), but rather calculates a one-way-latency
from the timestamp, and uses that to offset the collected parent timestamp
with. Thus, being able to calculate a correct time from the parent node. How
the node uses the latency to calculate the actual parent node time can be seen
in figure 6.14.

Here it calculates which node it should synchronize against using the path
score to find a suitable parent node(shown in section 6.1.5.5) and starts the
synchronization operation. When beginning the operation, it starts a timer
known as TA1 and sends the request to the designated parent. The parent will
return with two timestamps, which are set at the first contact and the end of
the processing time, known as TB1 and TB2. After returning, the node sets the
last timestamp, known as TA2. The timestamps readings are shown in figure
6.13.

Using the formula shown above, node A is able to calculate the correct time for
node B(shown as CalculatedTB2Time in the formula), offsetting the recorded
time in the parent node with the latency between them. After finding the actual
clock of node B, node A adopts this time and changes its local clock to that
timestamp.

The immediate operation can fail in two different ways. The first way is having
the nodes refuse the synchronization, which happens when the parent node
is not yet updated, which the skewed safe synchronization zones are trying to
fix(see section 6.15). It can also fail if the calculated parent is not responding
to the messages.

If the immediate operation fails, with the parent responding by refusing the
node to synchronize(as the parent node is not updated), it will wait until its
next skewed safe zone and try again. This will happen three times, and if
they all fail, the node will fall back on synchronizing with their neighbors as
a backup, using the gradual algorithm. However, if the immediate operation
fails due to no response, it will immediately use the backup solution(gradual),
as shown in the next section.

6.4.2 Gradual Time Synchronization

O f f set =
((TB2 −TA1) + (TB1 −TA2))

2
, f romTPNS[4]

When entering the time synchronization and finding out that the network
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does not contain any sink nodes or entering the time synchronization after
failing the immediate algorithm, the node proceeds to use the gradual time
synchronization algorithm.

The gradual time synchronization algorithm is also created as a variation of the
TPSN algorithm[4], where it calculates the offset in the same way, but instead
of using the offset from an authoritative time source directly, it calculates
an average neighborhood offset and uses that average neighborhood offset to
gradually skew the local clock towards the center of the network, this will ensure
that all nodes move in the same direction, and remain synchronized.

First, the node finds all active neighbors and starts issuing requests to each
of them. The timestamp recording is done similar to the immediate time
synchronization operation and the TPSN algorithm, which is shown in figure
6.13. The node calculates its offset compared to each node and adds all of
the offsets into a temporary offset list. The node calculates a neighborhood
average offset based on that list. The formula above shows how the offset is
calculated for each node. The node then uses this neighborhood offset average
to skew the local time in that direction.

If the node fails to send a request to a single node, it simply skips that node.
However, if it fails to send a message to all nodes, it will not synchronize this
awake cycle, as it most likely has already skewed out of sync with the other
nodes.

6.4.3 Skewed Safe Synchronization Zone
Listing 6.2: Code showing how the safe synchronization calculation is done

func ca lcu la teSafeSyncZones () [] time . Duration {
safeZones := [] time . Duration {}
safeArea := ALIVEDURATION − (2 * SAFESKEWOFFSET)
sa feZoneOf f se t := f l oa t64 ( safeArea ) / f l oa t64 (SYNCATTEMPTS)

fo r i := 0; i < SYNCATTEMPTS; i++ {
zone := f l oa t64 (SAFESKEWOFFSET) + ( f l oa t64 ( i ) * sa feZoneOf f se t )
safeZones = append( safeZones , time . Duration ( zone ) )

}
safeZones = append( safeZones , time . Duration (ALIVEDURATION−SAFESKEWOFFSET

) )
re turn safeZones

}
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Figure 6.15: Figure showing how the skewed safe zones work.

Listing 6.3: Code showing how nodes check if they should synchronize or not.
func syncOrNot ( t s time . Time) bool {

i f node . t imeSyncAttempts >= SYNCATTEMPTS || node . synchronizedThisCyc le {
re turn f a l s e

}

myDepth := findMyDepth ()
f o r i := node . t imeSyncAttempts ; i < SYNCATTEMPTS; i++ {

nextSync := skewDuration (node . safeSyncZones [ i ] , myDepth)
af terNextSync := skewDuration (node . safeSyncZones [ i +1], myDepth)
i f timerReached ( ts , nextSync ) && ! timerReached ( ts , a f terNextSync ) {

node . t imeSyncAttempts = i + 1
re turn t rue

}
}
re turn f a l s e

}

Before entering the time synchronization operation from the awake cycle, the
node checks if it has reached its calculated synchronization zone. The safe
zones are calculated in the initializing phase of the node, as they are based on
a few configurable settings. By using the code shown in listing 6.2, the nodes
are able to calculate a set of zones within the awake cycle timer. These zones
are timer marks that divide the awake cycle into a set amount of chunks, where
the nodes are allowed to try to synchronize once in each chunk. This is to
reduce the number of transmissions, and so the node fetches the updated clock
from its calculated parent.

To ensure that the nodes are able to fetch an updated clock from their parents,
the safe synchronization zones are skewed based on the node’s estimated depth
in the network, as seen in listing 6.3, where it calculates its depth and skews the
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calculated chunks from the safe zone based on a fixed timer(configurable). By
offsetting each zone, based on the estimated depth, the nodes can synchronize
out of order with each other, which leads to a bigger chance of fetching the
updated and correct clock. How the skewed safe zone works is also shown in
figure 6.15.

If the node can fetch a zone where it is allowed to synchronize, it will try
to synchronize with a parent node. However, if it has failed a set number of
times(configurable), it will be quarantined for that cycle and only be allowed
to synchronize if the parent node forces a synchronization request.





7
Implementation
This chapter is about the implementation of the prototype system, which the
author, in collaboration with Erlend Karlstrøm has developed in accordance
with the proposed system architecture and design.

The content of this chapter is shared between both authors, where both deserve
50% credit for it. However, the Homebase Design(section ??) is created only
by the author of this thesis.

Programming Languages:

• Golang v1.16

• Python v3.9.4

Golang Packages:

• Termui v3.1.0[5]

The code for the prototype nodes was implemented in Golang[6], which is
an open-source programming language designed at Google. Here, Golang’s
stock HTTP library is used for functionality such as hosting an API on each
node and handling the sending of data in the form of HTTP requests using
the TCP(Transmission Control Protocol) protocol. The homebase is also im-
plemented in Golang and uses the HTTP library in much the same way. The
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homebase also uses the termui-package from Gizak on GitHub to provide
a GUI(Graphical User Interface) in the terminal, which has been helpful in
presenting the data that the homebase has received from the nodes.

The Python[23] language was used to make a script, which automated the
process of launching multiple nodes in different configurations. The subprocess
module from Python’s standard library was used to start andmanage the nodes,
and provide the executables with the correct arguments to form the network
topology that was needed.

To execute the prototype, follow the steps located in the README’s, which are
located in the source folder, and the following sub-folders.

7.1 Introduction Broadcast
When the nodes introduce themselves to the other nodes in the network, the
nodes send messages to a range of node addresses. These receiving nodes
will then respond with a message, which indicates whether or not they accept
or reject the handshake. They make this decision based on their internal
list of expected neighbors(will be explained in section 7.2). This range of
node addresses is supposed to simulate a radio frequency range dedicated for
broadcasting.

7.2 Topology Generation
A node is initialized with a list of node addresses which tells it which neighbors
it is supposed to have. This is used by the node to decide which introduction
messages from new nodes it is supposed to reject or accept. This list of nodes
is either supplied from the python script, which has many predefined networks
stored, or it may be supplied by hand, when starting a single node. This is
intended to simulate how nodes will not get a response when attempting to
contact potential neighbors which are out of radio range. This approach makes
it so that the network is always guaranteed to generate itself in the same way
every time, given the same configuration. While this is not representative of
how this would work in a real-world deployment scenario, this enables us to
reproduce network behavior and specific scenarios multiple times, making the
network characteristics easier to validate and experiment on.
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7.3 Environmental Readings
While this section is more relevant to Erlend Karlstrøm’s thesis, it is still relevant
for Sigurd Karlstad, as the main focus of the OU’s is to record environmental
readings. OU’s observe the surrounding physical environment, and produce
data which reports on the state of it. In this project, this functionality is
simulated by using random generation, in order to populate the reports that the
nodes produce. Events are produced randomly during node sleep to simulate
an IR-sensor detecting movement and taking a picture with its IR-camera.
The humidity and oxygen counts uses random number generation to produce
averages within a certain range.

7.4 Battery Drain
As environmental readings from sensor components are simulated, so are
those components’ drain on the battery. The battery levels are represented
via a variable in the node that is initialized to 99.9, intended to represent a
percentage value. As the node goes through its cycles, a new value for the
battery is calculated based on two factors: the time since the node was first
initialized, and the number of transmissions it has sent and received. The
calculation itself is very simple, and is not based on any kind of estimation
of battery drain in a real-world scenario. While the battery drain itself is not
relevant in a simulated system, it is very relevant in order to demonstrate the
score calculation and path selection features.

7.5 Simulated Duty Cycling
Between each awake cycle the nodes sleep to simulate the duty cycling in the
system. The nodes use timestamps to keep track of when they last awoke and
slept, and checks them periodically during execution to keep time. While the
node is sleeping, it will reject any incoming transmission, as an OU which has
turned off its antenna would also be unavailable for communication. This is
implemented as the receiver-thread checking the awake flag before processing
the message, and if the flag says that the node is supposed to be sleeping, then
the response will be a custom error code. The error will be handled by the
other node as if the node did not respond at all, i.e., a timeout error.
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Figure 7.1: Figure showing an example of how the Homebase looks with the nodes
have reported data to it.

7.6 Simulated Skew
While this section is more relevant to Sigurd Karlstads thesis, it is still relevant
to Erlend Karlstrøm as the local clock skew is a common problem for WSNs.
When nodes are disconnected from services like NTP, a computer’s RTC clock
will tend to skew away from the authoritative time. This skew is simulated in
the prototype by maintaining a variable in the node which is added to real
clock timestamps whenever the node needs to record the current time. This
variable is incremented by a factor after the sleep cycle ends, which simulates
clock drift during duty cycling. The factor is generated by the nodes upon
intialization, and is a random number in a certain range specified by the
configuration file. The randomness is meant to intentionally create differences
in the nodes’ clocks, as the clock drift of computing devices located in the
tundra may be influenced by a set of different factors. In [33], by Yik-Chung
Wu et al. they state that "In the long term, clock parameters are subject to
changes due to environmental or other external effects such as temperature,
atmospheric pressure, voltage changes, and hardware aging". This difference
is what the skew is supposed to simulate.

7.7 Homebase Design
While the homebase is not viewed upon as one of the most important parts
of this thesis as a whole, it is still relevant because the nodes would not be
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able to propagate data without it, and the system would be forced to use the
gradual time synchronization algorithm, as there would be no sink nodes in
the network. The homebase consists of three parts, the report receiver, the Sink
Controller, and the content viewer.

The report receiver is an API that handles receiving the status reports from the
sink nodes and answering time synchronization requests from sink nodes. The
sink controller is a way to turn nodes from ordinary nodes to sink nodes. As
this is a simulator, the sink controller(top right in figure 7.1) can contact all the
nodes and turn all of them to sink nodes. The content viewer is a section of the
screen that displays how many reports have been received and also displays
the last report supplied from each node, which is the section to the left in figure
7.1.





8
Validation
In this chapter, we will aim to uncover the characteristics of the implemented
solution by measuring various aspects of it.

The General Network Validation,General Network Validation Results,Validation
Setup, and the relevant data are all shared between the author of this thesis,
and Erlend Karlstrøm, where both deserve 50% credit for it.

However, the Time Synchronizing Validation is created only by the author of
this thesis. The author, therefore, deserves full credit for it.

8.1 Validation Setup
All the following characteristic validations were done on a HP Z4 G4 Worksta-
tion with the following specifications:

• CPU: Intel Xeon W-2123 8-core @ 3.900 GHz

• GPU: NVIDIA Quadro RTX 4000

• RAM: 32 GiB DDR4 Memory

• OS: Ubuntu 20.04.1 LTS 64-bit
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• Kernel Version: 5.4.0-56-generic

While doing the validation described in the subsequent sections, we will be
using the following settings if not specified otherwise:

• Time Synchronization: Enabled

• Simulated skew: In the range of -3 to 3 seconds (except 0).

• Cycles per Sync: Synchronization is performed once per awake cycle.

• Bundling behavior: Optimal bundle size set to 3, with Partial Bundle
Policy.

• Score Weights: Path weight set to 2.0, Battery weight set to 4.0, Latency
weight set to 1.0.

• Battery Discharging: Enabled

8.2 Validation Design
8.2.1 General Network validation
These network validations are aimed to validate the general architecture of
the system and that it operates as was outlined in the architecture and design
sections. Parts we are going to investigate include: path generation, sharing,
acceptance, selection and removal, optimal parent calculation, and rejoining
after a network disruption.

8.2.1.1 Path Discovery and Path Acceptance during Starting
Phase

To validate how accurate and correct the path generation and path accep-
tance is, we need to test how the paths are shared and stored in the starting
phase. These tests are done because path generation, acceptance, and shar-
ing are core components of the system solution. It is also important because
without extended network knowledge(Outside the local "neighborhood"), data
propagation and time synchronization would be not possible.

Method: Using the network structure shown in figure 8.1. We start the network
in the starting phase, and read the paths off the reports to check if they are



8.2 validation design 67

Node Name Sink Paths To sink node 0 Sink Paths to sink node 6

0

[[1, 6],
[2, 4, 5, 6],
[2, 3, 1, 6],

[1, 3, 2, 4, 5, 6]]

1
[[0],

[3, 2, 0],
[6, 5, 4, 2, 0]]

[[6],
[3, 2, 4, 5, 6],
[0, 2, 4, 5, 6]]

2
[[0],

[3, 1, 0],
[4, 5, 6, 1, 0]]

[[0, 1, 6],
[4, 5, 6],
[3, 1, 6]]

3

[[1, 0],
[2, 0],

[1, 6, 5, 4, 2, 0],
[2, 4, 5, 6, 1, 0]]

[[1, 6],
[2, 0, 1, 6],
[2, 4, 5, 6],

[1, 0, 2, 4, 5, 6]]

4

[[2, 0],
[2, 3, 1, 0],
[5, 6, 1, 0],

[5, 6, 1, 3, 2, 0]]

[[5, 6],
[2, 0, 1, 6]]

5

[[4, 2, 0],
[6, 1, 0],

[4, 2, 3, 1, 0],
[6, 1, 3, 2, 0]]

[[6],
[4, 2, 0, 1, 6],
[4, 2, 3, 1, 6]]

6

[[1, 0],
[1, 3, 2, 0],
[5, 4, 2, 0],

[5, 4, 2, 3, 1, 0]]

7
[[2, 0],

[2, 3, 1, 0],
[2, 4, 5, 6, 1, 0]]

[[2, 0, 1, 6],
[2, 4, 5, 6],
[2, 3, 1, 6]]

Table 8.1: Table showing the expected Sink Paths from each node to the two sinks
shown, network structure used is shown in figure 8.1. This table is shared
with Erlend Karlstrøm
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Figure 8.1: Figure showing a network structure with two sinks. The sink nodes are
marked as a blue cicle. This figure is shared with Erlend Karlstrøm

correct. After running the test we expect that the generated and accepted paths
will look similar in both cases to the paths shown in table 8.1.

8.2.1.2 Path Discovery and Path Acceptance during Operational
Phase

To validate how accurate and correct the path generation and path acceptance
is, we need to test how the paths are shared and stored in the operational
phase. These tests are done because path generation, acceptance, and sharing
are core components of the system solution. It is also important because
without extended network knowledge(Outside the local "neighborhood"), data
propagation and time synchronization would be not possible.

Method: Using the network structure shown in figure 8.1, with the modification
of having no sinks initially. Let the network run for 2 cycles, then promote the
same node that was a sink in the previous experiment to a sink node – Same
sink as shown in the figure, node 80. After running the test we expect that
the generated and accepted paths will look similar in both cases to the paths
shown in 8.1.
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Figure 8.2: Figure showing a network structure with one sink node. The sink node is
marked as a blue circle. This figure is shared with Erlend Karlstrøm

Figure 8.3: Figure showing how the optimal parent calculation experiment method
works. This figure is shared with Erlend Karlstrøm

8.2.1.3 Optimal Parent Calculation

To validate if a node is able to calculate and select an optimal parent from one
of the first steps in the known path list, and calculate this based on the local
knowledge of the neighboring nodes. These tests are important because it also
demonstrates a node’s ability to calculate a score for potential parents, and act
on the result in a correct manner. Switching between optimal parents as their
batteries drain, network-links decay or best paths become longer, is the way in
which the system implements decentralized load-balancing.

Method: Using the network structure shown in figure 8.2. Start a network with
bundling disabled and, generation of data continually so that the child node is
always sending data to its parent. Record the path score values for nodes the
current parent and the other potential one. A message is sent to the current
parent which will artificially adjust its battery. The score is scored with regular
intervals until the child node changes its parent node.
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Figure 8.4: Figure showing how the temporary connection disruption and validating
dead node sink path removal experiment method works. This figure is
shared with Erlend Karlstrøm

8.2.1.4 Temporary Connection Disruption and Validating Dead
Node Sink Path Removal

To validate if: neighboring nodes are able to detect if a node is "dead", all
paths in the network that uses this node as a step are removed, and the "dead"
node is successfully re-integrated when it starts communicating again. This
test is important because it demonstrates a node’s ability to join a network
after a disruption in communication, and the network’s ability to recalibrate
when previous members of the network join once again after being considered
dead. These are capabilities that contribute to the overall robustness of the
distributed system.

Method: Using the network structure shown in figure 8.2. Start a network
that is able to start and connect in a normal manner, and let it run. After a
few cycles, select one node to appear as though it is dead by not sending or
answering requests, so that it will be considered dead by the rest of the network.
Once the rest of the nodes are done with the recalibration process, resume the
connections and check if it is able to rejoin the network again. To verify that
the rejoining process has been successful, we record all paths: prior to stopping
the selected node’s communications, after it has been considered dead by all
neighboring nodes, and after it has joined the network again. Finally, the paths
in all three instances are checked for correctness.

8.2.2 Time Synchronization Validation
To validate how the network is able to remain stable by using the time syn-
chronization algorithms, we need to check that the local clocks in the nodes
in the system will skew away from each other before we can check if the
implementation of the time synchronization is working correctly.

Method: Using the network shown in figure 8.5. Start the network with the
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Figure 8.5: Figure showing a network structure with one sink.

time synchronization algorithms disabled, and let the system run for 20 cycles.
At the start of each awake cycle record the node’s local time, which is compared
with the real-time. This will result in the time-skew. Finally, compare the time-
skew and see if the nodes will skew away from each other.

8.2.2.1 Depth Calculation

To validate if the calculation of the estimated depth is correct, we need to
check the calculated depth of each node in a system with a multi-sink topology
to see if it can choose the correct depth, as it should always pick the shortest
depth. This is important to investigate because the calculation of the estimated
depth is used to skew the safe zones so the nodes synchronize their local
clocks at a more appropriate time so that the "parent"-node should already be
synchronized with its parent.

Method: Using the network structure shown in figure 8.1. We start the network
in the starting phase. After the paths have been generated and the knowledge
has been shared, we record the estimated depth at the start of the operational
phase. The recorded estimated depth can then be compared with the figure
8.6, where the nodes should pick the depth that is closest to the sink node, i.e.,
the lowest depth.
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Figure 8.6: Figure showing the network structure shown in figure 8.1 with the esti-
mated depth shown for each node.

8.2.2.2 Correctness Check for Immediate Adjustment Algorithm

To validate the correctness and accuracy of the immediate adjustment algo-
rithm, which is based on the latency between the nodes, we need to perform
calculations with a varying latency to see if the algorithm is able to handle
longer latencies between the nodes and still calculate a correct clock. This is
important to investigate because it checks the correctness of the immediate
adjustment algorithm, which is important for network stability.

To perform the validation, we need to validate the results from the node calcu-
lation against a table that uses the algorithm. By implementing the algorithm
into a spreadsheet where the nodes have similar static clocks(where the clocks
do not change), we can increase the latency between the nodes. This creates a
table showing what clock the node should be able to calculate the other actual
clock to. This table is shown in table 8.2.

Method: Using the network structure shown in figure 8.7. We set a static
time in both nodes, using the static clocks as specified in the table 8.2. Then
we let the system run for 1 awake cycle and read the local time of a node
after a successful time synchronization. To emulate an increasing amount of
latency, we artificially sleep in node TB(parent node) after it has received a
time synchronization request.
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Figure 8.7: Figure showing a network structure used for testing removal of latency in
the Immediate adjustment algorithm

TA1 Total
Latency in
Sec

TB1 TB2 TA2(offset
with total
latency
and pro-
cessing
time in
TB)

Calculated
Actual
TB2(after
total
latency)

12:00:00 00:00:02 12:05:00 12:05:04 12:00:06 12:05:05
12:00:00 00:00:04 12:05:00 12:05:04 12:00:08 12:05:06
12:00:00 00:00:06 12:05:00 12:05:04 12:00:10 12:05:07
12:00:00 00:00:08 12:05:00 12:05:04 12:00:12 12:05:08
12:00:00 00:00:10 12:05:00 12:05:04 12:00:14 12:05:09
12:00:00 00:00:12 12:05:00 12:05:04 12:00:16 12:05:10
12:00:00 00:00:14 12:05:00 12:05:04 12:00:18 12:05:11
12:00:00 00:00:16 12:05:00 12:05:04 12:00:20 12:05:12
12:00:00 00:00:18 12:05:00 12:05:04 12:00:22 12:05:13
12:00:00 00:00:20 12:05:00 12:05:04 12:00:24 12:05:14
12:00:00 00:00:22 12:05:00 12:05:04 12:00:26 12:05:15
12:00:00 00:00:24 12:05:00 12:05:04 12:00:28 12:05:16

Table 8.2: Table showing the expected calculated correct clock based on the latency
between the nodes, network structure shown in figure 8.7
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8.3 Validation Results
8.3.1 General Network Results
8.3.1.1 Path Discovery and Path Acceptance during Starting

Phase

After running the tests and comparing the results with the sink paths we
expected to see, shown in table 8.1, we then saw that although the paths were
not in the same order, the paths that were generated while in the starting
phase of the system’s life-cycle were themselves identical.

Based on this result we can conclude that the path discovery, path acceptance,
and path sharing is working as intended for this particular configuration, when
starting the network with a pre-configured sink. Although not shown here,
while developing and debugging the simulator we have also tested all the
configurations that we have made for it, and have found the same to be true
for all of them.

8.3.1.2 Path Discovery and Path Acceptance During Operational
Phase

After running the tests and comparing the results with the sink paths we
expected to see, shown in table 8.1, we then saw that although the paths were
not in the same order, the paths that were generated while in the operational
phase of the system’s life-cycle were themselves identical.

Based on this result we can conclude that the path discovery, path acceptance,
and path sharing is working as intended for this particular configuration, when
promoting a node to a sink while in the operational phase. While developing
and debugging the simulator we have also tested all the configurations that
are available in the simulator, and while not shown here, have found the same
to be true for all of them.

8.3.1.3 Optimal Parent Calculation

By running the test and observing the transmissions and debug updates from
the nodes, we were able to create table 8.3 to show the sequence of events
and what the nodes estimated the potential parent’s scores to be at the given
times. Please remember that a lower score is better than a larger one, and that
these nodes are in the configuration shown in 8.2. The table shows that node
3 estimated the scores of its potential parents to be 0.39-0.43 for node 1 and
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Transmission Transmission
Reason

Parent Score Node 1 Score Node 2

1 Time-
Synchronization

Node 1 0.390813 0.668333

2 Content
Propegation

Node 1 0.423120 0.669333

3 Time-
Synchronization

Node 1 0.423120 0.702830

4 Content
Propegation

Node 1 0.430342 0.702830

EVENT OCCURED SETTING NODE’S BATTERY TO 30%
5 Time-

Synchronization
Node 1 0.430342 0.702830

6 Content
Propegation

Node 2 1.494231 0.702830

7 Time-
Synchronization

Node 2 1.494231 0.708385

8 Content
Propegation

Node 2 1.494231 0.715608

Table 8.3: Table showing the optimal parent results. This table is shared with Erlend
Karlstrøm

0.69-0.70 for node 2. After the reduction in battery caused node 1’s score to
spike to 1.49, node 3 was able to calculate that node 2 – with its 0.70-0.71 –
was the better option and select it as its preferred parent instead.

This shows that the nodes are able to incorporate changes into their score
estimates – changes which they extract from the metadata of requests that
they have exchanged with their parents. In this experiment we saw that node
3 updated its information one cycle after the change, and was able to choose a
new parent when the scores skewed in another node’s favor.

8.3.1.4 Temporary Connection Disruption and Validating Dead
Node Sink Path Removal

After running the tests and recording the sink path lists in the 3 different stages
of the network, we were able to create the 3 tables as shown in table 8.4, 8.5,
and 8.6.

The first, table 8.4, shows that before inducing the artificial disruption the
nodes had all the sink paths that is expected from the configuration shown in
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Node Sink Paths
0 SINK NODE
1 [[0], [3, 2, 0]]
2 [[0], [3, 1, 0]]
3 [[2, 0], [1, 0]]

Table 8.4: Table from
temporary
connection
disruption
validation
showing the
nodes’ sink
paths pre
event. . This
table is shared
with Erlend
Karlstrøm

Node Sink Paths
0 SINK NODE
1 [[0]]
2 [[0]]
3 []

Table 8.5: Table from
temporary
connection
disruption
validation
showing the
nodes’ sink
paths post
event. . This
table is shared
with Erlend
Karlstrøm

Node Sink Paths
0 SINK NODE
1 [[0], [3, 2, 0]]
2 [[0], [3, 1, 0]]
3 [[2, 0], [1, 0]]

Table 8.6: Table from
temporary
connection
disruption
validation
showing the
nodes’ sink
paths post
event fix.

. This table is shared
with Erlend Karlstrøm

figure 8.2. The second, table 8.5, shows that after the disruption, and having
node 3 being considered dead by nodes 0, 1 and 2, and node 3 considering the
others dead from its perspective, the sink paths were reduced to just node 1
and 2 having a single path directly to node 0. The third, table 8.6, shows that
after node 3 stopped being disrupted, it was able rejoin the network, and the
paths that were present prior to the event were fully restored – for node 3
which lost all its paths, and nodes 1 and 2 who lost their paths through node
3.

From looking at the first table 8.4, and the second table 8.5 we are able to
conclude that the system is able to remove the reduntant paths of "known" dead
nodes, so that it will not route through them. This means that the system’s sink
node removal functionality works as intended.

From looking at the second table 8.5, and the third table 8.6 we can also
conclude that nodes once believed to be dead, are given the paths that they
previously deleted upon rejoining, and that the other nodes can accurately
recognize this node as a routing option once again.

8.3.2 Time Synchronization Results
After running the network shown in figure 8.5 for 20 cycles, we were able to
create a graph showing how nodes slowly grow from each other, based on
the simulated skew(as explained in chapter 7). The graph is shown in figure
8.8
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Figure 8.8: Graph showing the recorded skew, when the time synchronization opera-
tion is disabled.

Node Recorded Depth
0 0
1 1
2 1
3 2
4 2
5 1
6 0
7 2

Table 8.7: Table showing the recorded calculated depth for the nodes

By looking at the graph in figure 8.8 we can see that the nodes skew away from
each other based on a factor per cycle. This means that the local clock-skew
will grow so far from each other so that the nodes will lose connection with
each other.

In conclusion, running the system with the time synchronization disabled
makes the nodes skew away from each other based on the skew factor per
cycle, which, in turn, means that the system requires time synchronization to
work.

8.3.2.1 Depth Calculation

After running the network shown in figure ??, and recording the estimated
depth of the nodes, we were able to create the table shown in table 8.7.
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Calculated Actual TB2 Recorded Actual TB2
12:05:05 12:05:05
12:05:06 12:05:06
12:05:07 12:05:07
12:05:08 12:05:08
12:05:09 12:05:09
12:05:10 12:05:10
12:05:11 12:05:11
12:05:12 12:05:12
12:05:13 12:05:13
12:05:14 12:05:14
12:05:15 12:05:15
12:05:16 12:05:16

Table 8.8: Table showing the recorded time from the correctness check validation for
the Immediate algorithm

By inspecting the recorded data in the table shown in 8.7, and comparing it
with the network structure containing the node depths in figure 8.6. We see
that the nodes can estimate a depth that is considered correct as the nodes are
picking the shortest depth possible. Thus, in conclusion, the node’s ability to
calculate an estimated depth is correct, which, in turn, makes the skewed safe
zones correct but necessarily optimal.

8.3.2.2 Correctness Check for Immediate Adjustment Algorithm

After running the network shown in figure 8.7, and recording the calculated
time of the A-node based on the different latencies, and static clocks, shown
in table 8.2, we were able to create a table of recorded clocks and calculated
clocks as shown in table 8.8.

By inspecting the table shown in table 8.8, we can see that the calculated time
and the recorded time were the same. This means that even in the case of
latencies for up to 22 seconds – Something that is way more than expected –
the algorithm was able to remove it.

In conclusion, the immediate adjustment algorithm is able to remove the latency
aspect of the requests and able calculate a correct clock, assuming that the
latency is divided equally between the transmissions to and from.



9
Experiments
The General Network Experiments, General Network Results, Experiments
Setup, and the relevant data are all shared between the author of this thesis,
and Erlend Karlstrøm, where both deserve 50% credit for it.

However, the Time Synchronizing Experiment is created only by the author of
this thesis. The author, therefore, deserves full credit for it.

9.1 Experimental Setup
All the following experiments were done with the same setup as in chapter 8,
section 8.1.

79
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Figure 9.1: Figure showing a set of network topologies topologies used in the experi-
ments.
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9.2 Experiments Design
For the experiments, we will be using a set of network configurations which
can be seen in 9.1. Each configuration has been procedurally generated by
following a set of rules, which are as follows:

• Start with a triangle (This is Sca1)

• Add two nodes, one with two links to the pre-existing nodes, and the
other with one link to any node.

– Repeat this step as needed

This set of configurations will represent a single network that scales progres-
sively.

9.2.1 General Network Experiments
These experiments aim to test the network’s stability and capacity to deal with a
growing number of nodes in different aspects i.e., the systems’ scalability.

9.2.1.1 Sink Path Scaling

This experiment aims to measure how much the number of sink paths grows
as the number of nodes increases. More specifically, measure by what degree
the volume of local knowledge grows, based on the number of nodes present
in the network. This is important to investigate because the list of sink paths is
not only added to or removed from, but also frequently iterated over to inform
decisions that takes the node’s placement in the network into account – such
as selecting which path to a sink is the best.

Method: This experiment runs through all the different network configurations
shown in figure 9.1, from sca1-sca10. We start the networks in the starting phase,
and have all the nodes count the number of paths they have.

9.2.1.2 Path Length Scaling

This experiment aims to measure how much the lengths of paths grow as the
number of nodes increases. More specifically, it will find the average length
of the shortest paths for all the nodes in a network, and the average length
of the longest paths for the same nodes, and show the difference between
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them. This is important to investigate because the shortest paths are often
the most favorable routing options, and seeing how much they scale with the
network size is interesting. The longest paths are the least used because of
their length, but they take up the most space in the path list, and require the
most communication to propagate through the network, as every step in a path
essentially equals one transmission.

Method: This experiment runs through all the different network configurations
shown in figure 9.1, from sca1-sca10. We start the networks in the starting
phase, and have all the nodes report back the length of their shortest path,
and the length of their longest path. These values are then averaged into a
representation for the network as a whole. When this has been done for all the
network configurations, they are then compared against each other.

9.2.1.3 Transmissions During Starting Phase

This experiment aims to measure how many transmissions were sent and
received during the starting phase, with a growing number of nodes. More
specifically, measure how many transmissions were needed to establish and
stabilize the network, from initialization to full operation, and how does this
amount grow for the different network configurations. This is important to
investigate because the starting phase will be the space of time where the
network experiences the most activity in terms of transmissions in the least
amount of time. Since high energy consumption has been so closely linked
with wireless transmissions, in this case, poor scalability may be a contributing
factor to high energy usage during the starting phase.

Method: This experiment runs through all the different network configurations
shown in figure 9.1, from sca1-sca10. We start the networks in the starting phase,
and have all the nodes record all the transmits done, which include all sends,
and all successful receives. These transmit numbers are added together, which
gives the total amount of transmissions during the starting phase across all
nodes.

9.2.1.4 Transmissions During New Sink Operation

This experiment aims to measure how many transmissions were sent and
received during the operation of adding a sink into the network and sharing
the paths to that sink, as the number of nodes in the network grows. This is
important to investigate, because the act of adding a new sink, generates a
lot of messages which needs to be propagated across the whole network, and
checking how the amount of transmissions grows based on a network size will
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then show how the sink path sharing scales on its own.

Method: This experiment runs through all the different network configurations
shown in figure 9.1, from sca1-sca10. However, with one modification: the
networks does not contain a sink initially. After the starting phase has finished,
we send a message to a node, converting it into a sink. We then record
how many transmissions this event caused to be generated for each network
configuration.

9.2.1.5 Transmissions Normal Operation

This experiment aims to measure how many transmissions were sent and re-
ceived during the normal operations done in the operational phase. This is
important to investigate because it will show how the starting phase – charac-
terized by stabilization and path sharing – contrasts with the communication
pattern in the operational phase, such as time synchronization and data propa-
gation. It also shows that as long as the network remains stable, transmissions
will remain close-to linear and will not show any spikes – which would be
indicative of moments when the network needs to recalibrate, such as when a
new sink is added and new paths needs to be propagated.

Method: This experiment runs through a selection of the different network
configurations shown in figure 9.1, using sca2, sca4, sca6, sca8, and sca10. We
start the networks in the starting phase, and record all transmissions done
for 15 awake cycles(including the starting phase as the 0th cycle). No special
actions are performed, and the network is allowed to run normally.

9.2.2 Time Synchronization Experiments
These experiments aim to test the recoverability using the time synchronization
operations and check how the algorithms deal with a growing number of nodes,
i.e., the time synchronizations’ scalability.

9.2.2.1 Skew with Immediate Adjustment Algorithm

This experiment aims to measure how the immediate time synchronization
algorithm is able to correct the node’s local clock-skew back towards a close-
to-zero skew after the simulated time-skew has happened. This is important
to investigate because, as explained in the design chapter 6, the immediate
adjustment needs to "adopt" the parent’s local time. The aspect of remaining
synchronized with the other nodes is also one of the most important contribu-
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tions of this system as it allows for data to be propagated and sleep schedules
to be synchronized.

Method: Using the network shown in figure 8.5. Start the network and let the
system run for 20 cycles. At the start of each awake cycle, we record the node’s
local time to get the skew after the duty cycling, then record the node’s local
time again after the awake cycle to get the skew correction. By recording two
timestamps per cycle, it is possible to see how much the node skewed and how
much it recovered from the skew.

9.2.2.2 Skew with Gradual Adjustment Algorithm

This experiment aims to measure how the gradual time synchronization algo-
rithm is able to correct the node’s local clock-skew back towards the average
time of the network. This is important to investigate because, as explained
in the design section, the gradual adjustment algorithm calculates the global
average of the neighborhood and gradually skews the clock toward that time,
disregarding the "real"-time. It is also important to investigate due to the aspect
of remaining synchronized even though no sinks exist in the network.

Method: Using a variation of the network shown in figure 8.5, except the
network does not contain any sinks. Start the network with no sinks, and let
the system run for 20 cycles. At the start of each awake cycle, record the node’s
local time to get the skew after the duty cycling, then record the node’s local
time again after the awake cycle to get the skew correction. By recording two
timestamps per cycle, it is possible to see how much the node skewed and how
much it was able to recover from the skew.

9.2.2.3 Immediate- and Gradual Adjustment Transmission
Amount

This experiment aims to measure how the immediate algorithm and gradual
algorithm compare to each other based on the amount of transmission overhead
it adds to the networkwhile also testing the consequences of having the number
of nodes scale up. This is important to investigate because the difference in the
number of transmissions between the algorithms is relevant to the longevity
of the network.

Since this is a two-part experiment that uses two different adjustment algo-
rithms, they also require two different networks. While the structures of the
two networks remain the same, the gradual algorithm requires that there are
no sinks in the network.
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Method – Test 1 Immediate algorithm: This experiment runs through a
selection of the different network configurations shown in figure 9.1, using
sca2, sca4, sca6, sca8, and sca10. We start the networks in the starting phase
and record all transmissions marked as time synchronization for 20 awake
cycles(including the starting phase as the 0th cycle).

Method – Test 2 Gradual algorithm: This experiment runs through a selection
of the different network configurations shown in figure 9.1, using sca2, sca4,
sca6, sca8, and sca10, except the configurations does not contain any sink
nodes. We start the networks in the starting phase and record all transmissions
marked as time synchronization for 20 awake cycles(including the starting
phase as the 0th cycle).

9.2.2.4 Total Increase of Transmissions with Time
Synchronization Algorithms

This experiment aims to measure what impact that the different time syn-
chronization algorithms have on the total amount of the transmissions in the
network while running in their intended environment, i.e., measuring content
propagation while running the immediate algorithm, but not when running the
gradual algorithm. While also testing what sort of impact they have when the
network is scaling up with an increasing number of nodes. This is important to
investigate because measuring the total amount of transmissions while having
the different algorithms run in their intended environment, we get to see what
impact that the different algorithms have upon the system as a whole.

Similar to the previous experiment, this experiment tests the two different
algorithms in their intended environment. Therefore the tests require two
different network structures. While the structures of the two networks remain
the same, the gradual algorithm requires that there are no sinks in the network.
The data that can be read is also different as their intended environment has
different data propagating through the network.

When testing the gradual adjustment algorithm, the network cannot contain
a sink node. This means that the content propagation transmissions will not
exist, but only time synchronization messages andmanagement messages will.–
management messages is a group term, which contains time synchronization
messages and other messages.

When testing the Immediate algorithm, the network is then required to contain
at least one sink node. This means that the network will also contain content
messages along with management and time synchronization messages.
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Figure 9.2: Figure showing a network structure used for testing accuracy of the time
synchronization with an increasing depth of the nodes

Method – Test 1 Immediate algorithm: This experiment runs through a
selection of the different network configurations shown in figure 9.1, using
sca2, sca4, sca6, sca8, and sca10. We start the networks in the starting phase
and record all transmissions marked as time synchronization, management,
and content for 20 awake cycles(including the starting phase as the 0th cycle).
These transmissions are all added together, based on their category, dependant
on the cycle that the nodes were at.

Method – Test 2 Gradual algorithm: This experiment runs through a selection
of the different network configurations shown in figure 9.1, using sca2, sca4,
sca6, sca8, and sca10, except the configurations does not contain any sink nodes.
We start the networks in the starting phase and record all transmissions marked
as time synchronization and management for 20 awake cycles(including the
starting phase as the 0th cycle). These transmissions are all added together
based on their category, dependant on the cycle that the nodes were at.

9.2.2.5 Accuracy with Immediate Adjustment

This experiment aims to measure how accurately the immediate adjustment
algorithm is to adjust the node’s clock towards the calculated parent’s clock
based on an increasing depth. We need to form a network that has only one
sink and a lot of nodes in different calculated depths. This is important to
investigate because a direct connection to a sink cannot be guaranteed, which
means that fetching an updated time needs to be done through other nodes,
and checking how accurately it is, is critical for network longevity.

By measuring the accuracy of the immediate algorithm, we can also see how
well the safe zone calculation is working, as the main focus of it is trying to
fetch the clock after it has already been updated at the parent node.

Method: Using the network structure shown in figure 9.2. We start the network
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and let the system run for 20 cycles. At the start of each awake cycle, we record
the node’s local time to get the skew, then record the node’s local time again
after the awake cycle to get the skew correction. By recording two timestamps
per cycle, it is possible to see how much the node skewed and how much it was
able to recover from the skew.

9.2.2.6 Reduced Immediate Time Synchronization Operation

This experiment aims to measure how many cycles between the immediate
time synchronization operation that the system is able to handle. This is
important to investigate because checking how much reduction of the time syn-
chronization operation that the system is able to handle could lead to increased
network longevity as it is possible to decrease the number of synchronization
transmissions needed.

Method: Using the network network shown in figure 8.5. We start the network
and let the system run for 20 cycles. At the start of each awake cycle, we record
the node’s local time to get the skew, then record the node’s local time again
after the awake cycle to get the skew correction. By recording two timestamps
per cycle, it is possible to see how much the node skewed and how much
it was able to recover from the skew. We run the same test multiple times
while reducing the amount of the time synchronization operation, starting at
one synchronization per cycle – which is the default amount – and reduce it
incrementally until one synchronization per 9th cycle.

9.3 Experiment results
9.3.1 General Network Results
9.3.1.1 Sink Path Scaling

After running the experiments while using the scalability testing configurations
shown in figure 9.1, we were able to create a graph containing the total
amount of sinks in the network at those specific configurations, shown in figure
9.3.

By looking at the graph in figure 9.3, we can see that by increasing the number
of nodes in the system, which creates new possible paths, they end up growing
exponentially. This means that while the network size is small, the path-sharing
and path acceptance algorithm works well, but when the network grows larger,
the number of paths will grow exponentially, rather than run proportionally to
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Figure 9.3: Graph showing the total amount of sink path growth when scaling the
network. This graph is shared with Erlend Karlstrøm

the number of nodes as it grows linearly.

In conclusion, the path-sharing and path acceptance works well while the
network remains small or has few to no cycles in the topology. However, it
scales poorly to larger networks, containing multiple cycles. Considering that
WSNs often scale to thousands of nodes, this poor scaling in the space of just 3
to 21 nodes is rather severe.

9.3.1.2 Path Length Scaling

After running the experiments while scaling through the scalability testing
configurations shown in figure 9.1, we were able to create a graph containing
the averages of the longest paths and the shortest paths for all the network
configurations. The graph is shown in figure 9.4.

By looking at the graph in figure 9.4, we can see that while increasing the
number of nodes in the system, the average shortest path remains at approx-
imately the same length, with a minimal linear growth, while the average
longest path is growing more dramatically, but also linearly. This means that
while the network size is growing, the shortest available path will increase far
less on average than the ones at the other end of the spectrum, which in turn
means that the paths that are most relevant for routing are growing the least,
while the ones least relevant are growing the most.
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Figure 9.4: Graph showing the average length of the shortest and the longest path
when scaling the network. This graph is shared with Erlend Karlstrøm

[Possible disc topic: Jumps between sca3 to sca4 and from sca9 to sca10.
Possible reason: Topological cycles]

In conclusion, the shortest paths will, on average, grow minimally for each
node – at least according to the experiment. We may also note on the other
hand, that the paths shared between the nodes may contain so many steps –
and keeping in mind that these are the longest ones, and thus least favored for
routing – that they amount to little more than simply taking up a significant
amount of space and processing time. While their presence does provide a
guarantee of absolute redundancy – in that all paths are maintained as long as
they are not deemed useless, which means that as long as a theoretical path
exist in the network the nodes will know about it – it is not so obvious from
the authors’ point view whether or not this is a worthwhile trade-off.

9.3.1.3 Transmissions During Starting Phase

After running the experiments while scaling through each of the scalability
testing configurations shown in figure 9.1, we were able to create a graph
containing all the transmissions between nodes during the starting phase. The
graph is shown in figure 9.5.

By looking at the graph in figure 9.5 we can see thatwhile increasing the number
of nodes in the system, the total amount of transmissions grows linearly with
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Figure 9.5: Graph showing the amount of transmissions during the starting phase
when scaling the network. This graph is shared with Erlend Karlstrøm

small increase between each configuration, except a big jump between sca9
and sca10, which we suspect is because of node 19 forming another topological
cycle with node 16 and node 5. The pathing opportunity which is subsequently
created needs to be propagated to the rest of nodes, and will be propagated to
all of them, because it is on the periphery of the sink and can therefore form
a detour for several existing paths. This will therefore result in several new
longer paths which uses node 19 as a step.

In conclusion, increasing the size of the network does not scale in exactly the
same way as the number of transmissions needed during the starting phase. It
will mostly scale linearly with the network size and the number of nodes itself
is not necessarily indicative of how many transmissions are needed to complete
the initial handshakes and path sharing. However, when topological cycles
are added into the network, like in sca10’s case, the transmissions needed for
sharing the paths will increase significantly, because it creates a new route
through an "older" part of the network.

9.3.1.4 Transmissions During New Sink Operation

After running the experiments while scaling through each of the scalability
testing configurations shown in figure 9.1 we were able to create a graph
containing all the transmissions between nodes during a new sink operation
while running in the operational phase. The graph is shown in figure 9.6.

By looking at the graph in figure 9.6 we can see that while increasing the
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Figure 9.6: Graph showing the amount of transmissions during the new sink operation
while running in the operational phase when scaling the network. This
graph is shared with Erlend Karlstrøm

number of nodes in the system, the total amount of transmissions required
when adding a new sink to the network, while running in the operational
phase, grows exponentially with the number of nodes. The reason for this
exponential growth is likely because of the way in which paths are shared
in the operational phase. Contrary to the starting phase where paths are
shared along with handshakes, and not their own individual events as in the
operational phase . We can see that this growth is consistent with the earlier
experiment in section 9.3.1.2 where, the number of sink paths generated in the
network was investigated – the growth there was also exponential.

In conclusion, introducing a new sink node in the operational phase, will scale
exponentially with the number of nodes. Thus, introducing a sink node in
the operational phase instead of the starting phase will reduce the network’s
overall longevity because of the increase in transmissions. Hence, introducing
a sink node in the starting phase(like in the previous experiment) and holding
it connected for the duration of the networks deployment cycle, would be more
beneficial compared to introducing it while in the operational phase.

9.3.1.5 Transmissions Normal Operation

After running the experiments, for 15 awake cycles, while scaling through a
selection of the scalability testing configurations shown in figure 9.1, we were
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Figure 9.7: Graph showing the amount of transmissions during 15 awake-cycles while
running in the operational phase when scaling the network. This graph is
shared with Erlend Karlstrøm
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Figure 9.8: Graph showing the recovery of the skew with the immediate adjustment
algorithm.

able to create a graph containing all the transmissions between nodes during
the normal operations in the operational phase. The graph is shown in figure
9.7.

By looking at the graph in figure 9.7 we can see that while increasing the
amount of nodes in the system, the transmissions from starting phase (between
cycle 0 and 1), the transmissions increased sharply with the number of nodes,
particularly with sca10. Further, we can see that the transmission amount
increases steadily in a linear fashion, but also that the growth factor seems to
be somewhat influenced by the number of nodes, sca6 increases more across
time than sca4 for example, but not by much.

In conclusion, running the system after the starting phase, shows that the
growth in transmissions is linear and the factor growth is higher the more
nodes are present. The is to be expected, as naturally, more nodes means more
activity in the network.

9.3.2 Time synchronization Experiment Results
9.3.2.1 Skew with Immediate Adjustment Algorithm

After running the network shown in figure 8.5 for 20 cycles, we were able to
create a graph showing how the nodes are able to recover from the skew that
happens between each awake cycle. The graph is shown in figure 9.8.
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Figure 9.9: Graph showing the recovery of the skew with the gradual adjustment
algorithm.

By looking at the graph in figure 9.8 we can see that while running the system
normally in a configuration with a sink, the nodes are able to recover from
each skew. Further, we can see that each odd number in the iteration(x-axis)
is right before starting the awake cycle, which is recording the skew, and the
even number is recording the skew correction after the awake cycle. We can
also see that the system is able to correct the skew with near perfection as it
is able to set it as close to 0 as possible. In conclusion, using the Immediate
adjustment algorithm in a system enables an accurate time synchronization
to an authoritative clock, using the homebase’s clock as the authoritative
time.

9.3.2.2 Skew with Gradual Adjustment Algorithm

After running the network shown in figure 8.5, without the sink node which is
shown in the figure, for 20 cycles, we were able to create a graph showing how
the nodes are able to recover from the skew that happens between each awake
cycle, while not having a sink in the network, and therefore no authoritative
time. The graph is shown in figure 9.9.

By looking at the graph shown in figure 9.9, we can see that over time the
nodes are not able to maintain the correct clock while staying synchronized
with each other. I suspect that this is because of how the gradual algorithm is
trying to calculate an offset average based on the neighboring nodes, in which
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Figure 9.10: Graph showing the amount of transmissions using the Immediate algo-
rithm while running for 15 cycles, and scaling over a set of scalability
networks

the majority of the nodes has a negative skew factor, this makes all the nodes
calculate a neighborhood average that is negative, and adjusts towards that
time. However, the network as a whole is still able to maintain stability in
the form of synchronized sleep schedules. We can also see that nodes seem to
skew simultaneously in a linear fashion. I believe this is because of the static
simulated skew factor and would not necessarily be the same in a real-world
scenario.

In conclusion, using the Gradual adjustment algorithm in a system without a
sink is not able to maintain an accurate clock, just as expected. However, the
nodes in the system remain synchronized with each other in the form of a
synchronized sleep and wake-up schedule.

9.3.2.3 Immediate- and Gradual Adjustment Transmission
Amount

After running the experiments, for 15 awake cycles(Between cycle 1 and 2 are
all transmissions for cycle 1, and so on.), while scaling through a selection of the
scalability testing configurations shown in figure 9.1, we were able to create two
graphs containing all the time synchronization transmissions between nodes
during the normal operations in the operational phase. The graph showing
the number of transmissions using the immediate adjustment algorithm is
shown in fig 9.10, and the graph showing the number of transmissions using
the gradual adjustment algorithm is shown in fig 9.11.
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Figure 9.11: Graph showing the amount of transmissions using the Gradual algorithm
while running for 15 cycles, and scaling over a set of scalability networks

By looking at the graph showing the immediate adjustment transmissions
shown in figure 9.10, we can see that the number of transmissions grows
linearly based on the number of nodes in the network, with the transmission
amount growing higher with more nodes. I suspect this is due to the skewed
safe zone not being entirely perfect, as it is refusing "child" nodes of fetching
a non-updated time, making them do it at a later time in the awake cycle.
However, this function ensures that the "child" nodes are able to fetch a correct
and updated clock.

By looking at the graph showing the gradual adjustment transmissions shown
in figure 9.11, we can see that the number of transmissions grows linearly
based on the number of nodes in the network. We can also see that it grows
a significant amount per cycle, especially when the number of nodes grows.
I suspect that this is due to the topological structure shown in the different
topologies in figure 9.1. When the number of neighboring nodes grows, so will
the transmission amount do, as it is a factor of the number of neighbors per
node.

By comparing the two graphs, we can see that the amount of transmissions
needed to maintain the network stability is very different. This means that
using the gradual adjustment algorithmwill significantly decrease the longevity
of the network. Thus, in conclusion, using the immediate synchronization
algorithm will have the least amount of reduction to the longevity of the
network, especially with such interconnected nodes, as shown in the scalability
topologies in figure 9.1.
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9.3.2.4 Total Increase of Transmissions with Time
Synchronization Algorithms

After running the experiments, for 15 awake cycles(between cycle 1 and 2 are
all transmissions for cycle 1, and so on.), while scaling through a selection of
the scalability testing configurations shown in figure 9.1, we were able to create
five graphs(1 for each scalability configuration tested) showing the number
of transmissions the time synchronization adds while running in its intended
environment. The graphs are shown in figure 9.12 and, figure 9.13.

By looking at the graphs shown in figure 9.12 and, figure 9.13, we can see that
all the transmissions grow linearly, with the only difference being the factor
that they grow at(linearly after the starting phase, which is between cycle
number 0 and 1). We can see that the gradual algorithm has a significantly
higher cost at the start of a smaller network but, as the size of the networks
grows, the starting phase cost of the gradual algorithm remains similar due to
not requiring sink path sharing. However, the gradual algorithm will be more
expensive in the long term, even with content propagation being used with the
Immediate algorithm.

In conclusion, while using the gradual algorithm ensures that the network is
able to remain synchronized, the amount of transmissions added makes a case
for not using it. Using the immediate algorithm would ensure a synchronized
network(with a correct time) and a smaller footprint of added transmissions.
Thus, increasing the longevity of the network and enabling content propaga-
tion.

9.3.2.5 Accuracy with Immediate Adjustment

After running the network shown in figure 9.2 for 30 cycles(2 points along the
x-axis per cycle), we were able to create a graph showing how a selection of
the nodes skew and how they are able to recover from the skew that happens
between each awake cycle. The graph is shown in figure 9.14

By looking at the graph shown in figure 9.14, we can see that the nodes are
able to recover from the skew up to the maximum tested depth of 8(Where the
sink node is depth 0). Since the even number of iterations(on the x-axis) are
so close to the 0 – meaning that the time synchronization is accurate. This, in
turn, means that the skewed safe synchronizing zones are working as designed
but not necessarily optimally, as seen in the previous experiments.

In conclusion, the immediate adjustment algorithm is very accurate up to
the tested depth of 8. This, in turn, means that the skewed safe synchro-
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nization zones are working as designed, although increasing the transmission
amount.

9.3.2.6 Reduced Immediate Time Synchronization Operation

After running the experiments, for 20 awake cycles(2 points along the x-axis
per cycle), while increasing the cycle number distance between each time
synchronization, from 1 synchronization per cycle to 1 synchronization per 9th
cycle. By doing this, we were able to create 9 different graphs showing the
skew after sleep and the recovery of that skew. The graphs are shown in figure
9.15.

By looking at the overview of the graphs in figure 9.15 we can see that there
is a large difference in the graphs, where the graphs grow higher(or lower,
depending on the skew factor), each time before centering at the middle. This
is due to the increasing distance of the time synchronization operation. We can
also see in figure 9.16, and figure 9.17, that the nodes are able to recover from
the skew up to 1 synchronization per 5th cycle. However, after that point, the
nodes start to disconnect from the network in the form of losing connection,
as the wake-up cycles become too skewed to recover, as seen in figure 9.17 and
figure 9.18.

By looking at the graph in figure 9.18, showing 1 synchronization per 7th cycle.
We can see that the green and yellow line are moving in a certain direction
away from the rest of the nodes together, and we can see that the yellow
line tries to synchronize, but as it most likely has lost its connection with its
parent, it uses its backup synchronizing method, the gradual adjustment(with
its neighbors, which the only neighbor it can reach is the green node). This
means that the network has fragmented into multiple smaller networks.

In figure 9.18 we can see the graphs showing 1 synchronization per 8th cycle
and 1 synchronization per 9th cycle. In these graphs, we can see that many of
the nodes disconnect from the network and are therefore considered dead to
the other nodes. This, we believe, is due to the neighboring nodes skewing in
different directions compared to the disconnected node.

This, in turn, means that the amount of time synchronization operation done
can be reduced, up to once per 5th cycle. Thus, allowing us to reduce the
footprint of the time synchronization operations by a factor of up to 5 when it
comes to transmissions needed to remain synchronized.

In conclusion, the time synchronization is able to handle up to 1 synchronization
per 5th cycle, but after that, the nodes will start to disconnect from the network.
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This, in turn, means that the amount of time synchronization can be reduced
by a factor of up to 5, which would increase the network longevity.
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(a) Graph showing the amount of transmissions using scalability 2 network

(b) Graph showing the amount of transmissions using scalability 4 network

(c) Graph showing the amount of transmissions using scalability 6 network

Figure 9.12: Graphs showing the amount of transmissions using sca 2, 4, and 6 net-
works from figure 9.1
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(a) Graph showing the amount of transmissions using scalability 8 network

(b) Graph showing the amount of transmissions using scalability 10 network

Figure 9.13: Graphs showing the amount of transmissions using scalability 8, and 10
networks from figure 9.1
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Figure 9.14: Graph showing how accurate the Immediate adjustment algorithm is
when the depth of the nodes are growing
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(a) 1 synchronization per 1 cycle (b) 1 synchronization per 2 cycle

(c) 1 synchronization per 3 cycle (d) 1 synchronization per 4 cycle

(e) 1 synchronization per 5 cycle
(f) 1 synchronization per 6 cycle

(g) 1 synchronization per 7 cycle (h) 1 synchronization per 8 cycle

(i) 1 synchronization per 9 cycle

Figure 9.15: Overview of the graphs showing the recovery of the skew when the time
synchronization has from 1 to 9 cycles between doing the operation
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(a) 1 synchronization per 1 cycle

(b) 1 synchronization per 2 cycle

(c) 1 synchronization per 3 cycle

Figure 9.16: Graphs showing the recovery of the skew when the time synchronization
has from 1 to 3 cycles between them, and the network fragments
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(a) 1 synchronization per 4 cycle

(b) 1 synchronization per 5 cycle

(c) 1 synchronization per 6 cycle

Figure 9.17: Graphs showing the recovery of the skew when the time synchronization
has from 4 to 6 cycles between them, and the network fragments



106 chapter 9 experiments

(a) 1 synchronization per 7 cycle

(b) 1 synchronization per 8 cycle

(c) 1 synchronization per 9 cycle

Figure 9.18: Graphs showing the recovery of the skew when the time synchronization
has from 7 to 9 cycles between them, and the network fragments
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Discussion
This chapter discusses some approaches, experiences, how we solved problems,
and why we chose the solution that we did.

10.1 General network
10.1.1 Node Communication
Since this system is a simulation and a prototype, the communication technol-
ogy that is used is WiFi. Using WiFi for development and prototyping purposes
works very good, but if this system would be implemented into a "real-world"
test-deployment phase and have the system run on specialized hardware, a
better choice would be to implement it using LoRa, as it is specialized to fix
IoT application challenges such as energy management[27], or a combination
of multiple technologies.

10.1.2 Centralized vs. Decentralized Architecture
Currently, the system is implemented as a decentralized system. This means
that there are no nodes designated to be a leader of the network. This removes
the need for an election algorithm to decide what nodes are allowed to become
sink nodes. Having a decentralized system means that we are able to remove
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overhead transmissions added by an election algorithm and that the system
has no single point of failure. However, enabling all the nodes to become sink
nodes also increases the overall transmission amount due to the number of
paths that need to be shared.

As we saw from chapter 9, the scaling of the system was bad. This means that
to be able to say that the decentralized architecture was a good choice would
require more work in the form of a better path-sharing algorithm. As it stands
now, the system is not scalable in that the nodes are very interconnected, but
this will be more outlined in section 10.1.7.

10.1.3 Multi-Hop vs. Single-Hop Routing
When deciding on multi-hop routing or single-hop routing, the choice was easy.
As the nodes are deployed in the arctic, they may be so distant that they are not
able to contact each other(or at least without spending a lot of energy). This
means that a single-hop routing algorithm would not be suitable. – Using a
single-hop algorithm would also increase the energy usage for the most distant
nodes if they were even able to connect.

Using Multi-hop routing up to a certain point is good, as it load-balances the
transmission energy consumption in the network[3]. But when the multi-hop
routing ends up routing via a significant amount of nodes, it may end up
reducing the total longevity in the network. To enforce the use of multi-hop
routing, it might be a good solution to limit the length of the paths, as this will
have a reduction in the total amount of hops in a path, and also improve the
score-based path choosing, so it chooses more optimal paths.

10.1.4 Path Knowledge vs. Neighborhood Knowledge
Currently, this prototype system is created with neighborhood knowledge. That
means that each node has some in-depth knowledge about its neighbors, which,
in turn, allows the nodes to propagate to the neighbor that is calculated as the
most optimal. Another choice of knowledge sharing is path knowledge(such
as presented in the related work chapter, in [34]), which means that the
node would know about all the nodes in its paths. However, performing path
knowledge sharing will require a lot more overhead communication but will
allow the nodes to perform better choices when deciding where to route the
content.

Having path knowledge together with a better path-sharing algorithm will
allow the nodes to perform better routing choices, which would lead to bet-
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ter load balancing and increased longevity of the network, especially if the
path knowledge sharing could be gossiped as metadata along with normal
requests.

10.1.5 Using the Prototype with Existing Systems
In the paper, [25] by Raïs et al. they presented some use-cases of a UAV in use
with OU’s in the arctic tundra, one of which were: the UAV could be used to
fly into the deployment area, connect to an OU, and download the data that it
has. Using the prototype system presented in this thesis, together with a UAV
as a homebase, it could enable nodes to propagate data to a sink node, and
directly to the homebase(UAV), especially with the help of adding a data flush
routine, to fetch all recorded data, within the same cycle.

10.1.6 Restriction of Neighbor Amount
Currently, each node tries to connect itself with as many neighbors as pos-
sible this means that when nodes become sink nodes, if the nodes are very
interconnected, they will share their paths to many neighbors, creating a lot of
topological cycles. This reduces the scalability of the system significantly.

A way to solve this could be to restrict the number of neighbors that each node
is allowed to have. This requires a good algorithm that is able to have the
network remain stable and not fragment into smaller networks. This would
reduce the transmissions overall.

10.1.7 Scalability Concern
Aswe saw from chapter 9, the network scaled exponentially,up to 21 nodes(known
as sca10). We also saw from the experiments that when the topology changed,
creating more topological cycles, the transmission number increased by a signif-
icant degree. If we were to be able to create a better solution for path-sharing
and be able to reduce the number of paths that each node has, we could create
a system that is a lot more scalable. As stated, the number of transmissions is
dependant on how many topological cycles that the network has. This, in turn,
means that if the network has few topological cycles, it can scale far better as
the amount of shared paths would not be increased by a factor dependant on
how many nodes the topological cycle tied together.

Based on the background of the project presented in chapter 2, one of the
deployment zones had six nodes(seen in figure 2.1) deployed, and from that,
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we also saw that the nodes were somewhat spread out(not creating topological
cycles). However, the number of nodes deployed can be varied by a lot, which
means that the system can scale as long as there are a limited amount of
topological cycles.

10.1.8 Load Balancing Concern
Currently, the system does not use a built-in load balancing operation, such as
LEACH or PEGASIS from chapter 4. However, due to the decentralized aspect
of the system, it can rotate the sink node job between the nodes, dependant
on which node got a homebase connection. While this does not ensure that the
nodes in the network are load-balanced properly, we believe that this together
with the multi-hop routing enables the nodes to stay load-balanced, especially if
the network uses the same sink node throughout the deployment and therefore
bases most of the routing on the battery life of the neighboring nodes.

10.1.9 Score Calculation Metrics
Currently, the system uses the metrics: Battery percentage, RTT, and Path
length to calculate the path score. By using these three metrics, the node can
perform somewhat smart choices for deciding what direction it should route
the data. The reason why the battery metric is important is so the nodes can try
to distribute the load onto the nodes that have not been as much. The reason
that the RTT is important is that a high RTT would result in increased failed
transmissions, which would reduce the longevity of the network as a whole
due to useless transmission costs. The reason for the path length metric is to
route a way that does not have a lot of nodes in the path, as this would also
reduce the longevity of the network as a whole. However, the score calculation
is not without its problems, which will be explained in further detail in section
10.4.7.

10.2 Simulator
As the system is implemented as a simulator, there are a few important discus-
sion subjects, which decided how the system was created.
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10.2.1 Why Create A Custom Solution
Currently, the simulator is implemented as a custom-made simulator. This was
chosen instead of using ns-3[1]. NS-3 is an "out-of-the-box" network simulator
designed for research and education. Using a custom solution allowed us to
control every part of the simulator. While using the ns3 might be better for an
actual simulation, it requires research and knowledge about how it works to
get it to work well.

10.2.2 Simulated Topology Management vs. Range-Based
Management

This simulator also handles the dynamic topology management, as stated
in chapter 7, i.e., the simulator creates the networks based on a predefined
structure. When deciding on how the topology would be generated, we also
discussed adding simulated range-based management, where the nodes would
be given random coordinates and talk to other nodes within a set range.
Using the custom predefined solution was easier to work with and is constant
in the way that it works, meaning that the system has reproducibility. This
makes the system easier to test with and easier to experiment on due to the
non-randomness of the system.

10.3 Time Synchronization
As time synchronization is one of the most important aspects of the system(and
one of the main aspects of this thesis), the choice of finding a good way to
handle synchronization that adhered to the design guidelines was important.
When deciding on what time synchronization technology was going to be used,
many existing options were considered.

10.3.1 Why Use Two Adjustment Algorithms
Due to the dynamic topology management, which means that all nodes can
become sink nodes, and the decentralized aspect of the system, which means
that there can also be no leader nodes in the system, the nodes do not have a
leader where they can fetch an authoritative time from. Therefore, the use of
two algorithms arose: One that can handle synchronizing with an authoritative
time source and one that allows for having the nodes synchronized with each
other while disregarding the authoritative and correct time.
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10.3.2 Synchronization Algorithms
There are many different time synchronization algorithms, and many of them
are created for specialized scenarios. NTP is the time synchronization algorithm
that is considered the golden standard for time synchronization(see chapter
4). Based on the environment stated for this thesis, the NTP would require
significant modification to become relevant. Therefore, the use of a standalone
synchronization algorithm tailored for the synchronization of nodes in the
arctic arose.

10.3.2.1 Choice of the Two Algorithms

When choosing the algorithms for this system, the most obvious choice was
to pick the TPSN algorithm with a variation. This is due to it having many
of the important aspects already considered. Using two different variations of
TPSN-algorithm allowed the nodes to fetch from an authoritative time source
and offset their time based on the global neighborhood offset. Another reason
for basing the adjustment algorithms on TPSN is that both require to record
the timestamps in the same way as shown in figure 6.13.

Because of their ability to use the same code, it allows nodes that are not
updated – in the sense of knowing if there are sinks in the network or not
– to use the wrong synchronization algorithm and still synchronize with the
neighboring nodes or a parent node. Therefore, ensuring that the nodes can
synchronize as long as they are awake at the same time, even if their local
knowledge is different.

10.3.2.2 Adapting the Timing-Sync Protocol for Sensor Networks

As explained in chapter 4, there were problems with adopting the TPSN al-
gorithm to fit in this system. Therefore, an adaption of the TPSN has been
done, which uses the same timestamp readings(as shown in figure 6.13) and
calculations. Except the adaption calculates a neighborhood average offset and
skews the clock gradually towards the center of the neighborhood. Thus, the
algorithm disregards the aspect of the correct time but allows for the network
to remain synchronized. However, adapting the TPSN algorithm to work with
the gradual adjustment introduced its own problems. These will be outlined
in section 10.3.2.3.
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10.3.2.3 Problem with Adopted TPSN

Based on the experiments shown in chapter 9 we saw that the number of trans-
missions required by the gradual time synchronization to remain synchronized
was very high. This means that the gradual time synchronization is not optimal
and should therefore be optimized, so it has a smaller footprint.

10.3.2.4 Adapting TPSN to a Latency-Based Adjustment

Latency-Based adjustment is also a variation on the TPSN algorithm and is
also created for a low-cost sensor network with a sender-receiver approach.
The Latency-Based algorithm uses the same four timestamps that the TPSN
algorithm uses, as shown in figure 6.13. However, Latency-Based calculates the
latency between the nodes as shown in section 6.4.1, and uses the One-way
latency to offset the clock of the parent node with, shown in figure 6.14. This
allows a node to adopt the time of their parents. However, adapting the TPSN
algorithm to calculate a latency also creates problems on its own. These will
be outlined in section 10.3.2.5.

10.3.2.5 Problem with Latency-Based Algorithm

By default, would the Latency-Based Algorithm suffer from the same problems
as the TPSN as shown in chapter 4. However, when using the Latency-based
algorithm, the network would have a sink node in it. Using the skewed safe
zone together with the latency-based adjustment allows the nodes to fetch a
correct time via multi-hop.

But, another problem with the adoption of time arises. When the One-Way
latency, is skewed the calculations would be wrong – Skewed in this sense
means that it takes longer to send to the other node rather than to respond
back to it. In other words, this assumes that the RTT is equally divided into
two one-way latencies.

10.3.3 Using The Skewed Safe Synchronization Zones
Currently, the system uses skewed safe synchronization zones when there is a
sink in the network, as explained in the design chapter. This is to enforce the
children to try to synchronize with their parents a bit skewed into the awake
cycle. This allows the parent nodes to refuse a synchronization request based
on the fact that it has not been updated yet. If nodes fail a request, it adds
additional overhead transmissions, which is not good. But, it makes sure the
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nodes fetch the updated time, especially when the depth of the nodes grows.
By configuring the settings connected to the skewed safe zone, the number of
fails would be reduced. How the skewed safe synchronization zones work is
shown in figure 6.15

10.4 Weaknesses
The implemented prototype system also has a few weaknesses, which will be
presented in the following sections.

10.4.1 Dead Node Handling Problem and Path
Management

When a node is found to be dead by another node in the network, it starts
issuing a message around the networkmaking, the other nodes tag it as inactive
and remove all paths that lead through that node. However, if the node was not
dead and the connection to it was just poor, a message telling the other nodes in
the network that the "dead" node is alive would start to propagate throughout
the network. This would lead to the "dead" node joining the network again with
the next communication, and paths would need to be shared again, increasing
the number of transmissions significantly. This could be repeatedmultiple times
until the connection between the two nodes stabilizes.

When a node goes from being a sink node to being an ordinary node, it notifies
the other nodes in the network about it. Which, in turn, makes the other
nodes in the network remove the paths that lead to that specific node. This
could be improved so that the paths are stored in all nodes after first being
discovered and tagged as inactive when not leading to a sink node anymore.
Doing this would reduce the number of transmissions needed when exchanging
sink-paths, as a simple gossiping algorithm only gossiping the name of the new
sink could be used to exchange the information about which node is a sink,
rather than re-introducing the sink again to the network, which we saw from
the experiments chapter took a lot of transmissions.

10.4.2 Scalability
As we can see from the experiments in chapter 9, the network has a problem
with scaling with a number of nodes as the number of transmissions grows
exponentially.
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The biggest problem with scalability is the path sharing algorithm, which
happens in both the starting phase and the operational phase. As we saw
from the experiments, the amount of transmissions is larger when a node is
introduced while in the operational phase compared to the starting phase(due
to the gradual path-sharing done in the starting phase). Therefore, the system
would benefit from an optimized path-sharing algorithm.

10.4.3 Missing CPU / Memory Performance Checks
As we can see in the experiments in chapter 9, there were no experiments
that measured the systems CPU and memory footprint. When performing the
experiments, we tried to perform some CPU and memory experiments using
the pprof package for golang[7]. However, when we were using it, we were not
able to get any useful data with it, as it mostly showed background processes
that go used. We also decided not to measure the memory footprint of the
nodes using the used memory of the computer because it would not show
the entire picture of the single node but rather the whole simulator of the
network.

10.4.4 Missing Scalability Experiment with Multiple Sinks
As we also can see from the experiment chapter 9, there are no experiments
that measure the scalability of the system with multiple sinks. We believe that
this would not show us something that was not expected, as adding more sinks
would increase the transmissions based on a factor similar to the number of
sink nodes in the network.

10.4.5 Missing Skew Factor Experiment
In chapter 9, an experiment testing the system’s ability to handle larger skew
factors are missing. All the experiments and results were performed with the
skew factor settings set to +3 to -3 seconds. This means that each cycle, the
nodes would skew somewhere between +3 seconds and -3 seconds. However,
this test would not be useful, as we believe the system would be able to function
the same, up until the point where the nodes would be started(after the starting
phase) completely separated from each other. Figure 10.1 explains how the
system would work up until the nodes are initialized so far apart that they
would not wake up at the same time at the first cycle, thus, rendering the
experiment useless.
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Figure 10.1: Figure showing why the missing skew factor experiment is not needed

10.4.6 Simulated Skew Factor
As the time synchronization is based on a simulated skew in each node, the
simulated skew factor could have been created better. Currently, the skew
factor is a constant value that skews the local node time each time it sleeps(as
explained in chapter 7). In the early versions of the system, the skew factor
used to be a random value that was added each time it slept. The problem
with this was that the nodes ended up skewing the clocks back to the correct
time. While this might simulate the actual clock better, it made it harder to
work with. To create a better version of the simulated skew factor, looking into
some research about what factors that decide what direction the nodes should
skew in would be useful.

10.4.7 Circular Routing Problem
Currently, the score-based routing is not optimal as the algorithm normalizes
the values of the different metrics and sends the content(via Erlend Karlstrøm’s
bundling algorithm) to the first step in the calculated optimal path. This could
lead to having nodes send data back and forth between each other,whichwould
drain the remaining battery percentage of the nodes. However, this could be
fixed by adding more metadata to the propagated content, so each content
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message has a designated path selected for them. This would ensure a form of
load balancing, as the circular routing problem would not exist anymore

10.4.8 Late Nodes Not Included
Currently, nodes are included in the network when they introduce themselves
in the starting phase. That way, the paths are shared(if there are any active
sinks), and the sleep schedules are synchronized. However, if a node is too late
to introduce itself and introduces itself while the other nodes are running in the
operational phase, the network will allow it to become a neighboring node, but
the newly joined node would not have a synchronized sleep schedule.

This could, however, be fixed by adding some data into the introduction re-
sponse message, stating that the other nodes are already running in the oper-
ational phase, and having the newly joined node forced into the operational
phase with a synchronized sleep schedule.

10.4.9 Timer-Based to Cycle-Based
The system currently uses timers to ensure that the network maintenance
operations – such as the ping operation and dead-node checking – are well
spaced out. These timers could cause problems for the network health, as they
would skew with the local clocks.

The timer-based system should therefore be changed to a cycle-based system,
except for the timers which, ensure the time in the awake cycle remains the
same. The cycle-based system performs these operations based on a specific
iteration of cycles, which would, in turn, mean that they are equally spread
out over the deployment cycle, rather than having them dependant on a timer
that may be skewed due to the clock skew, and make the system easier to
handle.

10.4.10 Total Transmission Amount
Based on the experiments shown in chapter 9 we saw that the number of trans-
missions required by the gradual time synchronization to remain synchronized
was very high. This means that the gradual time synchronization is not optimal
and should therefore be optimized, so it has a smaller footprint.

We can also see that the total amount of paths in the network is very high
and that the amount grows exponentially with a growing number of nodes.
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This requires a large number of transmissions, which is at the cost of network
longevity.
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Future Work
Based on the experiments shown in chapter 9, and what is described in the
architecture and design chapters, some future work of the system is outlined.
These improvements will not necessarily work as intended but are something
to at least consider when trying to improve the general system.

11.1 Real-World Implementation
Currently, the system has not been tested in a "Real-World" test deployment.
This means that we do not know for certain if this system would work when
deployed. Thus, a real-world implementation could be useful to figure out if
the system could be used for long deployment cycles in the arctic.

Before deploying the system some work would be needed to find out what sort
of hardware that the system could use. The software would also need to be fixed
and optimized to reduce the number of transmissions that it currently uses,
while also moving from a timer-based system to a clock-based system.

119
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11.2 Relay Units
As the deployment location areas can be large, spanning overmultiple kilometers.[18][19]
Since the distances between the OU’s can be long, the use of what we decide to
call Relay Units arise. Relay units(or RUs) are nodes that do not have the capa-
bilities to record environmental data or take photos. However, we propose that
using the same enclosures that housed the internals for the OU’s, except adding
more batteries where the internals that controlled the environmental recording
devices were, will allow for a node with significantly higher longevity.

Placing these RUs between nodes that have a bad connection or not able to
reach each other, can increase the coverage making it easier to propagate data
throughout the network. Using RUs between nodes that are close to each other
can also allow for increased longevity in the network(assuming that the path
sharing algorithm is improved), as they can close the distance between nodes
so that the normal nodes can reduce the transmitting power and therefore
retain more battery power in the long run.

Using RUs might not be possible due to naturmangfoldloven §35[20], also
stated in the design guidelines section ??, where they state that the animals
should not be disturbed.

11.3 Mini-Cluster Sinks
Since the probability of having the previous sinks becoming sinks again is high,
the use of "mini-cluster sinks" arises. Using a small cluster of nodes viewed as a
single sink, and spreading the load round-robin style between the nodes could
increase the network’s longevity. It would require some development effort to
get it to work properly but it might be worth it, as the sink nodes are the ones
that use the most amount of transmissions.

11.4 Auto Adjusting Clock Based on Previous
Knowledge

When nodes are placed in the arctic, the environment they are located in mostly
stays the same, whichmeans that the clocks might skew similarly between each
awake cycle. The system could build up a knowledge store that contains the
amount that the node had to adjust its clock with, and use that knowledge to
calculate the amount skew it would require after running a while. The system
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could automatically adjust the clock itself without sending a synchronization
transmission, and basing the automatic skew on these previous calculations
and thus reducing the number of transmissions overall.

11.5 Energy Budget
After putting together some hardware to make the system run, one could
perform some tests on the hardware to see how much power each operation
will draw, and by using the results create a solution for budgeting a set amount
of power each day, so it limits how much it should be able to use. This will
ensure that power is being spent correctly and efficiently.

11.6 Retransmission Reduction Strategies
As the distances between the nodes in the arctic can be quite large, which could
lead to the connection between them being poor. The nodes should therefore
have a solution for optimizing the communication messages between the nodes
in such a fashion that they can reduce the number of failed transmissions. This
means that implementing a Forward Error Correction(FEC) algorithm or an-
other solution that will be able to reduce the number of retransmissions.

11.7 Improve Score Weights
As the score-based calculation right now is very simple(the calculations cur-
rently just normalizes the data). This could be improved significantly in ways
such as finding a good way to handle the weighting of the different parameters
in the calculation. However, this requires extensive research.

11.8 Preemptive propagation
After having a sink in the network and then losing it, the nodes could store
that sink node, together with the path to that sink. This could be used for
preemptive propagation of data while having no sinks in the network. This
means that the data could be stored on the previous sink node, which would
leave it very close to the homebase(assuming the same sink would be used as
a sink node multiple times).
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11.9 Improved Gradual Time Synchronization
As we saw in the time synchronization experiments(chapter 9), the gradual
adjustment algorithm used a significantly larger amount of transmissions than
the immediate adjustment algorithm, to achieve node network stability. By
improving this, the network could reduce the number of transmissions used by
a significant degree.

There are a few ways one could go about improving the solution. The gradual
algorithm could be implemented with a limited amount of neighbors that are
contacted for synchronizing, this would require some development effort to
find a solution that can ensure that all nodes get updated. Another way is by
using the immediate algorithm instead. When there is no sink node in the
network, it could either appoint a random node to become a temporary sink
node(or a node with authoritative time) or use the previously known sink as a
node to synchronize against(similarly to the previous section). As the gradual
algorithm discards the correct time anyway, following the skew of a single node
can be acceptable, while also reducing the transmissions significantly.

11.10 Improved Path Sharing and Path
Acceptance

As seen in the experiments chapter 9, the transmission amount of the path
sharing is very high. When designing the path sharing and acceptance algo-
rithms, we decided that we wanted redundancy paths at all nodes to ensure
that no nodes were disconnected from the network. This, in hindsight, was
not the best decision as the number of transmissions required just to share the
paths are so high and non-scalable, especially when the amount of topological
cycles increases.

Therefore, improving the path sharing and acceptance algorithms in a way so
that all the nodes are able to propagate data towards all sink nodes in the
network, and still having redundancy paths in the case of node failure could
be useful, and necessary before eventual "real world" deployment.
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Conclusion
In this thesis, we implemented and described a prototype system of a Wireless
Sensor Network where the nodes were designed to observe environmental
changes by reading data from sensors. The nodes can dynamically form a
network by introducing themselves to each otherwithin a broadcasting distance
– which in this thesis is simulated. This enabled all the nodes to become sink
nodes, so data could be propagated throughout the network, from the most
distant nodes to the homebase. The nodes are also able to remain synchronized,
but the whole network will skew together away from the "real" clock when
there are no sinks in the network.

The general network experiments showed that the path sharing transmissions
grew exponentially, when scaling the number of nodes up in the network while
still having the shortest path remain short, indicating that the number of paths
in each node is redundant and should therefore be reduced significantly. We
also saw that the transmissions after introducing a sink in the network while
in the starting phase, and keeping that sink operational, scaled linearly after
introducing the sink, with the number of transmissions being dependant on
the number of nodes in the network.

The time synchronization experiments showed that the implemented algo-
rithms were able to perform clock synchronization accurately and precisely,
with the only problem being that the transmissions needed for synchronization
without a sink grew significantly larger than the synchronization with a sink
in the network. The experiments also showed that the amount of time synchro-
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nization operation could be reduced up to 1 synchronization operation per 5th
cycle – Which, in turn, means that the transmissions could be reduced by a
factor of up to 5. –, after that the network started to fragment(breaking into
smaller networks)

While the system was able to do as planned, it did not perform optimally. This
is because the transmissions needed for connecting the nodes, sharing the
paths to a sink, and synchronizing the clocks while not having a sink in the
network grew very large. However, with a better path sharing algorithm, and
an improvement of the synchronization algorithm(without sinks), the system
could be used to propagate data from distant nodes located on the arctic tundra
to a homebase, located outside of the deployment area.
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