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Abstract
Understanding the diversity and functioning of Arctic sea ice ecosystems is vital to evaluate and predict the impact of current 
and future climate change. In the microscopic communities inhabiting the brine channels inside sea ice, nematodes often 
dominate numerically and act as bacterivores and herbivores. Despite nematodes great abundances and known ecological 
roles, molecular tools have not been applied to investigate their species diversity in sea ice. In an attempt to begin establish-
ing a molecular baseline for species diversity of sea ice nematodes, we Sanger sequenced 74 specimens from four locations 
around Svalbard (European Arctic), using the 18S rRNA barcode. Currently available nucleotide reference databases are 
both underpopulated with representative marine nematode taxa and contain a substantial number of misidentified organisms. 
Together, these limitations inhibited the ability to identify marine specimens collected in this study with certainty. Neverthe-
less, our molecular data indicate the presence of two genera in sea ice on Svalbard—Theristus and Halomonhystera. While 
it is possible that the latter represents a novel ice nematode species, future studies, including morphometric analysis, are 
needed to verify our molecular findings. We leverage the assignment of molecular information to robustly identify nematodes 
and provide the first insight into the diversity of sea ice nematodes in the European Arctic. We advocate for an intensified 
cooperation between molecular and morphological taxonomists to expedite the establishment of baseline surveys that are 
required to predict biological consequences of the diminishing sea ice habitat in the future.
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Introduction

Nematodes are among the most abundant and species-rich 
metazoans on earth, comprising taxonomic and functionally 
diverse communities in terrestrial, freshwater and marine 
habitats (Heip et al. 1985; Yeates 2007; Moens et al. 2013). 
Free-living marine nematodes occupy various ecological 
niches by acting as predators, by influencing bacteria activ-
ity, stimulating decompositional processes and by serving as 
prey themselves (Heip et al. 1985; Moens et al. 2013). Nem-
atodes are commonly the most abundant meiofauna group in 
aquatic systems (Platt and Warwick 1980; Semprucci 2013), 

including the unique Arctic coastal sea ice habitat (Bluhm 
et al. 2018).

Despite their broad distribution and functionality, only 
30,000 species have been described globally (Hugot et al. 
2001), which is assumed to present only 3% of the esti-
mated 1 million species that are thought to exist (Creer 
et al. 2010). Much of this undiscovered diversity is thought 
to be hidden in the marine environment from which only 
around 6000 species have been described thus far (Bezerra 
et al. 2020). For sea ice, it is even less with only five 
described species so far: Theristus melnikovi from the Cen-
tral Arctic Ocean, Laptev Sea, and Fram Strait (Tchesunov 
1986; Riemann and Ngando 1997), Cryonema crassum 
(Tchesunov and Riemann 1995; Tchesunov and Portnova 
2005) and Cryonema tenue (Tchesunov and Riemann 
1995) from the White Sea, off the coast of Siberia, and 
the Fram Strait, and Hieminema obliquorum (Tchesunov 
and Portnova 2005) from the White Sea. In Antarctic sea 
ice, only one individual registration of Halomonhystera 
glaciei exists (Blome and Riemann 1999). Nematodes 
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inhabit the brine channels that form inside of sea ice when 
salt is rejected from seawater. Here, they can feed on the 
readily available bacteria and ice algae while being safe 
from predators. They may eventually reach adulthood and 
reproduce inside the sea ice (e.g. Bluhm et al. 2018).

Cryptic speciation, small size and limited prominent 
external morphological features challenge the identifica-
tion of nematodes to species level (Lee et al. 2017). In an 
effort to circumvent the challenges associated with mor-
phological identification and begin resolving uncharac-
terized evolutionary relationships among closely related 
clades within Nematoda, molecular phylogenies and 
thresholds of pairwise analysis of DNA sequences are 
used as a diagnostic tool (e.g. Bik et al. 2013). Specifi-
cally, the use of mitochondrial DNA and nuclear loci that 
encode the small ribosomal subunits (e.g. 18S rRNA) has 
revealed higher genetic diversity than expected, even over 
small spatial scales (Derycke et al. 2010; Tchesunov et al. 
2015; Fonseca et al. 2017). Still, the absence of molecu-
lar data corresponding to morphological descriptions of 
Arctic metazoans hinders high-throughput approaches to 
inventory diversity.

In this study, our main objective was therefore to do 
the first screening of the biodiversity and distribution of 
sea ice nematodes in Svalbard by analysing the 18S small 
ribosomal subunit loci of isolated specimens. Svalbard is 
an archipelago located between 74° and 81°N. The larg-
est island is called Spitsbergen, which is influenced to the 
west by a branch of the warm, saline Gulf Stream (namely 
the West Spitsbergen Current) and cold currents to the 
east. Out of all Arctic regions, Svalbard has experienced 
some of the most severe changes with warmer winter tem-
peratures, loss and failure in sea ice formation (Søreide 
et al. 2021). This will have yet unknown implications for 
the Arctic coastal (sea ice) ecosystem. However, these 
changes are difficult to assess accurately, as sea ice stud-
ies in Svalbard are generally limited to physical aspects 
and ice algae, neglecting the metazoan component. The 
few existing in-ice fauna studies indicate that nematodes 
are the most numerous land-fast ice metazoans in Svalbard 
(e.g. Andreasen et al. 2019; Pitusi et al. 2019), but so far 
no species identification of nematodes has been conducted 
from the sea ice habitat in Svalbard (Bluhm et al. 2018). 
Thus, information on ice nematode species diversity and 
distribution is lacking from Svalbard. Knowledge about 
species diversity is needed to accurately evaluate ecologi-
cal changes that might be occurring due to changing sea 
ice conditions. In this study, ice cores from land-fast sea 
ice were collected and analysed during 2017–2019 to pro-
vide the first insight into the molecular diversity of sym-
pagic (= ‘ice-associated’) nematodes from the west and 
east coast of Svalbard, by using nematode-specific 18S 
rRNA primers.

Materials and methods

Study area

Samples were collected from four sea ice covered fjords 
and bays located in western and eastern Svalbard (Fig. 1): 
Van Mijenfjorden, Inglefieldbukta, Wahlenbergfjorden and 
Palanderbukta. Sampling occurred throughout spring 2017 
and 2018 (Table 1).

Van Mijenfjorden (77.7°N, 15.5°E) is a relatively 
shallow fjord (up to 120 m-deep) that is 70-km-long and 
10-km-wide and located along the southwestern coast of 
Spitsbergen. It is a partially enclosed fjord, which effi-
ciently regulates the exchange of warm and saline Atlantic 
water that follows along the shelf via the West Spitsbergen 
Current (WSC) (Høyland et al. 2009). This partial separa-
tion from the WSC, coupled with the strong freshwater 
input, plays a role in the relatively reliable perennial for-
mation of sea ice. Comparatively, Inglefieldbukta (77.9°N, 
18.3°E) is a 2.5-km-wide and long bay situated on the 
southeastern coast of Spitsbergen, in connection with 
Storfjorden. The hydrography of the bay is influenced by 
glacial runoff to the west and by cold Arctic water to the 
east. Wahlenbergfjorden (79.7°N, 20.5°E) is a 50-km-long 
fjord situated on Nordaustlandet, in north-eastern Sval-
bard. To the south, the 35-km-long Palanderbukta (79.5°N, 
20.4°E) branches in a northwest–southeast direction. Both 
locations are surrounded by glaciers and connected to the 
400-m-deep Hinlopen Strait, through which both Atlantic 
and Arctic water flows.

In Van Mijenfjorden and Inglefieldbukta, land-fast 
ice was sampled by coring ridge-free areas in triplicates 
(∅ = 9 cm, Kovacs Ice Coring Equipment, USA). Trip-
licates were sampled within 0.5 to 1 m of each other. 
After retrieval, cores were sectioned into 0–1, 1–2, 2–3 
and 3–10-cm from the bottom up and then continually in 
10-cm sections to the top of the core. To avoid osmotic 
shock of the nematodes during melting, 100 mL of 0.7-um 
filtered seawater (GF/F, Whatman) was added per 1-cm ice 
(Garrison and Buck 1986; Spindler and Dieckmann 1986). 
Ice cores were kept separate, in different bags, and thawed 
in darkness at 4 °C at the University Centre in Svalbard 
(UNIS, Longyearbyen). To investigate the similarity of 
nematode species composition in the benthic and sym-
pagic realm, Van Veen grab (0.1-m2) samples were col-
lected in Van Mijenfjorden. From each of the grab’s four 
doors, duplicates of the upper 3 cm of the sediment were 
collected using a plastic syringe (∅ = 2.6-cm). Firstly, the 
sample was passed through a 500-µm sieve followed by a 
63-µm sieve. The duplicates were stored in 96% ethanol 
and 4% formalin to enable both molecular and community 
analysis. Ethanol samples were washed in GF/F filtered 
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Fig. 1   Map of sampling locations in three different areas in the Svalbard archipelago (European Arctic): a Wahlenbergfjorden (WB) and Paland-
erbukta (PAL), b Van Mijenfjorden (VMF-X, VMF-IM, VMF-MS, VMF-1), and c Inglefieldbukta (IB1 and IB2)

Table 1   Sampling station 
information for Van 
Mijenfjorden (VMF), 
Inglefieldbukta (IB1-2), 
Palanderbukta (PAL) and 
Wahlenbergfjorden (WB)

Station Sample date
(DD-MM-YY)

Depth (m) Pos °N Pos °E

Van Mijenfjorden Main (VMF-MS) 08.03.17
06.04.17
23.04.17
02.05.17

50 77.860167 16.709783

Van Mijenfjorden 1 (VMF1) 07.04.17 72 77.83135 16.619467
Van Mijenfjorden IM (VMF-IM) 27.04.17 14 77.86545 16.70532
Van Mijenfjorden (VMF-X) 14.11.18 2 77.882283 16.73495
Inglefieldbukta 1 (IB1) 22.03.18

26.04.18
4 77.887583 18.27045

Inglefieldbukta 2 (IB2) 23.03.18 32 77.890883 18.238367
Wahlenbergfjorden (WB) 05.05.18  > 100 79.702617 20.354783
Palanderbukta (PAL) 18.06.18  < 50 79.578217 20.678383
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seawater back at UNIS and 10 nematodes per sample site 
were picked randomly for sequencing; formalin samples 
were not analysed in this study.

In Wahlenbergfjorden, qualitative sea ice pieces (vol-
ume not quantified) were collected to which GF/F filtered 
seawater was added before melting, in the dark, on board 
the R/V Helmer Hansen. In Palanderbukta, three sea ice 
pieces (~ 0.1 m3) were cut from along the melting sea ice 
edge (approximately 20-cm thick and highly porous). GF/F 
filtered seawater was added to the samples and then melted, 
in the dark, and processed on board the M/S Spitsbergen.

After melting, ice core samples were concentrated over a 
20-μm sieve and transferred to a petri dish. A Leica MZ16 
stereomicroscope (Wetzler, Germany), with magnifica-
tion 0.71–11.5 x, was used to pick and measure live nema-
todes and suspected nematode eggs. Picked specimens and 
potential nematode eggs were stored in individual Eppen-
dorf tubes in 96% ethanol until DNA extraction. A Sony 
microscope camera was used to photograph individual 
nematodes and eggs. Photos were taken for reference and 
visual documentation of basic morphological features (such 
as egg shape and colour). Length measurements, with the 
microscope eye piece, were made to gather information 
about size distribution between stations (in the same fjord) 
and locations (west versus east Svalbard). Albeit, size is 
not the most distinguishable body characteristics needed 
to determine genera or species morphologically, it was the 
only information alongside reproduction mode that we could 
easily gather without expertise knowledge. By reproduction 
mode, we refer to any visible signs of sexual maturation 
of ice nematodes (e.g. development of reproductive organs, 
appearance of eggs and juveniles) (Schierenberg and Som-
mer 2013).

DNA barcoding

Ethanol-preserved nematodes and eggs (n = 164) were rinsed 
in MilliQ water prior to DNA extraction; 30 nematodes were 
lost during this washing step due to individuals sticking to 
the inside of pipettes or disintegrating. DNA was extracted 
from 134 whole specimens using the DNeasy Blood and 
Tissue Kit (Qiagen, Hilden, Germany), per manufactur-
er’s instructions. HotSHOT extraction (Truett el al. 2000) 
was applied to 30 of the 134 samples, in order to increase 
DNA extraction success after experiencing failure with the 
DNeasy kit. After extraction, DNA was PCR amplified using 
nematode-specific 18S rRNA primers: MN18F (forward) 
(5′-CGC​GAA​TRG​CTC​ATT​ACA​ACAGC-3′) (IDT, USA) 
and Nem_18S_R (reverse) (3′-GGG​CGG​TAT​CTG​ATC​GCC​
-5′) (Bhadury et al. 2006). These primers target a 925 base 
pair locus within the 18S rRNA region. PCR was conducted 
with 2.5 μL 10 × DreamTaq Buffer (Thermo Scientific, 
USA), 2 μL dNTPS (2.5 mM), 0.25 μL forward and reverse 

primers (10 μM), 0.2 μL DreamTaq Polymerase (Thermo 
Scientific, USA), 17.8 μL MilliQ water and 2 μL DNA to 
have a total volume of 25 μL. Thermocycling was conducted 
with an initial denaturation at 95°C for 5 min, 37 cycles of 
955′-CGC​GAA​TRG​CTC​ATT​ACA​ACAGC-3′) C for 1 min, 
545′-CGC​GAA​TRG​CTC​ATT​ACA​ACAGC-3′) C for 1 min 
and 725′-CGC​GAA​TRG​CTC​ATT​ACA​ACAGC—3′) C for 
2 min, with a final extension period at 725′-CGC​GAA​TRG​
CTC​ATT​ACA​ACAGC—3′) C for 5 min, with a Eppendorf 
Mastercycler EP Gradient S Thermal Cycler (Eppendorf, 
Germany). Amplicons were purified using HigherPurity 
solid-phase reversible immobilization (SPRI) cleaning 
(Canvax, Córdoba, Spain). During the cleaning process, the 
amplified DNA of 40 nematodes was lost. Subsequently, 
amplicons of 94 specimens were sequenced bi-directionally 
to increase the confidence of the base call along the length of 
the amplicon. Sanger sequencing was conducted at Eurofins 
Genomics (GATC Biotech LightRun, Germany). Sequences 
were analysed in FinchTV V 1.4 (http://​www.​geosp​iza.​com) 
and explored for the presence of ambiguous base calls and 
double peaks. Bi-directionally sequenced DNA were aligned 
and end-trimmed in Geneious V 11.0.4 (Kearse et al. 2012), 
to form a high-quality consensus sequence; 74 sequences 
were of good read quality. These sequences were exported 
and compared to deposited sequences in NCBI/GenBank 
using BLAST.

The same procedure was applied to the benthic sam-
ples (n = 32), from which 18 good quality sequences were 
obtained. One of these was included in the phylogenetic tree 
to determine the placement of the benthic to the sympagic 
samples.

Phylogenetic tree

High-quality consensus DNA sequences (n = 75) were 
imported into MEGA7 (Kumar et al. 2016) and uniformly 
oriented. This multiple sequence file was expanded with 
18S rRNA sequences that represent all taxonomically char-
acterized nematode clades. This sequence file was further 
expanded with closely allied (> 90% identity) environ-
mental sequence data, retrieved from NCBI by querying 
GenBank with the already derived nematode sequences, 
using the BLASTn algorithm. In total, our 18S rRNA phy-
logenetic tree analysed the relationship of our environmen-
tal sequences relative to two different taxonomic classes 
(Enoplea and Chromadorea) and five different orders 
(Monhysterida, Araeolaimida, Rhabditida, Desmodorida, 
Chromadorida) that circumscribed 69 genera. Diplolai-
mella dievengatensis was chosen as an outgroup, following 
Tchesunov et al. (2015). In total, phylogenies were assessed 
with a total of 544 sequences. All sequences were then 
aligned using MAFFT 7 (Katoh et al. 2017) with default 
parameters. This multiple sequence alignment (MSA) was 

http://www.geospiza.com
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then vetted with trimAl (-gt 0.3 -st 0.001 -cons 30, Capella-
Gutierre et al. 2009). The high-quality MSA was then phy-
logenetically analysed in RAxML using the GTR​CAT​I hill 
climbing algorithm and subsequently bootstrapped with 
1000 pseudo-replications with the T-Rex server (Boc et al. 
2012). The resulting phylogeny was then modified with 
FigTree v1.4.4 (Rambaut et al. 2018). The alignment and 
tree used in this analysis were deposited in TreeBase (http://​
purl.​org/​phylo/​treeb​ase/​phylo​ws/​study/​TB2:​S26176).

Results

Sampling events within surveyed fjords and bays revealed 
the presence of nematodes in all ice cores collected at loca-
tions with a water depth > 4 m. According to BLAST que-
ries, 70 specimens (including the suspected nematode eggs) 
had the closest molecular identity to Halomonhystera spp. 
(92–93% identity), while 4 specimens were most geneti-
cally similar to Theristus spp. (94–96% identity) (see Online 
Resource 1). For the benthic samples, all nematodes identi-
fied molecularly are known to be associated solely with the 
benthos and not sea ice. Morphologically they appeared dif-
ferent from the ice specimens (pers. obser.). BLAST results 
indicated the presence of 8 nematode genera in sediment 
samples—Anticoma, Ascolaimus, Axonolaimus, Calomi-
crolaimus, Cephalanticoma, Microlaimus, Sabatieria, and 
Sphaerolaimus.

Throughout spring, one particular morphotype of egg 
cluster was observed after the appearance of sexually mature 
nematodes, in early April, which were confirmed to be 
nematode eggs based on observations of hatching and DNA 
sequencing. Eggs occurred in clusters (often with more than 
20 eggs) that were contained within a ‘sack’. The shell of the 
eggs was transparent with the zygote filling nearly all of the 
egg shell (photos in Online Resource 2). Larvae developed 
from the zygote in late spring until hatching in mid to late 
April. Length measurements of nematodes showed that ice 
nematodes from Inglefieldbukta had a smaller size range 
than specimens from Van Mijenfjorden (Table 2).

To estimate evolutionary relationships among our nema-
tode isolates, we tested phylogenetic hypotheses using the 
18S ribosomal subunit gene locus. In general, many publicly 

available nematode sequences phylogenetically clustered 
into their, respectively, assigned clades, especially at higher 
taxonomic ranks (Fig. 2). Although many taxonomic orders 
were well supported, most with bootstrap support > 80%, 
many taxa in the same order formed separate well-sup-
ported clades, including the Desmodorida that branch 
sister to a larger clade containing many sequences within 
the Desmodorida (100% bootstrap support). In addition to 
split taxonomic orders, there were numerous single atypical 
sequences that grouped among otherwise well-supported 
monophyletic clades (AY692344). One Anticoma among 
Enoplus sequences (LK054717) and one Valvaelaimus 
among Bathylaimus species, a non-nematode apicomplexan 
branching sister to Monhystrella parvella. Moreover, there 
was a clade comprised six different genera that spanned 
four taxonomic orders and two classes grouping within the 
Rhabditida. When sequences from this clad were culled, 
aligned and comparatively explored, there were 10 SNPs 
out of 3522 base pairs analysed. Although the results of our 
de novo phylogeny suggested some misidentified nematode 
taxa, Svalbard nematodes grouped within the Chromado-
rea (100% bootstrap support), primarily in Halomonhystera 
(100% bootstrap support). Four isolates (two from Wahlen-
bergfjorden and two from Van Mijenfjorden) grouped in the 
genus Theristus (100% bootstrap support), with one addi-
tional sequence of a benthic nematode from Inglefieldbukta 
branching sister to one of the Araeolaimida.

Discussion

This study presents the first insight into the genetic diversity 
of coastal sympagic nematodes in the Arctic and foremost 
in Svalbard. Our results based on the 18S rRNA barcode 
strongly indicate the presence of at least two genera inhab-
iting the land-fast ice in western and eastern Svalbard—
Theristus and Halomonhystera. One of the genera (Theris-
tus) is well known and commonly described from (Arctic) 
benthic and often sea ice samples (e.g. Bluhm et al. 2018; 
Portnova et al. 2019). The second genus (Halomonhystera 
sp. n.) found is a novel discovery to land-fast ice and could 
represent a new sympagic nematode species. Thus far, this 
genus has only been found in the Arctic at the Håkon Mosby 
Mud Volcanoes in the Barents Sea (Tchesunov et al. 2015). 
Molecular tools enabled the identification of nematode eggs 
making it possible to confirm one of the morphotypes of 
eggs present in ice samples. This morphotype was targeted 
specifically after nematode larvae were observed developing 
inside the egg shell and after observations of hatching prior 
to the ice algal spring bloom. Benthic sequences were not 
included in the phylogenetic tree (apart from one), because 
none of the genera overlapped with the ones detected in the 
sea ice samples. All benthic sequences matched with genera 

Table 2   In situ nematode length (µm) measurements in sea ice sam-
ples from Van Mijenfjorden (n = 132; March to May 2017) and Ingle-
fieldbukta (n = 41; March to April 2018)

Minimum, maximum and mean length with standard deviation are 
given

Location Minimum (µm) Maximum (µm) Mean ± StnDev

Van Mijenfjorden 174 3234 1549 ± 896
Inglefieldbukta 602 2242 1226 ± 418

http://purl.org/phylo/treebase/phylows/study/TB2:S26176
http://purl.org/phylo/treebase/phylows/study/TB2:S26176
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that are commonly found in sediment samples, including 
Spitsbergen (Gerlach 1965; Urban-Malinga et al. 2005). 
Additionally, while screening through the sediment sam-
ples it appeared that the benthic nematodes had a different 
morphology than the sympagic specimens. They appeared to 
have a more distinct tail shape and be wider than the individ-
uals found in the land-fast ice samples. Despite the obvious 
differences in their morphology, they were picked to confirm 
molecularly that they were not associated with the ice.

To date, morphological descriptions of four sym-
pagic nematodes exist for the Arctic (Tchesunov 1986; 
Tchesunov and Riemann 1995; Tchesunov and Portnova 
2005). However, these sympagic nematodes have not been 
assigned a molecular barcode yet, making it difficult to 
confirm whether our findings represent a new species 

(Halomonhystera sp. n.), individuals of the previously 
described ice nematode species or both. Nevertheless, 
four of our sequences strongly indicate the presence of 
the genus Theristus in coastal sea ice in Wahlenberg-
fjorden and Van Mijenfjorden, adding to the pan-Arctic 
distribution of this genus (Fig. 3). The Theristus Svalbard 
sequences phylogenetically branch sister to four Theris-
tus acer sequences, which can be frequently observed in 
sediment samples in the Arctic including Svalbard (Urban-
Malinga et al. 2005). Furthermore, our sequences have 
95% identity with T. acer, underscoring that our isolates 
are closely related, yet molecularly distinct from T. acer. 
Therefore, we hypothesize that our sequences represent the 
first molecular record for the sympagic nematode: Theris-
tus melnikovi. T. melnikovi is known from perennial sea ice 

Fig. 2   Phylogenetic tree of 
Nematoda (18S rRNA) inferred 
with maximum likelihood 
methods in RAxML. Bootstrap 
values are generated after 1000 
pseudo-replications. The place-
ment of Svalbard sequences 
is denoted with arrows. For 
Svalbard nematode sequences 
sampling locations (VMF = Van 
Mijenfjorden, IB = Inglefield-
bukta, PAL = Palanderbukta 
and WB = Wahlenbergfjorden) 
and number of individuals (n) 
are noted
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over the Arctic Ocean (Tchesunov 1986) and seasonal sea 
ice from the Laptev Sea (Tchesunov and Riemann 1995).

Nematodes from Van Mijenfjorden, Inglefieldbukta and 
Palanderbukta were most genetically similar to reference 
sequences within the genus Halomonhystera. Halomon-
hystera is known from a wide range of habitats globally 
and is usually associated with the benthos and macroalgal 
detritus (e.g. Derycke et al. 2007; Tchesunov et al. 2015). 
The functional plasticity of this genus, which has made it 
successful at colonizing a wide range of marine habitats (e.g. 
Derycke et al. 2007; Leduc 2014; Tchesunov et al. 2015), 
is well documented. Within Halomonhystera, 21 species 
(Bezerra et al. 2020) have been accepted of which Halo-
monhystera disjuncta has been studied most intensely with 
molecular tools (e.g. Derycke et al. 2007; Van Campenhout 
et al. 2014). The ice nematode sequences from Svalbard form 
their own clade, indicating that they cannot be considered an 
integral part of the intertidal H. disjuncta species complex. 
Subsequently, our ice nematodes could potentially repre-
sent a new species of Halomonhystera that resides within 
seasonal land-fast ice. Despite no individuals of Halomon-
hystera (nor Theristus) detected in sediment samples, from 
Van Mijenfjorden, their absence cannot be confirmed due 
to small sample sizes analysed combined with a potentially 
too coarse mesh size (63 and 500 µm). Based on our own 

observations, the nematodes present in the ice have an ovipa-
rous reproduction mode, which has also been recorded for 
other species of Halomonhystera (see Tchesunov et al. 2015 
for an overview). Sympagic nematodes from Van Mijenf-
jorden and Inglefieldbukta were similar in size with slightly 
larger specimens found in the western location, potentially 
due to environmental factors, such as food availability. No 
in-depth taxonomic information, such as body setae or form 
of spicules, was collected to enable morphology-based iden-
tification due to lack of expertise knowledge and necessary 
equipment. Subsequently, Dr Alexei Tchesunov (Lomono-
sov Moscow State University) and Dr Daria Portnova (P. P. 
Shirshov Institute of Oceanology) were consulted and a few 
selected photographs of ice nematodes were shared. They 
pointed out the high morphological similarity to Cryonema 
or Hieminema, which are both well described from coastal 
sea ice in the Russian Arctic (Tchesunov and Riemann 1995; 
Tchesunov and Portnova 2005) and closely related to Halo-
monhystera within the Geomonhysterini tribe (Fonseca and 
Decraemer 2017). However, dissections are needed to con-
firm these observations. In future studies, a close collabora-
tion between morphological and molecular taxonomists are 
needed to determine whether this unique habitat harbours 
more than two species, as determined molecularly.

Fig. 3   Illustrative map of published records of known ice-associated 
nematode genera (Theristus melnikovi, Theristus sp., Cryonema 
crassum, Cryonema tenue, Cryonema sp., Hieminema obliquorum) 
in the Arctic. Species observed in sea ice are highlighted in orange 

and from the benthos in brown (based on Tchesunov 1986; Tchesu-
nov and Riemann 1995; Riemann and Ngando 1997; Portnova and 
Tchesunov 2005; Derycke et al. 2007; Tchesunov et al. 2015)
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Nematodes lack many prominent morphological features 
that allow rapid diagnostic assessment of diversity. Through 
our analysis of publicly available nematode sequences, we 
found evidence that many nematodes have been assigned 
erroneous taxonomic names, underscoring the need for col-
laboration between molecular and trained morphological 
taxonomists. Moreover, we identified many clades that were 
split, yet supported with high bootstrap values, suggesting 
that many nematode clades might be unnatural. Polyphyletic 
clades have been previously reported (Meldal et al. 2007; 
Park et al. 2011), supporting our findings of molecularly 
polyphyletic clades.

This study provided a first insight into the diversity of 
ice nematodes colonizing coastal sea ice around Svalbard. 
The sequences and reproductive information from this study 
represent the first steps towards building a sympagic fauna 
database, which will facilitate future work on sea ice mei-
ofauna biodiversity and their dependence on sea ice. How-
ever, several knowledge gaps remain to be filled and more 
combined morphological and molecular approaches are crit-
ical to accurately identify the nematode species that inhabit 
coastal sea ice. When nematode species can be identified 
accurately using molecular tools, we can more efficiently 
study their life cycle and dependency on land-fast ice, known 
unknowns that are vital in order to assess their ecological 
response to current and future changing sea ice conditions 
in the Arctic.
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