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“Happiness is a cookie that the brain bakes for itself.”

Joscha Bach, AI researcher
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Chapter 1

Introduction

Trans-dimensional inference may sound like a fantastical term. Consideration of con-
cepts that transcend a given dimension evokes notions of physics-bending phenom-
ena that would be more appropriate to a work of science-fiction than one of academic
writing. With this suggestive potential towards the extravagant in mind, the opening
chapter of this thesis is devoted to an overview of what is meant by trans-dimensional
inference.

The dimensionality that we are concerned with is that of the parameter vector for a
statistical model, and inference is the technique that will be used to gain insight into a
better understanding of how that dimensionality, as well as other features of the model,
should be specified. Inference analyses for which the parameter vector is not of a fixed
dimension are therefore trans-dimensional [1] - a relatively straightforward designation.

This is not to say that statistical inference need not be considered extravagant. The ap-
peal of inference may be subtle, but in the information age, data-driven understandings
of systems and processes through automated inference and learning techniques are be-
coming increasingly popular [2]. Directly coinciding with the use of popular machine
learning models, such as neural networks, is a push to better understand the inner-
workings and limitations of such models - specifically, there is a demand to properly
characterize the uncertainty associated with the use of machine learning models for
their predictive capabilities [3]. This need becomes increasingly apparent as more ap-
plications of machine learning become integrated into everyday technology, with po-
tentially dire implications for poorly-specified models [4].

Neural networks are becoming increasingly complex [5]. Uncertainty regarding the
model specification is not limited to its predictive output, but also the model itself. The
question of how to propose an optimal size of neural network for a problem is an open
problem [6], and insight into how to make choices about an appropriate architecture
should therefore be valuable.
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FIGURE 1.1: Trans-dimensional inference over a Neural Network of vari-
able network width

1.1 Targeted Contributions

In this thesis, we aim to develop a method for using Bayesian inference via reversible
jump Markov chain Monte Carlo simulation on neural network models of varying size
to produce marginal posterior distributions corresponding to two aspects of neural net-
work architecture specification: network depth; the number of hidden layers in the
network, and network width; the number of hidden nodes in a single layer network
(figure 1.1). Such an approach is an example of trans-dimensional inference, referring
to the uncertainty regarding how many parameters our non-parametric neural net-
work model should have, and therefore the dimension of the corresponding parameter
spaces. We demonstrate these two contributions based on classification and regression
experiments for which reasonable metrics (root mean square error, classification accu-
racy) are achieved on a held-out test set of samples, while also achieving a reasonable
acceptance rate to across-dimension proposals via reversible jump Markov chain Monte
Carlo.

We also present a novel approach for delayed-rejection sampling via the combination of
reversible jump Markov chain Monte Carlo and automated Hamiltonian Monte Carlo
through the No-U-Turn Sampler to improve the acceptance rate of across-dimension
proposals.
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1.2 Thesis Overview

To fully understand the application of trans-dimensional inference to Bayesian neural
networks, we begin with a preliminary discussion of statistical model selection, machine
learning, and Bayesian statistics in chapter 2.

Key details of statistical inference in the Bayesian paradigm are presented in chapter 3.

In chapter 4, Markov chain Monte Carlo (MCMC) as the inference approach of interest
is reviewed in detail, including an overview of all sampling algorithms applied in this
thesis as components of a custom trans-dimensional inference engine.

Chapter 5 presents the novel trans-dimensional Bayesian neural network model, and
the implementation of the composite MCMC sampling algorithm.

Chapter 6 outlines experiments conducted to test the inference procedure for the trans-
dimensional Bayesian neural network.

A discussion of the results, future research opportunities, and concluding remarks are
presented in chapter 7.
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Chapter 2

Statistical Modelling and Machine
Learning

We begin with a preliminary discussion of statistical modelling at a relatively basic level.
The constituents of a statistical model and the concepts surrounding model selection
will be important in the discussion as we build towards trans-dimensional inference.

Machine learning is also introduced using this language of model selection, so that the
featured neural network models may be presented with the model selection background
in mind. The chapter closes with the basics of the Bayesian framework for statistical
modelling, serving as the final preliminary ingredient to subsequent chapters, which
explore Bayesian neural networks and trans-dimensional inference in detail.

2.1 Statistical Models

Statistical modelling is the design of experiments to explain a set of observed data ac-
cording to a probability distribution [7]. The modelling practitioner must specify a rea-
sonable distribution based on the characterization of the data, and appropriately tune
the associated parameters to accurately reflect the observed data.

A model is a simplified representation of a real-world system or process. This is referred
to as the data-generating process [8], which is abstracted down to a mathematically-
defined statement about the inputs and outputs of the model, which itself is specified
by its structure (architecture) and its parameters.

The model structure refers to its functional composition. In the declaration of a model’s
structure, the practitioner defines either implicitly or explicitly how many parameters
θ = [θ1, θ2, . . . , θd] the model will have, the function f over these parameters, and the
independent variables x which the dependant variables y are conditioned on. A model
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definition will therefore be of the form:

M = {x, y, f , θ} (2.1)

y = f (x, θ) (2.2)

where y represents the vector of dependent (response) variables, x represents the vector
of independent (feature) variables, θ refers to the set of model parameters, and f refers
to the function uniting these model features. Model parameters may by realized from a
varying range of values depending on the nature of the model structure. They may be
continuous or discrete, and may have such bounds as being strictly positive, negative,
finite, or correspond to a more specific interval on the real line.

2.1.1 Model Selection

In statistical model selection, a set of k candidate models {M1,M2, ...,Mk} are declared
and compared on the specific modelling task. As few as two models may be declared
as candidates for the selection; in more advanced cases the set may contain an infinite
number of models. The latter is not at all uncommon; one may consider for example a
continuous support Θ for the parameter vector, for which a d-dimensional realization
θ ∈ Θ will correspond to an element of an uncountable set.

In simple cases, candidate models may be distinguished from one another solely by
the parameter vector θ with a fixed dimension. The models may also differ in terms of
functional form f or the number of parameters d = |θ|, in which case models are usually
distinguished by a model indicator k. The indicator may be defined explicitly for each
candidate model, or correspond to a functional relationship φ such that d = φ(k). This
caveat is especially relevant to non-parametric1 models. Table 2.1 displays examples of
model definitions for select parametric and non-parametric models.

Model θ f Type
Simple Linear Regression m, b y = mx + b Parametric

Normal Distribution µ, σ2 y = 1√
2πσ

exp
{ 1

2 (
(x−µ)

σ )2} Parametric

Gaussian Mixture Model k, φ, µ, σ2 y = ∑k
i=1 φiN (x|µi, σ2

i ) Non-parametric

TABLE 2.1: Examples of select statistical models

Functional structure f dictates the relationship between parameters θ = {. . .}, feature variables x, and
response variables y.

1A model classified as non-parametric is somewhat a misnomer. Non-parametric model are distin-
guished from parametric models for having parameters that do not necessarily fulfill unique roles in mod-
elling of the data.
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Specification of the set of candidate models must be paired with a suitable criteria for
selecting which model should be employed for the desired analysis. Restricted to a
handful of discrete models, it may be possible to directly compare each model’s score
based on some suitable metric for its performance. This is the fundamental concept be-
hind the classical model selection approach known as hypothesis testing [9], for which a
test statistic s = f (x) is assumed to be drawn from some distribution s ∼ ps(θ). The
probability associated with the test statistic is known as the p-value, and provides infor-
mation about the relative likelihood of observing the data given competing hypotheses
(i.e. parameterizations of the model). Rejection of a model corresponding to the null
hypothesis is based on whether or not the p-value is above or below a threshold known
as the significance level, which must be specified by the researcher prior to performing
any analysis on the data.

In the case of a continuous support for model parameters, analytical approaches such as
maximum-likelihood estimation (MLE) [10] may be appropriate. MLE casts an optimiza-
tion problem over θ given the data D = {x, y} corresponding to a likelihood function
L(θ|D). A likelihood function is a representation of the observed data based on a can-
didate model, and therefore provides a relative measure of the goodness-of-fit of a given
parameter vector. The MLE estimate is therefore the optimal parameterization from the
support of possible parameterizations Θ as in equation 2.3. Likelihood functions are
discussed further in section 3.2.3.

θ̂MLE = arg max
θ∈Θ

L(θ|D) (2.3)

When such methods are not tractable, we may require more sophisticated computa-
tional approaches that rely on algorithms to iteratively assess realizations of the distri-
bution of models for their competency with regards to the analysis task at hand. The
notion of model competency here may correspond to, for example, optimization of the
likelihood as above, or a similar metric. Such approaches to modelling are known as
statistical learning [11].

The target analysis of model selection via statistical learning will generally correspond
to one of two motivations - prediction, or inference [12]. Model selection for prediction
seeks to explain the target variable y as a function of the observed variables x so that
the observation of a new data point xi can be treated to a reasonable predicted outcome
yi. With regards to statistical inference, model selection aims to provide insight into
the data-generating process through analysis of likely values of θ, and corresponding
measures of uncertainty around such parameters.
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Statistical learning, or rather machine learning2, is now introduced as one approach to
statistical modelling.

2.2 Machine Learning

Machine learning (ML) [14] is the application of algorithms to automatically improve
statistical models using data. Considered to be a subfield of artificial intelligence [15],
the learning aspect of ML arises analogously from a semi-autonomous agent (the model)
iteratively improving its representation of a data generating process based on continu-
ous assessment of how well the model explains the observed data, and a feedback signal
which dictates how the model must be improved next.

ML methods are computationally intensive, and are often an effective approach for han-
dling massive datasets. Typical ML models are designed to be flexible on the support of
their parameters so that reasonable realizations can be learned from the available data,
often with minimal restriction regarding the nature of the parameters.

Model selection via ML most commonly concerns statistical prediction. When a dataset
is comprised of a series of explanatory variables x and associated response variables y,
the dataset is said to be labelled with yi being the label corresponding to observation
vector xi. Updating parameters of a model to best map the functional relation between
x and y is known as supervised learning [16].

In contrast to modelling tasks motivated by prediction, statistical inference doesn’t im-
mediately lend itself to the highly flexible models generally dealt with in ML applica-
tions. Many ML models are non-parametric with arbitrary parameters that don’t nec-
essarily correspond to real world factors, phenomena, or implications. Such models are
often colloquially referred to as black boxes [17], since we have knowledge of the inputs
and outputs of the system, but little insight regarding the internal workings.

This is, of course, not entirely the case. All relevant ML models are derived based on
some combination of their ability to fit a given data analysis task, their practical conve-
nience with regards to computational constraints, and the availability of known relevant
mathematical results. Careful examination of these models based on their composition
and the training programs they are treated with can shed light on features and rela-
tionships within the data, behaviour of the stochastic and deterministic aspects of the
applied training algorithms, and opportunities for the development of new theoretical
results in ML, statistics and information theory.

2The literature is somewhat unclear on the distinctions between the terms statistical learning and ma-
chine learning [13]. For the sake of this thesis, both approaches are broadly taken to be equivalent, and ML
is designated as the term to represent the relevant learning concepts employed.
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In this thesis, we will aim to gain some insight into model specification for one particular
class of ML models: neural networks.

2.2.1 Artificial Neural Networks

An artificial neural network (ANN) or multi-layer perceptron (MLP) is a flexible model
structure popular in modern machine learning applications for image classification [18],
speech translation [19], image segmentation [20], and numerous other industry applica-
tions. A known result of ANNs is the ability to universally approximate any arbitrary
function with continuous inputs and outputs given a sufficiently large network [21].
This compelling opportunity simultaneously motivates the popularity of neural net-
works in practice, and our investigation into trans-dimensional inference.

Perceptron

The basic building block of an ANN is a perceptron [22], which pairs an activation func-
tion g(z) with a linear transformation z = h(X). The function h is a linear transfor-
mation comprised of a weight parameter w together with a bias b, analogous to the
slope and intercept parameters in a linear regression. Taken all together, equation 2.4
corresponds to an estimate for the response vector ŷ ≈ y.

ŷ = g(wx + b) (2.4)

For a regression or interpolation problem, the objective is to directly estimate y, and thus
g is often taken to be the identity function. The model may instead correspond to a
classification task, for which each data point is to be labelled according to some set j ∈
{1, 2, . . . , c}. In this case, g is commonly taken to be a sigmoid function (equation 2.5)
in the case of binary labels (c = 2), or the softmax function (equation 2.6) when dealing
with multiple labels (c > 2).

g(z) =
1

1 + e−z (2.5)

g(zj) =
ezj

∑c
i=1 ezi

(2.6)

Multilayer Perceptrons

An ANN extends the perceptron model to a hierarchical function. We now consider
multiple parallel perceptrons (henceforth referred to as neurons) which simultaneously
compute activations on linear transformations of the input data, each contributing a
realization to a vector of outputs. The weight parameters are now represented by a
vector w. We consider this to be a layer of an ANN, which we may stack arbitrarily
many of such that the output of each layer is treated as the input to the next layer.
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FIGURE 2.1: A simple ANN with one hidden layer.

Denoting the i-th layer with its corresponding linear transformation zi and activation
function gi:

zi = wT
i yi−1 + bi (2.7)

yi = gi(zi) (2.8)

The input layer may be thought of as the observational data, such that y0 = x, for which
the number of nodes will correspond to the dimension d of the feature data. The final
output of the model will be the final activation function corresponding to the modelling
task. For a network with ` layers, the final output is therefore:

ŷ = g`(z`) (2.9)

The layers in between the inputs and outputs are referred to as hidden layers. An exam-
ple of a simple ANN architecture is presented in figure 2.1. A network with more than
one hidden layer is a deep neural network, and may be considered the flagship model
of deep learning [23].

The activation functions used for the hidden layers may differ from those of the output
layer. The sigmoid activation (equation 2.5) may be used, or the similarly featured tanh
activation (equation 2.10), which scales output values onto a range of (-1,1). Increasingly
popular in modern neural networks is use of the rectified linear unit (ReLU) [24] (equation
2.11), which projects negative values to 0 and the identity function to positive values.
ReLU’s properties allow for quick gradient calculations and has been shown to perform
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optimally in feedforward networks.

g(z) =
ez − e−z

ez + e−z (2.10)

g(zj) =

0, zj ≤ 0

zj otherwise
(2.11)

As an important note of clarification, a neural network corresponds to the functional
structure f in the definition of a model M in equation 2.1. This will be an important
baseline as we introduce models that extend the concept of a neural network beyond
fixed realizations for the weights and biases (Bayesian Neural Networks, section 3.5.2),
and later consider the architecture to be variable as well (section 5.1). For clarity’s sake,
in this work the term ANN will be used to strictly refer to neural network architectures
employed in classical machine learning models as introduced in this section, for which
the result of a training program is a neural network model with both the architecture
and the paramaterization considered to be fixed.

2.2.2 Principal Components Analysis

Having introduced ANNs as an example of supervised learning, we briefly present a
method of unsupervised learning for contrast. This method is also used in the experi-
ments section to augment a dataset to be more tenable for the computationally intensive
inference algorithm that will be the focus of this thesis.

Principal Component Analysis (PCA) [25] is a dimensionality-reduction technique that
produces a representation of a d-dimensional dataset x through a change-of-basis to the
d original feature vectors to maximize the variance of the feature space. These optimized
features are known as the principal components (PCs) of the dataset, and are established
such that projection of the data samples onto the PCs maximizes the "spread" of the data
to make the difference between samples more apparent.

Formally, given the covariance matrix Σ for x, we define the projection z1 onto the first
PC c1:

z1 = cT
1 x (2.12)

and seek to maximize the variance cT
1 Σc1 subject to the constraint that ||c1|| = 1 for a

unique solution. The Lagrange optimization problem is then:

max
c1

cT
1 Σc1 − α(cT

1 c1 − 1) (2.13)



12 Chapter 2. Statistical Modelling and Machine Learning

We take the derivative of 2.13 with respect to c1 and set it equal to 0 to arrive at:

Σc1 = αc1 (2.14)

which holds if c1 is an eigenvector of Σ with corresponding eigenvalue α, and for max-
imization we therefore select the eigenvector corresponding to the largest eigenvalue
λ1. The argument follows for selection of subsequent principal components c2, . . . , cd as
the eigenvectors e2, . . . , ed corresponding to the eigenvalues ordered in decreasing size
λ2, . . . , λd.

The target representation will concern some d′ <= d PCs and will be optimized based
solely on the variance of the data samples across these features. This is what makes the
method unsupervised, as no manner of output data is considered in determination of
the optimization criterion. Selection of a number of d′ of the PCs may correspond to a
targeted proportion of explained variance as defined by the user. The total proportion
of variance explained by the first d′ PCs can be calculated based on the sum of the d′

eigenvalues over the sum of all d eigenvalues as in equation 2.15.

proportion of variance =
∑d′

i=1 λi

∑d
j=1 λj

(2.15)

2.3 Bayesian Statistics

Statistical modelling relies heavily on key concepts from probability theory. Probability
arises from measure theory as a rigorous examination of sets of possible outcomes for
processes. A realization of one of these outcomes or a specific outcome from a given
subset of the possibilities is known as an event. The measure of how likely3 any given
event is to occur is referred to as the probability of the event, but a further examination of
precisely what is meant by "likely" now diverges according to which of two paradigms
of statistics one wishes to consider.

1. In the frequentist (often labelled the "classical" approach to statistics) paradigm,
probability is a measure of the occurence of outcomes relative to all possible out-
comes that could occur over repeating incidents of the given process.

2. In the Bayesian paradigm, probability is instead considered to be a "degree of be-
lief" in a definite statement about an outcome corresponding to a given event.

3Respect is given to the fact that "likely" corresponds to a more precise definition in statistics, but is used
here somewhat colloquially.
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FIGURE 2.2: PCA transform applied to bivariate Gaussian data
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Reverand Thomas Bayes is credited with the titular result regarding conditional proba-
bilities known as "Bayes’ Rule" [26] (equation 2.16).

p(a|b) = p(b|a)p(a)
p(b)

(2.16)

In the above statement, a and b refer to fixed probabilities of some events happening.
Bayesian inference takes the heart of this approach and generalizes it to distributions of
model parameters as random variables given the observation of data.

p(θ|D) =
p(D|θ)p(θ)

p(D)
(2.17)

In the left side of equation 2.17, the distribution of the parameters θ based on the data
D is known as the posterior distribution. Perhaps more succinctly, this represents a dis-
tribution of candidate models, for which the probability of a given model is weighted
according to the prior belief regarding θ and the observed data.

The posterior distribution is the main product of Bayesian inference, which is discussed
in chapter 3.

2.3.1 Bayesian Model Selection

When comparing two Bayesian models, the Bayes factor [27] can be computed to de-
termine the relative efficacy of one model over the other. Given the conditional distri-
butions for two models M1 and M2 based on the observed data as well as the prior
probabilities over the two alternative models, the Bayes factor Ψ is computed as the
ratio of the two (equation 2.18).

Ψ =
p(M1|D)

p(M2|D)

p(M2)

p(M1)
(2.18)

The Bayes factor considers the likelihood of observing D given all possible parameteri-
zations of θ1 and θ2. The second ratio in equation 2.18 refers to the prior probabilities for
the models, which may as a default be taken to be equal such that p(M1) = p(M2) =

0.5. In this case, equation 2.18 reduces to a ratio of the two posterior distributions. Ψ is
therefore an indicator of which of the two models better explains the data, and to what
degree it outperforms the other. A value of Ψ > 1 suggests thatM1 is preferable.

The Bayes factor may be used to compare two models, but model selection by Bayesian
inference is not limited to cases featuring binary candidates [28]. Given that no prior
preference is assigned to any particular model (i.e. p(Mi) =

1
m ∀i ∈ {1 : m}), the poste-

rior score as a result of some inference procedure may be used to "rank" each candidate
model. This approach is presented in chapter 3.
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Chapter 3

Bayesian Inference

We have chosen to pursue a Bayesian analysis of neural network models, and will there-
fore be dealing with degrees of belief in our discussion of model selection. The implica-
tion of this injection of belief must be formalized to connect philosophical conjecture to a
practical implication - namely, how our prior understanding of the problem can be bal-
anced with the observed data, and how to interpret our updated beliefs after inference
has been performed.

This chapter presents information on the motivation and procedure of Bayesian infer-
ence, an introduction to the relevant methods, and culminates in a detailed description
of Bayesian Neural Networks. We begin with a discussion of uncertainty, specifically
referencing how it will pertain to the Bayesian modelling approach and our goal to gain
a better understanding of optimal BNN architecture selection.

3.1 The Role of Uncertainty in Statistical Modelling

In defining a statistical model, we abstract a complex natural process down to a se-
lect few key components. A well-defined model includes a sufficient subset of the true
components of the data-generating process such that a reasonable degree of inferen-
tial or predictive insight is gained to make meaningful statements about the examined
processes. Except for trivial analyses or perfectly isolated systems, some information is
inherently lost in the abstraction. With regards to Bayesian machine learning, the goal is
often to achieve a distribution of parameters of a model for the sake of predictive capa-
bilities, but we do not typically strive to exactly recreate the complexity of the examined
natural phenomena at hand. [29].

Given that statements about model parameters and resultant predictions regarding es-
timation or classification of the response variables correspond to degrees of belief, un-
certainty is therefore inherent within a statistical model, categorized as arising from two
distinct sources [3]. First, one acknowledges that the amount of available information
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for a data set is limited by the existing prior knowledge and the size of the data set.
This consequent source of uncertainty is defined to be epistemic (also known as model
uncertainty), and may be reduced either by defining additional prior knowledge, or ob-
taining additional data. In contrast, aleatoric uncertainty is that which arises from the
inherent randomness of the data generating process. Any finite data set can only ever
represent a snapshot of the ground truth, placing a constraint on the limit of model effi-
cacy. Aleatoric uncertainty may always be present as a limitation of that which cannot
be known about the data-generating process.

Both sources of uncertainty are present in non-parametric model selection. The aleatoric
uncertainty arises intrinsically due to the stochastic nature of the data-generating pro-
cess responsible for the observed data. Some epistemic uncertainty can be attributed to
a lack of knowledge about this data-generating process, but also due to the design of
the non-parametric model, including its functional representation, architecture, and the
factors affecting its parameterization (training procedure, learning metrics i.e. cost func-
tion). It is therefore desirable when dealing with non-parametric models, such as neural
networks, to be able to characterize this source of uncertainty for a better understanding
of the limitations of the predictive capabilities of the model.

3.1.1 Model Architecture Uncertainty

Chapter 2 presented a minimum of prerequisite information to define trans-dimensional
inference, for which insight into model architecture specification may be sought.

With the language of uncertainty available, we will demonstrate through experiments
that Bayesian inference can provide not only an optimal point estimate of associated
parameters, but distributions of model architectures. We emphasize the following claim:

Proposing models that do not specify a fixed architecture corresponds to an assump-
tion that we are not certain any one non-parametric model architecture is necessarily
appropriate or optimal for analysis of the data.

We therefore strive to represent a source of epistemic uncertainty which is not addressed
by default in classical ML approaches to ANN learning - specifically, the size of the
neural network architecture.

Many of the details presented in the following sections are expressed in terms of model
parameters for standard (fixed-dimension) inference, but extend naturally to the trans-
dimensional case for inferring architecture. This extension is addressed through the use
of model indicators to represent architecture selection as explored in section 5.1.
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3.2 Components of Bayesian Inference

Bayes’ approach is mathematically intense, and the methods are computationally ex-
pensive [30]. Successful generation of the target approximations requires that our model
specification and algorithm design correspond to the available prior information that we
have regarding appropriate model selection for representation of the data.

To understand how the Bayesian approach allows for this principled inclusion of prior
information and to properly generate uncertainty measures around the model parame-
ters, a sound understanding of the components of Bayesian inference is required.

3.2.1 The Posterior Distribution

The Bayesian paradigm for statistical inference proposes that the parameters of a sta-
tistical model are random elements, and the observed data are fixed. Given a model
M : y = f (θ, x), the vector of model parameters θ is assumed to be a random variable
arising from a distribution dependent on the observed data D = {x, y}:

θ ∼ p(θ|D), θ ∈ Θ (3.1)

where Θ is the set of possible realizations of θ. Such a distribution is known as the
posterior distribution, and is the mathematical entity of interest in Bayesian inference.
It presents all of the features and information associated with a probability distribution.

The posterior distribution is obtained through Bayes’ rule as it is applied to distributions
of random variables. Given marginal distributions over the model parameters p(θ) and
the data p(D), respectively referred to as the prior distribution over the parameters and
the marginal evidence of the data, as well as the conditional distribution of the data given
the model parameters p(D|θ), the posterior distribution is computed as

p(θ|D) =
p(D|θ)p(θ)

p(D)
(3.2)

A corresponding maximum a-posteriori (MAP) estimate is a point estimate ŷ for y that
maximizes the posterior score of the full Bayesian inference as in equation 3.3. The MAP
estimate is considered analogous to the MLE technique for classical learning procedures,
extending the metric to include how well a model explains the data while constrained
by prior information.

θ̂MAP = arg max
θ∈Θ

p(θ|D) (3.3)
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Except in simple cases with convenient analytical properties, the posterior distribution
is difficult to obtain exactly. The suite of inference techniques used to sample from the
posterior or an approximation thereof are introduced in section 3.4.

3.2.2 The Prior Distribution

Whatever is known or suspected about the nature of θ - before data has been observed
- is reflected in the prior distribution, p(θ). It is simply a joint probability distribution
over the model parameters. The simplest such case might be a multivariate distribution
with a known functional form, such as a multivariate Gaussian, but it can also represent
the product of independent probability distributions over different types of model pa-
rameters. The parameters need not be independent; the distribution can be expressed
analytically or approximately to represent a conditional structure between different pa-
rameter types. This is common in the case of hierarchical models [31] (section 3.3).

A prior could also be defined as a posterior distribution from a previous analysis when
new data becomes available. The philosophical appeal of this technique is the natural
iterative ability of Bayesian inference - postulate the initial prior as a sort of null hy-
pothesis, observe data, obtain a posterior, observe more data, obtain a new posterior,
repeat.

The nature and amount of information available in specification of a prior is dependent
on the analysis at hand. It might not be known a priori how certain model parameters are
expected to behave in a complex model. This does not necessarily weaken the proposal
of a Bayesian approach, and in fact may be a benefit - a prior with minimal imposition
on select model parameters is still a principled way to define an assumption such as
"little as assumed about θ" [32]. This leads to a distinction between informed and vague
priors, which each present a trade-off between benefits and costs.

Informed Priors

The Bayesian approach offers a principled way for domain experts to inject their estab-
lished expertise on a problem into the inference task. A distribution may be specified
that places a narrow band or bands of relatively high probability density across certain
parameter values, usually via modification of a prior scale parameter. The distribution
may also be selected based on its established characteristics, including its range of pos-
sible values (namely whether values may go to ±∞ or be restricted on one or both ends
of the range interval), the overall shape of the curve, and often deliberate selection of
a value for the location parameter. A set of any or all of these insights characterize an
informed prior distribution for the model parameters.



3.2. Components of Bayesian Inference 19

Vague Priors

Whenever the interpretability of model parameters is difficult, it is consequently chal-
lenging to define prior information about the nature of the distributions from which
those parameters arise. In these situations, a vague prior may be appropriate, such that
minimal restriction or relative weighting is placed on certain parameter values. This
might correspond to a zero (or otherwise) centered Gaussian with particularly wide
variances, such that all real-numbered values are candidates for the parameter, with
only moderate preference given to those within a neighbourhood of the specified mean.
In absence of a more informed choice of mean, centering a Gaussian on zero implies a
weak preference for smaller parameter values.

A discussion of vague priors is specifically relevant to non-parametric models. Techni-
cally speaking, non-parametric models have parameters, or there would be no random
variables to perform inference on using the Bayesian approach. Non-parametric models
are those which do not have an a-priori model structure specified. A normal distribu-
tion is a parametric model characterized by a mean and variance parameter, whereas a
MLP is an example of a non-parametric model which may have any number of hidden
layers and varying numbers of nodes within those layers.

Vague priors are still required to be proper probability distributions, such that inte-
gration over the full support of the distribution is equal to one. This is in contrast
to improper priors, for which the integrals diverge - such as a uniform distribution.
Such priors are occasionally used in Bayesian inference, despite potentially introducing
pathologies to the analysis [33].

It might seem as though vague priors offer little advantage over strictly likelihood based
methods, but this is not found to be the case [34]. Even weakly-informative priors (as
are common in BNN specification [35] - see section 3.5.3) assist in the practical imple-
mentation of inference methods. Even if the data is insufficiently informative to result
in narrow posteriors distributions when using vague or improper priors, this result will
be represented by appropriate uncertainty measures around parameters and predic-
tions. This provides the researcher with information regarding whether the predictions
are certain enough to proceed with the model as is, or that additional data/analysis is
required.

Figures 3.1 and 3.2 illustrate a situation in which a vague prior leads to a more accurate
estimation of the posterior distribution than an equivalent narrow prior, and develops
some general intuition to the computation of a posterior distribution through Bayesian
inference.
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FIGURE 3.1: Inference over a simple Gaussian distribution: narrow prior

FIGURE 3.2: Inference over a simple Gaussian distribution: vague prior

100 samples are generated from a Gaussian distribution with mean 5 and a standard de-
viation of 1. Random-walk MCMC (see section 4.3) is used to simulate an approximate
posterior distribution. The posterior is biased when a narrow prior is employed (figure
3.1). A vague prior allows the posterior to better mimic the likelihood (figure 3.2).
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3.2.3 The Likelihood

The conditional distribution of the data given model parameters is more commonly
referred to as the likelihood of the model parameters (equation 3.4).

p(D|θ) ∝ L(θ|D) (3.4)

The Bayesian formulation for a posterior distribution (equation 2.17) then becomes:

p(θ|D) =
L(θ|D)p(θ)

p(D)
(3.5)

The likelihood is a function, not a probability distribution. The output of a likelihood
function L(θ|D) for some input parameter θ given data D will not provide any infor-
mation about the quality of the parameterization independently, as the relative scores
are dependant on the specifics of the model structure. It can be used instead to compare
two or more models based on their relative fit of the data. Such an approach is the ba-
sis for the method of MLE, wherein an optimal parameterization is determined as that
model which maximizes the likelihood function and therefore best represents the data.

It is the pairing of a likelihood function with a properly specified prior distribution and
normalizing constant that yields a posterior probability distribution. Whereas specifi-
cation of the prior distribution is flexible, the likelihood is (partially) implicitly defined
by the modelling task [36]. Fitted data as determined by a candidate model is measured
for its goodness-of-fit based on the unnormalized likelihood, allowing for relative com-
parison of model quality as discussed in section 2.1. A tenuous analogy may be drawn
between the likelihood of Bayesian inference to the loss function of classical machine
learning as two components responsible for assessing the quality of the active model in
their respective paradigms.

Typical likelihoods for classification and regression tasks are defined for the models of
interest in this thesis in section 3.5.4.

3.2.4 The Model Evidence

The denominator of the Bayesian inference equation, p(D)1, is the marginal distribution
of the data, independent of model parameters. The use of p(D) is shorthand for the
expression representing the marginalization over all possible parameterizations of the
model:

p(θ|D) =
L(θ|D)p(θ)∫
Θ

p(θ, D)dθ
(3.6)

1In the supervised setting, it is more formally written as the conditional distribution of the response
based on the feature data, such that P(D) ≡ P(Y |X).
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Such a distribution is difficult to define and not of particular interest in terms of infer-
ring the nature of the model, or extending a model to predictions on newly observed
data [9]. It is also constant across model parameterizations, architectures, and func-
tional specifications. It is therefore not necessary to explicitly compute the evidence
when performing Bayesian inference for model selection. The statement can be made
that the posterior distribution is proportional to the product of the likelihood and prior
distributions (equation 3.7).

p(θ|D) ∝ L(θ|D)p(θ) (3.7)

A valid probability distribution by definition must integrate to 1 across its support,
which holds for the exact posterior as in equation 3.8. Evaluation of the full posterior
distribution following a Bayesian update should meet this criteria if p(D) can be deter-
mined, but this is not a necessary validation where model selection is concerned. It is
instead sufficient to evaluate a given posterior based on its unnormalized log-posterior
score in comparison to other possible parameterizations in terms of returning point or
interval estimates, or expectations.∫

θ∈Θ
p(θ|D)dθ = 1 (3.8)

3.2.5 The Posterior Predictive Distribution

The posterior distribution itself serves as the end goal of Bayesian inference for model
selection, but we need not stop there. A natural motivation for model selection in ei-
ther a frequentist or Bayesian machine learning setting may then be to perform statis-
tical prediction, for which the focus will then be on generating predictions for newly
observed data. In the Bayesian case, these predictions will be the aggregated output
of models drawn from the distribution of model parameters represented by the poste-
rior, weighted by their posterior score. The posterior predictive distribution obtained
through Bayesian inference treats each observed data point x with a distribution of pos-
sible response targets2 Y = y:

p(y|x) =
∫

Θ
f (y|x, θ)p(θ|D)dθ (3.9)

Evaluation of this posterior predictive distribution (or simply the predictive distribution) re-
wards the Bayesian practitioner with a wealth of information about each observed x. An
expectation can be approximated through a numerical integration technique over sam-
ples from the distribution. Uncertainty estimates can easily be achieved by evaluating
credible intervals for each predicted response based on the variance as determined from
the predictive distribution.

2In the case of supervised learning
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All of this comes "for free" in contrast to the output of a classical machine learning model
training run. Standard gradient descent methods produce MLE estimates for which
MAP estimates may be seen as the Bayesian equivalent. Beyond that, methods exist to
augment standard ML algorithms so that uncertainty estimates can be obtained, and
ensemble methods can be employed to roughly approximate the approach of sampling
from a posterior distribution [37]. These, however, must be employed separately in the
classical setting.

3.2.6 Why Bayesian Inference: Prior Beliefs vs Evidence

A high-level interpretation of Bayesian inference might be as follows: a prior belief
about the nature of a model is specified, and then data is observed to automatically
update the model to better explain the data. The posterior distribution is thus charac-
terized by a weighted mix of the original prior distribution over the model parameters
as well as the likelihood of the observed data. The degree to which this mixture is
weighted by these two components depends on the number of observations and the
nature of the prior distribution. The addition of newly observed data will increase the
relative impact of the likelihood, while the prior’s impact can be increased by narrowing
the specified joint distribution over parameters, or decreased by selecting a more vague
distribution.

To both proponents and critics of the Bayesian paradigm, the prior distribution is of-
ten the foreward feature that distinguishes a Bayesian approach from a more orthodox
method [38]. It is often associated with the introduction of subjectivity into a modelling
task, which critics may regard as a non-rigorous feature of a Bayesian experiment de-
sign [39].

The comparison is made to frequentist approaches for which no such explicit subjectiv-
ity exists, suggesting that such an approach is more disciplined. This does not present
as an honest comparison, however, because subjectivity is inherent to any frequentist
design. Specification of a prior distribution over model parameters in the Bayesian
paradigm needs to be compared to its direct equivalent in the frequentist approach for
a fair assessment of this proposed subjectivity issue.

Experimental design is inherently subject to a series of subjective choices. A practitioner
begins the specification of an experiment by choosing a set of values of interest, which
immediately places a bias of attention on the space of the problem. Model structure and
hyperparameters are then selected and tuned, and not always necessarily in a principled
manner. Selection of metrics such as p-value threshold and confidence interval sizes are
all subjective choices that the practitioner must make.
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Consider a simple example involving the rolling of a six-sided die. To investigate
whether the die in question is fair, a Bayesian practitioner may place a categorical prior
over the distribution of single die-rolls with probability vector p =

[ 1
6 , 1

6 , 1
6 , 1

6 , 1
6 , 1

6

]
. The

die can then be rolled to simulate the process sufficiently many times to achieve an
estimate of the deviation between the expected probability vector and the realized sam-
ple averages. The frequentist approach might instead be to establish a null hypothesis
with the same probability vector p and observe whether the returned p-value motivates
rejection of the null hypothesis. The subjectivity is here abstracted outside the model
specification: the researcher implicitly decides what sort of evidence might alter the
model by specifying the null hypothesis and the p-value for which it is rejected.

This is the sort of implicit assumption that this thesis is trying to address. Training an
ANN model with a given architecture might be akin to a prior belief claim that this par-
ticular architecture is the correct one for the analysis. Taking the Bayesian approach allows
us to better express the uncertainty in our model selection. This also provides a benefit
in terms of automating the model selection task, so that specification of the model can
benefit from a principled data-driven approach, with fewer assumptions needed to be
made at the outset of the model design.

3.3 Hierarchical Models

The components of Bayesian inference as presented above apply specifically to the case
of standard statistical models. While not explicitly specified, above it is assumed that
each model parameter θi as an element of the parameter vector is independent of any
other parameter. When this is not the case, as in trans-dimensional inference, we can
extend the Bayesian formulation to consider hierarchical models [40].

We make the claim that the Bayesian approach is a favourable one when there is uncer-
tainty over model parameters, but the modelling uncertainty doesn’t necessarily stop
there. Especially with non-parametric models, it is difficult to claim that the specified
joint prior distribution is uniquely appropriate for the modelling task. Each component
of the model parameter vector is drawn from a known distribution with its own hyper-
parameters, which have thus far implicitly been assumed to be fixed values. If we are not
adequately certain about these values, then we by definition have another "higher-level"
source of uncertainty.

A principled solution would therefore be to specify distributions for these hyperpa-
rameters and treat them as random variables in the inference procedure. To do so is
implement a two-level hierarchical model, wherein low-level model parameters are con-
ditionally dependent on higher-level hyperparameters.
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It is mathematically straightforward to incorporate such hyperparameters into the for-
mulation of a posterior distribution over model parameters. It might be assumed that
corresponding sets of model parameters may be drawn from the same distribution:

θ ∼ p(θ|α, β) (3.10)

where α, β are the hyperparameters, and p(θ|α, β) is a joint prior distribution for θ.
Given fixed values for α and β, equation 3.5 is naturally extended:

p(θ|D) =
L(θ|D)p(θ|α, β)

p(D)
(3.11)

When there is further uncertainty over specification of α and β, hyperprior distributions
p(α) and p(β) can be specified based on the high-level hyperparameters, which them-
selves can be specified to be drawn from respective higher-level hyperprior distribu-
tions.

p(θ|D) =
L(θ|D)p(θ | α, β)p(α)p(β)

p(D)
(3.12)

This procedure can be repeated ad infinitum such that a model features hyperparameters
"all the way down". Practically speaking, each additional level in a hierarchical model
may increase a model’s robustness with respect to uncertainty, but will consequently
demand greater computational resources where training or inference computation is
concerned. A weakly principled approach may be to define as many levels as is compu-
tationally feasible based on the available compute resources.

Non-parametric models in particular may benefit from a treatment of one or more levels
of hyperparameter specification. In a hierarchical model, an appropriate degree of reg-
ularization may be automatically specified by the data [41]. The previously discussed
difficulties associated with interpretability of complex ML models may motivate a need
for more robustness than is provided by a model with no hyperparameters, and neural
networks in particular are shown to greatly benefit from a two-level model [29].

3.4 Inference Methods

The posterior and posterior predictive distributions are technically defined at the mo-
ment of specification of the prior and likelihood, but are only available for analysis after
some method of Bayesian inference has been performed. In exceptional cases, a con-
venient mathematical representation of the posterior may be obtainable; our exact pos-
terior is otherwise analytically intractable, and may only be approximated or sampled
from. Three main classes of approach exist for sampling from an analytically intractable



26 Chapter 3. Bayesian Inference

posterior distribution: variational inference, Laplace approximations, and Monte Carlo
methods.

3.4.1 Approximate Posterior Distributions

Variational Inference

Though we have departed from the classical ML paradigm, there is still a space for
optimization. The main idea behind variational approaches [42] is to approximate the
posterior distribution with a known tractable distribution q(θ) ≈ p(θ|D), and solve an
optimization problem over some divergence metric between the true posterior and the
estimate. Such a divergence would still require knowledge of the posterior, but a lower
bound on the divergence can instead be minimized. This is referred to as the evidence
lower-bound (ELBO).

Considering the log of the marginal likelihood, an expression for the lower bound is
found using Jensen’s inequality (equation 3.13), where KL(q||p) is the Kullback-Leibler
divergence. We denote q∗(θ) as the optimal member of the family of distributions q
(equation 3.14).

log p(D) = log
∫

p(θ, D)dθ

= log
∫

q(θ)
p(θ, D)

q(θ)

≥
∫

q(θ)
p(θ, D)

q(θ)

=
∫

q(θ) log p(θ, D)dθ+
∫

q(θ) log
1

q(θ)
d(θ)

= log p(D)−KL(q(θ)||p(θ|D))

(3.13)

q∗(θ) = arg min
θ∈Θ

KL(q||p) (3.14)

Casting the inference procedure as an optimization problem presents a number of ad-
vantages, which has led to reasonable popularity of variational approaches in ML. Vari-
ational inference integrates seemlessly with stochastic optimization [43], making it ap-
propriate for the data-intensive analyses common to DL. It is still, however, only an
approximate method, as the produced density is only close to the exact target posterior.

Laplace Approximations

Oftentimes, the most important aspect of a complex posterior distribution may be the
mode - an area of particular high probability density in a given neighbourhood of the
distribution. This is especially the case if the distribution is being assessed simply for an
optimal point estimate, such as the MAP. In this situation, a Gaussian centered on the
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mode may be an appropriate starting point for an approximation of the posterior; this
is the basis for the method of Laplace approximations, which extend Laplace’s method
for the approximation of complex integrals [44] to the application of Bayesian inference.

The posterior distribution may be more generally expressed as a density over a normal-
ization constant as in equation 3.15.

p(θ|D) =
p̃(θ|D)

D (3.15)

Now, the posterior distribution is assumed to be approximately Gaussian around the
MAP estimate θMAP:

p(θ|D) ≈

∣∣∣A∣∣∣
(2π)d/2 exp

(
− 1

2
(θ− θMAP)

T A(θ− θMAP)

)
(3.16)

where A is the Hessian Matrix of p̃(θ|D) evaluated at θMAP.

As far as approximations go, the Laplace method is relatively analytically appealing, as
the model evidence can be approximated. This approach is applied to Bayesian Neural
Networks in early works by Mackay ([45], [41]), but are not as popular in current ML
research as variational inference or MCMC. One interesting exception is the Integrated
Nested Laplace Approximation (INLA) [46] technique for latent Gaussian models, for
which ML applications offer an interesting future research direction.

3.4.2 Exact Posterior Distributions

Conjugate Priors

In specific and often trivial cases, analytical techniques allow for the computation of
posterior distributions based on a given likelihood paired with a specific prior distribu-
tion known as a conjugate prior. The requirement for a conjugate prior is that the product
of the functional forms of the likelihood and the prior distribution may be algebraically
expressed in the form of a known distribution. The consequent posterior is as conve-
nient to work with as the known distribution, and is specified exactly across the entire
support of the variable.

The analytically computed posterior will be of the same form as the prior distribution
with updated hyperparameters. Table 3.1 displays examples of likelihood functions
with appropriate conjugate priors. We emphasize entry one corresponding to a nor-
mal likelihood with precision τ as a popular result used in related works [29], [47] and
explored in our experiments.



28 Chapter 3. Bayesian Inference

Likelihood Conjugate Prior
Prior

Hyperparameters
Posterior

Hyperparameters

Normal (µ,τ) Gamma
Shape α,
Scale β

Shape α + n
2 ,

Scale β + ∑n
i=1(xi−µ)

2

Exponential (λ) Gamma
Shape α,
Scale β

Shape α + n,
Scale β + ∑n

i=1 xi

Poisson (λ) Gamma
Shape α,
Scale β

Shape α + ∑n
i=1,

Scale β + n

Categorical (p) Dirichlet Conc. α ∈ Rk
Conc. α + (c1, ..., ck),
ci = # of observations
for category i

TABLE 3.1: Examples of conjugate priors

Conjugate priors are not often applicable in machine learning settings for the low level
model parameters, for which the distributions of interest are characterized by complex
structures and high-dimensional parameter spaces. They are, however, a convenient
approach to higher level hyperparameters for fast computational updating via Gibbs
sampling (see section 4.4).

Markov chain Monte Carlo

Markov chain Monte Carlo is the only inference method that allows for sampling from
the exact posterior distribution when it is analytically intractable. A stochastic process
(a Markov chain) is defined to iteratively draw samples from different elements of the
support of the random variable, visiting each value a number of times proportional to
its probability in the asymptotic limit of iterations. Practically speaking, only a finite
number of these iterations can be obtained, but a sufficiently large number can provide
a tenable approximation to the exact posterior distribution and consequent point or
interval estimates for the model parameters.

A full treatment of MCMC methods is presented in the following chapter, including
those which make use of gradients for efficient sampling of the posterior distribution,
and trans-dimensional methods that can explore a join posterior of model specifications
with differing numbers of randomly distributed model parameters.

3.5 Learning as Inference

Machine learning techniques can be interpreted through the framework of statistical
inference. To view learning in this manner, the models to be trained must be interpreted
probabilistically. This can be achieved through the use of so-called ensemble methods [48],
which extend standard learning algorithms to principled schedules of sample values for
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hyperparameters of interest, or through the Bayesian framework. The focus of this work
is on the latter, though notes are first presented on ensemble methods to build intuition.

3.5.1 Ensemble Methods

In the interest of robustness, we may be interested in a class of ANN models with dis-
tinct parameterizations, as opposed to one trained network. A set of realizations (i.e.,
trained networks) from this class is dubbed an ensemble, and by treating a learning
task to each model within this set, we can perform inference over model parameters
and generate measures of uncertainty over our ŷ vector of model outputs.

Formally speaking, we begin by declaring M = {M1,M2, ...,Mm} where each Mi

is characterized by an ANN function f (θi, x). The parameter vectors θi = {W , b} are
considered to be drawn from some distribution Θ. Network outputs ŷi = f (θi, x) can
then be drawn from each network, and an average response ŷ = 1

m ∑m
i=1 ŷi is calculated

as an approximate expectation - a robust estimate of the true response vector (equation
3.17).

E[y] =
∫

y f (y)dy (3.17)

How many networks should there be in a well-defined ensemble? Two unsatisfying
answers might be as many as we deem appropriate, or as many as are computationally
feasible. The former answer corresponds to situations where we are uncertain about a
particular set of architecture specifications. We may know that a network would benefit
from either 2 layers or 3, but can not say which of the two might be more optimal. We
might instead wish to define 32, 64 or 128 neurons in each layer, or we may seek to con-
sider networks with different activation functions. Alternatively, we may train an entire
table of network specification permutations, one such approach to Neural Architecture
Search [49].

This discussion of how an optimal ensemble is defined hints towards a Bayesian ap-
proach. It might be argued that the optimal ensemble size is the asymptotic limit - an
infinite number of networks, over which an expected distribution can be integrated.

3.5.2 Bayesian Neural Networks

Bayesian Neural Networks (BNNs) [29],[45], [50] are non-parametric models structured
in the same manner as ANNs, for which probability distributions are placed over the
weight and bias matrices corresponding to each layer of the network. A joint posterior
distribution of network parameters can then be computed by declaring prior distribu-
tions, establishing the appropriate likelihood for the paired observational and response
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data given the model task, and executing an appropriate approximate inference tech-
nique.

A formal definition of a BNN model follows from the definition of an ANN in sec-
tion 2.2.1 and the components of Bayesian inference in section 3.2. An `-layered neural
network framework y = f (x, θ) is declared for fitting responses y to feature vectors
x based on parameterizations θ = {W , b}, respectively the weights and biases of the
linear transformations zj = hj(zj−1, Wj, bj) for each layer j = 1, ..., `, where z1 = x. Ac-
tivation functions gj(z) are applied after each linear transformation, and will typically
be taken to be equivalent across all layers excluding perhaps the final layer, depending
on the nature of the analysis.

The parameter vector θ is assumed to contain components θk that are iid random vari-
ables, the joint prior distribution for which is declared such that θ ∼ p(θ). A likelihood
function for the parameters based on the observed data is selected based on the net-
work’s role as a classification or regression model and will be of the form L(θ|x, y). The
marginal distribution of the data is discarded, and a posterior distribution of the model
parameters is achieved through equation 3.5.

The end result of inference over a BNN is a posterior distribution of network parame-
terizations. To draw a single sample from this distribution is to generate a single ANN
that is considered to have effectively completed its training regimen. The fitted response
data as modeled should provide a reasonable estimate of the training labels3. To draw
n samples from the posterior would be to generate an ensemble of these ANNs, each
of which may contribute estimated labels for the training data as one sample estimate
of the true response. More generally, samples contributing to an expectation of the re-
sponses y are drawn from the posterior predictive distribution as a means of obtaining
point or interval estimates.

The BNN approach offers several advantages over the standard machine learning ap-
proach. Inference procedures offer the same benefits as ensemble methods, but these
benefits may be thought of as being "built-in" to the inference procedure, and need not
be approximated through the addition of auxiliary methods and corresponding hyper-
parameters. Select advantages are outline below:

1. Robust, built-in generalization

A known result of BNNs is that the use of zero-centered Gaussian priors over
weight parameters (see section 3.5.3) induces an equivalence to L2-regularization

3The distribution of trained networks may not be defined such that every sample will correspond to a
network that has been trained "effectively". Low-probability draws from the tails of the distribution (those
with a relatively low posterior score) may not achieve optimal results based on appropriate metrics, such
as classification accuracy or regression MSE.
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via the inclusion of a weight decay penalty [51]. Such a penalty term is included in
the loss function of an ANN as λ‖W2‖, where λ > 0 is some coefficient affecting
the strength of the penalty on the squared norm of the weight parameters. Net-
works with smaller weights are therefore favoured in producing a trained ANN
model.

For a BNN, the posterior distribution of network parameterizations corresponds
to an infinite ensemble of networks that treat the data to all possible functional
representations y = f (x) weighted by corresponding posterior scores, for which
the contribution of a distribution centered at zero will similarly favour parameter
absolute values closer to zero [41].

2. Uncertainty measures built-in

The expectation represents the first-order moment of the posterior distribution;
the second-order moment is referred to as the variance. The variance of each com-
ponent of the parameter vector provides as a metric the spread of likely values for
the corresponding model parameter, indicating how widely distributed random
realizations of the marginal posterior may be.

Variance for the posterior distribution allows for statements about the certainty
of estimates for network parameters, but does not directly provide predictive in-
sight. Variance for the predictive distribution, however, can be extremely benefi-
cial in represented the limitations of a neural network’s predictive capabilities. A
large variance associated with a fitted data point can indicate the degree of caution
that should be regarded when relying on a network’s predictions for real-world
applications.

3. Interpretability of network parameters

Referring to the discussion of black box models in section 2.2, it is not always clear
what precisely motivates the parameterization of a well-specified non-parametric
model. The posterior distribution of parameters facilitates inference about the
nature of the model, in that draws from the posterior effectively produce a dataset
of parameterizations. Analysis of this dataset may provide insight into the model
at hand; we are essentially turning statistical analysis inward on itself.

Treating neural networks to Bayesian inference therefore proposes an inherent op-
portunity to understand such models, in parallel to modelling the data according
to predictive motivations as in a classical machine learning approach. The poste-
rior predictive distribution provides a fitted estimate of the data while the poste-
rior distribution lends clarity to the model itself, such that we don’t merely return
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how to represent the data, but also information about why those representations
may be reasonable.

Essentially, a BNN is a distribution of ANNs which may be learned through one of the
three inference techniques previously introduced.

3.5.3 Priors for BNNs

Prior distributions in Bayesian inference allow for the injection of previously acquired
domain knowledge into the modelling task, but this is not an immediately intuitive
proposition when dealing with non-parametric models [52]. To impose a distribution
over the weights and biases of a neural network model is to implicitly define expec-
tations about the nature of these parameters, such as their restricted domain, and the
regions of the real number line corresponding to high probability mass for parameter
values.

Discussion of BNN priors dates back to Mackay [45],[53],[41] and Neal [29]. The con-
sensus in the literature to date largely agree with their forward approach of employing
zero-centered Gaussian distributions for both weights and biases, with variance param-
eters σ2

i declared for sets of parameters i corresponding to similar roles. Neal for ex-
ample declares separate variances respectively for sets of hidden node weights, hidden
node biases, output node weights, and output node biases, treating each corresponding
Gaussian prior to an appropriate width based on the previous layer size.

Further discussion of BNN priors is included in section 5.1.1.

3.5.4 BNN Likelihoods

The likelihood function must be appropriately specified based on the nature of the anal-
ysis for a given BNN model. In this work, BNNs are used for both classification and
interpolation tasks. Suitable likelihoods extend from equivalent analyses via Bayesian
regression (BR) and Bayesian logistic regression (BLR).

Interpolation Networks

Each fitted value yi is assumed to be drawn from a normal distribution centered on
the network output ŷi = f (x) with noise term σy. This corresponds to the noise terms
εi = yi − ŷi in standard regression, which are assumed to be drawn εi ∼ N(0, σy). σy

is often considered to be a hyperparameter; it is marginalized over in computing the
predictive distribution.
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Classification Networks

In the binary case of two labels, a sigmoid non-linearity (eq. 2.5) σ is applied to the net-
work output ŷi = σ( f (xi)). This corresponding "score" vector serves as the probability
parameter for a Bernoulli distribution concerning whether yi belongs to class j = {0, 1},
y ∼ Ber(ŷi).

For multiple classes, a softmax non-linearity (eq. 2.6) generates a probability vector
based on the number of output nodes j = 1, 2, ..., m where m corresponds to the num-
ber of candidate classes. The datapoint yi is assumed to be drawn from a categorical
distribution with probability vector ŷi, yi ∼ Cat(ŷi).

3.6 Model Summary

The Bayesian neural network has been introduced as a distribution of parameterizations
over a given ANN architecture. The key feature of the Bayesian approach to ANN
models that will be exploited in this work is the ability to specify a neural network for
which the parameterizations will be learned alongside architectural specifications such
as the number of layers in the network, and the number of hidden nodes within each
layer. In this sense, our model will not concern a single network architecture, but a
joint distribution over possible architectures and parameterizations - an opportunity that is
known to exist, but has received minimal research attention to date [54]. In the next
chapter, relevant MCMC algorithms are reviewed in detail as components of the trans-
dimensional inference engine for such models.
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Chapter 4

Markov Chain Monte Carlo

The claim can be made that Bayesian inference is difficult because integration is diffi-
cult [55]. In the Bayesian paradigm, an expectation as integration over an analytically
intractable posterior distribution - for example, a distribution over the weights and bi-
ases of a BNN - must be approximated by sophisticated, computationally expensive
numerical methods. Integration is also necessary in determination of the posterior pre-
dictive distribution, and moments thereof.

More generally speaking, analytically solvable integrals may be seen as rare exceptions
in the space of all possible integrable functions. Consider the definite integral:

I =
∫
A

f (x)dx (4.1)

for some function f over a d-dimensional vector x, where A is a subset A ⊂ Rd with
volume V(A) =

∫
A dx. Unless I happens to correspond to a convenient analytical result

by the fundamental theorem of calculus over f , the integral is considered analytically
intractable and must be computed through numerical means.

4.1 Monte Carlo Integration

Monte Carlo integration (MCI) [56] is an approach to integral estimation that makes use of
sufficiently sized stochastic samples of f (x). Assuming that X1, X2, . . . can be simulated
from the same distribution as x, an estimation of I by MCI can then be defined as in
equation 4.2.

Î = V
1
n

n

∑
i=1

f (Xi) (4.2)

By the law of large numbers, Î almost surely converges to I given a sufficient number of
samples (equation 4.3).

lim
n→∞

Î = I (4.3)



36 Chapter 4. Markov Chain Monte Carlo

In the case of a probability distribution for a random variable, the volume is implicit
in the functional definition of the distribution so long as it is properly defined to inte-
grate to one. With a Bayesian posterior predictive distribution, the necessary normal-
izing constant is the marginal evidence p(D), which is often disregarded for analytical
convenience. An MCI estimate of the unnormalized predictive distribution is therefore
obtainable as in equation 4.4 with posterior samples θ(i) ∼ p(θ|D).

p(y|x) =
∫

Θ
f (y|x, θ)p(θ|D)dθ

≈ 1
n

n

∑
i=1

p(y|x, θ(i))
(4.4)

MCI is a convenient tool for approximating functions of random variables, so long as
it possible to obtain a sufficient number of samples. For complex, high-dimensional
posterior distributions, this will likely not be immediately possible.

In this chapter, the method of Markov chain Monte Carlo is reviewed as an approach
to sample exactly from an analytically intractible posterior distribution. A summary
of MCMC is first presented as the basis for the case of trans-dimensional models. We
also present gradient-based methods so that we may scale the trans-dimensional algo-
rithm implementation up to the high-dimensional models that will be explored in the
experiments conducted in chapter 6.

4.2 Inference by Markov Chain Monte Carlo

A Markov chain is a series of random variables known as states, X(0), X(1), . . . , X(n) with
the property that the next state, X(n+1) is only dependent on X(n), that is to say; X(n+1)

is conditionally independent on X(n) for any other state of the chain:

p(X(n+1)|X(n), X(i)) = P(X(n+1)|X(n)) ∀i : i ∈ {i : n} (4.5)

The definition of a Markov chain requires only an initialization state X(0) and a tran-
sition program, which in the discrete case can be defined as a matrix T such that tij

represents the transition probability P(X(n+1) = xj|X(n) = xi), where i = 1, . . . , n, and
j = 1, . . . , n, i.e. the support of all possible states. More generally and for the continu-
ous case, T(x, x′) is a transition kernel representing the probability of moving to state x′

given that the chain is in state x, P(X(n+1) = x′|X(n) = x).

MCMC uses a Markov chain with certain properties to sample from a specified target
distribution π(x). Somewhat trivially, it must be guaranteed that the initial state X(0)

is within the support of the desired distribution, i.e. if X(0) = x0, then π(X = x0) > 0.
With regards to the transition program, MCMC requires that the Markov chain defined
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by T is stationary, such that for every positive integer m, the distribution of the m-tuple
(Xn+1, . . . , Xn+m) does not depend on n. Stationarity is obtained in the design of MCMC
algorithms most commonly by ensuring that the chain is reversible, meaning for any i
and j the joint distributions of the states π(Xn+1, . . . , Xn+m) = π(Xn+m, . . . , Xn+1).

Algorithm 1 Markov Chain Monte Carlo [57]

1: function MCMC(θ)
2: for n=1 to N do
3: θ∗ ← update(θ)
4: end for
5: return θ
6: end function

MCMC is a class of algorithms, not an individual algorithm. The provided pseudocode
in algorithm 1 is intended to demonstrate just how general an MCMC program is. The
update function perturbs the current state X(n−1) to produce the next state, X(n). Any
combination of stochastic and deterministic procedures to produce the new state can be
employed, provided that such a function does not rely on any other information about
the state of the program outside the scope of X(n−1). The output of an MCMC program
is a series of states {X(i)}n

i=1 that represent samples from the stationary distribution of
the Markov chain, π(X).

Essentially, a Markov chain is used to explore a complex distribution, with states of the
chain representing samples from the distribution. An MCI estimate is performed on
the states of the chain to return an estimate of the expectation of the distribution, and
realizations of the chain (i.e. states sampled from the chain) will have an approximate
marginal distribution π [58].

Detailed Balance

The goal is to define T(x′, x) such that it makes the Markov chain ergodic. Ergodicity is a
property of a Markov chain such that any state in the stationary distribution of the chain
can be reached in some finite n amount of steps. A convenient way to achieve this that
is most generally applied to MCMC in practice is by satisfying detailed balance (equation
4.6). If π(x) is the target distribution of the chain, then we want equation 4.6 to hold.

π(x)T(x, x′) = π(x′)T(x′, x) (4.6)

Satisfying detailed balance and therefore reversibility implies stationarity of the Markov
chain, but the reverse is not true. Recent research investigates MCMC algorithms that
meet the stationarity requirement without satisfying detailed balance [59], but the over-
whelming majority of MCMC applications, including those of interest in this thesis,
make use of this result.
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4.2.1 MCMC for Bayesian Inference

In the case of Bayesian inference, the target stationary distribution is the posterior distri-
bution over the model parameters θ conditioned on the observed data D = {x, y} (equa-
tion 3.5). The appeal of MCMC inference is that if T(θ′, θ) satisfies certain properties,
the chain is theoretically guaranteed to sample from the exact unnormalized posterior
distribution obtained through Bayesian inference over a given likelihood and specified
prior distribution. As such, Monte Carlo estimates from the distribution are asymptoti-
cally unbiased. As explored in chapter 3, the fact that the distribution is unnormalized
does not matter in terms of estimating relative probability densities of the parameter
vector of interest.

It is worth reflecting on the power of this guarantee. Outside of the set of analytically
computable posterior distributions (such as those obtained through the use of conjugate
priors in section 3.4.2), MCMC is the only inference approach that allows for unbiased
sampling from the (unnormalized) posterior distribution [60]. Laplacian and variational
approaches return approximations, which can be perfectly serviceable for the intent of
the given inference, but only MCMC will preserve the relative shape of the posterior
distribution in its entirety as sampling proceeds. This theoretical advantage comes with
a major caveat, however, in terms of computational feasibility.

Usage of MCMC in this thesis is restricted to the application of Bayesian inference, and
we therefore continue with treatment of θ as the parameter vector for a Bayesian model
and consequently the state of the Markov chain.

4.3 The Metropolis-Hastings Algorithm

The seminal paper on MCMC developed the precursor to the most popular and widely-
used MCMC algorithm in 1953 [61]. The Metropolis algorithm was introduced as a
simulation for physical phenomena, and later generalized to statistics problems for sam-
pling a complex distribution [62].

In the Metropolis-Hastings algorithm (algorithm 2), a candidate state is accepted or
rejected in favour of the current state dependent on an acceptance probability which is
calculated to satisfy the detailed balance requirement.

This means that an acceptance probability for a proposed state θ′ is determined by the
transition to the proposed state from the current state and its reverse simultaneously. If
α(θ′, θ) represents the acceptance probability of such a move, the acceptance probability
for the reverse move will be α(θ, θ′). The transition kernel in equation 4.6 is then defined
by the proposal distribution q weighted by its corresponding acceptance probability,
and detailed balance is updated accordingly (equation 4.7). The acceptance probability
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Algorithm 2 Metropolis-Hastings

1: function METROPOLISHASTINGS(θ)
2: θ′ ∼ q(θ′, θ)

3: α = min
{

1, π(θ′)q(θ,θ′)
π(θ)q(θ′,θ)

}
4: u ∼ unif(0,1)
5: if u ≤ α then
6: return θ′ . Accept the newly proposed state
7: else
8: return θ . Reject the proposed state, register the current state
9: end if

10: end function

follows from this description of detailed balance (equation 4.8).∫
(θ,θ′)∈Θ

π(θ)q(θ, θ′)α(θ, θ′)dθ =
∫
(θ′,θ)∈Θ

π(θ′)q(θ′, θ)α(θ′, θ)dθ′ (4.7)

α(θ, θ′) = min
{

1,
π(θ′)q(θ, θ′)

π(θ)q(θ′, θ)

}
(4.8)

If the distribution q is equivalent for both the forward and reverse moves, the second
term in equation 4.8 reduces to the quotient of posterior scores for the proposed state
over the current state, as in equation 4.9.

α(θ, θ′) = min
{

1,
π(θ′)

π(θ)

}
(4.9)

Notice that the acceptance probability is equal to 1 whenever the posterior score is su-
perior for the proposed state. This means that any proposal representing an improved
model parameterization in accordance with the prior distribution and likelihood will al-
ways be accepted. The inverse does not necessarily hold: a proposed state with a lower
posterior score will be accepted at a rate based on the quotient of its score compared to
the current state. This is reflected in the uniform threshold variable u in algorithm 2.

The practitioner is afforded a good deal of flexibility in defining the proposal distri-
bution q(θ, θ′). The default approach is considered to be a random walk, wherein the
perturbation to the d-dimensional parameter vector θ is some small addition of noise -
perhaps Gaussian - so that θ′ := θ⊕ ε1, with ε ∼ N(0, I), where I is the dXd identity
matrix. A random-walk is one such case where the proposal distribution q will be equiv-
alent for both the forward and reverse moves, leading to the acceptance probability as
in equation 4.9.

1⊕ denotes element-wise vector addition.
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4.4 Gibbs Sampling

In consideration of a vector of model parameters, it may be useful to propose an update
to the state of the Markov chain that perturbs only one component while the others are
held to be fixed. Sampling from the conditional distribution of one particular compo-
nent θi, or perhaps some subset θi = θ{a,b,c,...} with respect to the remaining components,
is known as a Gibbs update [63]. When combined with a Metropolis-Hastings accep-
tance step, this technique is known as variable-at-a-time Metropolis-Hastings2.

Gibbs sampling is particularly applicable to hierarchical models. Updates can be per-
formed iteratively for each level of the model, beginning with the highest level - those
hyperparameters which do not rely on other random variables in the model definition.
This is a sensible approach, albeit with a trade-off in terms of increased computational
demand, as the exploration of the full parameter space now takes place over several
steps through lower-dimensional subspaces. It also allows for different proposal mech-
anisms to be defined for each of the v blocks of variables, of the form θ′i ∼ qi(θ

′
i|θ−i, θi),

for all i ∈ {1, . . . , v}.

Algorithm 3 demonstrates the general Gibbs sampler as a special case of Metropolis-
Hastings, which forms the "backbone" of the trans-dimensional inference procedure for
the hierarchical BNN model presented in chapter 5.

Algorithm 3 Gibbs Sampling

1: function GIBBS(θ)
2: for i=1:v do . v; the number of partitions of θ
3: θ′i ∼ qi(θ

′
i|θ−i, θi)

4: θ′ = {θ′i, θ−i}

5: α = min
{

1, π(θ′)qi(θi |θ−i ,θ′i)
π(θ)qi(θ

′
i |θ−i ,θi)

}
6: u ∼ unif(0,1)
7: if u ≤ α then
8: θ = θ′ . Accept the proposed components
9: else

10: θ = θ . Reject the proposed components
11: end if
12: end for
13: return θ
14: end function

2"Gibbs Sampling" occasionally implicitly refers to variable-at-a-time Metropolis-Hastings [57]
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4.5 Reversible Jump MCMC

The Metropolis-Hastings algorithm is generalized to account for a parameter vector of
unfixed size with the introduction of the Metropolis-Hastings-Green (MHG) algorithm,
commonly referred to as Reversible Jump Markov chain Monte Carlo (RJMCMC) [64].
The original author behind this approach, Peter Green, offers the oft-quoted motivation
for RJMCMC as its applicability to “statistical problems where the number of things you
don’t know is one of the things you don’t know” [65].

This topic is presented as follows.

1. The strategy for introducing jumps in a fixed dimension is introduced

2. A Jacobian correction to the acceptance probability is discussed

3. The trans-dimensional case is established via the concept of dimension-matching

4. Difficulties associated with the practical implementation of RJMCMC are briefly
reviewed

4.5.1 Fixed-Dimension Reversible Jumps

Consider a Markov chain in state i with corresponding parameter vector θ. For state
i + 1, a proposed parameter vector θ′ is sought such that the acceptance probability
α will be "reasonable". In order to achieve this, a proposal distribution q(θ′|θ) is de-
clared and a proposal is formulated through some combination of random sampling
and deterministic transformations. To satisfy detailed balance, only reversible chains
are considered; the probability of moving from a state θ ∈ Θ to θ′ ∈ Θ′ must be equal
to the reverse move. The burden of satisfying this condition is placed on the derivation
of an appropriate acceptance probability for the proposal.

At the current state θ, we begin by drawing n random numbers u from a known joint
density, g(u). Our proposal distribution is then a deterministic function h acting on the
current state and u, proposing a new state for each (equation 4.10).

(θ′, u′) = h(θ, u) (4.10)

The proposed adjustment to the random numbers, u′, are the n-dimensional random
numbers from density g′(u′) that correspond to the reverse move from θ′ to θ, and the
associated inverse function h′. The detailed balance requirement from equation 4.6 can
be updated with a change-of-variable formula, so long as h and h′ are differentiable.∫

(θ,θ′)∈Θ
π(θ)g(u), θ′)α(θ, θ′)dθdu =

∫
(θ′,θ)∈Θ

π(θ′)g(u′), θ)α(θ′, θ)dθ′du′ (4.11)
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π(θ)g(u), θ′)α(θ, θ′) = π(θ′)g(u′), θ)α(θ′, θ)
∣∣∣ δ(θ′,u′)

δ(θ,u)

∣∣∣ (4.12)

The last factor in equation 4.12 is the Jacobian of the transformation (θ′, u′) = h(θ, u).
The Metropolis-Hastings style acceptance probability follows in equation 4.13.

α(θ, θ′) = min
{

1,
π(θ′)g′(u′)
π(θ)g(u)

∣∣∣ δ(θ′,u′)
δ(θ,u)

∣∣∣ } (4.13)

The "reversible jump" of RJMCMC doesn’t directly refer to the trans-dimensional aspect
of the proposal mechanism. The MHG algorithm introduces the general procedure for
making a jump to any part of a model’s parameter space, and the corresponding method
for determining the acceptance ratio in the metropolis step of the inference procedure.
This formally extends the design framework of the proposal distribution beyond the
random-walk approach. The ability to handle discrete parameters, such as model indi-
cators representing changes in the dimension of the model parameter, happens to be a
convenient consequence of this approach to MCMC. RJMCMC proposals require a Ja-
cobian correction, as well as a technique referred to as dimension matching, in order to
maintain reversibility and thus detailed balance.

4.5.2 Proposals with Jacobian Corrections

The Jacobian correction for the deterministic transformation aspect of the proposal tran-
sition kernel. This provides more flexibility to construction of the proposal program for
the Markov chain. The mapping h from (θ, u) to (θ′, u)′ is a diffeomorphism from one
manifold to another, for which the Jacobian corrects for a difference in volume in order
to main detailed balance.

Each component of the joint vector (θ, u) is generated based on the mapping h, de-
pendent perhaps on itself and other components from the same vector. The entries δij

in the Jacobian matrix correspond to a differentiation of component i with respect to
component j. Therefore, if each component’s mapping is only dependent on itself, the
non-diagonal entries will be zero and the determinant will reduce to 1, eliminating the
Jacobian from the acceptance probability equation.

Proposals can therefore be employed in special cases of the MHG algorithm that do not
necessarily employ the Jacobian correction for custom-tailored "jumps". It is possible
and occasionally convenient to move between dimensions for which the invertible pro-
posal kernel uses only the identity function on the existing state of the chain and the
randomly-drawn auxiliary variables. It is important to point out this distinction be-
tween the two most salient features of RJMCMC as a remark in response to the popular
notion that RJMCMC is difficult to implement [66].
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4.5.3 Dimension Matching

Now that we have defined a procedure for within-dimension "jump"-based proposals,
we need only introduce dimension matching as a way to extend the algorithm to so-
called across-dimension proposals.

Consider now the current state of the Markov chain i corresponds to a parameter vector
θ with d1 components, that is, θ is a d1-dimension vector. The proposal for state i + 1
will be a d2 dimension parameter vector θ′, such that d2 > d1. In order to maintain
detailed balance, it is required that our proposal distribution q(θ′|θ) will treat an output
vector that is the same dimension as the vector that is being conditioned on. To do so,
we introduced auxiliary variables u1, u2 with respective dimensions n, m and require
that the condition of dimension matching (equation 4.14) is met.

d1 + n = d2 + m (4.14)

It is emphasized that m may be equal to 0, representing a proposal for which auxiliary
variables are only included in the dimension matching procedure to "grow" the dimen-
sion of the current state. A similar condition exists that n may be equal to 0 when the
proposal represents a lower-dimensional model, i.e. d2 < d1.

4.5.4 RJMCMC in Summary

RJMCMC allows for a trans-dimensional approach to MCMC. The method of defining
reversible "jumps" across parameter vectors of different dimensions allows for infer-
ence over statistical models with an unfixed number of parameters while preserving
the detailed-balance condition required to guarantee the asymptotic convergence be-
haviour of MCMC algorithms.

A naive RJMCMC sampler is quite straightforward - the trick is to extend the transition
kernel such that a reasonable acceptance rate is achieved for proposed across-dimension
jumps. The computational difficulties associated with MCMC in general become yet
more pronounced when moves correspond to a change in parameter dimension, as in
most applications the chain is overwhelmingly likely to move to an area of low pos-
terior density, and will experience an arbitrarily small chance of being accepted. This
challenge is discussed in detail with regards to the implementation of RJMCMC on the
extended BNN model in chapter 5. A general RJMCMC procedure is demonstrated in
algorithm 4.
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Algorithm 4 Reversible Jump Markov chain Monte Carlo

1: function RJMCMC(θ, h)
2: k′ ∼ p(k) . Propose new parameter vector dimension
3: u ∼ g(u|k′) . Dimension matching and deterministic function h
4: (θ′, u′) = h(θ, u)

5: α = min
{

1, π(θ′)g(u′)
π(θ)g(u)

∣∣∣ δ(θ′,u′)
δ(θ,u)

∣∣∣ }
6: φ ∼ unif(0,1)
7: if φ ≤ α then
8: return θ′, k′ . Accept the newly proposed state
9: else

10: return θ, k . Reject the proposed state, register the current state
11: end if
12: end function

4.6 Hamiltonian Monte Carlo

The random-walk Metropolis-Hastings algorithm achieves good results for problems
with few parameters, such as a simple linear regression or low-dimensional multivari-
ate Gaussian. Extending MH to Gibbs sampling facilitates inference over hierarchical
models and those with many parameters, albeit with a commensurate increase in com-
putational time. Performance and consequently the acceptance probability will rapidly
decrease as the dimension of the parameter space increases. This quickly becomes a
significant problem for most practical applications of BNNs.

The "gold-standard" solution to performing MCMC inference on neural networks [67] is
to use Hamiltonian Monte Carlo [68] (HMC), a gradient-charged algorithm motivated
by concepts arising in statistical physics. The original paper on Hamiltonian Monte
Carlo introduced the then-named "Hybrid Monte Carlo" [69] as a method for numerical
simulation of lattice field theory.

From the physical perspective, HMC treats θ, the parameter vector of interest, as a d-
dimensional position vector of an imaginary particle in parameter space. An auxiliary
random vector of the same dimension ρ is drawn, most commonly from a multivariate
normal distribution with a mean vector of zeroes and a covariance matrix M (most com-
monly taken to be the identity matrix I), and referred to as the momentum vector. The
position and momentum vector together define the Hamiltonian (eq 4.15) of an imagi-
nary particle moving through the joint space of the parameter vector and its associated
momentum.

H(θ, ρ) = − log(θ) +
1
2

ρT M−1ρ (4.15)
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The first term of the Hamiltonian equation represents the potential energy (log poste-
rior) and the second term corresponds to the kinetic energy (half of the squared mo-
mentum). Hamilton’s equations (eq 4.16, 4.17) corresponding to the movement of said
particle tempt closed-form optimization solutions which would, statistically speaking,
preserve the joint distribution of (θ, ρ) and therefore the marginal distribution π(θ) is
obtained as a by-product.

θ

dt
=

δH
δρ

= M−1ρ (4.16)

ρ

dt
= −δH

δθ
=

δ log π

δθ
(4.17)

In practice, the equation is solved approximately, and detailed balance must therefore
be preserved via a Metropolis-style correction. Updates to the Hamiltonian can be done
through use of a simplectic integrator, which along with being reversible preserves vol-
ume, meaning no Jacobian correction is required. The simplectic integrator of choice for
HMC is the leapfrog method, where L "leap-frog" steps of size ε iteratively update the
two components of the Hamiltonian (algorithm 5).

Algorithm 5 Leapfrog [68]

1: function LEAPFROG(θ, ρ, ε, L)
2: ρ = ρ− ε∇θ′

2 . Half step for the momentum vector
3: for i=1:L do
4: θ = θ+ ερ . Full step for the position vector
5: if i!=L then
6: ρ = ρ− ε∇θ . Full step for the momentum
7: else
8: ρ = ρ− ε∇θ

2 . Half step for the momentum vector
9: end if

10: end for
11: return θ, ρ
12: end function

This sojourn across the joint distribution of the model parameter vector and the ran-
domly sampled momentum produces only small changes to the Hamiltonian. The end
result of HMC (algorithm 6), provided ε and L are selected to specify a sufficiently long
trajectory, is a new sample from π(θ) much further away in parameter space than one
which might be proposed via a random-walk. The preservation of the Hamiltonian al-
lows for a relatively consistent acceptance probability throughout the course of an HMC
program.

A well-tuned HMC algorithm provides a powerful inference engine for sampling from
a posterior distribution, but the tuning is not a trivial task. Hand-tuned HMC requires
multiple validating runs as searches over the leapfrog step-size ε and the number of
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Algorithm 6 Hamiltonian Monte Carlo [68]

1: function HMC(θ, ε, L)
2: ρ ∼ MVN(0, Id)
3: θ′, ρ′ = Leapfrog(θ, ρ, ε, L)
4: ρ′ = −ρ′

5: K = exp
{ ρTρ

2

}
6: K′ = exp

{ (ρ′)T(ρ′)
2

}
7: α = min

{
1, π(θ′)K

π(θ)K′

}
8: u ∼ unif(0,1)
9: if u ≤ α then

10: return θ′ . Accept the newly proposed state
11: else
12: return θ . Reject the proposed state, register the current state
13: end if
14: end function

steps L. A method for automating the selection of these hyperparameters is introduced
next.

4.7 The No-U-Turn Sampler

Sub-optimal HMC hyperparameter selection will typically have grave implications on
the efficiency of the Markov Chain. If ε is too small, the algorithm will require a larger
number of steps in order to avoid random-walk behaviour and consequently waste
computation, while a large ε values will lead to low acceptance rates. L should be spec-
ified sufficiently large to guide the trajectory to a distinct proposal without doubling
back to a neighbourhood of the current proposal, as too few or too many steps will not
represent an improvement over a random-walk approach.

Optimal selection of these hyperparameters is usually highly dependent on the given
model. This leads to particularly problematic implementations of HMC when the na-
ture of a model may vary greatly across parameterizations, as different hyperparameter
schedules may perform optimally in select regions of the parameter space and quite
poorly in others. In high-dimensional problems, optimal specifications of both hyper-
parameters will change as the chain moves between modes of high probability density.

Select strategies do exist to augment ε automatically, but prior to 2014, no method ex-
isted for abstracting away specification of L by the user. Solutions to the automation
of both the step-size and the number of steps for the leapfrog integrator in HMC are
combined in the form of the No-U-Turn Sampler (NUTS) [70].
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Selection of L

The forward idea present in the NUTS algorithm is to prevent the trajectory of the
Hamiltonian from revisiting areas of the parameter space it has already visited, all while
maintaining the condition of detailed balance for a new proposal in the chain. A crite-
rion is established that identifies when this behaviour occurs and prevents the trajectory
from proceeding further, eliminating so-called "U-Turns" and consequent unnecessary
computation.

This criterion of interest is the derivative of half the squared distance between the pro-
posal θ′ and the current state θ (equation 4.18), which is proportional to progress made
away from θ.

d
dt

(θ′ − θ) · (θ′ − θ)

2
(4.18)

To satisfy detailed balance, reversibility is preserved through a recursive algorithm
which runs the Hamiltonian simulation both forward and backwards in time, build-
ing up a set of potential proposals C = {θ′1, θ′2, . . . , θ′c} from which the resultant pro-
posal θ′ is randomly drawn. The candidates are produced as leaf nodes of a balanced
binary tree, which is iteratively produced by randomly going forward or backward 2i

leapfrog steps. The tree is built until the U-Turn criterion (equation 4.19) is met for the
subtrajectory between the leftmost and rightmost nodes of any balanced subtree, which
represents the point at which the largest trajectory begins to decrease in size.

L(θ)− 1
2

ρ · ρ− log u < −∆max (4.19)

Here L(θ) refers to the negative log-likelihood of the parameter vector, ρ is the ran-
domly drawn momentum vector, u is a slice variable, and ∆max is some large value
that prevents the algorithm from proceeding into regions of extremely low probability
density.

Figure 4.1 displays the tree-building operation for taking leapfrog steps forward and
backward in time.

Selection of ε

Iterative improvement of ε represents a stochastic convex optimization problem. The
MCMC operation can be adapted to a dual averaging scheme as originally derived by
Nesterov [71]. Each time a new NUTS trajectory is specified, the value of ε is updated
through a number of burn-in steps mb to effectively direct the trajectory as it moves
between the transient burn-in stage to the stationary stage of the Markov chain. After mb

steps have been completed, HMC proposals continue with the most recently updated
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FIGURE 4.1: The No-U-Turn Sampler for Bivariate Gaussian Data

One iteration of NUTS is performed on the 2-dimensional mean vector for a bivari-
ate Gaussian model. The parameter vector θ corresponds to the mean µ = [2.5, 1.5].

In figure (a), a binary tree is built by going forward and backward in time
by 2i steps at each iteration i. Each leaf node corresponds to a parameter
vector reached by each of these leapfrog steps. Figure (b) displays the cor-
responding means for each terminal (left or rightmost for a given iteration)
node of the tree. The stopping criterion identifies when a "u-turn" has been
made in the gradient of the parameter vector and prevents further computation.

The proposal for θ is then drawn from the balanced binary tree indicated by the bold
section of the full tree. These represent the states that may be sampled from while
preserving detailed balance. In this example, the "u-turn" occurs at step 3, stopping
the simulation. The proposal state is then drawn at random from 1 of the 8 nodes of the
highlighted section of the tree.
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Algorithm 7 No U-Turn Sampler [70]

1: function NUTS(θ0, ε, L)
2: Sample momentum and slice variable
3: ρ ∼ N(0, I)
4: u ∼ Uniform([0, exp{L(θ0)− 1

2 (ρ
0 · ρ0)}])

5: Initialize θ−, θ+ = θ0; ρ−, ρ+ = ρ0; j = 0; C = {(θ0; ρ0)}; s = 1
6: while s = 1 do
7: Choose a direction
8: vj ∼ Uniform({−1, 1})
9: if vj = −1 then

10: θ−, ρ−, −, −, C′, s′ ← BuildTree(θ−, ρ−, u, vj, j, ε)
11: else
12: −, −, θ+, ρ+, C′, s′ ← BuildTree(θ+, ρ+, u, vj, j, ε)
13: end if
14: if s′ = 1 then
15: C ← C ∪ C′

16: end if
17: s← s′I[(θ+ − θ−) · ρ− ≥ 0]I[(θ+ − θ−) · ρ+ ≥ 0]
18: j← j + 1
19: end while
20: Sample θ, ρ uniformly from C
21: return θ
22: end function

23: function BUILDTREE(θ, ρ, u, v, j, ε)
24: if j = 0 then
25: Base case - one leapfrog step with direction v
26: θ′, ρ′ ← Leapfrog(θ, ρ, vε)

27: C′ ←
{
{(θ′, ρ′)}, if u ≤ exp{L(θ′)− 1

2 ρ′ · ρ′}
0, else

28: s′ ← I[L(θ′)− 1
2 ρ′ · ρ′ > log u− ∆max]

29: return θ′, ρ′, θ′, ρ′, C′, s′

30: else
31: Recursion - build forward and backward subtrees
32: θ−, ρ−, θ+, ρ+, C′, s′ ← BuildTree(θ, ρ, u, v, j− 1, ε)
33: if v = −1 then
34: θ−, ρ−, − , − , C′′, s′′ ← BuildTree(θ−, ρ−, u, v, j− 1, ε)
35: else
36: − , − , θ+, ρ+, C′′, s′′ ← BuildTree(θ+, ρ+, u, v, j− 1, ε)
37: end if
38: s← s′s′′I[(θ+ − θ−) · ρ− ≥ 0]I[(θ+ − θ−) · ρ+ ≥ 0]
39: C′ ← C′ ∪ C′′

40: return θ−, ρ−, θ+, ρ+, C′, s′

41: end if
42: end function
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value for ε, while in the case of NUTS, L continues to be selected based on the tree-
building method for proposals as above.

This strategy for automating ε allows for specification of a desired acceptance proba-
bility α̂ for each HMC step. It has been shown that an optimal choice for α̂ in HMC is
0.65 [72], which is used for all experiments in this thesis.

NUTS in a Nutshell

The HMC hyperparameters ε and L are automatically adapted based on a target pro-
posal acceptance probability and the current state of the Markov chain dependant on
the individual inference problem definition. This automation simplifies the implemen-
tation of within-dimension moves as part of the trans-dimensional inference task for
moving between BNN architectures, efficiently abstracting specification of two of the
"moving parts" of the algorithm away from the user.

Algorithm 7 provides an intuitive solution to the selection of L, but is considered by
the authors to be "naive". A more efficient implementation with the dual-averaging
approach to the selection of ε is proposed as Algorithm 6 in the original paper [70], and
is the version used in the composite sampling algorithm presented in section 5.4.2 of
this thesis.

Theoretical proofs of the validity of NUTS are presented in the original paper. We also
refer to the forward usage of NUTS in the popular STAN probabilistic programming
package [73] as justification for favouring NUTS as the solution to fast within-dimension
MCMC updates. Applying NUTS to BNN inference is advocated for in a recent review
of BNN techniques [50].

4.8 Inference Method Summary

Trans-dimensional inference via RJMCMC will allow for sampling from the exact joint
posterior distribution over parameterizations and architectures for a BNN. In order to
promote efficient sampling and therefore reduce the computation time required for con-
vergence of the Markov Chain, the No U-Turn Sampler as an extension of HMC will be
used to increase the acceptance rate of within-dimension and across-dimension pro-
posals. The following chapter examines the implementation in detail, including the
composite sampling program and a treatment of the challenging specification of across-
dimension proposals for moving between architectures.
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Chapter 5

The Reversible Jump Bayesian
Neural Network

All of the preliminary components necessary to our approach for performing trans-
dimensional inference on BNNs have been introduced in chapters 2 - 4. We now present
the model in full detail, beginning with descriptions of the components of Bayesian
inference - the posterior distribution and the prior selections.

Proposal specifications for RJMCMC applied to BNNs are then discussed, followed
by details for successful implementation. This chapter closes with a demonstration of
trans-dimensional inference applied to a BNN for a classification task of 2-dimensional
"XOR" data clouds.

5.1 Model Description

The goal is to generate a joint distribution of neural network architectures and param-
eterizations which address the learning task at hand. A standard BNN represents a
distribution of parameterizations given a fixed architecture specification, which can be
produced by one of the various inference techniques introduced in Chapter 3. In order
to extend such a model to represent neural networks of various size, trans-dimensional
inference by RJMCMC will be used.

The forward product of interest of trans-dimensional inference will be a joint posterior
distribution over the parameter vector and the model indicator as in equation 5.1.

p(θ,M|D) =
L(θ,M|D)p(θ|M)p(M)

p(D)
(5.1)

Generally speaking, the model indicatorMwill be used to represent the structure of the
model. It may correspond directly to the number of parameters in the model via some
function h(i) or may map to a series of m pre-specified modelsMi ∈ {M1,M2, ...Mm}.
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The functional representation f of the parameters forM is an ANN model as defined in
chapter 2. In our experiments,M is sufficiently represented by two architecture indica-
tor variables. The dimension of the parameter vector θ is dependent on L, the number
of hidden layers, and K, the number of nodes in each hidden layer. Such a model will
be referred to in this work as a Reversible Jump Bayesian neural network (RJBNN).

A RJBNN model is thus represented byM{ f , (θ, τ, τy,L,K), x, y} where θ is the vector
of network weights and biases, τ represents the precision hyperparameters for prior
distributions on the weights and biases, τy is the precision term for the Gaussian like-
lihood1, and the network architecture is structured by L and K. Feature data is repre-
sented by x, and the response labels/targets are indicated by y.

5.1.1 Prior Selections

A general approach will be followed for each RJBNN implementation. Broadly speak-
ing, the network will contain up to four distinct categories of parameters:

1. {L,K} - architecture parameters which respectively represent the number of hid-
den layers in the network and the number of nodes in each layer2

2. θ =
{

Wi, bi
}L+1

i=1 - the network weights and biases3

3. τ =
{

τi, τbi
}L+1

i=1 - the common precision terms for the input weights and input bi-
ases, shared between all nodes of one given layer. The precision terms correspond
to the inverse of the variance σ2 = τ−1 hyperparameters for Gaussian priors over
the network parameters.

4. τy - the precision for the noise parameter σ2
y = τ−1

y in the likelihood for a regression
network (absent in classification networks)

Architecture Parameters

We are in relatively uncharted territory when it comes to prior knowledge about the size
of our networks. In such a case, a vague prior which imposes minimal restriction on the
available network capacity may be in order. The distribution needs to produce discrete
values, and perhaps allow for infinite support. One could select a geometric, negative
binomial, or Poisson distribution, each appropriately modified to not include 0 in the
support (the network is assumed to have at least one hidden layer with at least one
hidden node). Any of these options could be specified to favour some region or mode

1For the regression network only
2For practicality, in this work, only networks with the same number of nodes across all hidden layers

are considered.
3Until now, we have used θ to represent all parameters of inferential interest in a model. We now draw

a distinction for our hierarchical model (see section 3.3) between so-called low-level parameters (θ) and
hyperparameters (τ)



5.1. Model Description 53

for the number of components, but a typical approach might be to favour the smallest
network possible, promoting the production of the most efficient network model per
Occam’s razor.

However, in order to promote computational feasibility, it may instead be preferable
to declare a finite support on structure parameters so that L and K are drawn from
pre-determined sets of possible values. Such an approach stands to vastly increase the
chances of an RJMCMC chain converging while still providing insight into likely opti-
mal network models. It is also noted that we need not impose any specific preference to
certain values over other. The Bayesian approach implicitly induces Occam’s razor [41],
and the trans-dimensional Markov chain is expected to prefer those models which man-
age to fit the data using the minimal resources (parameters) required.

With this motivation in mind, experiments are run with pre-defined supports L =

{1, 2, . . .Lmax} or K = {1, 2, . . .Kmax}, and L, K drawn from categorical distributions
with uniform probabilities 1

|L| and 1
|K| for each candidate support value.

Network Parameters

The default approach to specifying priors for the weights and biases in a BNN is to use
zero-centered Gaussians [41]. Such a prior places no preference on positive vs nega-
tive values for the parameters associated with the linear transformation of the previous
layer’s features at each node, and emphasizes a preference for smaller absolute values
for each parameter, akin to L2-regularization.

Precision Hyperparameters

The standard deviation for the network parameter Gaussian prior distributions are as-
sumed to be hyperparameters, each expressed as the corresponding precision term, and
drawn from a Gamma distribution. The use of a Gamma distribution here is motivated
by a convenient conjugate prior result, allowing for quick and efficient Gibbs sampling
updates to the hyperparameters. There is some flexibility in terms of which network
parameters share a common precision term. We refer to this specification as the granu-
larity of the hyperparameter schedule. The minimal granularity would be one shared
precision term for all weights and biases of the network, and a maximum granular-
ity would be one precision term for every individual network parameter. Early work
showed that use of the minimal granularity in regression networks results in a lower
correlation between the log-posterior score and the error term (root mean square error,
RMSE) [45].

Layer granularity is recommended for its demonstrated superiority on a similar BNN
regression task [47]. With this scheme, an individual precision term is shared between
all weights in one network layer, and likewise one precision term is shared between all
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biases for that same layer. Given a network with ` hidden layers, the total number of
network precision hyperparameters will be 2 ∗ (` + 1), for the hidden layers and the
output layer.

We present the theory behind RJBNNs with this approach in mind. This being said, pre-
liminary runs with layer granularity hyperparameters presented computational chal-
lenges to the MCMC inference algorithms. For this reason, only fixed hyperparameter
solutions are used in this work as a preliminary investigation. Further discussion of
the use of a more detailed hyperparameter schedule are discussed as a future research
direction in section 7.3.3.

Regression Precision

The precision term for the regression problem corresponds to the variance in the Gaus-
sian "noise" distribution assumed to represent the likelihood of network outputs, ŷ. It is
similarly drawn from a Gamma distribution, τy ∼ Gamma(αy, βy), with αy = βy = 1.

5.2 Across-Dimension Proposals for Neural Networks

Successfully running RJMCMC inference on a BNN can be implemented correctly quite
easily. Proposals can be entirely based upon random, uncorrelated draws from the prior
distributions over each parameter. This is achieved by first drawing the structure indi-
cator parameters L ∼ p(L), K ∼ p(K), followed by the appropriately sized parameter
vector θ ∼ p(θ|L,K). No specific model tuning is necessary to achieve the guaran-
teed asymptotic convergence behaviour, as the Markov condition and detailed balance
requirements are inherently satisfied. We do not, however, arrive at any guarantee or
likelihood that the Markov chain will converge to its stationary distribution in any com-
putationally tractable amount of time. The chance for this to occur as our model grows
in dimension with the size of the network becomes almost negligible very quickly.

This is ultimately the problem that the reversible jump framework for the MHG al-
gorithm attempts to alleviate. A well-designed proposal that deterministically jumps
between model architectures while meeting the criteria for detailed balance should al-
low for the parameter vector of the new dimension to land in a region of relatively high
density space to have a reasonable chance of being accepted. The task is then to declare
a proposal mechanism which can take the current neural network structure indicated
by L,K and propose a network L′,K′ such that the new network model will achieve a
reasonable posterior score and consequent desirable acceptance rate.



5.2. Across-Dimension Proposals for Neural Networks 55

5.2.1 The Base Case: Random Draws from the Prior

Perhaps trivially, a within-dimension MCMC proposal may be generated such that θ′ ∼
p(θ), the model prior as specified near the top of the Bayesian workflow. Extending this
concept to across-dimensional proposals via the RJMCMC framework, the hierarchical
model would dictate a sampling schedule where the node parameter is first drawn as
K′ ∼ p(K), followed by generation of the model parameter proposal θ′ ∼ p(θ|K′). A
similar argument would follow for the case of the layer parameter L.

This method of drawing from the prior is meant to motivate a minimal definition for
an across-dimension proposal, but is most likely insufficient for achieving a reasonable
RJMCMC acceptance probability. We now instead define proposals that utilize the ex-
isting structure and parameterization of the network based on the current state of the
Markov chain as a weakly-informed proposal.

5.2.2 Reversible Jump Proposals for Neural Network Structures

As a motivating question, what can we say about a proposing a well-specified neural
network modelM2( f2, θ′|K′) given a well-specified modelM1( f1, θ|K) when K′ 6= K?
To say that M1 is well-specified means that the associated network paramaterization
returns a desirable classification accuracy or regression score on a test data set. To frame
the question another way, if neurons are to be added or removed from a given layer
of the capable network, what values should the new weight and bias parameters take
for the additional neurons and their dependencies in the following layers, and how
should the existing neuron parameters be updated? The same questions apply to the
case when we adjust the number of layers - givenM1( f1, θ|L), how do we parameterize
M2( f2, θ′|L′) when L′ 6= L?

Recent research into network morphisms [74] proposes an algorithmic approach to grow-
ing a network toM2 in such a way that the functional representation ofM1 is preserved,
i.e. f1 ≡ f2. This approach unfortunately does not lend itself to RJMCMC, as the algo-
rithm is not calibrated with respect to detailed balance, and no method is defined for
shrinking the network. We are not currently aware of any similar technique that satisfies
detailed balance.

Absent an exact preservation of the NN function between models of different sizes,
we still desire a proposal which exists in a tenable neighbourhood of the new parameter
space Θ2. If such a proposal can be defined, we may then be able to use delayed rejection
sampling to move closer to a mode of the distribution in the new dimension as discussed
in section 5.3.
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For the experiments in this thesis, two proposals for each case of adjusting the num-
ber of neurons K and the number of layers L are in focus. The proposals are designed
to minimally impact the parameterization of the network corresponding to the current
state of the Markov chain, in the hopes that some useful functional representation is
preserved when jumping to a new network architecture. With this motivation for min-
imal impact in mind, jump proposals are defined such that only one neuron or layer is
added or removed at a time. In reversible jump parlance, such proposals are known
respectively as birth and death moves [75].

Neuron Birth Proposal

Assume a neural network with one hidden layer with K neurons. Given the current
state θ, a proposal is generated as K′ = K+ 1, with θ′ ∼ p(θ|K′). The new neuron can
be added anywhere in the layer, such that the insertion place i is randomly drawn from
a discrete uniform, i ∼ u(1,K′).

Three sets of new parameters must be drawn. A new weight vector W (i)
` and bias b(i)`

are proposed for the added neuron. New weights are also drawn for the output layer,
W`+1 - one new weight for each of the neurons in the output layer. Every other network
parameter is carried forward from the current state θ.

Each of these new parameters are drawn from a zero-centered Gaussian prior distribu-
tion dependent on their respective variance parameters, σ2 = 1

τ , with τ the associated
precision parameter drawn from the Gamma hyperprior.

These new parameters together correspond to the random number draw for vector u in
the RJMCMC framework. The adjustment to the acceptance ratio q(u) is therefore the
joint density of the new parameters, which due to independence of the parameters is
simply the product of the prior densities for each drawn parameter.

The birth of a neuron is illustrated in figure 5.1.

Neuron Death Proposal

Assume a neural network with one hidden layer with K neurons. Given the current
state θ, a proposal is generated as K′ = K− 1, with θ′ ∼ p(θ|K′). The deleted neuron
can be selected as any neuron in the layer, such that the deletion place i is randomly
drawn from a discrete uniform, i ∼ u(1,K).

Three sets of parameters are removed. The weight vector for the neuron W (i)
` and bias

b(i)` are deleted. Weights are also removed from the output layer, W`+1 - one weight
removed for each of the neurons in the output layer. Every other network parameter
is carried forward from the current state θ. Each of these parameters are assessed from
the density of a zero-centered Gaussian prior dependent on their respective variance
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parameters, σ2 = 1
τ , with τ the associated precision parameter drawn from the Gamma

hyperprior.

These deleted parameters together correspond to the random number draw for vector
u in the reverse step of the RJMCMC framework. The adjustment to the acceptance ratio
q(u) is therefore the inverse of the joint density of the removed parameters, which due
to independence of the parameters is simply the product of the prior densities for each
drawn parameter.

The death of a neuron is illustrated in figure 5.2.

Layer Birth Proposal

Assume a neural network with L hidden layers, and for each hidden layer a similar
number of neurons K. Given the current state θ, a proposal is generated as L′ = L+ 1,
with θ′ ∼ p(θ|L′). The new layer is added as the final hidden layer of the network,
such that the insertion place i = L′. Two sets of new parameters must be drawn. A new
weight matrix WL′ and bias vector bL′ are proposed for the added layer. Every other
network parameter is carried forward from the current state θ.

Each of these new parameters are drawn from a zero-centered Gaussian prior distribu-
tion dependent on their respective variance parameters, σ2 = 1

τ , with τ the associated
precision parameter drawn from the Gamma hyperprior.

These new parameters together correspond to the random number draw for vector u in
the RJMCMC framework. The adjustment to the acceptance ratio q(u) is therefore the
joint density of the new parameters, which due to independence of the parameters is
simply the product of the prior densities for each drawn parameter.

The birth of a layer is illustrated in figure 5.3.

Layer Death Proposal

Assume a neural network with L hidden layers, and for each hidden layer a similar
number of neurons K. Given the current state θ, a proposal is generated as L′ = L−
1, with θ′ ∼ p(θ|L′). The final hidden layer of the network is deleted, such that the
deletion place i = L.

Two sets of parameters must be removed. The weight matrix W` and bias vector b` are
deleted for the removed layer. Every other network parameter is carried forward from
the current state θ. Each of these parameters are assessed from the density of a zero-
centered Gaussian prior dependent on their respective variance parameters, σ2 = 1

τ ,
with τ the associated precision parameter drawn from the Gamma hyperprior.
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These deleted parameters together correspond to the random number draw for vector
u in the reverse step of the RJMCMC framework. The adjustment to the acceptance ratio
q(u) is therefore the inverse of the joint density of the removed parameters, which due
to independence of the parameters is simply the product of the prior densities for each
drawn parameter.

The death of a layer is illustrated in figure 5.4.

5.3 Improving Across-Dimension Proposals

The proposal mechanism described in section 5.2.2 alone may not be sufficient to in-
crease the acceptance probability of a new network architecture. The estimated targets
(or class labels) ŷ have not been calibrated based on the new architecture, contributing
through the likelihood to an overall low posterior score for the new model proposal.
Once the chain is in a state that corresponds to a relatively "trained" network parame-
terization, acceptance is unlikely for a network that does not fit the data well in compar-
ison.

Several tricks to better realize the desired convergence behaviour in a practical amount
of time appear throughout the literature regarding RJMCMC, HMC, and BNNs. These
techniques are explored in this section, with implementation details highlighted in the
final section of this chapter.

5.3.1 Multiple Proposals

When designing a custom MCMC algorithm, the practitioner is not limited to a single
proposal mechanism. Multiple proposal definitions, up to and including an infinite va-
riety, can be implemented and selected from to prompt better convergence behaviour of
the chain for the given inference task. Proposals may target all parameters and hyper-
parameters simultaneously, or iterate through subsets of the model’s parameter space.

Composite proposals extend the MCMC algorithm with an additional step wherein a
proposal mechanism is randomly selected according to some probability distribution
that adheres to the Markov property of the chain. Given the current state, one of the de-
fined proposal mechanisms is selected before proceeding to the generation of proposed
parameter values and the subsequent steps of Metropolis-Hastings-Green algorithm.
So long as the probability p(qj) of selecting a proposal of type j is independent of the
state of the Markov chain i, detailed balance is maintained for a sampling program with
multiple proposals which each individually preserve detailed balance.

In RJMCMC, composite proposals can be used to switch between instances of across-
dimension and within-dimension proposals. The former here refers to a proposal which
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FIGURE 5.1: Neuron birth RJMCMC proposal

The current state of the Markov chain corresponds to a network with K = 3. A
proposal is generated such that K′ = 4. A neuron is inserted randomly at position
i ∼ uniform[1, 4]; in this case i = 3. Notice that network parameters for neuron 4 are
copied from neuron 3 in the current network. New network parameters are drawn from
the prior distribution for (the newly inserted) neuron at position 3. Also note that an ad-
ditional component is drawn for the output weight vector representing its connection
to the new neuron.
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FIGURE 5.2: Neuron death RJMCMC proposal

The current state of the Markov chain corresponds to a network with K = 4. A proposal
is generated such that K′ = 3. The neuron at position 3 is removed.
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FIGURE 5.3: Layer birth RJMCMC proposal

The current state of the Markov chain corresponds to a network with L = 1. A proposal
is generated such that L′ = 2. A layer is inserted at position L′ = 2, and new network
parameters and hyperparameters are drawn accordingly.
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FIGURE 5.4: Layer death RJMCMC proposal

The current state of the Markov chain corresponds to a network with L = 2. A proposal
is generated such that L′ = 1. A layer is removed at position L = 2.
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alters the size of the parameter vector to be sampled (trans-dimensional inference) while
the latter takes the dimension as fixed, based on the current state of the Markov chain.
Distinguishing within-model moves and thus inducing temporary fixed dimensionality
allows for the inclusion of a gradient-based HMC or NUTS proposal.

5.3.2 Delayed Rejection for Across-Dimension Proposals

Even with a well-designed across-dimension move proposal, high-dimensional parame-
ter spaces can be daunting when it comes to achieving a reasonable acceptance rate. The
geometry of the probability density as dimensionality increases becomes exponentially
narrower, as regions of low probability density expand exponentially faster than those
with high probability density. It becomes dramatically more likely that a Markov chain
entering a new parameter space will find a parameterization with a low log-posterior
score and thus be rejected.

An alternative proposal mechanism for improving the acceptance rate of reversible
jump proposals [76] is to augment the across-dimension step with additional within-
dimension steps in the parameter space of the new dimension before the proposal is
assessed for acceptance. So long as detailed balance is maintained, a valid proposal can
be formulated such that the Markov chain has had an opportunity to move closer to
a mode of the probability density of the parameter vector in the new space. This can
dramatically improve the acceptance probability for across-dimension moves.

The proposed mechanism requries an adjustment to the acceptance probability formu-
lation. Let θ represent the m-dimensional parameter vector for a network modelM1 :
{θ, k, l}, and we wish to propose an across-dimension jump to θ′ for an n-dimensional
network model M2{θ′, k′, l′}, n > m. As discussed, without a strong jump proposal
mechanism, the acceptance probability αmn will likely be untenable. We thus introduce
a new chain to propose a new n-dimensional state θ∗ using a j fixed-dimensional MCMC
updates of our choosing, taking care to maintain detailed balance throughout each in-
dividual step from equation 4.6:

π(θ∗)p(θ′, θ∗) = π(θ′)p(θ∗, θ′) (5.2)

The detailed balance requirement for the entire proposal from θ ∈ Rm to θ∗ ∈ Rn is
now:

∫
θ,θ′,θ∗

πm(θ)qmn(θ, θ′)p(θ′, θ∗)αmn(θ, θ∗)dθdθ′dθ∗

=
∫

θ∗,θ′,θ∗
πn(θ

∗)p(θ∗, θ′)qnm(θ
′, θ)αnm(θ

∗, θ)dθdθ′dθ∗ (5.3)
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The acceptance probability for such a move will be a modification of the Metropolis-
Hastings acceptance probability for an across-dimension jump from equation (RJ accep-
tance):

αmn(θ, θ∗) = min
{

1,
πn(θ∗)p(θ∗, θ′)qnm(θ′, θ)

πm(θ)qmn(θ, θ′)p(θ′, θ∗)

}
(5.4)

and the reverse move an extension of equation (RJ acceptance reverse):

αnm(θ
∗, θ) = min

{
1,

πm(θ)qmn(θ, θ′)p(θ′, θ∗)

πn(θ∗)p(θ∗, θ′)qnm(θ′, θ)

}
(5.5)

5.3.3 Palindromic Proposal Compositions

We have defined a delayed-rejection proposal that extends an across-dimension move
with a fixed-dimension move in an attempt to move the intermediate proposal θ′ to
an area of higher posterior density, but there is a problem. To maintain reversibility,
our reverse move for which the dimension of the parameter vector decreases must be
asymmetrical with respect to the original move. This means that the fixed-dimension
move takes place before the across-dimension, and therefore a decrease in dimension
will not benefit from the j improvement steps. Fortunately, the composite proposal can
be generalized further.

Palindromic proposal compositions are compositions of v ordered proposals p1, p2, ...pv

such that pi = pv−i+1 for all i = 1, 2, ...v. The simplest example would be for v = 3,
where p1 and p3 follow the same proposal scheme, while p2 as the central proposal
can be totally unique. In this way, we can "sandwich" an across-dimension move with
fixed-dimension moves on either side, therefore allowing both birth and death moves
to benefit from the j fixed-dimensional steps. The first fixed-dimensional proposal will
generate a new intermediate state θ∼ ∈ Rm drawn from p(θ∼, θ).

Proposals of this nature are the focus of experiments in this work, the details of which
are now derived. The detailed balance will be:

∫
θ,θ∼,θ′,θ∗

πm(θ)p(θ, θ∼)qmn(θ
∼, θ′)p(θ′, θ∗)αmn(θ, θ∗)dθdθ∼dθ′dθ∗

=
∫

θ,θ∼,θ′,θ∗
πn(θ

∗)p(θ∗, θ′)qnm(θ
′, θ∼)p(θ∼, θ)αnm(θ

∗, θ)dθdθ∼dθ′dθ∗ (5.6)

The acceptance probability for a forward move:

αmn(θ, θ∗) = min
{

1,
πn(θ∗)p(θ∗, θ′)qnm(θ′, θ∼)p(θ∼, θ)

πm(θ)p(θ, θ∼)qmn(θ∼, θ′)p(θ′, θ∗)

}
(5.7)
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and the reverse move:

αnm(θ
∗, θ) = min

{
1,

πm(θ)p(θ, θ∼)qmn(θ∼, θ′)p(θ′, θ∗)

πn(θ∗)p(θ∗, θ′)qnm(θ′, θ∼)p(θ∼, θ)

}
(5.8)

It is critically noted that 5.6, 5.7, and 5.8 now apply both to cases for m > n and n > m.

5.4 Implementation

5.4.1 Initializing the Chain

A typical starting methodology for MCMC is to generate a random initialization for the
state space and use the burn-in technique to find the typical set of the state space [58].
The chain quickly moves to an area of high posterior probability density, and the inter-
mediate states of low posterior probability density are discarded prior to analysis.

For our experiments, we seed the burn-in by randomly sampling a large number (1000)
of networks from the joint prior distribution, and proceed with the network with the
lowest posterior score. This ensures that the initial network will not cause computa-
tional difficulties for the sampling program. We do this for each individual chain of
a parallel sampling program, which effectively allows us to run multiple independent
chains for each experiment.

We can use these multiple chains to consider a range of different starting architectures
across the support of the architecture parameters. This allows us to assess whether
there is bias towards the starting architectures in the analysis of the marginal posterior
distributions for the number of layers or nodes.

5.4.2 Algorithm

The overall algorithm for performing trans-dimensional inference on the RJBNN is a
Gibbs sampler which first updates the relevant architecture parameter (via an across-
dimension move) and then the network weights and biases θ (within-dimension move)
followed by the hyperparameters (if applicable) as described in section 5.1.1.

Algorithm 8 describes the procedure for an across-dimension step. The NUTS algorithm
as introduced in chapter 4 handles within-dimension moves, and is used to increase the
acceptance probability of across-dimension moves via a palindromic delayed-rejection
sampler as described in section 5.3. We refer to this algorithm as RJNUTS.
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Algorithm 8 Trans-dimensional RJBNN Inference

1: function RJBNNINFERENCE(θ)
2: k = dim(θ)

3: θ∼ = NUTS(θ) . Palindromic delayed-rejection proposal 1
4: h = random(birth, death)
5: if h = birth then
6: k′ = k + 1
7: else h = death
8: k′ = k− 1
9: end if

10: u ∼ g(u) . Dimension matching
11: (θ′, u′) = h(θ∼, u)
12: θ∗ = NUTS(θ′) . Palindromic delayed-rejection proposal 1

13: α(θ, θ∗) = min
{

1, π(θ∗)p(θ∗,θ′)g(θ′,θ∼)p(θ∼,θ)
π(θ)p(θ,θ∼)g(θ∼,θ′)p(θ′,θ∗)

}
14: φ ∼ unif(0,1)
15: if φ ≤ α then
16: return θ′ . Accept the newly proposed state
17: else
18: return θ . Reject the proposed state, register the current state
19: end if
20: end function
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5.5 XOR Classification

XOR is a binary classification task for datapoints in a two-dimensional space. The dat-
apoints are plotted in Gaussian-style clouds with centroids that form a square pattern
for which the centroids/clouds corresponding to opposite vertices of the square are
labelled equivallently. This essentially presents a very basic "toy" dataset that is not
linearly separable via a basic logistic regression task (see figure 5.5).

FIGURE 5.5: Sample training data for the XOR binary classification task

The data are not linearly separable, and a minimum of 2 hidden neurons
are required to solve this task perfectly.

It is a known result within the space of neural computing that an ANN with a single
hidden layer and a minimum of two hidden neurons is capable of perfectly classifying
the data [77]. We therefore wonder whether a single-layer trans-dimensional BNN may
represent this minimum capacity constraint in the marginal posterior distribution of an
architecture parameter specifying the number of hidden neurons.

Network Definition

We implement a relatively basic RJBNN to examine the XOR classification task. One
hidden layer with a variable k (the number of hidden neurons) is used. The likelihood is
a categorical distribution with a binary input vector based on the output of the network
with two output notes and a softmax activation function (this is for implementation
convenience, and is equivalent to the typical BNN classifier definition of a Bernoulli
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likelihood with a probability parameter determined by the output of a single output
node with a sigmoid activation function).

All of the weight and bias parameters are defined with independent, zero-centered stan-
dard Gaussian distributions. There are no hierarchical parameters affecting the vari-
ances, and as a classification task there is no need for a regression noise variance. k is
drawn from a uniform discrete prior distribution ranging between 1 and 16.

The program is implemented with 16 individual Markov chains running independently.
One of each chain is initialized randomly based on an initial k value between 1 and 16,
so that each possible neuron count is represented by a chain. 1000 iterations are sampled
for each chain.

Results

Figures 5.6a and 5.6b represent the success of the classifier. The log posterior demon-
strates a quick burn-in period for each chain as the Markov Chains quickly sample areas
of high posterior probability density. The classification accuracy only occasionally dips
below 1.0 for each chain, as the problem definition allows for slightly noisy solutions.
Marginalizing over the samples and taking the expected class labels based on a MCI of
the posterior predictive distribution results in perfect classification accuracy on a test
set.

The estimated marginal distribution of the k parameter is represented in figure 5.6c. Sur-
prisingly, we see that any fewer than 4 hidden neurons are sampled infrequently. The
mode appears to be around 7 neurons. The distribution appears quite smooth overall,
and has a slightly longer tail to the right of the mode.

Figure 5.6d simply demonstrates the classification uncertainty for an extended region
of the feature space. We see a great deal of certainty (darker red or blue) around the
data clusters, and certain lighter colours or white where no training data is located. The
results demonstrate non-ideal confidence behind the data point clusters. This suggests
that certain modes of the posterior distribution have not been sampled, which may be
expected given a short run. The resutls are not sufficient to make a claim about the
calibration of the RJBNN in comparison to a standard BNN - such a discussion would
be an interesting future research direction.
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(A) Log Posterior (B) Classification Accuracy

(C) Histogram of k Values (D) Classification Heatmap

FIGURE 5.6: Results of RJNUTS inference for a single-layer BNN on the
XOR binary classification task
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5.6 Noisy XOR Classification

The results in section 5.5 demonstrated the expectation vs reality of an RJBNN applied
to a classification task with a known constraint in terms of network size. It was ex-
pected that the samples obtained of the distribution of network architectures would
favour those with two hidden neurons, being the minimum required to accurately sep-
arate and therefore perfectly classify the data. Instead, the estimate marginal posterior
distribution suggested that some number around 7 hidden nodes presented the ideal
capacity for solving the problem without using more nodes than necessary.

We now examine the behaviour of the same RJBNN when the XOR data is considerably
noisier, such that even a network with 2 hidden nodes would be incapable of perfectly
classifying the training data. Such a dataset would appear as in figure 5.7.

FIGURE 5.7: Sample training data for the noisy XOR binary classification
task

The data are not linearly separable, even with a network with 2 hidden
nodes.

Network Definition

The network is implemented exactly as in section 5.5 - only the training data has been
adjusted. No changes are made to model priors, hyperparameters, or the training pro-
gram.
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Results

As with the standard XOR experiment, figures 5.8a and 5.8b demonstrate reasonable
classification success via the RJBNN. The accuracy is considerably lower given the over-
lapping labelled training data. Individual samples fail to perfectly classify the network
- nevertheless, MCI estimates of the posterior predictive distribution for a held-out test
set result in 0.92 accuracy. This is a commendable result given the difficulty of the task.

We see in figure 5.8c that the estimated marginal posterior distribution of k follows
the same shape as in the XOR task. The distribution is perhaps slightly shifted to the
right, as the mode falls now on 8 neurons instead of 7. We might interpret this as the
network suggesting additional capacity is needed to deal with the noisy data. This
illustrates the main motivation behind using a RJBNN: the complexity of the data allows
for specification of the network capacity. Practically speaking, we are marginalizing
over a set of architectures, some of which we believe to be sufficient for solving the
modelling task at hand.

Interestingly, there is slightly better calibration with regards to the out-of-distribution
regions of the feature space as in figure 5.8d. It may be that the noisy data motivated
more varied solutions in terms of the MCMC sampling program. This is not empirically
evaluated, and is strictly an observation based on the uncertainty visualization.

5.7 Related Works

RJNUTS follows from a composite sampling method introduced with arbitrary fixed-
dimensional Metropolis-Hastings proposals [76] and the use of HMC to update the state
of fixed architecture BNNs [29]. RJHMC, the HMC pre-cursor to RJNUTS, is developed
and applied in a geology setting [78] and a similar algorithm has combined Riemannian
Manifold HMC [79] with RJMCMC [80].

RJMCMC has previously been used to learn the marginal posterior distribution for net-
work width (number of nodes) in a BNN with a single hidden layer [81]. Only small
networks of one hidden layer were used. The number of neurons is treated as the sole
discrete architecture parameter, in comparison to select experiments in this work which
tackle the optimal number of layers. Only regression problems are treated in the prior
work; no classification task is examined. Using the RJNUTS delayed rejection sampler
to scale the inference to larger problems is also introduced as a first for RJBNN training
in this work.

Bayesian learning of network architectures is examined using an SVI approach in [82].
SVI approaches are also used for simultaneous learning of BNN parameters and models
(architectures) in [83].
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(A) Log Posterior (B) Classification Accuracy

(C) Histogram of k Values (D) Classification Heatmap

FIGURE 5.8: Results of RJNUTS inference for a single-layer BNN on the
XOR binary classification task
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Chapter 6

Experiment Results

We now demonstrate how RJMCMC can be used to extend a BNN model to a RJBNN
which samples a distribution of BNN architectures.

Experiment definitions and results are presented in this chapter. Discussion focuses on
demonstrating that the models obtain reasonable test set predictive capabilities, and that
across-dimension proposals are accepted at a reasonable rate. Further discussion about
the advantages and drawbacks to the RJBNN approach is presented in the following
and final chapter of the thesis (7).

6.1 Overview

RJBNNs will be examined for a classification network and a regression network. For
the classification problem, a network with one hidden layer (L = 1) will be drawn from
a distribution of network architectures with a varying number of hidden nodes K over
a range of k ∈ K values, representing the number of neurons in the one hidden layer,
where the support K = [1, . . . , Kmax]. RJMCMC proposals are limited to neuron birth
and neuron death moves as presented in section 5.2.2.

For the regression task, a network will be drawn with ` ∈ L hidden layers, with the
support L = [1, . . . , Lmax]. Each layer has a fixed number of K = k neurons. RJMCMC
proposals are limited to layer birth and layer death moves as presented in section 5.2.2.

Classification is the focus for the case of adding and removing neurons, while the re-
gression network deals with a variable number of layers. These two experimental de-
sign variables seem to be independent of each other, and could be easily switched -
as mentioned, regression has previously been assessed for the variable network width
case [81].
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6.2 Classification Network: OptDigits

The OptDigits training dataset [84] comprises 5620 hand-written digits between 0 and
9. Each image is represented as a 8x8 pixel image, with each pixel taking a value be-
tween 0 and 255 (Figure 6.1). The dataset is similar to the larger MNIST [85] dataset,
which is popular for testing ML classification models. MNIST figures are 28x28 pixels,
corresponding to 784 feature variables in a feedforward network. OptDigits figures are
8x8 pixels for a total of 64 feature variables. OptDigits samples are preferable here given
the small networks that are to be assessed for trans-dimensional inference.

FIGURE 6.1: 100 random samples from the OptDigits hand-written digits
training set, balanced by class label

For the RJBNN models, the full dataset is much too large. For the first experiment,
we attempt classification of 5 classes. We proceed with a small balanced sample of 250
images, 50 of each digit 0 through 4, randomly selected from the full training set. A
balanced set of 1000 images are similarly drawn at random from the test dataset. For
the second experiment, all 10 classes are used, with 50 training samples for each class,
and 200 test samples for a total of 500 and 2000 training and test samples respectively.

The goal is not to challenge state-of-the-art classification accuracy on the test set, but
to demonstrate the features of the RJBNN on a classification problem. The metric of
interest in this experiment, as is common in classification problems, is the network’s
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classification accuracy on a test set of samples. Published results on MNIST and Opt-
Digits are nearly perfect; we will not strive to improve on these. Test set accuracy will
serve as a metric to assess whether the network is performing reasonably well.

Along with test set accuracy, we will be able to use the predictive uncertainty afforded
to us by our Bayesian approach (via the posterior predictive distribution) to further
calibrate the accuracy of our model (see section 7.1.1).

FIGURE 6.2: Ratio of preserved variance for up to 64 principal compo-
nents on 100 OptDigits samples

The dimensionality of the OptDigits dataset implies a high computational demand for a
feed-forward network. Each image corresponds to 8 ∗ 8 = 64 features, which in the case
of an ANN results in an input layer size of 64. Given k neurons in the first hidden layer,
the number of parameters in the first layer alone will be 64 ∗ (k + 1) for the weights and
biases, which quickly becomes untenable for a reasonable sized neural network. PCA as
introduced in section 2.2.2 is therefore used to reduce the number of features. We choose
to proceed with 20, capturing approximately 0.93 of the total variance of the randomly
sampled balanced training set (figure 6.2).

We make one note on the output activation for the network design in these experiments.
An optional tempering parameter a is introduced to the softmax equation (equation 2.6)
to introduce flexibility to the concentration of class label outputs (equation 6.1).

g(z)j =
eazj

∑c
i=1 eazi

(6.1)
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6.2.1 OptDigits Experiment: 5 Classes

The network is proposed with one hidden layer. The hidden node count k is drawn from
a discrete uniform distribution over a range of [1, 64]. The priors for network weight and
biases are zero-centered Gaussians with the variance parameter set to 1.0. No precision
hyperparameters were used for this experiment.

A balanced training set of 250 samples is randomly drawn from the training set. Classi-
fication accuracy is reported on a 1000 balanced samples from the test set.

Two runs were conducted. For experiment 10a, the softmax function is adjusted with a
tempering weight of a = 0.1, and for experiment 10b a = 0.5.

The program is run on a high-performance computing unit with 16 individual chains
sampling the RJBNN in parallel. Each chain with is initialized with 4 ∗ i hidden neurons,
where i is the chain number indicator (1 through 16). 1000 samples are recorded for each
chain.

In terms of improving chain initialization, the RJBNN for each chain is randomly sam-
pled 1000 times prior to running the RJNUTS program, and the chain with the best
log-posterior score is used to limit the required burn-in and avoid numerical issues.

6.2.2 OptDigits Experiment: 10 Classes

The network is proposed with one hidden layer. The hidden node count k is drawn
from a discrete uniform distribution over a range of [1, 128]. The priors for network
weight and biases are zero-centered Gaussians with the variance parameter set to 1.0.
No precision hyperparameters were used for this experiment.

A balanced training set of 250 samples is randomly drawn from the training set. Classi-
fication accuracy is reported on a 1000 balanced samples from the test set.

Two runs were conducted. For experiment 10a, the softmax function is adjusted with a
weight of a = 0.1, and for experiment 10b the weight is a = 0.5.

The program is run on a high-performance computing unit with 16 individual chains
sampling the RJBNN in parallel. Each chain with is initialized with 8 ∗ i hidden neurons,
where i is the chain number indicator (1 through 16). 1000 samples are recorded for each
chain.

In terms of improving chain initialization, the RJBNN for each chain is randomly sam-
pled 1000 times prior to running the RJNUTS program, and the chain with the best
log-posterior score is used to limit the required burn-in and avoid numerical issues.
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6.2.3 Assessment of Network Predictions

For a Markov chain corresponding to samples from the RJBNN model, we may generate
predicted labels and corresponding training and test accuracy scores for each associated
network. These are presented as plots (figures 6.3a, 6.3b, 6.3c, 6.3d) representing the ac-
curacy over the trajectory of the chain. The results present evidence that the sampler
was implemented correctly, and that we may proceed with analysis of the RJBNN out-
put with reasonable confidence.

However, to assess only one network - even the most optimal as determined by the
highest test accuracy - is to throw away much of the output of Bayesian inference. We
may instead marginalize the predictive distribution over all parameterizations as re-
turned by the program, and obtain expectations for each target class label. Full results
of the predictive accuracy for the four experiments are reserved for section 7.1 in the
final chapter of this thesis.

6.2.4 Estimated Hidden Layer Width

The parameter of interest in classification experiments for the OptDigits dataset is k, the
number of nodes in the hidden layer of the network. Assessing the counts of differ-
ent values of k over the trajectory of the trans-dimensional Markov chain 1 returns an
approximation of the discrete marginal posterior distribution of network architectures
under this variable network width parameter. We hypothesize the following features of
this distribution prior to observing any data:

1. The distribution is discrete. This is implicit from the uniform discrete prior distri-
bution over k

2. The distribution should have a distinct mode that corresponds to the optimal net-
work width based on the problem definition

3. Occam’s razor should be implicit in the counts of possible k values:

(a) We expect a sharp drop-off in counts of k-values smaller than the mode, in-
dicating insufficient network capacity for the given problem

(b) We expect a gradual drop-off in k-values exceeding the mode, indicating that
sufficient network capacity has been exceeded and that additional parame-
ters are adding an unnecessary expense to the log-posterior score

Figures (6.4a, 6.4b, 6.4c, 6.4d) represent the counts of k values returned from the Markov
chains for OptDigits experiment 5A and 5B (section 6.2.1) and OptDigits experiment
10A and 10B (section 6.2.2) respectively.

1Following burn-in; after the Markov chain is expected to have reached the stationary distribution
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(A) Experiment 5a (B) Experiment 5b

(C) Experiment 10a (D) Experiment 10b

FIGURE 6.3: Observed frequency of k: hidden node counts for networks
defined by all iterations of all chains of the RJNUTS sampling program
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(A) Experiment 5a (B) Experiment 5b

(C) Experiment 10a (D) Experiment 10b

FIGURE 6.4: Observed frequency of k: hidden node counts for networks
defined by all iterations of all chains of the RJNUTS sampling program
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6.3 Regression Network: Boston Housing

The Boston Housing dataset [86] consists of 506 observations of 14 attributes corre-
sponding to U.S. census data for neighbourhoods in Boston. It is commonly assessed
in statistical literature as a method for benchmarking regression models, such that the
median housing price index is modelled depending on the remaining 13 attributes. Full
details of all datasets are included in Appendix A.

Of particular interest to our RJBNN model, the Boston Housing dataset was one as-
sessed by Neal in his seminal work on BNNs [29]. It therefore receives attention in
other BNN works, including the recent examination of hyperparameter granularity by
Javid et al. [47]. Both works used similar sizes of small networks to the architectures
that we will sample, and the results from these papers may serve as benchmarks for
assessing the predictive capabilities of our RJBNNs. The metric used in this regression
task is the root mean square error (RMSE) between the predicted median housing prices
and the observed values for a randomly partitioned test set.

6.3.1 Boston Housing Experiment: 2 Node Width

The network is proposed with 2 hidden nodes per layer. The layer count ` is drawn from
a discrete uniform distribution over a range of [1, 8]. The priors for network weight and
biases are zero-centered Gaussians with the variance parameter set to 1.0. No precision
hyperparameters were used for this experiment.

A training set of 256 samples is randomly drawn from the 512 observations. Accuracy
is reported as RMSE for the test set of the remaining 256 samples.

Two runs were conducted. The likelihood function over the observed data is the product
of independent Gaussian distributions centered on the network output with a variance
parameter set to 1.0 for run A, and 0.8 for run B.

The program is run on a high-performance computing unit with 16 individual chains
sampling the RJBNN in parallel. For each possible layer count of 1-8, two chains are
randomly initialized. 1000 samples are recorded for each chain.

In terms of improving chain initialization, the RJBNN for each chain is randomly sam-
pled 1000 times prior to running the RJNUTS program, and the chain with the best
log-posterior score is used to limit the required burn-in and avoid numerical issues.

6.3.2 Boston Housing Experiment: 4 Node Width

The network is proposed with 4 hidden nodes per layer. The layer count ` is drawn from
a discrete uniform distribution over a range of [1, 4]. The priors for network weight and
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biases are zero-centered Gaussians with the variance parameter set to 1.0. No precision
hyperparameters were used for this experiment.

A training set of 256 samples is randomly drawn from the 512 observations. Accuracy
is reported as RMSE for the test set of the remaining 256 samples.

Two runs were conducted. The likelihood function over the observed data is the product
of independent Gaussian distributions centered on the network output with a variance
parameter set to 1.0 for run A, and 0.8 for run B.

The program is run on a high-performance computing unit with 16 individual chains
sampling the RJBNN in parallel. For each possible layer count of 1-4, four chains are
randomly initialized. 1000 samples are recorded for each chain.

In terms of improving chain initialization, the RJBNN for each chain is randomly sam-
pled 1000 times prior to running the RJNUTS program, and the chain with the best
log-posterior score is used to limit the required burn-in and avoid numerical issues.

6.3.3 Assessment of Network Predictions

Each individual trace represents a fully-specified neural network model for representing
the median housing price y based on the feature data x. With our Bayesian approach, we
marginalize over a set of these trace observations to obtain an approximate expectation
for the targets. We may marginalize by chain, conditioned on the ` parameter, or the
entire set of observations returned by the program. We reserve these observations for
the discussion of network predictive accuracy in 7.1.

The health of the individual chains may be monitored by assessing the test error for each
iteration of the sampler. We expect these results to be reasonably close but ultimately
inferior compared to the marginalized test error. The plots also suggest at which itera-
tion the chains have completed the burn-in. Figures 6.5a, 6.5b, 6.5c, and 6.5d present the
test error plots for each chain of the four experiments. The results present evidence that
the sampler was implemented correctly, and that we may proceed with analysis of the
RJBNN output with reasonable confidence.

6.3.4 Estimated Network Depth

Similar to the argument regarding k in the case of the experiments for the OptDigits
dataset in section 6.2.4, the histogram of ` values from the Markov chain’s trajectory
represents an approximation of the discrete marginal posterior distribution of network
architectures based on the variable network depth parameter. We entertain similar hy-
potheses to those postulated for the network width in the OptDigits experiments:
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1. The distribution is discrete. This is implicit from the uniform discrete prior distri-
bution over `

2. The distribution should have a distinct mode that corresponds to the optimal net-
work depth based on the problem definition

3. Occam’s razor should be implicit in the counts of possible ` values:

(a) We expect a sharp drop-off in counts of `-values smaller than the mode, in-
dicating insufficient network capacity for the given problem

(b) We expect a gradual drop-off in `-values exceeding the mode, indicating that
sufficient network capacity has been exceeded and that additional parame-
ters are adding an unnecessary expense to the log-posterior score

Figures 6.6a, 6.6b, 6.6c, and 6.6d represent the counts of ` values returned from the
Markov chains for Boston Housing experiment A (section 6.3.1) and Boston Housing
experiment B (section 6.3.2) respectively.

6.4 Acceptance Probability

The acceptance probability of across-dimension moves is a key metric in determining
whether our implementation of the RJNUTS inference algorithm was effective for ex-
ploring varying network architectures. We’re looking for non-negligible results (> 1%)
to ensure that we have at least approximate marginal posterior distributions of architec-
ture parameters.

Network Across-Dimension Within-Dimension
OD5a 11.2% 82.5%
OD5b 9.8% 64.3%
OD10a 7.8% 67.2%
OD10b 5.6% 57.6%
BH2a 4.5% 66.1%
BH2b 4.9% 65.8%
BH4a 1.1% 63.4%
BH4b 1.4% 64.8%

TABLE 6.1: Experiment proposal acceptance probabilities

Table 6.1 displays the proposal acceptance rates, expressed as percentages, for the eight
experiments. We use these results to confirm that RJNUTS was implemented success-
fully, and further discuss the model inference implications in section 7.2.
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6.5 Summary of Experiments

Experiment definitions and select results have been presented for a classification and
regression task using RJBNN models. The precise implementation details were moti-
vated by topics explored in the preceding chapters. The experiments themselves were
conducted to test whether or not RJBNN inference would work in a computationally
feasible amount of time.

With this in mind, the results published in this chapter are only those which demon-
strate effective predictive capabilities of the network, and the across-dimension "jump-
ing" behaviour that implies the RJMCMC inference to be working. A full analysis and
discussion of results of the RJBNN inference programs are explored in the next and final
chapter of this report.
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(A) Experiment 2a (B) Experiment 2b

(C) Experiment 4a (D) Experiment 4b

FIGURE 6.5: Test error: RMSE for output of test set observations fitted by
networks defined by all iterations of all chains of the RJNUTS sampling

program
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(A) Experiment 2a (B) Experiment 2b

(C) Experiment 4a (D) Experiment 4b

FIGURE 6.6: Observed frequency of `: layer counts for networks defined
by all iterations of all chains of the RJNUTS sampling program
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Chapter 7

Discussion

RJMCMC can be theoretically defined for a BNN with variable architecture. One of
the questions that was proposed in the design of this thesis is whether one could be
practically implemented to any degree of success. What would qualify as a successful
implementation is open to interpretation, but certainly the discussion would involve an
assessment of the results regarding the two products of Bayesian inference discussed in
chapter 3:

1. The predictive power of the model based on the posterior predictive distribution

2. An inferential understanding of the model described by the approximate posterior
distribution

In this chapter, we will first discuss the predictive capabilities of the networks as a ref-
erence point for how well the networks performed from a machine learning perspec-
tive. Any serious ML model, classical or Bayesian, should be capable of achieving
results comparable to competing models on datasets or experiments similar in scope.
After that, we will assess whether RJNUTS has resulted in a reasonable estimate of the
marginal posterior distributions of architecture parameters and network parameteriza-
tions. Final words on the relevance of this project and future opportunities suggested
by the results conclude the chapter and report.

7.1 Results from an Optimization Perspective

The marginalization approach of BNNs offers the potential for gains in predictive accu-
racy compared to standard neural networks. [87]. A potential hypothesis might there-
fore concern whether extending these models to sample different architectures will in-
troduce yet more accuracy to our posterior predictions.

The results suggest that predictive capabilities of the small RJBNNs examined in chapter
6 are comparable to standard BNNs. We refer to the publication of Javid et al. [47] in
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Network
Marginal Test

RMSE
Layer Count

Mode
Optimal Layer

Count [47]
Optimal Layer

Count RMSE [47]
RJBNN 2A 0.236 2 1 0.275
RJBNN 2B 0.245 4 1 0.275
RJBNN 4A 0.223 3 1 0.271
RJBNN 4B 0.215 3 1 0.271

TABLE 7.1: Predictive RMSE for Boston Housing Experiments

terms of the Boston Housing experiments. Table 7.1 displays a comparison of the results
for various architectures examined in our experiments and in theirs.

Results were also reasonable for the OptDigits dataset. 100% test accuracy would be
preferable, but the networks performed well considering the small training sets and
the PCA feature transformation. Confusion matrices presented in figures 7.1a, 7.1b,
7.1c, and 7.1d also demonstrate that test errors were not condensed to any one class,
indicating that the networks learned to distinguish between all 5 or 10 classes. The
results were particularly good for the experiments on a subset of 5 of the 10 classes, for
the digits 0-4. Results of test set accuracy for these experiments are presented in table
7.2, column "Top 1".

7.1.1 Uncertainty Consideration in Predictive Accuracy

A convenient feature of favouring a Bayesian approach is that we have a measure of
uncertainty in our posterior predictive distribution for any test data sample. We refer
specifically to the OptDigits classification task for this discussion.

For any test sample that has been classified or interpolated incorrectly (as in figure 7.2),
we may be interested in the confidence of the RJBNN’s predictions for that sample.
Focusing on an individual sample, we can generate the predictions from each individ-
ual sample network from the posterior distribution as represented by states of the 16
Markov chains. A bar graph of these predictions for the first delinquent training sam-
ple is displayed in figure 7.3.

We see that only 22 percent of the networks predict the ground truth label of 1, while
26 percent of the networks incorrectly predict that the sample is a 9. Taking the mode
of the marginal posterior predictive distribution for this sample, as we have reported
in the predictive test set accuracy for our experiments, results in a misclassification.
We are however under no obligation to accept the mode as the entire story. For one,
the predictive certainty is low for the mode - the model has effectively less than 30%
confidence in this misclassification. Compare this to a typical test sample that has been
correctly classified as in figure 7.4, for which the predictive confidence in the correct
class label is above 50%.
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(A) Experiment 5a (B) Experiment 5b

(C) Experiment 10a (D) Experiment 10b

FIGURE 7.1: Confusion matrices: predictions versus ground truth for test
samples in the OptDigits RJBNN classification experiment
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FIGURE 7.2: Misclassified test samples for OptDigits experiment 10a

Table 7.2 demonstrates the improvements that can be made to the test set accuracy by
considering multiple predicted labels from the predictive distribution for each target
(columns: top 2, top 3). We may also only consider predictions above a certain con-
fidence threshold, and regard the precision (accurately classified samples out of those
above the confidence threshold) and the recall (accurately classified targets above the
confidence threshold out of all accurately classified targets) as measures of the predic-
tive capabilities of our network.

Marginal Test Set Accuracy Precision (P) and Recall (R)
Network Top 1 Top 2 Top 3 Threshold 0.2 Threshold 0.4

OD 5a 97.50% 99.30% 99.90%
P: 97.5

R: 100%
P: 99.45%
R: 92.82%

OD 5b 97.80% 99.30% 99.80%
P: 97.8

R: 100%
P: 99.34%
R: 92.43%

OD 10a 90.65% 96.50% 98.25%
P: 92.16%
R: 98.73%

P: 100%
R: 50.47%

OD 10b 92.60% 97.30% 98.40%
P: 92.5%
R: 100%

P: 97.73%
R: 91.07%

TABLE 7.2: Test set accuracy results for OptDigits Experiments
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FIGURE 7.3: Bar graph of class label predictions for an individual mis-
classified test sample from OptDigits experiment 10a

FIGURE 7.4: Bar graph of class label predictions for an individual cor-
rectly classified test sample from OptDigits experiment 10a
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7.2 Results from a Model Inference Perspective

The novel product of our RJBNN inference program is a marginal posterior distribution
over the model indicator for the network architecture. NAS approaches aim to opti-
mize network design, but no fully Bayesian approach has been employed to produce an
expectation for a model architecture.

Chain convergence

We first examine whether the our MCMC chains have converged - i.e, whether we can
trust our estimates of the marginal posterior distributions for the parameters of inter-
est. Reasonable predictive metrics on test sets as displayed in section 7.1 confirm that
our models are well-inferred from the optimization standpoint that is typically of pri-
mary interest in an ML setting. From an inference perspective, there is somewhat less
guarantee that our models have converged.

Referring to figures 7.5a, 7.5b, 7.5c, 7.5d for the OptDigits experiments, it does not nec-
essarily appear as though the chains had an appropriate amount of time to burn-in and
mix between network architecture specifications. Figures 7.6a, 7.6b, 7.6c, 7.6d suggest
better mixing for the Boston Housing experiments, which may be a symptom of the
smaller supports used for the variable layer depth parameter L compared to the vari-
able layer width parameter K.

Architecture parameter expectations

The number of hidden nodes and layers in a neural network are both discrete parame-
ters. A MAP estimate for such a parameter will therefore be an integer value (the mode
of the parameter samples) that directly corresponds to an optimal parameter value. On
the other hand, expectations of discrete parameters are weighted averages of parame-
ter samples, and need not be discrete. Table 7.3 displays these metrics for the RJBNN
experiments.

Network Parameter Mode (MAP) Expectation
OD 5a K 48 43.35
OD 5b K 30 28.73
OD 10a K 89 81.34
OD 10b K 55 60.31
BH 2a L 2 3.74
BH 2b L 4 3.73
BH 4a L 3 2.67
BH 4b L 3 3.07

TABLE 7.3: MAP estimates and expectations for network architectures
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(A) Experiment 5a (B) Experiment 5b

(C) Experiment 10a (D) Experiment 10b

FIGURE 7.5: Node traces: network width by iteration for the 16 chains of
the RJBNN sampling program
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(A) Experiment 2a (B) Experiment 2b

(C) Experiment 4a (D) Experiment 4b

FIGURE 7.6: Layer traces: network depth by iteration for the 16 chains of
the RJBNN sampling program
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7.2.1 Occam’s Razor

In his pioneering work on BNNs, David Mackay points out that the Bayesian approach
automatically implies Occam’s razor [41] - the premise that the simplest explanation that
adequately explains the situation should be preferred to a more complicated one. The
statistical modelling perspective interpretation of this idea is that a model capable of
fitting data with fewer parameters should be preferred to some degree when compared
to one with more parameters or a more complex structure.

Does the mode imply optimal architecture?

The XOR experiment in section 5.5 provided evidence against our hypothesis that the
RJBNN would favour a minimal viable architecture. The mode of the number of hidden
neurons was 7, which far exceeds the minimum requirement of 2. Networks with 2
hidden neurons were sampled infrequently in this experiment, suggesting additional
capacity was favoured by the model definition and RJNUTS sampler.

We may also wonder whether the modal network architecture might correspond to bet-
ter predictive accuracy. Table 7.4 presents evidence to the contrary. For each experiment
on the Boston Housing dataset, the marginal predictive test RMSE over the network
samples corresponding to the modal network architecture was higher than that of the
best individual chain of samples across multiple network architectures.

Network
Marginal

Test RMSE
Best Chain

RMSE
Layer
Mode

Layer Mode
RMSE

RJBNN 2A 0.236 0.235 2 0.232
RJBNN 2B 0.245 0.249 4 0.238
RJBNN 4A 0.223 0.211 3 0.224
RJBNN 4B 0.215 0.209 3 0.215

TABLE 7.4: Best RMSE by Architecture Marginalization

Such a result suggests the RJBNN is not necessarily providing clues as to which architec-
ture would fare best as a fixed-architecture BNN or classical ANN model. However, we
seem to get an improvement to predictive accuracy by marginalizing over this parame-
ter - a satisfying result for our trans-dimensional inference approach to BNN models.

Ultimately, our experiments did not find evidence that the RJBNN may guide the de-
sign of optimal architectures for equivalent fixed ANN model architectures. It is for
this reason that we have not presented the RJBNN model from the perspective of NAS.
Questions as to how the interplay of the model definition and the RJNUTS inference
algorithm lead to the resultant approximate marginal posterior distribution of architec-
tures is therefore a potential future research direction, which brings us to a discussion
of other opportunities for continued research in this area.
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7.3 Future Research Directions

The RJBNN has been proposed as a theoretically sound approach to robust inference
for classification and interpolation tasks. Our results present evidence that the RJBNN
model can be effectively implemented using RJNUTS inference for appropriately-sized
networks. The question of scalability to modern DL applications, however, remains
open. The complexities in designing a computationally sound RJBNN model for larger
datasets are steep.

Along with these complexities comes the opportunity for future research directions.
Several aspects of the design of RJBNN models and the RJNUTS algorithm may be
examined for improved computational efficiency and model tuning. Several of these
opportunities are highlighted in this section.

7.3.1 Proposal Design for RJBNNs

The computational complexity of the algorithm used for inference of RJBNN models is
due almost entirely to the use of HMC via NUTS as a delayed rejection sampler. The
motivation for this approach was discussed in section 5.3, in that we were not able in this
work to design an across-dimension proposal that would result in a tenable acceptance
rate for jumps to new network architectures. To design such an improved proposal and
thereby reduce or remove the dependency on gradient-based delayed rejection sam-
pling would dramatically improve the computational efficiency of trans-dimensional
inference for BNNs.

Applying effort to RJBNN across-dimension proposal design presents a challenge, but
also provides an opportunity to better understand neural networks. The functional re-
lationship between two neural network architectures with differing numbers of hidden
layers or neurons within those layers requires a deep analysis of the behaviour of the
functional expressiveness of the networks. In metaphor, we would need to open the
"black box" and better understand what makes for a well-specified network based on
the parameterizations as opposed to prediction-based metrics on a testing set. This is
a somewhat cyclical motivation: we need to understand neural networks better to de-
sign better RJBNNs, which in turn have been proposed here as an approach to help us
understand and therefore design better ANNs.

A good starting point for this line of work would be to further investigate the recent at-
tention to network morphisms [74] to see whether proposals for larger or smaller neural
network architectures could be designed in the spirit of (approximately) preserving the
functional representation of the state of the current architecture.
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7.3.2 Speeding up RJNUTS Computation

The experiments presented in this thesis would not have been possible without HMC.
The NUTS algorithm was chosen to ease the implementation of HMC by abstracting
specification of the HMC hyperparameters away from the user. There is still room for
improvement in how the HMC/NUTS components of the RJNUTS algorithm were im-
plemented.

For one, datasets for the experiments were selected based on a size restriction. The
Boston Housing training dataset contained 253 observations with 13 attributes. Opt-
Digits was selected over the similar MNIST based on a more convenient feature size.
A small training subset of 250 or 500 samples was used for the OptDigits training, to
which PCA was applied to reduce the features from 64 to 20.

Favouring small datasets is not uncommon to Bayesian analyses. Each iteration of any
MCMC approach requires an assessment of the full dataset to compute the likelihood
as part of the posterior score. This limitation of MCMC continues to attract research
attention, which has resulted in a number of approaches to "mini-batch" MCMC [88] or
subsampling MCMC [89]. Such an approach allows a random subset of the full dataset
to be examined at each iteration, with necessary adjustments to the acceptance probabil-
ity and posterior distribution to maintain detailed balance and account for introduced
bias.

Mini-batch MCMC was beyond the scope of the experiments presented here, but may be
one important key to rendering RJBNNs more practically applicable to larger datasets.

7.3.3 Hyperparameter Selection of Network Parameters and the Likelihood

The hyperparameter schedule for the RJBNN models examined were proposed based
on conventionality and convenience. There is therefore an opportunity to experiment
more with the model indicators in the RJBNN model definition - the k and ` param-
eters which control the network architectures. We also used flat priors and relied on
Occam’s razor to favour the smallest sufficient neural network as an introduction to
running inference of trans-dimensional BNNs, but more meaningful prior distributions
could be proposed, with attention to improving the applicability of RJNUTS to detailed
hierarchical hyperparameter schedules.

We also briefly mention the opportunity to explore approximate likelihoods [90] in run-
ning BNN inference. This thesis focused on the supervised learning tasks of classifica-
tion and regression, which imply convenient likelihood definitions with only moderate
flexibility. The regression network features a hyperparameter controlling the noise pre-
cision, and we relaxed the softmax with a tempering parameter (equation 6.1) for similar
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flexibility in the classification case, but approximate likelihoods may afford more flexi-
bility for improved RJNUTS inference behaviour [36].

Approximate likelihoods would also represent a necessary feature for exploring the ap-
plication of RJBNNs to unsupervised learning, including generative network models.

7.4 Summary of Contributions

We claim three contributions with regards to trans-dimensional inference for BNNs.

1. We have demonstrated the application of RJMCMC to BNNs for estimating the
marginal posterior distribution over a range of network depths

2. We have demonstrated the application of RJMCMC to BNNs for estimating the
marginal posterior distribution over a range of network widths

3. We have demonstrated the integration of the NUTS algorithm to improve the ac-
ceptance ratio of RJMCMC across-dimension proposals using a delayed-rejection
sampler scheme

7.5 Conclusion

The work presented in this thesis may be viewed from the perspective of automation.
We began with a description of statistical model selection as the basis for justifying the
derivation of trans-dimensional inference via RJBNN models. Machine learning has
been presented as an automated approach to modelling, and the Bayesian approach of
inference as learning was reviewed to further extend this automation to the develop-
ment of probability distributions over candidate model space. BNNs were the model
of choice given known results about the functional generalizability and overwhelming
popularity of deep ANN models, and have been extended to multi-dimensional mod-
els such that NN architecture need not be directly specified as part of the model design
process.

The results demonstrate the theoretical possibility for the use of RJBNNs in supervised
learning, but caveats regarding computational feasibility and practical scope exist. The
experiments conducted in this thesis are indeed quaint, focusing on small networks and
small datasets. Here we may draw a comparison to the timeline leading up to the deep
learning revolution, where early models offered promising theory despite the practical
intractability of the proposed architectures. Increases in computational capacity and
innovations in ML theory eventually led to the deployment of DNNs in numerous aca-
demic and industrial applications, to the point that virtually all users of modern tech-
nology benefit in some regard from the research efforts made in DL.



7.5. Conclusion 99

This is to not suggest that RJBNNs should be a preferred approach to classification or
regression tasks where predictive performance or uncertainty measures are the desired
products of the model. The relevance of an RJBNN approach to a discussion of au-
tomation is simply the ability to abstract the exact architectural specification of a neural
network design away from the practitioner, in situations where it may be important to
formally express prior uncertainty regarding what depth or width of network may be
required for the modelling task.

We hope that RJBNNs and similar approaches in AutoML and NAS may continue to
be developed as part of the general trajectory towards automation, such that we may
gain a better understanding of the ML methods in use today, and further develop new
methods for insight into the increasing wealth of data available in the information age.
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Appendix A

Datasets

XOR Point Clouds

Description: 2-dimensional, non-linearly separable, distinct point clouds with 2 class
labels

Task: Binary classification

Source: Data is custom-generated for this experiment

Features: 2 - x/y coordinate space

Transformation Details: N/A

Number of Training Samples: 200

Number of Test Samples: 200

Noisy XOR Point Clouds

Description: 2-dimensional, non-linearly separable, overlapping point clouds with 2
class labels

Task: Binary classification

Source: Data is custom-generated for this experiment

Number of Features: 2 - x/y coordinate space

Transformation Details: N/A

Number of Training Samples: 200

Number of Test Samples: 200
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OptDigits

Task: Multi-class classification (5 or 10 classes)

Description: Images of black and white handwritten digits 0-9 with values ranging
from 0-255 for each pixel

Source: https://archive.ics.uci.edu/ml/datasets.php

Number of Features: 8 x 8 = 64

Transformation Details: Pixel values are normalized to values ranging between 0 and
1. PCA transformation is applied to reduce the number of features from 64 to 20.

Number of Training Samples:

• Experiments 5a, 5b - 250 (50 for each class 0-4)

• Experiments 10a, 10b - 500 (50 for each class 0-9)

Number of Test Samples: Number of Training Samples:

• Experiments 5a, 5b - 1000 (200 for each class 0-4)

• Experiments 10a, 10b - 2000 (200 for each class 0-9)

Boston Housing

Task: Regression - median housing price

Description: A dataset of census data for neighbourhoods in Boston, Massachusetts.

Source: https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html

Number of Features: 14 - 13 explanatory variables, and median housing price

Transformation Details: Each feature is standardized and normalized with mean 0 and
variance 1.

Number of Training Samples: 256

Number of Test Samples: 256

https://archive.ics.uci.edu/ml/datasets.php
https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
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Appendix B

Technical Implementation Details

Overview

All of the experiments for this thesis were implemented in the Julia programming lan-
guage [91]. The probabilistic programming language Gen [92] was used to construct the
RJBNN models. The NUTS algorithm was implemented based on code from the Turing
probabilistic programming language [93].

Computing

High-performance computing resources for the experiments were provided courtesy of
UNINETT Sigma2 AS (Sigma2).

All experiments were run on the Saga supercomputer. Memory allocations for the ex-
periments were as follows:

• Boston Housing RJBNN: 1 node, 16 CPUs, 4GB RAM / CPU
Training time: ∼ 168 hours per experiment

• OptDigits RJBNN: 1 node, 16 CPUs, 4GB RAM / CPU
Training time: 24− 48 hours per experiment

• XOR and Noisy XOR RJBNN: 1 node, 16 CPUs, 512MB RAM / CPU
Training time: < 1 hour per experiment

Code

GitHub repositories are made available for the experiments conducted in this thesis:

Boston Housing experiments: https://github.com/jberezow/BostonHousing

OptDigits and XOR experiments: https://github.com/jberezow/OptDigits

https://github.com/jberezow/BostonHousing
https://github.com/jberezow/OptDigits
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