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A B S T R A C T

This study presents a deep learning framework to support regional ship behavior prediction using historical AIS
data. The framework is meant to aid in proactive collision avoidance, in order to enhance the safety of maritime
transportation systems. In this study, it is suggested to decompose the historical ship behavior in a given
geographical region into clusters. Each cluster will contain trajectories with similar behavior characteristics.
For each unique cluster, the method generates a local model to describe the local behavior in the cluster. In this
manner, higher fidelity predictions can be facilitated compared to training a model on all available historical
behavior. The study suggests to cluster historical trajectories using a variational recurrent autoencoder and
the Hierarchical Density-Based Spatial Clustering of Applications with Noise algorithm. The past behavior of
a selected vessel is then classified to the most likely clusters of behavior based on the softmax distribution.
Each local model consists of a sequence-to-sequence model with attention. When utilizing the deep learning
framework, a user inputs the past trajectory of a selected vessel, and the framework outputs the most likely
future trajectories. The model was evaluated using a geographical region as a test case, with successful results.
1. Introduction

Effective maritime traffic monitoring is essential for maintaining the
integrity of maritime transportation systems. The safety of human life,
as well as that of material assets, and the ocean environment, depend
on conducting safe maritime operations. Evaluating the risk associated
with maritime transportation systems has been the focus of much
research [1–3]. Maritime situation awareness can be argued to be one
of the most essential elements with regards to maintaining the safety
of such systems. Situation awareness is defined as being aware of what
is happening around oneself, and understanding the implications of the
current situation now, as well as in the future [4]. All navigators must
have an adequate degree of situation awareness to effectively conduct
operations at sea. In this context, the primary challenge relates to
detecting obstacles and predicting close-range encounter situations. As
such, effective collision avoidance can be viewed as a key component
of safe maritime transportation systems.

Navigators rely on visual observation, as well as any navigational
tools they have available to them, to maintain an adequate degree of sit-
uation awareness. Such tools include radar, conning, ECDIS (Electronic
Navigation Chart Display and Information System) and AIS (Automatic
Identification System). With respect to collision avoidance, navigators
rely heavily on radar systems facilitated by ARPA (Automatic Radar
Plotting Aid) in addition to the ECDIS. The best navigational tools
should be available to navigators to support the navigator in identifying
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high risk situations [5], such that they can conduct effective collision
avoidance maneuvers that adhere to the COLREGS [6]. Generally,
collision risk is evaluated for ship to ship encounters, but studies have
also addressed quantifying ship collision risk when passing offshore
installations [7].

Generally, a linear constant velocity model is utilized to evaluate
potential close-encounter situations in order to evaluate the risk of
collision. In this manner, the future position of a vessel is predicted
using constant speed and course over ground values. This method
is reliable, and provides the basis for many commercial systems for
predictive traffic surveillance [8]. However, they are inherently con-
strained by their linearity, and will have degraded performance when
predicting complex behavior. More advanced techniques, e.g. [9,10],
where extended Kalman filters were utilized, can aid in predicting more
complex ship behavior. However, such techniques will not be useful for
prediction horizons greater than a few minutes.

Perera and Murray [11] suggested to introduce an advanced ship
predictor to aid maritime situation awareness. The predictor is com-
prised of a local and global predictor to overcome such issues. On
a local scale, such techniques can be used to predict short-term ship
behavior (order 0–5 min). A global predictor is used to predict more
long-term behavior (order 5–30 min). The goal of such global predic-
tions is to prevent close-encounter situations from arising. By predicting
the future trajectory of vessels accurately, the future collision risk
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Nomenclature

𝐛 Bias Vector
𝐜 Class Vector
𝐃𝐾𝐿 Kullback–Leibler Divergence
𝐞 Principle Component
𝑓 Arbitrary Function
𝐡 Hidden State
𝐽 Loss Function
𝐿 Sequence Length
𝐧 New Candidate Vector
𝑁 Number of Layers
𝑝 Probability
𝐩 Position Vector
𝑞 Approximate Encoder
𝐫 Reset Gate
𝐬 Static Data
𝐮 Update Gate
𝐯 Speed over Ground
𝐯 Input to Softmax Layer
𝐖 Weight Matrix
𝐱 Input Sequence
𝐲 Target Sequence
𝐳 Latent Representation Vector
𝜷 Weighting Hyperparameter
𝝌 Course over Ground Vector
𝝁 Mean Vector
𝝈 Standard Deviation
𝜣 Model Parameters

Subscripts

cat Categorical
cont Continuous
ℎ Hidden
𝑖 Class Number
𝑛 New Candidate
𝑟 Reset
𝑡 State
𝑢 Update
𝑥 Input
𝑧 Latent Representation
𝝓 Encoder Parameters
𝜽 Decoder Parameters

Superscripts

̂ Estimated Parameter/State
𝑙 Layer

Acronyms

AIS Automatic Identification System
GRU Gated Recurrent Unit
HDBSCAN Hierarchical Density-Based Spatial Cluster-

ing of Applications with Noise
KL Kullback–Leibler
RMSE Root Mean Squared Error
RNN Recurrent Neural Network

between two neighboring vessels can be computed. In this manner,
the risk of future close-encounter situations can be predicted, and
appropriate collision avoidance actions implemented [12]. Such global
2

SAR Synthetic Aperture Radar
UTM Universal Transverse Mercator
VAE Variational Autoencoder
VRAE Variational Recurrent Autoencoder
VTS Vessel Traffic Service

behavior may, however, be complex, and will require more advanced
techniques to effectively predict.

Developments within maritime traffic monitoring systems can assist
in providing situation awareness to navigators, such that proactive
collision avoidance maneuvers can be conducted. Vessel Traffic Service
(VTS) systems collect traffic data from a variety of sources, including
AIS, shore-based radar, Long-Range Identification and Tracking, as
well as Synthetic Aperture Radar (SAR) satellite imagery to support
maritime traffic safety. The data from such real-time observations are
used by VTS operators to support proactive traffic management [8]. The
ubiquity of data relating to maritime traffic opens up for opportunities
to take advantage of recent developments in machine learning and
artificial intelligence.

1.1. Historical AIS data

Historical AIS data provide insight into the historical behavior of
ships in given regions, which can be used for maritime traffic data
mining and forecasting techniques. Research into utilizing these data
to support maritime transportation systems has been the topic of much
research recently, with a review of various applications found in [13].
For instance, Montewka et al. [14] utilized AIS data to model the
probability of vessel collisions and Goerlandt and Kujala [15] simulated
maritime traffic and assessed the probability of collisions. Bye and
Aalberg [16] also utilized historical AIS data to conduct statistical
analyses of maritime accidents, and developed a model to predict if an
accident is related to navigation. Silveira et al. [17] evaluated the ship
collision risk off the coast of Portugal, providing a statistical analysis
of the traffic separation schemes and evaluated collision risk. Rong
et al. [18] also utilized AIS data to characterize maritime traffic and
detect anomalies using data mining, and Yu et al. [19] developed a
data-driven Bayesian network risk model. A review of methods to assess
waterway risk based on AIS data can also be found in [20].

1.1.1. AIS-based ship behavior prediction
Ristic et al. [21] was one of the first to investigate using AIS data

for trajectory prediction. The study used a particle filter for ship be-
havior prediction based on AIS data. The uncertainty of the prediction,
however, renders the method of limited use with respect to collision
avoidance purposes. A number of studies have also addressed clustering
historical AIS trajectories, classifying a vessel to a given cluster and
conducting a prediction. Pallotta et al. [22] introduced the TREAD
(Traffic Route Extraction and Anomaly Detection) method to cluster
historical trajectories into routes, and classify a partial trajectory to
one of these routes. Pallotta et al. [23] expanded this work to predict
vessel positions for a cluster discovered by TREAD via an Ornstein
Uhlenbeck stochastic process. Mazzarella et al. [24] also applied a
Bayesian network approach using a particle filter for trajectory predic-
tion. These methods, however, are useful for predictions in the order
of hours, and as such of greater benefit for general maritime traffic
forecasting, than for collision avoidance purposes. Xiao et al. [25] also
presented an approach to forecast traffic 5 to 60 min into the future by
extracting waterway pattern knowledge via a lattice-based technique.
The method is computationally efficient, and facilitates predictions
with an accuracy relevant to assist general maritime traffic forecasting.
However, the accuracy may not be sufficient to assist in supporting
proactive collision avoidance with respect to encounter situations.
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Other methods include [26], which introduced a single point neigh-
bor search method to predict trajectories using historical AIS data.
The method, however, does not handle branching waterways, and
the accuracy of the method is limited. Dalsnes et al. [27] expanded
this approach to provide multiple predictions using a prediction tree.
The resultant predictions are then clustered using a Gaussian mixture
model. Both these methods, however, do not utilize trajectory clus-
tering prior to conducting a prediction. Predictions are based on the
neighborhood of a predicted state, which may include data points that
belong to other clusters of ship behavior, inherently degrading the
performance.

Rong et al. [28] presented a probabilistic approach to ship behavior
prediction using a Gaussian process model. This method had successful
results for the investigated region off the coast of Portugal. However,
this region did not contain complex traffic situations. Therefore, the
outcome of the same approach to more complex traffic regions is incon-
clusive. Based on a clustering of locally extracted trajectories, Murray
and Perera [29] classified a selected vessel to one of the clusters, and
predicted the future trajectory using a dual linear autoencoder ap-
proach. This approach had successful results, but was computationally
expensive with respect to extracting trajectories. This may degrade
the results in certain situations with respect to collision avoidance
purposes.

1.1.2. Deep learning-based approaches
Machine learning is being applied at an increasing rate in wide

variety of domains, including the field of reliability engineering and
safety [30]. In [31], for instance, maritime accidents were evaluated
using k-means clustering to identify classes of accidents. A sub-field
of machine learning known as deep learning [32] has been the cen-
ter of technological innovation in recent years. With state-of-the-art
performance in image and speech recognition [32], the methods have
slowly begun to gain the attention of other domains e.g. for predictive
maintenance [33]. Within the maritime domain, however, there is still
limited research on adopting deep learning techniques.

AIS data are an ideal data set to apply deep learning techniques
in the maritime domain. Zhang et al. [34], for instance, applied a
convolutional neural network to classify regional ship collision risk
levels. Nguyen et al. [35] also developed a multi-task deep learning
architecture for maritime surveillance based on a variational recurrent
neural network. The framework can be utilized for multiple purposes
including trajectory prediction. However, the method applied a 4-hot
encoding to the data that reduces the resolution of the predictions, de-
grading the performance with respect to collision avoidance purposes.
These techniques were further developed in [36], where GeoTrackNet
was presented to facilitate maritime anomaly detection.

Learning deep representations provide a learned subspace of rep-
resentations of the input data, and have been used for various goals
e.g. transfer learning for remaining useful life prediction [37]. Yao et al.
[38] investigated clustering AIS trajectories using deep representation
learning, where the results indicated that the deep learning approach
outperformed non-deep learning based approaches. Murray and Per-
era [39] expanded this work, where it was found that a variational
recurrent autoencoder architecture provided better representations for
trajectory clustering. These methods, however, do not provide a method
to predict the future trajectory of a selected vessel. Forti et al. [40]
and Capobianco et al. [41] utilized a recurrent neural network to pre-
dict trajectories using a sequence-to-sequence model. Such sequence-
to-sequence models are in essence encoder–decoder models, and have
been used for a variety of applications e.g. predicting software reliabil-
ity [42]. The results from [40] were promising, but the model has only
been tested on a data set of limited complexity. If applied to an entire
region of historical data, the performance will likely be degraded.
3

1.2. Contribution

In this study, it is suggested to utilize historical AIS data to predict
ship behavior on a global scale, with the purpose of aiding in proactive
collision avoidance. As such, this study investigates predicting the
future 30 min trajectory of a selected vessel. In this manner, the safety
of maritime transportation systems can be enhanced. It is, therefore,
assumed that future ship behavior can be predicted based on the
historical behavior of other vessels in a given geographical region. If
successful, such methods can aid in providing situation awareness to
navigators and VTS centers. Furthermore, such methods can contribute
towards risk models for future autonomous vessels [43].

The study presents a deep learning framework for regional ship
prediction. Given the past trajectory of a selected vessel, the framework
predicts its future trajectory. To facilitate this, the data for a specific
geographical region are used to generate a prediction model for ship
behavior within this region. Similar methods train neural networks
on all the available AIS data. However, for the purpose of aiding in
collision avoidance, trajectory predictions should be as accurate as
possible. As a result, this study suggests decomposing the historical ship
behavior into local models.

To create these local models, it is suggested to cluster historical
ship behavior using a variational recurrent autoencoder, as outlined
in [39]. This approach is expanded to add more complexity to the
model, resulting in improved clustering performance. The method is
able to discover clusters of ship behavior, such that local models can
be trained for each individual cluster. Such local models should have
enhanced performance, as they are trained on specific ship behavior. In
contrast, training on all available data will result in models that must
capture a much larger degree of variation, inherently degrading their
performance due the increased complexity of the underlying data.

The method further suggests to classify a trajectory segment to a
given cluster using a deep learning architecture. The method outputs a
distribution over possible clusters of behavior the trajectory may belong
to, such that multiple predictions can be made. It is highly likely that
the trajectory belongs to one of these clusters, and as a result, one of
the trajectory predictions should be accurate.

The local models are trained on the data in each unique cluster
of historical behavior. In this study, a sequence-to-sequence model
using an attention mechanism is suggested to function as the local
model for each cluster. Such attention mechanisms provide the basis for
state-of-the-art translation architectures, improving the performance
significantly compared to conventional sequence-to-sequence models.
Furthermore, sequence-to-sequence models should have enhanced per-
formance compared to standard recurrent neural networks, as they
predict an entire sequence based on an entire input sequence. As such,
the error for the entire future sequence is used to optimize the network,
and not just error for one time step at a time.

The overall framework outlined in this study provides a novel con-
tribution to conduct efficient trajectory predictions. Using pre-trained
networks for a given geographical region, the most probable future
trajectories can be output to a user in under a second.

2. Methodology

In this section, the proposed methodology of the deep learning
framework is outlined. The framework is designed such that it can be
applied to any geographical region. The objective of the framework is
to support ship behavior prediction. It is assumed that the respective
vessels observed in a given geographical region may have similar
behavior to that of other vessels in the past. By developing a framework
to model the historical behavior of the respective ships for a given
region, it may be possible to predict the future behavior of a selected
vessel. This is achieved through the use of historical AIS data.

An overview of the framework is illustrated in Fig. 1. Overall, the
framework can be viewed as being conducted in two phases. The first



Reliability Engineering and System Safety 215 (2021) 107819B. Murray and L.P. Perera
Fig. 1. Overview of deep learning framework.
is the training of the modules, where the trained models are illustrated
in orange in Fig. 1. The second phase is the prediction phase, and uses
the pre-trained networks. This phase is illustrated in Fig. 1 in green.

The clustering module is trained first using all available historical
AIS data for the selected geographical region. The goal of the clustering
module is to discover clusters of historical ship behavior. These clusters
contain historical AIS trajectories that have similar behavior. Fig. 1
depicts the clustering module in orange. The left figure in the module
presents a heat map of the available historical AIS data for a specified
region, and the right a subset of clusters of ship behavior. These clus-
ters correspond to groupings of similar historical ship behavior. Such
clusters may, for instance, involve alternate routes, or speed profiles
along routes.

The purpose of the prediction module is to predict the future
trajectory of a selected vessel, given its observed past behavior. It is
assumed in this study that the past 30 min of AIS data are available.
The input to the prediction module, as illustrated in Fig. 1, corresponds,
therefore, to the past 30 min behavior of a selected vessel. However,
the architecture can be trained based on any input trajectory length.

The prediction module consists of two sub-modules, the classifica-
tion module and local behavior module. In the classification module,
the input trajectory is matched to one of the behavior clusters dis-
covered in the clustering module. The input trajectory in this study is
the past 30 min behavior of the selected vessel. The classified cluster
label is then input to the local behavior module, which selects the
pre-trained model that corresponds to that cluster of behavior. This
model is then used to predict the future 30 min behavior of the selected
vessel. The classification module also outputs multiple possible clusters
the trajectory may belong to, with a probability associated with each
cluster. In this manner, multiple trajectories can be predicted based on
the local models for the classified behavior clusters.

2.1. Preprocessing

Prior to training the neural networks involved in this study, prepro-
cessing of the AIS data must be conducted. The first step is to generate
complete trajectories from the unprocessed AIS data. This is conducted
by extracting trajectory segments, where the time between consecutive
points exceeds some parameter. In this study, trajectories are defined
where any two points are more than 30 min apart. Furthermore, each
individual trajectory is interpolated at one minute intervals to facilitate
higher density data, as well as provide a common foundation for
training the network. As such, each vessel state, 𝐱𝑡, will be one minute
apart. Each vessel state is defined in (1), and contains the positional
data defined in UTM coordinates 𝐩 = [𝑝 , 𝑝 ], as well as the speed
4

1 2
Fig. 2. RNN.
Source:
Illustration
adapted
from [39].

over ground, 𝑣, and course over ground, 𝝌 , decomposed into the UTM
coordinate directions, 𝝌 = [𝜒1 𝜒2].

𝐱𝑡 = [𝑝1, 𝑝2, 𝑣, 𝜒1, 𝜒2] (1)

However, the parameters in the vessel states vary significantly in
magnitude. As such, all states are scaled across each parameter for all
extracted trajectories from the region of interest. In this case, the values
are scaled between [−1, 1] given that the data are more optimal for the
recurrent neural networks that make use of the tanh function.

All trajectories are present in the input data, i.e. no anomalous
trajectories have been removed from the data set. This is due to
the ability of the clustering module to identify such trajectories, and
remove them before further processing. This is addressed in Section 2.3.

2.2. Recurrent neural networks

Recurrent neural networks (RNNs) [44] are designed to handle
sequence data. The general RNN architecture is visualized in Fig. 2.
As historical AIS trajectories are multivariate time series, RNNs are
chosen to serve as the main deep learning architecture in the frame-
work utilized in this study. RNNs are capable of handling time series
of variable length, and can be combined with other architectures to
achieve various goals. RNNs are ideal for time series data in that they
incorporate a sense of memory into the network. Given a time series 𝐱 =
{

𝐱0, 𝐱1, … , 𝐱𝐿
}

of length 𝐿, a recurrent neural network processes the
input state 𝐱𝑡 at a given state, 𝑡, sequentially. In addition, information
about the time series prior to state 𝑡 is processed through the previous
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hidden state, 𝐡𝑡−1. The network then outputs the current hidden state,
𝐡𝑡, that incorporates relevant information from 𝐱𝑡 and 𝐡𝑡−1 in (2).

𝐡𝑡 = 𝑓 (𝐡𝑡−1, 𝐱𝑡;𝜣) (2)

Each operation can be thought of as applying (2) in an RNN cell. The
same operation repeats for all states, and is in this sense recurrent. A re-
current neural network can be thought of as an unfolded computational
graph, where each operation, i.e. each cell, applies (2). In this manner
the parameters are shared between all operations. The recurrence is
visualized within the red box in Fig. 2, indicating that each cell is fed
the previous cells output along with the current input. The architecture
is in this sense causal, where the current output depends on all the past
time steps. It is evident that such an architecture is applicable to ship
trajectories, in that the future behavior should be dependent on the past
behavior.

2.2.1. Gated Recurrent Unit
The original RNN architecture is often referred to as the vanilla

RNN. When training this architecture, the network struggles to learn
long-term dependencies. This is due to vanishing gradients during
backpropagation of the network [45]. The long-term memory of such
networks is, therefore, poor, and can degrade their performance when
long-term dependencies in the data exist. The Gated Recurrent Unit
(GRU) [46,47] is an recurrent architecture that introduces the concept
of gates to reduce the effect of vanishing gradients. Other gated archi-
tectures include the Long Short-Term Memory (LSTM) [48]. The GRU,
however, reduces the number of model parameters compared to the
LSTM, thereby reducing training time.

2.2.2. Bidirectional RNNs
Standard RNNs conduct calculations in the forward direction,

i.e. from the past to the future. Bidirectional RNNs [49], however,
provide an architecture where the calculations are conducted in both
the forward and backward directions concurrently. In this manner,
future events can be thought to affect past events. In the case of ship
trajectories, this may not be as intuitive. However, the argument can
be made that choices made by a navigator may depend on future
choices, e.g. speed changes dependent on a future course alteration,
route choice, etc. As such, a bidirectional RNN will incorporate more
information about the navigational patterns of past ships in a historical
AIS data set.

2.2.3. Stacked RNNs
Deep neural networks, i.e. with multiple layers, have been shown to

have superior performance to more shallow networks. The same can be
said for RNNs, as it was shown in [50] that increasing depth of RNNs
enhanced their performance. Such RNNs are often referred to as stacked
RNNs. The stacked architecture implies that there are multiple RNNs
that feed into each other as illustrated in Fig. 3. The figure illustrates
a network of 𝑁 layers with 0 being the initial layer and arbitrary layer
𝑙 between.

2.3. Clustering module

In the clustering module, clusters of ship behavior are discovered.
This is achieved through an unsupervised learning technique known as
clustering, where the underlying groupings in the data are discovered.
The groupings in the case of this study correspond to sets of trajectories
with similar behavior. Discovering such groupings, however, can be
challenging. Standard clustering techniques require representations of
the data to be vectors of equal size. A clustering algorithm will then
group the vectors based on some similarity, i.e. distance, measure.
Historical AIS trajectories, however, consist of multivariate time series
of variable length. As a result, they cannot be clustered using standard
5

Fig. 3. Stacked RNN with 𝑁 layers.

techniques. It is, therefore, of interest to develop a framework to gen-
erate fixed size representations of the trajectories, such that standard
clustering techniques can then be applied to the representations.

Murray and Perera [39] suggested to utilize a deep representation
learning-based approach to facilitate trajectory representation genera-
tion for subsequent clustering. The study argues that RNNs are ideal
for such a task, as they are designed to generate representations of
multivariate sequences via their hidden states. The study compares uti-
lizing a recurrent autoencoder and 𝛽-variational recurrent autoencoder
(𝛽-VRAE) [51] to learn good representations of the data. It was found
that the 𝛽-VRAE provided more compact groupings, resulting in a more
effective clustering scheme. The Hierarchical Density-Based Spatial
Clustering of Applications with Noise (HDBSCAN) algorithm [52] was
utilized to cluster the trajectory representations with good results.

The method is expanded in this study, where a bidirectional stacked
VRAE architecture is utilized to generate representations of the data,
which are subsequently clustered using HDBSCAN. The details of the
architecture of the clustering module are presented in the following
sections.

2.3.1. Hierarchical Density-Based Spatial Clustering of Applications with
Noise

The Hierarchical Density-Based Spatial Clustering of Applications
with Noise (HDBSCAN) algorithm [52] is utilized to cluster the latent
representations from the VRAE. The goal is to identify class labels that
can be utilized in the classification module, where each class relates
to a cluster of ship behavior. HDBSCAN is a non-parametric cluster-
ing approach that can identify clusters of varying density and shape,
and was argued in [39] to be powerful in clustering ship trajectory
representations generated by a VRAE. This is likely due to irregular
grouping of the data in this subspace. In certain cases, the autoencoder
generates highly compact groupings of data. This is due to highly
similar trajectories of very specific behavior. Such clusters will be very
dense. In other cases, less similar trajectories of more general behavior
are discovered. These clusters are, therefore, less dense. The groupings
are also of highly irregular shape.

HDBSCAN provides a flexible algorithm that is able to discover
clusters of varying density and shape. Furthermore, it is able to dis-
cover the most likely number of clusters without explicit input. Other
algorithms, e.g. k-means, will have degraded performance on such a
data set. Such algorithms are unable to capture clusters of the varying
shapes and densities as in this study and will, therefore, likely discover
a clustering scheme that is not physically meaningful when applied in
this subspace. Furthermore, the number of clusters must be input to
such an algorithm. This is difficult to estimate for data sets such as
those in this study.

The Density-Based Spatial Clustering of Applications with Noise
algorithm is extended in HDBSCAN by adapting it to a hierarchical
clustering scheme. The algorithm defines core distances for each point
as the distance to the 𝑘th nearest neighbor. These distances function as
local density estimates, and provide the basis for a mutual reachability
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metric between two points. This metric then provides the basis for a
minimum spanning tree and hierarchy. The tree is then pruned using
the minimum cluster size, where any clusters below a given threshold
are filtered out. The algorithm then discovers the most stable clusters
in the hierarchy. Furthermore, HDBSCAN provides the capability to
discover noise in the data, where any data points that do not belong
to the clusters are labeled as noise. For further details see [52].

The clusters discovered by HDBSCAN represent the regular ship
behavior in the region of interest. The data clusters can, therefore,
be used to create local models that describe the regular behavior for
each cluster. The algorithm also functions as a form of preprocessing,
where anomalous trajectories will be labeled as noise, as they do
not correspond to any cluster of regular ship behavior. Predicting
such anomalies is difficult, as the behavior of such vessels is often
highly erratic. This study, therefore, focuses on modeling regular ship
behavior, and discards the noise identified by HDBSCAN.

2.3.2. Variational recurrent autoencoder
The goal of the VRAE is to generate meaningful representations

of the historical AIS trajectories, such that they can be effectively
clustered. A common method to generate meaningful representations
is the autoencoder. An autoencoder is comprised of two parts, and
encoder and a decoder. The encoder encodes the data to a latent
representation, and the decoder subsequently attempts to reconstruct
the data from this latent representation.

RNNs inherently provide a compression of the data, where feeding
a sequence into an RNN, the network outputs a final hidden state, 𝐡𝐿,
that represents the entire input sequence. By training an encoder RNN
that encodes the historical ship trajectories to a hidden state, 𝐡𝐿, a
decoder can be trained to reconstruct the input trajectory from 𝐡𝐿.
uch an architecture is known as a recurrent autoencoder [53]. This
s in essence an application of sequence-to-sequence models [54] that
rovide the basis for the state-of-the-art in natural language processing
asks e.g. translation [46].

The VRAE is extension of the recurrent autoencoder that utilizes a
ariational autoencoder (VAE) [55,56]. The VAE introduces a proba-
ilistic approach to the autoencoder, where it is assumed that data are
enerated by a random process from a continuous latent variable de-
oted 𝐳. An approximate probabilistic encoder, 𝑞𝜙(𝐳|𝐱), produces a dis-
ribution over the latent variable, 𝐳, and a decoder 𝑝𝜃(𝐱|𝐳) reconstructs
𝐱 from 𝐳. It is, furthermore, assumed that 𝑞𝜙(𝐳|𝐱) is a multivariate
Gaussian with a diagonal covariance in (3).

𝑞𝜙(𝐳|𝐱) ∼  (𝝁𝑧,𝝈2
𝑧𝐈) (3)

Both the encoder, 𝑞𝜙(𝐳|𝐱), and decoder, 𝑝𝜃(𝐳|𝐱), are approximated by
neural networks. The advantage of using a VAE compared to a stan-
dard autoencoder, is that it encourages the latent variables to become
normally distributed. Murray and Perera [39] argued that this limits the
chaos in the latent space, and encourages the latent representations of
the data to be more compact, thereby providing better representations
for a clustering algorithm.

Fabius and van Amersfoort [57] extended the VAE to introduce a
recurrent architecture in the variational recurrent autoencoder (VRAE).
Here the encoder and decoder are comprised of RNNs. An overview of
the architecture in this study is presented in Fig. 4. To the left in the
figure is the encoder. The encoder is bidirectional, where the forward
encoder is illustrated in yellow, and the backward encoder illustrated in
blue. Both encoders are GRUs. Integrating a bidirectional architecture,
more information can be encoded in the latent space. Furthermore,
the bidirectional encoder is stacked, providing increased depth to the
network. This allows it to learn more complex relationships in the data.
The output of the forward and backward encoders are concatenated to
comprise the final hidden state, 𝐡𝐿, of the encoder. This is visualized
in orange in Fig. 4. The mean and standard deviation of the normal
distribution in (3) are estimated via linear layers in (4) and (5).
6

𝝁𝑧 = 𝐖𝜇𝐡𝐿 + 𝐛𝜇 (4)
𝝈𝑧 = 𝐖𝜎𝐡𝐿 + 𝐛𝜎 (5)

Using the re-parametrization trick to allow for backpropagation, the
latent variable is estimated in (6), where 𝝐 is sampled from a normal
distribution according to 𝝐 ∼  (0, 𝐈). This is illustrated in purple in
Fig. 4.

𝐳 = 𝝁𝑧 + 𝝈𝑧 ⊙ 𝝐 (6)

The decoder, illustrated in green in Fig. 4, takes the initial hidden state
as input. This is calculated in (7).

𝐡𝑖𝑛 = tanh(𝐖𝑧ℎ𝐳 + 𝐛𝑧ℎ) (7)

It then reconstructs the input sequence sequentially, where the next
state is estimated according to (8).

�̂�𝑡+1 = 𝐖ℎ�̂�𝐡𝑡 + 𝐛ℎ�̂� (8)

Each predicted state is fed into the following cell to predict the next.
The basis for the entire prediction is the input from 𝐡𝑖𝑛. Therefore, all
the information contained in the sequence must be stored in the latent
vector 𝐳. Training this encoder–decoder architecture forces the network
to learn a meaningful representation of the data in the latent space.

The network is optimized by maximizing a variational lower bound
on the log-likelihood (9).

𝐽 (𝜃, 𝜙; 𝐱, 𝐳) = 𝐄𝐳∼𝑞𝜙(𝐳|𝐱)
[

log(𝑝𝜃(𝐱|𝐳))
]

− 𝐷𝐾𝐿(𝑞𝜙(𝐳|𝐱)∥𝑝𝜃(𝐳)) (9)

The first term in (9) can be viewed as the reconstruction loss, and
is evaluated in this study using the mean squared error. The second
term is the Kullback–Leibler (KL) divergence between the approximate
posterior, 𝑞𝜙(𝐳|𝐱) (i.e. encoder), and the prior 𝑝𝜃(𝐳). In this study is
assumed that the prior is normally distributed according to 𝑝𝜃(𝐳) ∼
 (0, 𝐈). Therefore, maximizing this second term implies minimizing the
KL-divergence. By applying this constraint to the latent space, this term
tries to enforce compact groupings of data. Therefore, similar ship tra-
jectories should be encouraged to be closer together in the latent space.
As such, a clustering algorithm should be more successful in discovering
clusters of trajectories using such an architecture. For further details on
representation learning for trajectory clustering, please see [39], as well
as [55,56] for further details on VAEs and [57] for VRAEs.

2.4. Classification module

In this study, the aim is to classify 30 min trajectory segments to one
(or more) of the discovered clusters. These trajectory segments repre-
sent the past trajectory of a selected vessel for the case of a prediction.
However, seeing as the autoencoder is trained on regional trajectories,
the structure will not be conducive with the 30 min trajectory segments.
As a result, the latent representations of such trajectory segments will
not be meaningful in relation to the discovered clusters in the same
subspace. A classification network must, therefore, be trained to match
such 30 min trajectory segments to one (or more) of the discovered
clusters.

Each trajectory in the data set is, therefore, split into 30 min
segments using a sliding window technique with a one minute interval.
In this manner, the classification module will be trained using all
possible 30 min trajectory segments. Each segment is assigned a class
label corresponding to the class of its parent trajectory, discovered via
the clustering module. The objective of the classification module is to
correctly classify an input trajectory segment to one of the underlying
ship behavior clusters in the data set.

The architecture of the classification module is illustrated in Fig. 5.
Given that the trajectory segments consist of sequence data, it is
suggested to utilize RNNs to encode the dynamic data. A bidirectional,
stacked encoder is, therefore, utilized to encode the trajectory segments
to a fixed size vector in a similar manner to the clustering module.

The final hidden states of the backward and forward encoders are
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Fig. 4. VRAE with a bidirectional stacked encoder, and stacked decoder. The forward encoder is illustrated in yellow, and the backward encoder in blue. The decoder is illustrated
in green. All RNNs are stacked.
Fig. 5. Classifier with a bidirectional stacked encoder for dynamic data. The embedding block embeds categorical static data. The encoded dynamic data are concatenated with
the embedded categorical static data and continuous static data. Fully connected (FC) layers predict the class via a softmax ouput layer.
concatenated, allowing the encoder to preserve dependencies in both
directions.

Historical AIS data, however, is not limited the dynamic data rep-
resented by the trajectory data. Static data are also available, e.g. ship
type, ship length, date, etc. Assuming that this information is available
via the AIS at the time of prediction, such static data can be utilized
by the classifier to discriminate between classes. In this study, it is
suggested to include the ship type and length in the static data. Ship
type will play a significant role in the behavior of a vessel, and should
aid the classifier in achieving higher accuracy. The ship length should
also play a role in the type of behavior to be expected by the ship.

The static data are further separated into categorical data, 𝐬𝑐𝑎𝑡, and
continuous data, 𝐬𝑐𝑜𝑛𝑡. The continuous features, e.g. length, can simply
be scaled and concatenated with the dynamic data, as shown in Fig. 5.
The categorical data, however, e.g. ship type, must be encoded using
an embedding layer. An embedding layer maps a category to a vector
representation. The concept was introduced to aid natural language
7

processing, where word embeddings [58] provide the basis for many
natural language processing tasks. In this study, it is suggested to
embed the categorical static data, and concatenate these embeddings
with the remainder of the data as shown in Fig. 5.

The concatenated data are then fed into fully connected, i.e. linear,
layers. The final layer will have an output dimension corresponding to
the number of classes, i.e. clusters, discovered by the clustering module.
A softmax layer then computes the final output by scaling the output
between 0 and 1 according to (10).

�̂�𝑖 =
𝑒𝐯𝑖

∑𝐶
𝑗=1 𝑒

𝐯𝑗
(10)

𝐯𝑖 is the predicted value for class 𝑖 from the fully connected layers,
and �̂�𝑖 is the softmax output for class 𝑖. In this manner, a probability
distribution is created over the number of classes. The classifier then
compares the softmax output to the true class vector 𝐜, where 𝐜𝑖 = 1
for the true class and 𝐜𝑗 = 0 ∀ 𝑗 ≠ 𝑖. The cross entropy loss is then
calculated and used to optimize the network.
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When training the model, modern deep learning architectures,
e.g. PyTorch [59], include a softmax layer in the cross entropy loss. As a
result, when training a network using the built in cross entropy loss, the
softmax layer is not included in the architecture of the network. When
evaluating the model, the predicted class is, therefore, generally taken
as the argmax of 𝐯 without using a softmax layer. However, given that
the softmax function gives a probability distribution over the number of
classes, this can be used to identify a distribution over the ship behavior
clusters the trajectory segment belongs to. As such, multiple trajectory
clusters can be identified as possible for the selected vessel during a
prediction. Therefore, a softmax layer is applied to the network during
evaluation in this study.

2.4.1. Local behavior module
Given that the clustering module has discovered clusters of ship

behavior in the historical AIS data, local models can be created to
predict the ship behavior. Each cluster represents a group of localized
ship behavior. Training a model on the subset of data corresponding
to this local behavior should improve the predictive capabilities of the
algorithm, as opposed to training on all available data.

In this study, each local model is comprised of a sequence-to-
sequence model [54]. The VRAE in Section 2.3.2 is a such an ar-
chitecture, where a sequence-to-sequence model is utilized to aid in
clustering. As outlined in Section 2.3.2, this encoder–decoder approach
is common in natural language processing. The core of such models
is an RNN, where the RNN used in this study is a GRU. The encoder
RNN encodes the input sequence to a fixed size vector, and the decoder
RNN decodes the target sequence using this vector, i.e. latent repre-
sentation, of the input sequence. In an autoencoder architecture, as in
Section 2.3.2, the target sequence is equal to the input sequence. In this
manner the decoder’s task is to reconstruct the input.

The local models in this study, however, take the past 30 min behav-
ior of a selected vessel as input, and predict the future 30 min behavior.
As such, the past 30 min must be encoded into a fixed size vector, and
the future 30 min must be predicted using this representation. For an
autoencoder, this bottleneck in the latent representation provides the
basis for clustering, as one wishes to discriminate between classes in
this space. When a sequence-to-sequence model is used for predictions,
however, this bottleneck is detrimental to the performance.

The bottleneck in sequence-to-sequence models limits the capacity
of the model, as an entire sequence must be predicted from a sin-
gle vector. Furthermore, the encoder often becomes gradient starved.
This is due to the fact that gradients calculated from the loss in the
decoder must flow via the bottleneck during backpropagation. As a
result, the encoder side of the network does not update well during
training. Bahdanau et al. [60] introduced an attention mechanism that
addresses this issue. Instead of only looking at the final hidden state of
the encoder, the decoder is able to look at all of the encoder hidden
states, enhancing the predictive performance of the model. Using such
an architecture, gradients are allowed to flow freely to the encoder
side of the network via the attention mechanism. This approach was
developed for translation tasks, but the architecture is also relevant for
sequence-to-sequence tasks involving time series data.

The local model architecture in this study, therefore, utilizes the
attention mechanism in [60] to facilitate effective ship trajectory pre-
diction. The architecture of the local model is illustrated in Fig. 6.
The attention mechanism is facilitated by a fully connected network,
represented by the pink box in Fig. 6. The attention mechanism takes
the previous hidden state of the decoder, i.e. 𝐡𝑡−1, as well as all
of the encoder hidden states as input. In this study, the encoder is
bidirectional and stacked. As a result, the input to the attention mech-
anism will be the hidden states from the top layer, which contain the
concatenated backward and forward hidden states of the encoder for
each time step. The attention mechanism in this study functions in two
steps. First, 𝐡𝑡−1 of the decoder is matched with the encoder hidden
8

states. For the case of ship trajectory prediction, this can be thought of t
as how relevant ship behavior at some point during the past 30 min
is for conducting a prediction at the current time step. The network
can in this manner learn what to look at in order to most effectively
conduct a prediction. The outputs are then run through a softmax layer
as in (10). This generates an attention distribution, 𝐚, over the encoder
idden states, where each attention value can be viewed as a weight for
he corresponding encoder hidden state. A weighted sum of the encoder
idden states is then calculated, illustrated by the blue box in Fig. 6.
he block takes in the encoder hidden states, as well as the attention
eights, and outputs a weighted sum.

The architecture of each decoder cell is illustrated in the red box in
he upper right of Fig. 6. The input to each RNN cell is a concatenation
f the previous prediction, �̂�𝑡−1, with the weighted encoder hidden
tates, 𝐰. Furthermore, the linear layer that conducts the prediction for
ach state, �̂�𝑡, takes �̂�𝑡−1, and 𝐰 as input. Each prediction can, therefore,
ook at the entire past trajectory, and identify relevant parts to conduct
s accurate a prediction as possible. The linear layer is allowed to look
t the current input, to further enhance the accuracy of the prediction,
here short-term dependencies can be directly determined. For the case
f ship trajectory prediction, the next state will undoubtedly have a
igh dependency on the previous.

Each local model is, therefore, trained using the outlined architec-
ure. The decoder will function in the same manner as in Section 2.3.2,
here states are iteratively predicted, but instead of reconstructing the

nput, a target sequence, 𝐲, is predicted. The loss is calculated using the
ean squared error as in Section 2.3.2. To optimally train the network,

ll combinations of past and future 30 min trajectory segments should
e utilized. In this study, one hour trajectory segments were extracted
sing a sliding window technique, where the window size was one
inute. The first 30 min of each trajectory are defined as the input

i.e. past), and the final 30 the target (i.e. future).

. Results and discussion

In this section, the results from a case study using the outlined deep
earning framework are presented. A data set corresponding to one year
f AIS data from January 1st 2017 to January 1st 2018 for the region
round the city of Tromsø, Norway was utilized. This region contains
omplex traffic, and provided a relevant test case for the framework.

PyTorch [59] was utilized to implement the neural networks. All
etworks were trained using the Adam optimizer [61]. Furthermore,
radient clipping [62] and batch normalization [63] were utilized
o aid in convergence. Hyperparameters were tuned for this specific
egion, and will need to be tuned to the specific geographical region to
hich the framework is to be applied.

.1. Clustering module

In this section, the results for the clustering module are presented.
he technique described in Section 2.3 was applied to the data set
orresponding to the region surrounding Tromsø. This corresponded to
pproximately 70,000 trajectories. In this study, a VRAE was utilized
o cluster the historical AIS trajectories. The results indicated that using
VRAE as opposed to a 𝛽-VRAE resulted in more optimal clusters for

he architecture and data in this study, i.e. 𝜷 = 1. It appeared based on
isual inspection of the clusters of trajectories, that increasing the value
f 𝛽 caused multiple local behavior clusters to merge. This may degrade
he results of the subsequent trajectory prediction, as it is desirable to
iscover behavior clusters that are as specific as possible. It should be
oted that the optimal value of 𝛽 will vary based on the complexity of

he ship traffic in the region of interest.
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Fig. 6. Prediction architecture using a sequence-to-sequence model with attention. The bidirectional stacked encoder is illustrated in yellow, and the stacked decoder in green.
For each prediction in the decoder, the attention mechanism looks at the encoder hidden states and calculates a weighted sum. This is then input to the decoder RNN cell.
3.1.1. Network training
The VRAE utilized in this study was comprised of a stacked, bidi-

rectional GRU encoder with 3 layers, each with a hidden size of 50. A
stacked GRU decoder with 2 layers, and a hidden size of 50 was used.
The dimensionality of the latent space was set to 20 to allow for further
compression of the data. A number of variations of parameters were run
to determine the best performance.

During training, the data set was shuffled and split into training
and validation data sets. The training data accounted for 90% of the
trajectories, and the validation 10%. Fig. 7 illustrates the total loss
of the VRAE on both the training and validation sets during training
for 10 epochs. The results indicate that the model is not overfitting
to the data, as the validation and training losses are highly correlated
for the duration of the training. It appears that the total loss increases
over time, but this effect is due to a technique known as KL-annealing,
where the KL-loss term is introduced linearly over a span of a number of
epochs. In this study, it was introduced over five epochs, as can be seen
in Fig. 8. In this figure, the reconstruction- and KL-loss terms are plotted
individually. KL-annealing allows the model to learn how to reconstruct
the data before enforcing the KL-regularization term. As a result, it
can be seen that the reconstruction loss decreased quickly, whilst
the KL-term increased. Each step of the KL-loss downwards after this
corresponded to an increase in its weighting. The loss terms converged
after this, and it was concluded that the model had converged.

3.1.2. Clustering results
In order to cluster the trajectories, a forward pass of the encoder

was run to generate the latent representations for each trajectory.
The trajectories are then clustered in this space using HDBSCAN. The
implementation in [64] was utilized in this study.

The minimum cluster size in the algorithm, however, is found to be
decisive in the type of clusters discovered. This value was varied, and
found to play a significant role in the outcome of the remainder of the
architecture. When the minimum cluster size was set to 10, over 400
clusters of vessel behavior were discovered. In this case, the algorithm
is able to discover very specific vessel behavior. This is beneficial as
one wishes to discriminate between behavior clusters, and generate
predictions using these clusters. More specific behavior should lead
9

Fig. 7. VRAE loss.

Fig. 8. Reconstruction and KL losses for VRAE.

to better predictions. However, when classifying a 30 min trajectory
segment to one of these clusters in the classification module, the
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Fig. 9. Clusters in latent space of the VRAE. The latent space is illustrated using the
top two principle components of the space, 𝑒1 and 𝑒2. Clusters with similar colors are
not necessarily the same.

network will have great difficulty in correctly classifying the segment,
and the performance of the overall algorithm will be degraded. This is
due to the existence of many similar clusters, such that the algorithm is
unable to conduct an accurate classification. Furthermore, such small
clusters will not have sufficient data to train a prediction model.

Increasing the minimum cluster size causes clusters of local behavior
to merge into larger clusters, where the behavior within a given cluster
varies to a greater degree. Discovering smaller clusters allows the
model to discover a greater number of ship speed clusters within a
given route for instance. Merging these clusters, however, allows the
model to classify a given trajectory segment with a higher degree of
accuracy, contributing to the overall success of the algorithm. As a
result, a minimum cluster size of 100 was set based on trials for various
minimum cluster sizes.

However, clusters of only 100 trajectories may prove to be in-
sufficient to train a prediction model in some cases. Further work
should be conducted on the required size of a cluster to effectively
train a model. Furthermore, by expanding the data set input to the
framework, the size of clusters should grow, due to the increased
occurrence of historical ship behavior that belongs to such smaller
clusters. In general, increasing the amount of data utilized will aid
the deep learning architectures outlined in this study. Nonetheless, the
results of this study indicate the potential of the developed method to
facilitate effective predictions. In the case of this study, however, most
clusters were comprised thousands of trajectories which should provide
enough data to train the relevant models. If implemented in a actual
system, the user should also be made aware of models that are trained
on limited data, if such data clusters exist.

In this case, 52 ship behavior clusters were discovered. Fig. 9
illustrates the clustered latent representations, where it appears that
the algorithm had discovered meaningful clusters. Fig. 10 illustrates a
subset of the clusters discovered by the module. Each of these clusters
corresponds to a cluster of historical ship behavior. Despite utilizing
clusters of more general behavior, discovering such main local ship be-
havior clusters will aid the performance of the local prediction module,
which, with its architecture, can predict various behavior within these
main clusters.

3.2. Classification module

The classification module was designed with a bidirectional, 5-layer
stacked GRU with 20 hidden units as the encoder. 3 linear layers were
utilized as the classification head, where the first was set to have
one fourth as many neurons as the number of classes (i.e. number of
clusters), the second half as many, and the third as many neurons as the
10

number of classes. The embedding size was set to 10. During training,
Fig. 10. Subset of discovered trajectory clusters with minimum cluster size of 100.

Fig. 11. Classification network loss, where the loss is defined as the cross-entropy loss.

Table 1
Size of data sets.

Training Validation Test

1.127 × 106 1.66 × 105 3.16 × 105

it was found that embedding the ship type led to the model focusing
too much on the ship type, thereby degrading the results. As a result, a
dropout rate of 50% [65] was applied to the embedding layer to prevent
overfitting to the embedding data.

3.2.1. Network training
Prior to training the network, the data set was shuffled and split into

training (70%), validation (10%) and test (20%) sets. Subsequently,
each data set was split into 30 min trajectory segments using a sliding
window technique with a window size of one minute. As a result, all
possible 30 min trajectory segments in the data are used to train the
classifier. The size of the data sets is shown in Table 1.

The results of the training are illustrated in Fig. 11. It appears
that both the training and validation losses continue to decrease until
about 20000 iterations. As a result, it was concluded that the model
had converged at this point. Furthermore, the validation loss is closely
correlated with the training loss. Therefore, it was concluded that the
model was not overfitting to the data.

3.2.2. Classification results
When evaluating the classification performance on the test set, the

classification accuracy was found to be 47%. However, in this study
it is suggested to use the softmax distribution of possible clusters.
Any clusters with a softmax output over 0.1 (i.e. 10% probability)
are output as likely ship behavior clusters. In this manner, the model
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Fig. 12. Softmax probability distribution for selected vessel case, illustrating
uncertainty of cluster assignment.

Fig. 13. Classified ship behavior clusters for selected vessel case. The selected vessel
was classified to the blue, with the red above the softmax threshold of 10%, and the
green above 5%.

Table 2
Classification accuracy and average number of clusters.

Absolute 10% Softmax 5% Softmax

Accuracy 47% 73% 92%
Clusters – 3 5

identifies multiple possible clusters the trajectory segment may belong
to. The softmax distribution for a randomly selected vessel trajectory
segment from the test set is illustrated in Fig. 12. The colors of the bars
correspond to the colors of the trajectory clusters illustrated in Fig. 13.

For the selected vessel in Fig. 12, the model correctly classified the
behavior to cluster 25 (i.e. blue). However, the softmax output also
indicated that the selected vessel may belong to cluster 23 (i.e. red), as
its probability was above 0.1. Furthermore, cluster 24 had a probability
above 0.05, and might have been a possible behavior cluster. All
three clusters share common behavior, and in this case, it appeared
appropriate to investigate multiple possible clusters.

When using a 10% softmax threshold, the classification accuracy
increased to 73% for the test set. On average, the model outputs 3
possible clusters a trajectory segment may belong to. Decreasing the
threshold was also investigated. With a threshold of 5%, the accuracy
rate increased to 92%. In this case, the model outputs an average of 5
possible clusters the trajectory segment may belong to. The results are
summarized in Table 2. For the selected vessel case in Figs. 12 and 13,
the blue and red clusters would be identified for a softmax threshold
of 10%, with the addition of the green cluster for a threshold of 5%.
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Table 3
Size of local behavior model data sets.

Training Validation Test

Model 1 9.23 × 104 2.80 × 104 1.2 × 104

Model 2 1.02 × 104 3.3 × 103 1.3 × 103

Fig. 14. Model 1 training and validation loss.

Overall, it appears that the model was successful in classifying the
trajectory segments in the test set, where the accuracy increased as the
softmax probability threshold was lowered.

3.3. Local behavior module

In the local behavior module, local models for each cluster of ship
behavior are available. In this study, however, it was infeasible to
train 52 neural networks to evaluate the overall performance using
the available resources. In a commercial setting, however, this should
be done. As such, only two models were trained to illustrate the
performance of the method. These correspond to the blue and red
clusters from the example in Section 3.2.2, illustrated in Fig. 13. These
models were chosen as they were above the 10% softmax threshold
used in this study. These models are hereafter referred to as model 1
(i.e. the blue cluster), and model 2 (i.e. the red cluster).

Both models have a bidirectional 2-layer stacked GRU encoder with
20 hidden units, and a 2-layer stacked GRU decoder with 20 hidden
units. Variations of these architectures were evaluated to determine the
architecture with the best performance.

3.3.1. Network training
The data sets for both models were initially reduced to only contain

the trajectories in the respective clusters. Subsequently, each model
data set was shuffled and split into training (70%), validation (10%)
and test (20%) sets. These data sets were again split into 30 min
trajectory segments using a sliding window technique with a window
size of one minute. Source sequences (past 30 min trajectory), and
their corresponding target sequences (future 30 min trajectory) were
extracted in this manner. The sizes of the respective data sets are
summarized in Table 3.

The training and validation losses for model 1 and model 2 are
illustrated in Figs. 14 and 15, respectively. Both models were trained for
1000 epochs. The training and validation losses were both correlated
for the duration the training of the models, indicating that neither
model overfit to the data. The losses continue to decrease for the
duration of the training iterations illustrated in the figures. Once the
decrease was minimal, the models were assumed to have converged.
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Fig. 15. Model 2 training and validation loss.

Fig. 16. Root mean squared error (RMSE) of test set predictions.

3.3.2. Prediction results
The predictive performance of the models was evaluated on their

respective test sets. The results for each model are presented in Fig. 16.
The figure illustrates the root mean squared error (RMSE) of the
predicted position as a function of the prediction horizon. The results
indicate that model 2 has better performance, with a mean squared
error of 436 m for a prediction horizon of 30 min, whilst model 1 has a
mean squared error of 576 m. This may be due to model 1 being trained
on a greater number of trajectories. The cluster for model 1 was much
larger than for model 2. As a result, there will be a greater degree of
variation in the data, and the model is not as effective in capturing the
variation. In model 2, the data likely has less variation, and, therefore,
fits well to the data.

Fig. 17 illustrates the prediction results for the selected vessel case
in Section 3.2.2. Here, two predictions were conducted using the two
models identified by the classification module. The results indicate
the sequence-to-sequence model with attention can provide successful
results, even with highly nonlinear input trajectories. It appears that the
attention mechanism allows the models to focus on the most relevant
aspects of the past trajectory. Model 2, however, appears to have better
performance than model 1. Model 1 should have better performance,
as the test trajectory belongs to the cluster for model 1. Nonetheless, in
this case it appears that the model with the second highest probability
has the best performance. This indicates that incorrectly classifying
the selected vessel may not result in a significant degradation in the
prediction results. As such, many of the incorrectly classified trajectory
segments may be classified to a cluster of similar behavior.
12
Fig. 17. Predictions for selected vessel case.

3.4. Framework performance

In this section, the performance of the overall framework is evalu-
ated relative to a baseline model. The most relevant work for compar-
ison is arguably that presented in [40], where sequence-to-sequence
RNNs were utilized to predict ship trajectories using historical AIS
data. Forti et al. [40] showed the superior performance of using
sequence-to-sequence models compared to an Ornstein–Uhlenbeck
stochastic process applied in similar studies.

Seeing as sequence-to-sequence models provide the basis for many
of the functions in this framework, it was concluded that it would
provide an ideal baseline for comparison. The framework in this study
leverages the ability to identify clusters of specific historical ship
behavior, upon which local behavior models can be trained to facilitate
enhanced predictions. To support this argument, such local models
facilitated via the framework in this study are compared to global
models that are trained on all available data in the region.

The global model is comprised of a sequence-to-sequence model,
as in [40], and is trained on all trajectories in the region. By using
the framework in this study, a local model is also trained on the data
in a specific cluster using the same sequence-to-sequence architecture.
To evaluate the performance, the models were applied to the data in
cluster 25 in Section 3.2.2.

Fig. 18 illustrates the RMSE of the predicted position by applying
various models. The dashed orange line indicates the results from train-
ing a global model on all trajectories in the region, and the results of the
local model via the dashed green line. It is evident that utilizing local
models via the outlined framework in this study results in enhanced
predictive performance compared to the baseline sequence-to-sequence
model, i.e. [40].

Furthermore, the local behavior models in this study apply an
attention mechanism to enhance the predictions. The effect of this
mechanism was, therefore, also investigated. The solid orange line
illustrates the results of a global model with attention applied to the
same cluster, where it is evident that the attention mechanism improves
the predictive performance. Similarly, a local model with attention has
superior performance, as indicated by the solid green line. The local
model with attention corresponds to the technique suggested in this
study, where the results indicate that it is capable of achieving the
most accurate results. Seeing as the framework is designed to support
proactive collision avoidance actions, the model suggested in this study
should best support this goal.

4. Conclusion and further work

Limited work has been conducted on utilizing deep learning to
enhance the safety of maritime transportation systems. One area of
interest is in aiding maritime situation awareness via proactive collision
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Fig. 18. Comparison of sequence-to-sequence model performance.

avoidance. To facilitate this, global scale trajectory predictions, i.e. or-
der 5–30 min, should be conducted. This study suggests an approach to
this issue via a deep learning framework for regional trajectory predic-
tion. Using such an architecture, the future trajectory of a vessel can
be predicted in under a second. The framework investigates utilizing
modern deep learning architectures to facilitate a decomposition of
regional ship behavior into local models. Utilizing historical AIS data,
the framework is successful in clustering historical ship behavior using
a variational recurrent autoencoder. The results also indicate that the
increased complexity of the model allows it to cluster vessel behavior
more successfully.

Utilizing this historical knowledge, the past behavior of a selected
vessel is classified to the most likely clusters of historical behavior.
Predictions corresponding to the behavior in each cluster are then
output to the user. The local prediction models are comprised of
sequence-to-sequence models with attention. The results indicate that
the attention mechanism assists the prediction by allowing the model to
focus on the most relevant parts of the past trajectory. By decomposing
the behavior into local models, greater accuracy can be achieved than
training a similar prediction model on the data in all clusters. Overall,
the suggested framework is successful in predicting trajectories on a
global scale.

Further work will include providing further uncertainty estimation
via Bayesian dropout techniques. In this manner, a distribution is pre-
dicted for each time step. The classification module will also be further
improved to enhance the classification accuracy. Weather parameters
will likely aid the predictions, as ships will display various behavior
based on the prevailing weather conditions. This will also be addressed
in future work. Finally, methods to automatically tune hyperparameters
in the networks will be investigated.
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