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Abstract: Risk management is a fundamental approach to improving critical infrastructure systems’
safety against disruptive events. This approach focuses on designing robust critical infrastructure
systems (CISs) that could resist disruptive events by minimizing the possible events’ probability and
consequences using preventive and protective programs. However, recent disasters like COVID-
19 have shown that most CISs cannot stand against all potential disruptions. Recently there is a
transition from robust design to resilience design of CISs, increasing the focus on preparedness,
response, and recovery. Resilient CISs withstand most of the internal and external shocks, and
if they fail, they can bounce back to the operational phase as soon as possible using minimum
resources. Moreover, in resilient CISs, early warning enables managers to get timely information
about the proximity and development of distributions. An understanding of the concept of resilience,
its influential factors, and available evaluation and analyzing tools are required to have effective
resilience management. Moreover, it is important to highlight the current gaps. Technological
resilience is a new concept associated with some ambiguity around its definition, its terms, and its
applications. Hence, using the concept of resilience without understanding these variations may lead
to ineffective pre- and post-disruption planning. A well-established systematic literature review can
provide a deep understanding regarding the concept of resilience, its limitation, and applications.
The aim of this paper is to conduct a systematic literature review to study the current research around
technological CISs’ resilience. In the review, 192 primary studies published between 2003 and 2020
are reviewed. Based on the results, the concept of resilience has gradually found its place among
researchers since 2003, and the number of related studies has grown significantly. It emerges from the
review that a CIS can be considered as resilient if it has (i) the ability to imagine what to expect, (ii) the
ability to protect and resist a disruption, (iii) the ability to absorb the adverse effects of disruption,
(iv) the ability to adapt to new conditions and changes caused by disruption, and (v) the ability
to recover the CIS’s normal performance level after a disruption. It was shown that robustness is
the most frequent resilience contributing factor among the reviewed primary studies. Resilience
analysis approaches can be classified into four main groups: empirical, simulation, index-based,
and qualitative approaches. Simulation approaches, as dominant models, mostly study real case
studies, while empirical methods, specifically those that are deterministic, are built based on many
assumptions that are difficult to justify in many cases.

Keywords: resilience; robustness; recoverability; disruption; critical infrastructure; technological CIS;
systematic literature review

1. Introduction

Modern societies excessively depend on highly interconnected technological systems
such as water supply, electric power supply, telecommunication, and transportation net-
works that provide vital services. Such a system is known as a critical infrastructure system
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(CIS). A CIS is formed when people, engineered systems, and ecological context are inte-
grated. Therefore, a CIS refers to an asset, a system, or a part of it necessary to maintain
society’s vital functions, health, safety, security, or economic or social welfare. Moreover, its
disturbance due to lack of maintenance, improper operation, or errors in the design phase
will significantly impact society [1]. The majority of CISs supply crucial energy-services,
including electricity, gas, and heat to millions of end users in different parts of the world.
These CISs, named network-oriented systems, directly influence our societies’ well-being,
and their disruptions trigger many cascading events, because the functionality of object-
oriented systems, especially emergency public services such as hospitals and fire-stations,
highly depends on the stable operation of network-oriented systems [2,3]. For example, an
electric power outage may cause water and communication network failure, restrict health
care services usage, and disrupt the heating and transportation systems.

Since societies’ well-being heavily relies on CISs, warranting these CISs is a top priority
for managers and operators. To reach this goal, managers implement risk management as
the fundamental approach to improving CIS’s safety against disruption events (e.g., natural
events like earthquakes, process events like faulty operations, and intentional or uninten-
tional events like terrorism, sabotage, and human-made errors [4]). This approach focuses
on designing CISs that could resist disruptive events by minimizing the possible events’
probability and consequences using preventive and protective programs. However, recent
extreme events have shown that it is almost an unachievable goal to protect CISs from all
types of potential threats by traditional approaches like risk management. Some of these
rare events with major consequences include the 2006 European electric power outage that
affected 15 million people, the 2009 Tanzania blackout that continued for three months, the
2011 Japan earthquake and tsunami that caused a chain of accidents like water and electric
power supply networks’ outages, and the most complicated one, the COVID-19 pandemic,
which has caused considerable damages to the health care CISs in various countries. These
events have shown that anticipating and preventing all possible hazards or disruptive
events and their extreme impacts is not necessarily possible in all cases.

Using the available risk practices for the management of disruptions with low proba-
bility and high consequences is a challenging task [5–7]. Here, the concepts of resilience
can help managers to ensure CIS’s safety and continuous operation. However, resilience
does not aim to cancel risk management. The resilience and risk should be considered
together. Resilience mostly should be considered for the type of risk with a low probability
and extreme consequences (such as black swan). Therefore, designing resilient CISs rather
than high-strength CISs is a new school of thinking that CISs’ managers and operators can
rely on to face extremely low catastrophic event probability. To do so, managers focus on
those strategies that prepared CISs for upcoming disruption, show appropriate responses,
and expeditiously perform the recovery process. It should be noted that to implement
appropriate response measures, early warning should be emphasized in the management
of the CISs.

The word “resilience” is derived from the Latin word “resilire”, meaning to bounce
back [8,9]. The application of the concept of resilience has spread from the ecological
discipline into other disciplines [10]. Based on the conceptual background of resilience,
many definitions have been proposed for this concept in various fields [11–17]. In 2012, the
US National Academies of Science (NAS) defined the system’s resilience as the “system’s
ability to prepare and plan for, absorb, recover from, and successfully adapt to disrup-
tive events” [18]. Resilience management starts by establishing the context, resilience
analysis, and resilience enhancement if needed. Despite the great attention paid to this
concept, and there are relatively few high-quality resilience studies, and there is no defined
standard resilience management approach. The concept of resilience has been used in
many disciplines, including economics [19], social sciences [20,21], psychology [22,23], and
ecology [24,25]. Recently its application has been increased significantly in technological
CISs. However, there is ambiguity surrounding its definition, its terms, and its applications.
Hence, using the concept of resilience without understanding these variations may lead
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to ineffective pre- and post-disruption planning. A well-established systematic literature
review can provide a deep understanding regarding the concept of resilience, its limitation,
and its applications. The systematic literature review provides a systematic approach using
a search protocol that is not a part of a traditional literature review. Thus, in this approach,
selecting the studies is not by a chance and it increases the accuracy and credibility of the
obtained results [26]. Therefore, this paper implements a systematic literature review to
explore how resilience is defined in the discipline of technological CISs, what types of
CISs’ resilience have been used, what types of concepts affect CISs’ resilience, and which
approaches have been used for resilience analysis of CISs.

The rest of the paper is organized as follows: In Section 2, the systematic literature
review technique and its phases are described. Section 3 shows the application of the
systematic review of CISs’ resilience. Section 4 illustrates the discussion about the results
of the systematic review. Finally, Section 5 concludes our findings.

2. Systematic Literature Review

Typically, researchers turn to the literature review of a particular subject to answer
the questions that arise in their minds. In such cases, the researcher searches for relevant
articles and studies only according to his previous idea of the subject. This search then
continues until reaching the desired publications and selecting the appropriate ones and
ends by summarizing the obtained results. This type of literature review is called a non-
systematic (narrative/traditional) literature review approach. Such review is frequently
limited to literature either already known to the researcher or is found by doing a quick
search [26]. This approach is not clear about the methods used for finding and selecting
studies [27].

Moreover, it is not repeatable, which makes them challenging to follow by other
researchers. However, according to a series of exact and pre-arranged stages, a systematic
literature review (SLR) approach was developed to perform all the steps mentioned. SLR
was firstly proposed by Kitchenham [28]. It is a means of recognizing, assessing, and
explaining all accessible literature related to a specific research question. This technique
requires considerably more effort. However, due to the well-defined methodology, the
likelihood of biased results is lower than with the traditional method.

The application of SLR has spread from medicine and health care into other fields.
Recently, its application in some engineering fields, specifically software engineering, trans-
portation systems, manufacturing, etc., has increased [29–34]. Later on, Kitchenham and
Charters [35] modified this technique and provided a guideline to facilitate its applica-
tion. Based on the new procedure, SLR can be summarized in three phases: (i) planning,
(ii) conducting, and (iii) reporting the review. Figure 1 shows the SLR phases. As this
figure illustrates in the first steps, it is necessary to identify the need for SLR. For exam-
ple, if someone needs to identify the knowledge gaps in a specific field, then SLR is a
justified approach.

Then, based on the study aim, research questions must be defined clearly and properly.
Later on, the whole review methodology will be carried to answer these questions. The
related search terms (keywords) should be specified based on defined research questions to
have an effective SLR. Therefore, these keywords will be used to find scientific publications
in the defined databases (search sources). Digital databases like ScienceDirect and Springer-
Link are some of these search resources [35,36]. To facilitate the review process, some
screening criteria need to be defined as inclusion and exclusion criteria. For example,
the year of publication or excluding the book chapters from the collected studies can be
an exclusion criterion. Finally, a data extraction strategy must be established for data
collection [35,36]. The data extraction strategy determines how the relevant data items
needed from each study will be collected. To collect the needed data items, a data extraction
form should be designed. This form is used to collect data (e.g., full reference, research topic,
definitions, applied methods, publication data, etc.) which are necessary to answer the



Energies 2021, 14, 1571 4 of 32

defined research questions. If the data need manipulation or assumptions and inferences
to be made, the procedure should state a suitable validation process [35].

Figure 1. Systematic literature review technique phases [35].

In phase 2, the review is conducted. Based on the defined keywords in the defined
scientific database, the possible documentation and studies are identified in this phase.
After that, using the inclusion and exclusion criteria, the relevant documentation will be
selected. These remaining studies are named primary studies. Later, the required data
should be extracted from the primary studies using the data extraction strategy. Finally,
these data should be synthesized to answer the research questions [35,36]. Finally, at the
end of the review process, the previous phases’ obtained results should be documented.

3. SLR on Technological CISs’ Resilience

In this study, the developed approach in Figure 1 was used for SLR on CISs’ resilience.
As was explained above, the need for SLR should be justified. Since our communities
highly rely on interdependent CISs such as electric power supply systems, natural gas
processing plants, communication networks, transportation networks, and water distribu-
tion networks, it is crucial to assess the resilience of such CISs against various disruptive
events. However, for efficient application of the concept of resilience, this concept should
first be understood properly. Without this awareness, managers would not be able to mini-
mize the total service loss (e.g., energy supply cut) and enable expeditious recovery of the
CISs. Thus, it is necessary to systematically review the available resilience-related research
studies that can increase our awareness and knowledge about the concept of resilience,
its assessment approaches, and those factors that influence the CISs’ resilience. Moreover,
for years, as mentioned in the introduction, planners’ and managers’ main goal was to
design a CIS that can resist various disruptions. However, based on the abovementioned
experiences, this goal is still unattainable, and attention has recently shifted to the concept
of resilience. To have an effective shift to resilient CISs, our awareness and knowledge
about its concepts and current practices and research should be increased. However, it
should be emphasized that knowledge and practice of resilience should be inline with the
risk management process.

After this step, the research question (RQ) needs to be developed. This stage is the
most significant part of the review process. Based on this paper’s purposes, the first author
developed the research questions and then discussed them with all authors to confirm. The
defined research questions are as follows:

• RQ1:Is resilience an emerging topic in the discipline of technological CISs?

To answer RQ1, it would be useful to examine the research output per year. Based
on the amount of published resilience-related studies per year, we can determine how the
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importance of resilience is changing with time. Sometimes a research area may lose its
appeal over time or can no longer conduct further research.

• RQ2: How is the term “resilience” defined in the discipline of technological CISs?

Without a comprehensive definition of the concept of resilience, its application will be
challenging. Therefore, RQ2 is defined to understand the current definition of the concept
of resilience in technological CISs’ discipline using the literature review.

• RQ3: For what type of technological CISs has the concept of resilience been used?

This question identifies the most dominant CISs in which the concept of resilience
has been applied. The identified studies should be classified based on their type of CIS for
answering this question.

• RQ4:What types of terms define/determine the resilience of technological CISs?

Resilience is a macro-concept; thus, to use it correctly, it is essential to identify and
understand all terms (e.g., reliability and redundancy) that determine it. Without this un-
derstanding, it will be complicated to apply the concept of resilience in the CISs. Moreover,
exchanging the knowledge and best practices between different operators and users will be
almost impossible. Therefore, by reviewing the definitions and approaches for interpreting
and analyzing technological CISs’ resilience, the associated terms will be identified.

• RQ5: What types of approaches have been used for technological CISs’ resilience analysis?

Many approaches can be used for CISs’ resilience analysis. Hence, a literature review
should be conducted to identify and classify all of these methods based on their essence

3.1. Developing a Review Protocol

In this stage, the search terms, search resources, and primary studies selection criteria
have been identified as follows:

3.1.1. Identify the Search Terms

Based on the addressed research questions, “system resilience”, “resilience analysis”,
“resilience metric”, “resilience assessment”, “resilience definition”, and “resilience concept”
are considered as search terms. Figure 2 shows the ultimate search string that was applied
in this SLR. This string uses Boolean operators (AND, OR).

Figure 2. The final search string for conducting the searching process.

3.1.2. Identify the Search Resources

Here, well-known digital resources were considered as search resources. They include
ScienceDirect, Springer-Link, IEEE Xplore Digital Library, SAGE Journals, MDPI, and Wiley
Online Library. Moreover, other databases such as Web of Science and Google Scholar can
be used for the search process.

3.1.3. Identify the Selection Criteria

A large volume of studies can be collected by using search string and research re-
sources. The defined inclusion and exclusion criteria decide which studies need to be
processed further. The considered inclusion and exclusion criteria are listed as follows:

• Included studies should be written in English
• Included studies should be published as a research paper. Hence, unpublished studies,

discussion papers, encyclopedia, book chapters, workshops, news articles, prefaces,
tutorials, presentations, and keynotes should be excluded.
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• Review papers should be excluded. The SLR is an analysis of all primary stud-
ies that exist on a specific topic. Preliminary studies should include only original
research papers.

• Irrelevant research should be excluded by checking the title, keyword, abstract, and
conclusion.

• Duplicated publications in different journals that introduce the same results should be
excluded, and the complete version should be included in the review process.

• Those studies that have applied resilience to non-technological CISs should be excluded.

3.1.4. Data Collection

To collect the needed data items for addressing the defined research questions, a data
extraction form was used. The data extraction form’s items are listed as follows:

• Research topic;
• Publication date;
• Full reference;
• Presented definitions for the technological CISs’ resilience;
• Type and explanation of the concepts determine the resilience of technological CISs;
• Application field of the concept of resilience;
• Type and description of the approach used for technological CISs’ resilience analysis.

4. Results and Discussion

The search was conducted on 2 October 2020 using search sources and the search
string. Accordingly, 1454 resilience-related studies were found. Figure 3 shows the search
process, from which 182 primary studies remained for final review. Furthermore, according
to the references in these included studies and complementing studies of relevance known
by the authors, an additional 10 published studies were added. In total, 192 primary studies
were hence included in the review process. As Figure 4 illustrates, in the boundary of the
inclusive and inclusive criteria, selected primary studies were 13% of all resilience-related
studies. In the search process, around 51% of studies were irrelevant research studies,
which were not linked to the CIS. Furthermore, 9% of the studies were related to non-
technological domains such as social and ecological domains. In such domains, researchers
occasionally used the term “system” for social or ecological entities. This caused these
types of research studies to emerge from the initial search process.

Identified primary studies have been studied to recognize which resource these studies
belong to. As Figure 5 shows, most of the primary studies were published in ScienceDirect.
The selected primary studies are presented in Appendix A.

4.1. Is Resilience an Emerging Topic in the Discipline of Technological CISs?

The number of published papers and their trends can reveal how the importance of the
concept of resilience varies with time in the discipline of technological CISs. Accordingly,
all of the 158 primary studies were classified based on their publication date. The results are
illustrated in Figure 6. According to this figure, the concept of resilience was first presented
to the technological CISs’ discipline in 2003 by Bruneau et al. [12]. As can be seen, after
2003, this concept has gradually found its place among the technological CISs’ managers
and researchers. Since the concept of resilience has a high impact on technological CISs’
safety and productivity, research is expected to continue to grow in future years.

As shown, since 2011, the volume of publications in this area has been increased
significantly. The 2011 Tohoku earthquake and tsunami in Japan, we believe, could be one
of the specific drivers for such rapid growth in the resilience-related researches volume
of technological CISs. Furthermore, terrorist or cyber-attack increment (e.g., the Ukraine
power grid cyber-attack that affects 225,000 people in 2015) led to the recognition of the
necessity to address the increasing threat that these attacks can pose on our societies’ CISs,
especially those that supply vital needs like energy. This issue has been led to commence
large-scale research projects (e.g., starting of European IMPROVER project in 2015) and
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establish many CIS’s resilience research centers worldwide (e.g., the establishment of the
US Critical Infrastructure Resilience Institute (CIRI) in 2016). Such activities have moti-
vated researchers and led to the growth of publication volume about the CISs’ resilience
since 2015.

Figure 3. Search process results.

Figure 4. The details of the obtained studies.
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Figure 5. Percentages of primary studies in each resource.

Figure 6. Published researches per year until 2 October 2020.

The application of the concept of resilience is new in the discipline of technological
CISs. Moreover, the complexities of these CISs and disruptive events are increasing day by
day. Hence, many research gaps need to be addressed to make the best use of the concept of
resilience. This indicates that the concept of resilience is an emerging and important topic.

4.2. In What Type of Technological CISs Has the Concept of Resilience Been Used?

The case studies used in all primary studies were analyzed to identify the application
areas of the concept of resilience in technological CISs. The results are illustrated in Figure 7.
According to the results, among the surveyed studies, energy systems (e.g., [37–55]), trans-
portation networks (e.g., [56–69]), and water supply networks (e.g., [70–78]) have the
highest frequency as case studies, among other fields. Meanwhile, health care infras-
tructures [79,80], industrial processes [81–83], supply chain [84], mining sector [85,86],
construction [87–89], and telecommunication (e.g., IT networks [90]) are other cases in
which resilience concepts have been used.

Energy systems are designed to supply the required energies of the public and in-
dustries. They can be divided into three main categories: electric power supply system
(electric grid), gas distribution system, and heating grids. As shown in Figure 8, the electric
grid is the dominant area in energy systems’ resilience-related studies. The electric grid
can be categorized as electric power generation, transmission, and distribution systems.
Figure 9 shows the share of these categories in the review studies. As can be seen, 45%
of the primary studies in the field of electric grid cover all the components of this grid.
Moreover, electric power transmission systems have received more attention compared to
the other components of the electric grid.
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Figure 7. No. and types of case studies among the reviewed primary studies.

Figure 8. No. and types of case studies that are used in the field of energy systems’ resilience.

Figure 9. Percentages and types of case studies used in the field of electric grid resilience.
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For the electric grid classification, the frequency of research conducted in various trans-
portation modes (i.e., airway, railway, roadway, and waterway transportation networks)
is categorized in Figure 10. As shown, the roadway transportation networks (e.g., traf-
fic networks, road network, highways, and bridges), waterway transportation networks
(e.g., ports and inland waterways), airway transportation networks (e.g., airports and
aviation navigation systems), and railway transportation networks (e.g., subways, railway
stations) have received more attention, respectively. Moreover, 23% of primary studies have
worked on the transportation networks’ resilience, generally without focusing on a specific
transportation mode. According to the studies conducted in the water supply network
field, six studies have worked on water distribution systems’ resilience. In contrast, the rest
of the studies have focused on the entire water supply network (i.e., purification, storage,
pumping, and water distribution systems).

Figure 10. Percentages and types of case studies used in the field of transportation network sys-
tem resilience.

As shown in Figure 7, the resilience of energy systems has attracted enormous notice.,
because these systems supply the vital needs of today’s societies and their proper function-
ing is essential in many respects, such as national security, health, and social welfare. Most
of the energy systems are network-oriented, and their disruption can lead to cascading
failure in other systems. For example, disruption of an electric power supply system can
lead to loss of not just electricity, but also water and communication in affected areas [2].
As a real example, in 2011, the Tohoku earthquake and tsunami in Japan damaged much
of the energy systems, leaving 4.4 million households without electricity and 1.5 million
consumers without access to safe drinking water. Moreover, about 10 days after the event,
there were still 2.43 million households without electricity and 1.04 million consumers
without water [91]. Moreover, the reduction of CO2 and sustainable development have
recently increased the importance of the energy systems transition from traditional sys-
tems (e.g., fossil-fuel-based systems) to systems based on renewable energies (e.g., wind
turbines) [37,92–94]. Therefore, researchers have paid more attention to energy systems’
resilience, especially in countries prone to natural disasters (e.g., hurricanes, ice storms, and
earthquakes) or sabotage. However, as shown, some technological CISs have not received
a lot of attention. For instance, the health care infrastructures of many countries were
seriously affected by COVID-19 in 2020. The pressures of this pandemic have exceeded
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the capacity of health care in many countries. To manage such pressure, attempts need
to be made to address our communities’ health care infrastructures’ resilience in various
respects such as medical devices, organizational, and human resources. Failure of health
care CISs in the early stage of any disruptive event, can trigger panic in the community
and lead to functionality loss in other CISs in the community.

Furthermore, telecommunication systems, supply chains, and industrial processes
are also fields that their resilience needs to study. The proper functioning of these CISs
is essential in many respects, such as national security, health, and social welfare. There-
fore, the severe consequences of the disruption of such CISs should lead researchers to
pay more attention to their resilience, especially in countries prone to natural disasters
(e.g., hurricanes, ice storms, and earthquakes) or terrorist attacks.

4.3. How Is the Term “Resilience” Defined in the Discipline of Technological CISs?

Based on the collected literature, there is a wide range of resilience definitions. In
this section, the presented definitions of resilience in the discipline of technological CISs
are described.

Bruneau et al. [12] asserted that a resilient system “reduced failure probabilities,
reduced consequences from failures, in terms of lives lost, damage, and negative eco-
nomic and social consequences, and reduced time to recovery”. Youn et al. [95] proposed
a definition for the engineering system’s resilience: “The conceptual definition of engi-
neering resilience is the degree of a passive survival rate plus a proactive survival rate”.
Liu et al. [96] described resilience as the “system ability to prepare and respond quickly
and reduce its losses”. Barker et al. [97], Shafieezadeh and Ivey Burden [98], and Kong
and Simonovic [99] defined resilience as the “proportion of affected performance of the
system after disruption to the normal performance of the system without disruption”.
Teodorescu [100] defined resilience as the “ability of a system to recover its normal perfor-
mance level”. He believed resilience is a function of the recovery process duration and
the system performance level after the recovery process. According to Nan et al. [101],
resilience is the “system’s ability to withstand a change or a disruptive event by reducing
the initial negative impacts, by adapting itself to them and by recovering from them”. Jin
and Gu [102] defined resilience as the “system’s ability to resist potentially high impact
disruption events, and it is characterized by the ability of the system to mitigate or absorb
the impact of disruption and quick recover to normal conditions”. Hosseini and Barker [17]
described resilience as the “ability of a system to adjust its functionality in the presence
of disturbances, external threats, and unpredicted changes, and to withstand internal and
external disruptive events without letting the system become discontinuous by perform-
ing system functionalities”. Nan and Sansavini [103] defined resilience as the “system’s
ability to resist the effects of a disruptive force and to reduce performance deviations”.
According to Zhao et al. [104], resilience is the “system’s ability to recover to the desired
level from disruption event within an acceptable time, which is measured by the total
satisfaction level under the interactions of resilience capacities, dispatch strategies, and
disruption events”. Yoon et al. [8] defined resilience as the “ability of a system to maintain
its required functionality by resisting and recovering from disruptive events”. Lu [105]
defined resilience as the “system’s ability to recover rapidly from the worst performance
under disruption to its original state”. According to Karangelos et al. [46], resilience of a
power system can be defined as the “system’s ability to withstand a much wider range of
atypical, yet not entirely unlikely, operating conditions characterized by the simultaneous
failure of several system components, or at least to deteriorate moderately and promptly
recover”. Furthermore, in Zhang et al. [54], a resilient power system is defined as a “system
that could anticipate possible disruptions, adopt effective actions to reduce the losses of
system components and load before and during disruption, and recover power supply
quickly”. Faber et al. [106] defined resilience as “an aggregate characterization of systems
encompassing their ability to maintain their main modes and levels of services, and on
their own to develop and mobilize resources to adapt to and sustain disturbances over
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time”. Wang et al. [39] defined resilience as the “ability to resist all kinds of hazards, with-
stand the consequences of initial incident, and quickly restore back to normal operation”.
Rehak et al. [107] defined CIS’s resilience as a “quality that reduces vulnerability, minimizes
the consequences of threats, accelerates response and recovery, and facilitates adaptation
to a disruptive event”. Cutini and Pezzcia [108] defined urban networks’ resilience as the
“capacity of an urban grid to maintain the operation of urban functional assets by redis-
tributing movement after a physical perturbation”. Mostafavi [59] defined CIS’s resilience
as the “ability of an infrastructure asset to maintain its performance to serve the required
functions before, during, and after the occurrence of a natural hazard”. Some studies
described resilience as the “system’s joint ability to resist (prevent and withstand) any
possible hazards, absorb the initial damage, and recover to normal operation” [109–112].
The US National Academies of Science (NAS) defined system’s resilience as the “system’s
ability to prepare and plan for, absorb, recover from, and successfully adapt to disruptive
events” [77,113,114]. According to the US Presidential Policy Directive (PPD), resilience
can be defined as the “system’s ability to prepare for and adapt to changing conditions
and withstand and recover rapidly from disruptive events” [88,115]. The American Society
of Mechanical Engineer (ASME) defined resilience as the “system’s ability to sustain ex-
ternal and internal disruptions without discontinuity of performing the system function
or, if the function is disconnected, to fully recover the functions rapidly” [75,116]. The US
National Infrastructure Advisory Council (NIAC) described resilience as the “system’s
ability to anticipate, absorb, adapt to, and rapidly recover from a potentially disruptive
event” [15,117,118]. The United Nations Office for Disaster Risk Reduction (UNISDR)
defined resilience as the “ability of the system, community or society exposed to hazards to
resist, absorb, accommodate, adapt to, transform and recover from the effects of a hazard
in a timely and efficient manner, including through the preservation and restoration of
its essential basic structures and functions” [60,117,119,120]. As said, European project
IMPROVER also proposed a definition of resilience. Based on this definition, resilience is
“the ability of a CIS exposed to hazards to resist, absorb, accommodate to and recover from
the effects of a hazard in a timely and efficient manner, for the preservation and restoration
of essential services” [121]. The CIGRE C4.47 Power System Resilience Working Group
defines power system resilience as the “ability to limit the extent, severity, and duration
of system degradation following an extreme event” [2]. The UK Energy Research Center
defined the resilience of energy system as the “capacity of an energy system to tolerate
disturbance and to continue to deliver affordable energy services to consumers. A resilient
energy system can speedily recover from shocks and can provide alternative means of
satisfying energy service needs in the event of changed external circumstances” [122].

The variation of definitions presented in the discipline of technological CISs’ resilience
suggests that there is still no agreement between researchers about the definition of re-
silience. Here are some highlights regarding the available definitions of resilience:

• The majority of the definitions emphasized the CIS’s ability to recover to the normal
operation state from a disruptive event. Therefore, recoverability can be considered a
critical part of the technological CISs’ resilience.

• Based on ASME’s [116] and Lu’s [105] definitions, CIS recovery to the original state
(pre-disruption state) is essential for CIS’s resiliency, while other definitions only
indicated CIS’s recovery to a normal state.

• The role of timely recovery in CISs’ resilience is taken into consideration in some defini-
tions such as Bruneau et al. [12], Karangelos et al. [46], Zhang et al. [54], Wang et al. [39],
Zhao et al. [104], Liu et al. [96], NIAC, and IMPROVER definitions. Based on these def-
initions, a CIS that can recover its performance in an acceptable time is more resilient.

• Based on Lu’s [105], Zhao et al.’s [104], and Teodorescu’s [100] definitions, resilience
only depends on the ability of a CIS to recover from a disruptive event. However,
both recovery and preparedness activities are vital for the CIS’s resilience.



Energies 2021, 14, 1571 13 of 32

• Nan and Sansavini [103] and the CIGRE C4.47 Power System Resilience Working
Group define that resilience only relies on the CIS’s ability to withstand a disruption
(i.e., its robustness).

• Some of the definitions (such as those of NIAC, NAS, and Hosseini and Barker [17])
indicate that absorption of the disruption’s adverse impacts and adaptation to the new
conditions are necessary for a CIS’s resilience.

• According to Yoon et al. [8], Mostafavi [59], Faber et al. [106], UNISDR, and IM-
PROVER’s definitions, a resilient CIS preserves its needed functionality after a disrup-
tive event. This means the CIS’s performance level should not be less than a certain
value after the disruption.

• Hosseini and Barker [17] and ASME’s definitions show that a resilient CIS should not
let its functionality become discontinuous.

• The CIS’s ability to anticipate the disruptive event is only considered explicitly in
Bruneau et al. [12], Zhang et al. [54], and NIAC’s definitions.

• None of the definitions considers the positive influence of the CIS’s learning capac-
ity on its resilience. Learning from previous experiences would be helpful in the
upcoming disruptive events.

Based on the reviewed definitions of resilience, a resilient technological CIS possess
the following five abilities:

• The ability to imagine what to expect;
• The ability to protect and resist a disruptive event;
• The ability to absorb the adverse effects of a disruptive event;
• Adaptability to the new conditions and changes of disruptive events;
• The ability to recover the CIS’s normal performance level after a disruptive event.

Some pre-disruption (preparedness) and post-disruption (recovery) activities need to
be established to achieve these abilities. Pre-disruption activities target the CIS’s ability
to protect, resist, absorb, adapt, and recover, and post-disruption activities target the
CIS’s ability to adapt and recover [7,117,120,123–126]. According to Faturechi et al. [123],
investment costs on the CIS’s preparedness are mandatory, whether a disruption occurs
or not.

4.4. What Types of Terms Define/Determine the Resilience of Technological CISs?

According to the reviewed studies, 20 terms were identified as contributing factors to
CISs’ resilience. The types and percentages of application of the identified terms are shown
in Figure 11. As can be seen, robustness is the most frequent term among the reviewed
primary studies. The definitions of the identified terms are described in the following.

Robustness: Robustness is the ability of a CIS to resist a certain disruption level and
absorb its primary effects without significantly reducing performance. A CIS with high
robustness maintains its central function in a disruptive event [3,12,80,123,127,128]. Robust-
ness is measured by the CIS’s amount of residual performance after a disruption [75,115].
Furthermore, survivability, resistant ability, and stability have a similar definition to robust-
ness [75,126,129,130].

Recoverability: Recoverability is defined as the CIS’s ability to recover its capacity and
performance promptly under certain conditions and using available resources [117,129,131].
In some studies, such as Barker et al. [97], recoverability is defined as the CIS’s ability to
recover its performance quickly. In this definition, the importance of the resources required
to perform the recovery actions is not considered.

Rapidity: The rate at which a CIS can recover a satisfactory performance level is called
rapidity [3,115,132,133]. Rapidity refers to the CIS’s performance curve slope during the
recovery process and is often known as the recovery rate [80,134,135].
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Figure 11. Percentages and types of identified terms that are used in the discipline of technological
critical infrastructure systems’ (CISs’) resilience.

Absorptive Capacity: The absorptive capacity is the degree that the CIS can absorb
the negative impact of the disruptive event automatically. This capacity is considered
an intrinsic CIS’s characteristic to minimize the disruptive event’s adverse effects. For
example, for those CISs (e.g., electric power supply systems) that have been located in areas
with a harsh environment, it is very hard to repair the disrupted components in severe
storms. Therefore, they should be capable of absorbing various component failures [46].
Absorptive capacity includes a set of proactive actions (e.g., by safer design) that should be
considered in the CIS’s preparedness phase [136–139]. Robustness is commonly used to
quantify the adsorptive CIS capacity [101].

Adaptive Capacity: The degree to which the CIS can arrange itself and use temporary
and often non-standard actions to prevent CIS downtime during and after the disruption
is called adaptive capacity. This capacity can prevent sudden collapses in the CIS’s perfor-
mance level [17,128,136,137,140]. However, as mentioned, these actions have a temporary
nature, and for the CIS’s performance recovery, permanent actions should be taken as soon
as possible.

Restorative Capacity: This capacity is the degree to which the CIS can effectively
restore its damaged performance and is typically affected by available budget and resources
(e.g., materials, human, etc.) [17,139,141]. Therefore, this capacity is affected by the CIS’s
supportability. Restorative capacity provides permanent solutions to damages caused by
the disruption. Therefore, the cost of restorative capacity is much more than an adaptive
capacity [136]. Rapidity is commonly used to quantify the CIS’s restorative capacity [142].

Vulnerability: This denotes the degree of the CIS’s sensitivity to disruption [140]. Vul-
nerability is an inherent feature of the CIS, even before any disruptive event. Paying atten-
tion to the CIS’s vulnerability would help identify the weak points of the CIS. These are pos-
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sible points that would cause the most damage during disruption [97,129,136,140,143,144].
During the disruptions, more vulnerable CISs will experience more severe failure [144].
Although there is no consensus about the relationship between vulnerability and resilience,
it seems that higher vulnerability of the CIS leads to lower resiliency and vice versa [9,107].

Early warning and predictability: This refers to the early detection of disruptions in
the CIS and directly influences the CISs’ recovery [81,117]. In some reviewed studies, the
Prognosis and Health Management (PHM) system is used as a useful tool for prediction
and then early warning. The PHM system assesses the CIS’s current state by monitoring
facilities, anticipates potential defects by analyzing the monitoring data, and assists in the
proper management of technological CISs throughout their life cycle [8,95,117].

Early warning and predictability will provide timely information to implement effi-
cient response measures against disruptive events. Therefore, it can positively affect the
dedicated costs and time for the CISs’ recovery process. It should be noted that the positive
outcome of early warning is obtained by the adequate and appropriate decision-making of
the CIS’s management. Thus, inadequate or improper decisions may make the situation
even worse. However, based on the reviewed studies, predictability and early warning as
well as the role of management decision making has been less considered in the available
literature. Since, in resilient CISs, early warning enables managers to get timely information
about the proximity and development of disruption, more attempts need to be made in
this part.

Flexibility: The CIS’s ability to reacts to disruption and adjust its internal mechanism
with the help of adaptive capacity, without the consideration of any prior responses, is
called flexibility [83,123,145,146].

Redundancy: This refers to the degree to which components, CISs, and other units
exist that are interchangeable and can meet functional needs in the presence of disrup-
tion [3,12,57,108,140,147,148]. According to Kong and Simonovic [99], redundancy creates
alternative functions for the CIS’s operation, and its goal is to achieve a robust CIS. Thus, it
increases the absorptive capacity of the CIS [80,103,149].

Reliability: The CIS’s ability to implement the needed performance under certain con-
ditions and over some time without loss of performance is called reliability [8,75,131,133,143].
When the CIS is in a normal state (before a disruptive event), reliability provides its essential
function [143]. The aim of absorptive, adaptive, and restorative capacities is to enhance the
CIS’s reliability degradation due to disruptive events [8,17,95,136,137]. Mathias et al. [150]
noted that reliability focuses on avoiding disruptions, while resilience also counts the CIS’s
recovery. Therefore, reliability and recoverability are complement and greatly related to
the CISs’ resilience [131].

Resourcefulness: Resourcefulness is the capacity of using and mobilizing the required
resources (e.g., money, information, technology, laborers, spare parts, etc.) to identify and
solve problems in a prioritized manner [3,12,80,115,140,149]. The goal of resourcefulness is
to enhance the CIS’s rapidity. Hence, it also increases the restorative CIS capacity [149,151].

Maintainability: The term maintainability is a measure of how easily the CIS is
repaired to a specified condition [117,136]. Most studies have used recovery speed or
recovery time to quantify CIS maintainability [45,76,78,85,100,102,152–154]. Therefore, if
the time required to recover the CIS is short, it indicates proper CIS maintainability. The
aim of absorptive, adaptive, and restorative capacities is to increase the ease of CIS recovery
by reducing the CIS’s damages caused by disruption [8,17,95,136,137].

Supportability: This ability refers to the intrinsic features of the CIS that facilitate
efficient and effective support of the CIS throughout its life cycle [17,136]. According to the
resourcefulness definition, this term affects the CIS’s supportability.

Availability: Generally, the availability of CIS is defined as the CIS uptime ratio to the
total CIS uptime and downtime. Thus, the CIS’s availability refers to the portion of time
that the CIS can be used [97].
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Learning Capacity: This capacity is the degree to which the CIS can learn from the
occurred disruption to prevent similar future events [136,150,155]. The obtained knowledge
from past events can be incorporated for future iterations [150]. Few researchers have used
this term. Therefore, this issue requires further research to clarify the effect of learning
capacity on CIS.

Organizational Resilience: The owner’s organization’s resilience plays a significant
role in CISs’ resilience. Incorporating resilience aids CISs in coping with crises and recov-
ering from disruptive events, which is impossible without an organizational foundation
that can cope with and respond to disruption [107,156]. Organizational resilience includes
all actors involved in CIS management, such as managers, personnel, and operators. The
final purpose of organizational resilience is to enhance organizational performance in the
face of irregular conditions and to create a problem-solving mentality at the organizational
level [157]. Rehak et al. [107] tried to determine organizational resilience using internal
processes of an organization, including risk management, innovation processes, and educa-
tion/development processes. Based on Rehak et al. [107], the internal processes’ levels of
an organization, which provide the proper conditions for CIS to adapt to disruptions, can
determine organizational resilience. However, based on the results, resilience analysts have
paid less attention to this critical term because there is no easy way to analyze and assess
organizational resilience. Thus, the main issue that should be addressed is to present a com-
prehensive explanation of organizational resilience. This will increase our understanding
of this term and encourage other researchers to conduct research in this area.

According to the reviewed studies, society’s role in the CISs’ resilience is not well
studied. As Qin and Faber [55] noted, “The major benefit associated with the concept of
resilience as compared to traditional probabilistic reliability and risk modeling of systems
is that resilience modeling accounts for the interrelations between the performances of
the natural systems and the social systems and their internal organization”. Therefore,
the overall resilience of any CIS will be affected by the resilience of the three mentioned
actors, i.e., engineered system (technological resilience), owner organization (organizational
resilience), and society (social resilience).

The role of the reviewed terms in a resilient technological CIS is summarized in
Figure 12. CIS normal operation starts at t0. During the pre-disruption period (t1 − t0),
the performance level of the CIS is controlled by its reliability, and the potential defects
are anticipated by analyzing the monitoring facilities’ data. While the disruption begins at
t1, the CIS applies its absorptive capacity (e.g., using redundant systems) and resists the
disruption’s adverse impacts. However, during damage propagation (t2 − t1), the CIS’s
adaptive capacity incorporates its absorptive capacity. Thus, CIS shows flexibility as well
as robustness. As shown, the level of disrupted performance refers to the CIS vulnerability,
and the remaining level of performance refers to the CIS robustness.

After disruption ends at t2, recovery actions should be taken. However, sometimes,
due to delayed decisions, lack of readiness of the infrastructure owner organization, un-
availability of required resources, etc., the CIS stays in the disrupted state for a while, i.e.,
(t3 – t2). Therefore, the CIS’s proper restorative capacity and an adequate level of organiza-
tional resilience can reduce this period. Finally, at t4, recovery actions are completed, and a
new cycle of the CIS’s function starts. The CIS’s performance level in the recovered status
may be different from its primary performance level. This level can be equal to, lesser than,
or even above the primary level. The recoverability of CIS depends on its supportability
and maintainability. It should be noted that supporting CIS and learning from experiences
should be activated throughout the CIS life cycle.
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Figure 12. The role of the reviewed terms in a resilient technological CIS.

4.5. What Types of Approaches Have Been Used for Technological CISs’ Resilience Analysis?

Despite years of studies on technological CISs’ resilience, researchers in this discipline
still do not agree on a specific resilience analysis approach. To date, various approaches
have been proposed for resilience analysis. The proposed approaches have their interpreta-
tion of the CISs’ resilience. Some consider either preparedness or recovery activities, and
some consider both of them. Based on the reviewed studies, technological CISs’ resilience
analysis approaches can be classified into four main groups: empirical, qualitative, index-
based, and simulation approaches. Figure 13 illustrates the distribution of primary studies
in these groups. As can be seen, simulation approaches were predominantly applied
among the reviewed primary studies.

Figure 13. Percentages and types of resilience analysis approach that are used in the reviewed
primary studies.

Simulation Approaches: These approaches examine how the CIS structure affects
its resilience. The behavior of the CIS should be observed in these approaches, and its
properties must be modeled or simulated [6,157]. Simulation approaches are mostly used in
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CISs such as energy systems (e.g., electric grids), transportation networks, and water supply
networks [17,75,131,137,158,159]. These approaches commonly apply Bayesian networks
(BNs) [17,116,135–137,160], Monte Carlo simulation [161,162], fuzzy models [72,163], and
optimization algorithms [65,164]. BNs are mostly used to deal with uncertainties and partial
data and information [135,137]. However, they are limited to systems with static nature.
For instance, Kammouh et al. [135] used a dynamic BN to consider the dynamic nature
of a transportation system by adding the dimension of time. In simulation approaches,
optimization algorithms are usually used to optimize the resilience of engineering systems.

Simulation approaches are complex, costly, and time-consuming approaches and need
a high level of expertise as well as extensive technical, operational, organizational data and
information. Hence, their application is limited to organizations with these capabilities.

Empirical Approaches: In empirical approaches, the CIS’s resilience is analyzed us-
ing the CIS’s failure and recovery curves, which are usually determined by analyzing
historical data of the CIS (e.g., time to failure and time to repair data) [157]. In these
approaches, apart from the CIS’s structure, the CIS’s performance levels before and after
the disruption are compared to each other. Empirical approaches are either determinis-
tic [12,15,85,132,165–168] or probabilistic [89,95,100,115,117,126]. Deterministic approaches
do no use any probabilistic parameters in the resilience analysis process and cannot model
the uncertainties that exist in the inputs of the metric [12,85,165–167]. In probabilistic
approaches, using the available data and statistical methods, the CIS’s recovery and fail-
ure distribution function, etc., can be obtained [89,100,115,126]. However, empirical ap-
proaches, specifically those that are deterministic, include many hypotheses that limit
these approaches. For example, some assume the CIS’s performance is at the ideal level
(i.e., 100%) and that recovery actions start right after the disruption [12,85,166]. These
hypotheses and limitations restrict their application. Although both deterministic and
probabilistic metrics use some terms to model a system’s behavior (e.g., redundancy, ro-
bustness, etc.), they are limited in incorporating all necessary terms. Hence, they have
limitations in modeling the system’s behavior. Furthermore, empirical approaches highly
rely on the available historical data, and in the absence of the required data, their applica-
tion ischallenging for resilience analysts.

Index-based Approaches: In these approaches, the raw data needed for the CIS’s
resilience analysis are usually collected by measuring the indicators that express the CIS’s
resilience concept. The resilience index, which is also the CIS’s resilience score, can be
determined by aggregating the obtained information from indicators (usually using the
weighted average method). The index-based approaches are often implemented semi-
quantitatively [79,157,169,170]. This approach makes it possible to use various influencing
factors and indicators in the resilience analysis process. Furthermore, it would help
recognize the weak and strong points of CIS resilience [171].

Qualitative Approaches: These approaches try to evaluate the CIS’s resilience with-
out any numerical descriptions and present a conceptual insight [172]. This conceptual
insight of resilience is usually established using a graph. This kind of graph represents
the relationship between the CIS’s resilience and resilience contributing factors. In the
qualitative approaches, some steps can be designed to evaluate the CIS’s resilience qualita-
tively [6]. Since engineers prefer to use numeric tools, this approach has been rarely used
in the field of technological CIS.

5. Conclusions

Today’s society has become complex. The majority of people have access to several ser-
vices such as electricity, heat, health care, clean water, transportation, and communication
worldwide. These vital services are provided by technological CISs. Disruption of CISs
may affect the entire community. For example, an electric power outage may cause water
and communication network failure, restrict health care services usage, and disrupt the
heating and transportation systems. Therefore, our welfare highly depends on the normal
and continuous performance of such CISs. The current practice for CISs management is
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based on risk management. This approach has its limitation when it comes to rare and
extreme events as well as unforeseen hazards. Moreover, it is not a very effective approach
for managing pre- and post-disruption activities. Although there is an attempt to use the
concept of resilience to improve the performance of the critical infrastructures, there is
still a long way to go. Specifically, we should determine how the available practice can
benefit from resilience assessment and how they can provide information for the resilience
management process. Therefore, in the present paper, to learn more about the concept,
areas of application, and analysis approaches of the technological CISs’ resilience, available
resilience-related literature was reviewed using the SLR technique. Based on the results,
1454 potential resilience-related studies were identified using search terms and resources.
Using the inclusive and exclusive criteria, 192 primary studies were selected to conduct the
review process. The results of the systematic review are summarized as follows:

• The concept of resilience has gradually found a place among researchers in the disci-
pline of technological CISs since 2003. In the last decades, the publications’ number of
resilience-related studies has grown significantly. Based on the result, the concept of
resilience is an up-to-date, attractive, and important research area in the discipline of
technological CISs.

• Among the reviewed primary studies, energy systems, transportation networks, and
water supply networks are mostly used as case studies.

• A resilient technological CIS should have the ability to imagine what to expect, the
ability to protect and resist a disruptive event, the ability to absorb the adverse
effects of a disruption, the ability to adapt to new conditions and changes caused
by disruption, and the ability to recover the CIS’s normal performance level after
a disruption. Building these abilities in a CIS is necessary to perform two types of
preparedness and recovery activities.

• In this paper, 20 terms were identified as contributing factors to CISs’ resilience, which
depends on preparedness and recovery activities. As shown, robustness is the most
frequent term among the reviewed primary studies. However, none of the evaluated
terms can guarantee the resilience of the CISs alone. Therefore, technological CISs’
management must develop sets of these terms to build a resilient CIS.

• Few researchers have tried to use the organizational resilience concept in technological
CIS resilience analysis. However, there are still some gaps in our comprehension of
this concept. Moreover, there is no consensus on how to assess it. Therefore, this issue
will be an interesting research topic for researchers who are working on technological
CIS resilience.

• Resilience analysis approaches of technological CISs can be classified into four main
groups: empirical, simulation, index-based, and qualitative approaches. Simulation
approaches were dominantly applied to resilience analysis. Simulation approaches
are case-study-based. Empirical approaches, specifically those that are deterministic,
include many hypotheses that limit the use of these approaches. The index-based ap-
proaches are often implemented semi-quantitatively. Qualitative approaches propose
a qualitative representation of the resilience of the CIS.

• To apply the concept of resilience more effectively, the main effort should be per-
formed on understanding and establishing the concept of resilience appropriate to
the discipline of technological CISs. There is still some vagueness about its definition
and analysis approaches. Therefore, first, the main researches must be performed in
these areas.

• In the reviewed studies, we noticed that the role of societies on the CISs’ resilience
was not considered. CISs have consisted of engineered systems and also owner
organizations of them. Moreover, societies are the customers of these CISs’ services.
Therefore, the overall Resilience of any CIS will be affected by the resilience of the
three mentioned actors. Therefore, the role of social and organizational resilience on
overall CIS resilience needs more research.
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• In modern communities, critical infrastructures are highly interconnected, and an
electric power outage may cause water and communication network failure, restrict
health care services usage, and disrupt heating and transportation systems. There-
fore, the interdependency of critical infrastructures needs to be focused on more
future research.

• Since black swan events have extremely low occurrence probability as well as se-
vere consequences, the black swan modeling of critical infrastructures needs some
more research.

• Continuity management is an important subject that should be developed for critical
infrastructures. It is more than a response to disruption and commences with the
policies and procedures developed, tested, and adopted when a disruption happens.

• According to the reviewed papers, predictability and early warning as well as the role
of management decision-making has been less considered in the available literature.
Since in a resilient CISs early warning enables managers to get timely information
about the proximity and development of disruption, more attempts need to be made
about this.
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Appendix A

Table A1. Selected primary studies.

Author (s) Research Topic Ref. Author (s) Research Topic Ref.

Bruneau et al. Quantifying urban
infrastructure resilience [12] Cimellaro et al. Quantifying system

resilience [80]

Yazdani et al. The resilience of water
distribution systems [70] Zobel Quantifying system

resilience [166]

Enjalbert et al. The resilience of
transportation systems [63] Youn et al. Engineered systems

resilience assessment [95]

Cox et al. The resilience of
transportation systems [145] Croope and

McNeil
The resilience of critical
infrastructure systems [173]

Dinh et al. The resilience of
industrial processes [83] Henry and

Ramirez-Marquez Resilience assessment [174]

Shirali et al. Resilience assessment [175] Afgan and
Veziroglu

The resilience of the energy
system [40]

Muller The resilience of critical
infrastructures [163] Ouyang et al. The resilience of urban

infrastructure systems [109]

Tokgoz and
Gheorghe

Quantifying system
resilience [89] Trucco et al. The resilience of transport

systems [176]

Liu et al. The resilience of water
systems [96] Barker et al. The resilience of networks [97]

Francis and Bekera Quantifying
infrastructure resilience [15] Jin et al. The resilience of

transportation systems [61]



Energies 2021, 14, 1571 21 of 32

Table A1. Cont.

Author (s) Research Topic Ref. Author (s) Research Topic Ref.

Zobel and Khansa Characterizing disaster
resilience [132] Baroud et al. The resilience of

transportation systems [143]

Shafieezadeh and
Ivey Burden

The resilience of
transportation systems [98] Pant et al. The resilience of

transportation systems [177]

Ouyang and
Dueñas-Osorio

The resilience of power
systems [110] Omer et al. The resilience of critical

infrastructures [156]

Ayyub Systems resilience
assessment [115] Behzadian et al. The resilience of the urban

water system [74]

Baroud et al. Resilience of networks [129] Faturechi et al. Quantifying urban
infrastructure resilience [123]

Sharifi and
Yamagata

The resilience of urban
infrastructure [172] Ouyang and Wang Resilience of infrastructures [112]

Testa et al. The resilience of coastal
transportation [178] Zhang et al. The resilience of

transportation systems [179]

Labaka et al. The resilience of nuclear
plant [147] Sikula et al. Proposing a conceptual

model for resilience [180]

D’Lima and
Medda

The resilience of
transportation systems [127] Rød et al. The resilience of Arctic

infrastructure [117]

Teodorescu Resilience concept
evaluation [100] Jin and Gu The resilience of the

engineered system [102]

Fang et al. The resilience of
electrical infrastructures [52] Nan et al. Quantifying system

resilience [101]

Diao et al. The resilience of the
water system [78] Nogal et al. The resilience of traffic

networks [65]

Hosseini and
Barker

The resilience of
transportation systems [17] Huang and Zhang Resilience analysis of tunnel

lining [64]

Rinaudo et al. Underground space
resilience [181] Espinoza et al. The resilience of power

systems [182]

Gama
Dessavre et al.

Complex system
resilience analysis [183] Adjetey-

Bahun et al.
The resilience of

transportation systems [148]

Filippone et al. The resilience of
transportation systems [184] MacKenzie and

Zobel
The resilience of power

systems [164]

Hu and
Mahadevan

Engineered systems
resilience assessment [144] Feofilovs. and

Romagnoli
The resilience of critical

infrastructures [185]

Yodo and Wang Engineered systems
resilience assessment [186] Kim et al. The resilience of the power

system [152]

Nan and Sansavini Resilience of
infrastructures [103] Mebarki Resilience theory and

metrics [187]

Yoon et al. Resilience assessment [8] Panteli et al. Power systems resilience
assessment [188]

Zhao et al. Modeling resilience of
infrastructures [104] Faber et al. Resilience characteristics [106]

Zhu et al. Assessment of
infrastructure resilience [140] Herrera et al. The resilience of the

transportation system [189]

Klise et al. The resilience of the
water supply system [77] Tran et al. Quantifying system

resilience [190]

Malandri et al. The resilience of
transportation systems [153] Ouyang and Fang Optimizing critical

infrastructure resilience [111]
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Author (s) Research Topic Ref. Author (s) Research Topic Ref.

Chen et al. The resilience of
transportation systems [191] Fotouhi et al. The resilience of urban

traffic-electric power [124]

Mebarki The resilience of
industrial tanks [192] Yodo and Wang The resilience of engineered

systems [193]

Pursiainen et al. Quantifying critical
infrastructure resilience [194] Meng et al. Resilience of networks [134]

Liu et al. Resilience strategy for
cloud data [118] Gong and You Resilience assessment [4]

Haque et al. Cyber resilience
framework [113] Buchanan et al. The resilience of engineered

systems [195]

Hsieh and Feng The resilience of
transportation systems [196] Baroud and Barker Resilience of networks [133]

Moslehi and
Reddy Resilience assessment [197] Ramirez-

Marquez et al. Resilience of networks [198]

Cai et al. The resilience of the
power system [116] Zhang et al. Resilience of networks [162]

Lu The resilience of
transportation systems [105] Ongkowijoyo and

Doloi
The resilience of urban

infrastructure [199]

Jain et al. The resilience of
industrial processes [81] Sarwar et al. The resilience of remote

offshore oil and gas [136]

Landegren et al. The Resilience of IT
networks [90] Storesund et al. Quantifying critical

infrastructure resilience [171]

MacKenzie and Hu The resilience of
engineering systems [142] Matelli and Goebel The resilience of energy

systems [43]

Mao and Li Resilience of networks [200] Rocchetta et al. The resilience of power
systems [201]

Galbusera et al. The resilience of critical
infrastructure systems [114] Barabadi and

Ayele Prediction of recovery rate [125]

Kong et al. Critical infrastructure
resilience [202] Aydin et al. The resilience of

transportation systems [62]

Pagano et al. The resilience of water
systems [73] Li et al. The resilience of engineered

slope [88]

Ahmed et al. The resilience of the
transportation system [165] Aydin et al. The resilience of

transportation systems [119]

Amirioun et al. The resilience of the
power system [149] Ma et al. The resilience of self-healing

distribution [154]

Xiaonan Liu et al. The resilience of the
transmission system [203] Yang Wang et al. The resilience of

transportation systems [155]

Zou and Chen
The resilience of

traffic-electric power
system

[204] Jain et al. The resilience of industrial
processes [82]

Hossain et al. The resilience of the
electric power system [141] Yanjun Wang et al. The resilience of an airport

network [205]

Hossain et al. Resilience assessment of
waterport [137] Cassottana et al. Modeling the recovery

process [206]

Sayed et al. The resilience of the
natural gas system [207] Xing Liu et al. Identifying

resilient-important elements [158]

Leobons et al. The resilience of
transportation systems [67] Rehak et al. The resilience of critical

infrastructure [169]
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Specking et al. Engineered systems
resilience assessment [208] Abimbola and

Khan
The resilience of

engineering systems [128]

Xu et al. Critical infrastructure
resilience [91] Najarian and Lim Engineered systems

resilience assessment [126]

Goldbeck et al. The resilience of urban
infrastructures [7] Kong and

Simonovic
The resilience of

infrastructure systems [99]

Maheshwari and
Ramakumar

The resilience of energy
systems [41] Hosseini and

Ivanov
The resilience of supply

networks [209]

Gautam et al. The resilience of
distribution systems [210] X. Liu et al. Resilience assessment of

power system [49]

Sabouhi et al. Resilience assessment of
electric power [44] Yarveisy et al. Resilience assessment [138]

Zhou et al. The resilience of thermal
power generation [159] Younesi et al. Resilience assessment of

power system [211]

Kandaperumal
and Srivastava

The resilience of the
electric distribution

systems
[51] Najarian and Lim Optimizing

infrastructure resilience [212]

Z. Chen et al. Resilience analysis of the
system of systems [213] Li et al. Resilience analysis of a

road network [161]

Cheng et al. Quantitative assessment
of resilience [214] Ottenburger et al. Resilience assessment of

power system [215]

W. Liu et al. The resilience of the
urban water system [71] Ahmadian et al. Network resilience [216]

C. Chen et al. Urban Resilience [130] Koc et al. The resilience of
transportation systems [66]

Izadi et al. The resilience of water
systems [76] Rød Critical infrastructure

resilience [157]

Heydari et al. The resilience of
longwall machinery [85] Barabadi et al. The resilience of health

infrastructure systems [79]

Charani
Shandiz et al.

The resilience of energy
systems [48] Petersen et al. The resilience of critical

infrastructures [121]

Guo et al. Resilience assessment of
safety system [170] Tepes and

Neumann
The resilience of water

supply systems [72]

Eljaoued et al. The resilience of
socio-technical systems [217] Yang et al. The resilience of critical

infrastructures [120]

Komljenovic et al. Resilience in managing
mine tailing ponds [86] Zinetullina et al. The resilience of a

separator system [139]

Toroghi and
Thomas

The resilience of power
systems [218] Kammouh et al. The resilience of

engineering systems [135]

Bao et al. The resilience of energy
systems [50] Das The resilience of

transportation systems [69]

Zhou and Chen The resilience of an
airport [167] Tong et al. The resilience of

infrastructures [160]

Assad et al. The resilience of water
distribution network [75] Ciapessoni et al. The resilience of power

systems [47]

Rehak et al. The resilience of critical
infrastructures [107] Karangelos et al. The resilience of power

systems [46]

Khaghani and
Jazizadeh

The resilience of the
transportation system [57] Papic et al. The resilience of

transmission grids [2]
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Author (s) Research Topic Ref. Author (s) Research Topic Ref.

Cutini and Pezzica The resilience of street
networks [108] Ibrahim and

Alkhraibat Resilience of microgrids [45]

Afrin and Yodo The resilience of the
transportation system [56] Kong et al. Resilience of

infrastructures [151]

Wang et al. The resilience of air
traffic network [9] Mostafavi

The resilience of
highway transportation

system
[59]

Santos et al. The resilience of the
transportation system [219] Han and Zhang The resilience of

highway networks [220]

Mathias et al.
The resilience of electric

power generation
system

[150] Tang et al. The resilience of traffic
network [221]

Kong et al. The resilience of critical
infrastructures [222] Kumar et al.

The resilience of electric
power generation

system
[37]

Murdock et al. Resilience of
transportation system [146] Brugnetti et al. The resilience of power

systems [122]

Li et al. The resilience of supply
chains [84] J. Wang et al. The resilience of power

systems [39]

Chalishazar et al. The resilience of power
systems [223] Qin and Faber The resilience of wind

turbines [55]

Engler et al. The resilience of
navigation systems [60] Wyss et al. The resilience of energy

systems’ transition [93]

Afrin and Yodo Resilience of networks [131] Zhang et al. The resilience of power
systems [54]

Hollins et al. Resilience of dams [87] Binder et al. The resilience of energy
systems’ transition [92]

Pilpola et al. The resilience of power
systems [94] Zhang et al. The resilience of power

systems [53]

Lau et al. The resilience of power
systems [42] Bragatto et al. The resilience of electric

power distribution grids [38]
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