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Food allergy is a collective term for several immune-mediated responses to food. IgE-
mediated food allergy is the best-known subtype. The patients present with a marked
diversity of clinical profiles including symptomatic manifestations, threshold reactivity and
reaction kinetics. In-vitro predictors of these clinical phenotypes are evasive and
considered as knowledge gaps in food allergy diagnosis and risk management. Peanut
allergy is a relevant disease model where pioneer discoveries were made in diagnosis,
immunotherapy and prevention. This review provides an overview on the immune basis for
phenotype variations in peanut-allergic individuals, in the light of future patient stratification
along emerging omic-areas. Beyond specific IgE-signatures and basophil reactivity
profiles with established correlation to clinical outcome, allergenomics, mass
spectrometric resolution of peripheral allergen tracing, might be a fundamental
approach to understand disease pathophysiology underlying biomarker discovery.
Deep immune phenotyping is thought to reveal differential cell responses but also, gene
expression and gene methylation profiles (eg, peanut severity genes) are promising areas
for biomarker research. Finally, the study of microbiome-host interactions with a focus on
the immune system modulation might hold the key to understand tissue-specific
responses and symptoms. The immune mechanism underlying acute food-allergic
org January 2021 | Volume 11 | Article 5943501
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events remains elusive until today. Deciphering this immunological response shall enable
to identify novel biomarker for stratification of patients into reaction endotypes. The
availability of powerful multi-omics technologies, together with integrated data analysis,
network-based approaches and unbiased machine learning holds out the prospect of
providing clinically useful biomarkers or biomarker signatures being predictive for
reaction phenotypes.
Keywords: endotypes, food allergy, peanut allergy, phenotypes, predictive biomarker
TYPE-I HYPERSENSITIVITY TO FOOD

Food allergies (FA) are considered as an important public health
concern (1, 2). FA can be classified into IgE-mediated, non-IgE-
mediated and mixed types (3). This review focuses on IgE-
mediated food allergy which is the best-known type among
those food-adverse events.

Epidemiology
There is a general perception that FA prevalence increased
during the last twenty years. FA prevalence has been estimated
up to 8% in the pediatric and 11% in the adult population based
on a number of surveys (2, 4, 5). Beyond the sheer patient
numbers, FA entails an important socioeconomic impact,
causing fear of accidental exposure in patients and their
families, reduced quality of life and relevant healthcare costs
nearly double the amount compared to non-allergic individuals
(6, 7).

Pathophysiological Basis
IgE-mediated FA is considered as an epithelial barrier disease,
resulting from food protein uptake via disrupted barriers
(gastrointestinal tract, skin, lung) which in turn, leads to an
immune dysregulation, and finally, food proteins being
recognized as hostile invaders in a T helper type 2 (Th2)-
skewed immune response (3, 8). During sensitization,
epithelium-derived danger signals and pro-inflammatory
cytokines, including interleukin 25 (IL-25) and IL-33,
orchestrate the activation and expansion of type 2 innate
lymphoid cells (ILC2) and dendritic cells (DCs) (9–11). Those
activated DCs promote again the differentiation of naive T cells
into a Th2 phenotype cells. Th2 cells and ILC2 foster the
recruitment of basophils and eosinophils into the tissue
beneath the epithelium (mucosa, lamina propria) through the
secretion of pro-inflammatory cytokines (eg, IL-4, IL-5, IL-13)
(3). Th9 cells, another effector T helper subset maturating under
the influence of IL-4 and transforming growth factor beta (TGF-
b), release IL-9, a cytokine which promotes the tissue
accumulation of mast cells. B cell class switching to plasma
cells producing food antigen-specific IgE is also fostered through
IL-4 secretion by Th2 cells. Specific IgE-antibodies bind to the
high-affinity IgE receptor (FceRI) on effector cells, basophil
granulocytes and mast cells (11–14). In the elicitation phase,
food antigens undergo molecular interactions with cell-bound
IgE-antibodies via specific epitopes, leading to cell activation and
mediator release via crosslinking of FceRI-bound IgE.
org 2
Subsequently released inflammatory mediators, including
histamine, prostaglandins, tryptase, and platelet-activating
factor (PAF), contribute to the clinical symptoms.

Clinical Features
Food-allergic patients present with a marked diversity by
reactivity profiles (15). Clinical symptoms range from mild to
severe (severity score) as does eliciting doses (sensitivity score)
and time to reaction onset are highly variable (16, 17). The
estimated dose likely to trigger reactions in 10% of a study
population (ED10) vary also for specific foods (eg, peanut 11 mg;
shrimp 12.8 g protein) (18). The organ involvement may relate to
the skin and/or gastrointestinal tract, but also respiratory/
cardiovascular symptoms in the case of potentially life-
threatening anaphylaxis. Although most patients suffer from
stereotypic symptoms, threshold doses depend on multiple
factors under real-life conditions (atopic comorbidities;
cofactors eg, exercise, alcohol, nonsteroidal anti-inflammatory
drugs) (19–21). Disease prognosis and progression may also vary
depending on the food allergy, such as in milk or egg allergy,
which is commonly outgrown, compared to peanut allergy,
which often persists lifelong (22).

Food Allergens
A large variety of foods can cause allergic reactions and
constantly, new allergenic foods are reported (23–25). The most
allergenic foods include plant (peanuts, tree nuts, wheat, soy) and
animal sources (milk, eggs, fish, shellfish) (13). Food allergens, the
molecular drivers of allergen-specific Th2-immune responses,
share molecular properties and belong to few structural protein
superfamilies (26). Commonly, food allergens involved in food
anaphylaxis exhibit a higher stability from digestion/processing
as compared to low-allergenic homologs (27–29). Intrinsic
characteristics contributing to Th2-immune modulation, such
as the house dust mite allergen Der p 2 acting with auto-adjuvant
properties via Toll-like receptor (TLR)4 signaling, are less known
for food allergens (30). In-vitro models suggest that matrix effects
might contribute to facilitate cross-barrier allergen uptake (eg,
peanut lipids inhibiting immune-suppressive IL-10) (31). Class I
food allergens are primary food allergens (eg, peanut Ara h 2).
The “pollen-fruit syndrome” is mediated by specific IgE to
pathogenesis-related protein-10 (PR-10; eg, birch Bet v 1) and/
or profilins (eg, birch Bet v 2) as well as antibody cross-
recognition of homolog class II food allergens (eg, PR-10:
peanut Ara h 8). Those patients experience usually mild FA
symptoms (32).
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Food Allergy Diagnosis
Usually a detailed anamnesis and IgE-tests are combined (33). In
single cases, oral food challenges (OFC) are necessary, time-
consuming procedures entailing a significant health risk (34). IgE
(skin prick test, SPT; serum specific IgE/sIgE) is an important
biomarker. Though, there is a clear trend to overdiagnosing FA
as specificity of the testing is low at diagnostic cut-offs (skin
wheal size diameter 3 mm, serum sIgE 0.1 kUA/L). Combining
medical data, SPT and sIgE (extract, component-resolved sIgE)
increase the diagnosis performance and might approximate OFC
outcome (26, 35–37). There is the general notion that multiple
IgE epitope recognition patterns correlate to FA severity and
unfavorable disease progression (38, 39). Other serological
parameters (e.g., total IgE, food-specific IgG4, sIgE/IgG4) are
reported as discordant data. Functional assays using living cells,
basophils (blood-/cell line-based) or mast cells (cell lines) feature
an important added value in FA-diagnosis, although not yet
being implemented into routine (29). Serum mediator levels,
including histamine, tryptase and prostaglandin D2 metabolite
levels, provided less consistent data like in venom- and drug-
induced anaphylaxis (40). Overall, usable, reliable and affordable
in-vitro predictors of clinical presentation (eg, severity,
sensitivity) and risk stratification are evasive and considered
still as important knowledge gaps (41). Such predictors may vary
depending on the eliciting food, and therefore need to be
evaluated for each food allergy.
EMERGING OMIC-AREAS FOR CLINICAL
ENDOTYPING

Peanut allergy (PA) is the focus of many research studies, due to
its high prevalence, spectrum of clinical phenotypes, severity and
lifelong duration, therefore it will be used as an example
throughout. Here, we will give an overview of the immune basis
for phenotype variations. We span from non-omics to omic-
areas, with a focus on studies using cutting edge-technologies and
studies based on patient reactivity stratification. A complete
overview on biomarker approaches in peanut allergy can be
found in Table 1.

Molecular Endotyping
The deep analysis of allergens by proteomic technologies
(allergenomics), based on mass spectrometry (MS), pushed the
boarders of knowledge around allergenic peanut proteins
including basic aspects of primary structures and post-
translational modifications (95–97).

Non-Omics
A total of 18 unique peanut iso/allergen are reported (with Ara h 4
now being considered an isoallergen of Ara h 3) (98). Serum IgE-
reactivity to seed storage proteins, including 2S albumins (Ara h 2,
Ara h 6) and cupins (Ara h 1, Ara h 3) relates to primary PA.
Cross-reactivity markers are the PR-10 protein Ara h 8 (birch
allergy) and the non-specific lipid transfer proteins (nsLTP) Ara h
9 (peach-related fruit allergy). The diagnostic relevance of
Frontiers in Immunology | www.frontiersin.org 3
molecular vs extract-based IgE-signatures seems to vary for
patient groups from different geographic origins (42, 99–101).
However, a recent meta-analysis summarized the overall high
diagnostic accuracy of sIgE to Ara h 2 in terms of sensitivity and
specificity (95% CI 75.6, 88.9 and 95% CI 77.4, 88.4, respectively)
at a cut-off of 0.35 kUA/L (37). Patients are often IgE-positive
for both Ara h 2 and Ara h 6. Recently, Ara h 2 was described
as the immunodominant molecule among the two allergens,
with higher capacity to activate in-vitro effector cells (basophils,
mast cells), pointing to a greater role of Ara h 2 in both disease
pathophysiology and as diagnostic severity marker (Figure 1) (43).
Even allergen peptides can be beneficial. Indeed, systematic
peptide-based scanning approaches (epitope mapping) revealed
that increasing IgE-epitope diversity correlated with a more severe
phenotype (38, 67). In-vitro basophil activation tests (BAT), using
basophils from peanut-allergic patients challenged with peanut
protein, revealed dose-dependent activation (%-CD63+ basophils).
High performance to identify clinical PA (98.7% specificity, 74.7%
sensitivity) and high precision to identify individuals with severe
outcome (97% specificity, 100% sensitivity) has been recently
reported for large UK study populations (Table 1) (65). Here,
the best prediction of low threshold reactivity was determined in a
multivariate statistical tool combining various parameters, SPT,
sIgE (Ara h 2, peanut extract), peanut extract-sIgG4/IgE quotient
and BAT. In a similar integrated approach, a predictive algorithm
based on the CD63 ratio (BAT with peanut protein) and clinical
parameters (eg, exercise-induced asthma), had been proposed to
predict severe reactions (66).

Allergenomics
As an extension to allergenomics as an analysis of the allergen
repertoire of an allergen source, a new research axis applied
proteomic approaches to study in-vitro degradation patterns of
peanut digests by simulating gastric or small intestine milieus
(102, 103). The pronounced digestion stability of Ara h 2, 6, and
specific peptides was linked to IgE-recognition and suggested as
triggers of the immune response in-vivo. Those peptide
structures might be novel candidates for serological assays, be
it as antigens in immunoassays or as references for peptide
identification in patient blood. In fact, upon ingestion, peanut
allergens are degraded, followed by absorption across biological
barriers and distribution via the bloodstream (20, 60, 104–106).
The analysis of allergen residues in human samples after peanut
ingestion has been recognized as an important challenge (60, 61).
Recent antibody-based studies, combined with removal of
interfering endogenous immunoglobulins, succeeded to detect
peanut allergens in a reliable fashion (62). Proteomic analyses of
such peripheral allergen peptides, together with MS-based
analyses of serological metabolomics signatures (68), might be
promising avenues toward molecular endotyping of peanut-
allergic patients, and toward marker discovery for phenotype
prediction (Figure 1).

Immunological Endotyping
Non-Omics
Deep immunological endotyping, including aspects of the
genome, epigenome, transcriptome and proteome provided
January 2021 | Volume 11 | Article 594350
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TABLE 1 | Summary of the main approaches (non-/omics) toward phenotypic biomarkers in peanut allergy based on molecular, immunological and commensal endotyping.

Method Biomarker research area Interpretation in peanut allergy C E* References**

Molecular endotyping
Non-omics
Immunoassays Serum IgE to Ara h 2, Ara h 6 (less

Ara h 1 and Ara h 3)
Primary peanut allergy; often, presence of sIgE and high titers (cut-off titers
unequivocal) along with severity

# (37, 38, 42–
47)

Serum IgE to Ara h 10, Ara h 11, Ara
h 14, Ara h 15

Primary peanut allergy; often, presence of sIgE related to severity # (48)

Serum IgE to Ara h 8 Primary sensitization to pollen (eg, birch, alder); mostly, mild reactions to peanut # (49–52)
Serum IgE to Ara h 9 Primary sensitization to nsLTP (eg, peach Pru p 3); severe reactions to peanut in Ara h

1-7 negative patients
# (53–55)

Serum IgE to peanut epitopes High diversity of sequential IgE-epitopes (Ara h 1, Ara h 2, Ara h 3) along with more
severity

# (38, 56–59)

Serum peanut peptides upon in-vivo
ingestion

Digestion-stable Ara h 6-peptides as candidate markers for in-vivo reactivity and
serological proteomics

(60–63)

Serum IgE-bound soluble FcϵRI Soluble FcϵRI levels together with correlating IgE-titer as putative markers for in-vivo
reactivity and severity

(64)

Integrated
algorithms

Serum IgE to Ara h 2 and peanut
extract, BAT together with clinical
variables (eg, skin test, asthma)

Prediction of risk to experience severe events (symptoms scoring, threshold reactivity) # (65, 66)

Allergenomics
Proteomics Simulated digest-derived peanut

peptides
Digestion-stable Ara h 2/Ara h 6-peptides as candidate markers for in-vivo reactivity
and serological assays

(38, 67)

Serum metabolomic signatures Metabolites (eg, from dysreguated tryptophan metabolism) as candidate markers for
phenotypic severity

(68)

Immunological endotyping
Non-omics
Immunoassays PBMC peanut-stimulated CD4+ T cells Increased Th2 cytokine expression (IL-4, IL-5, IL-9, IL-13) correlating with elevated

peanut-specific IgE-titers and low threshold reactivity
# (69) ((70))

Mass
cytometry

Blood peanut-stimulated CD45+ cells,
basophils (CD63, FceRI, CD23)

Basophil-platelet complexes (CD61, CD141, CD42b) with potential to contributing to
severity and PAF-related anaphylaxis

(71) ((72, 73))

PBMC un-/peanut-stimulated CD45+

cells, 11 cell types within CD4 T-cells,
CD8 T-cells, B-cells, myeloid cells

Increased prevalence of activated B cells (CD19hiHLDRhi) and peanut-specific CD4 T
cells (CD40L+CD69+, memory CD45RA-CCR7+/-) correlating with in-vivo reactivity

(74)

Flow cytometry Blood peanut-/anti-IgE–induced
CD63high basophils (%)

Reduced basophil response and FcϵR-expression, together with low sIgE, as putative
markers for severity

(52) ((75–77)
(78, 79))

PBMC peanut-stimulated CD154+ T
cells

Increased cytokine-positive CD4+ T cell counts (CD154+CD4+IL-4+ or IL-13+)
correlating with increased sIgE-titers and clinical threshold reactivity

# (69, 70, 80)

Increase of CD4+ T cell homing populations (CCR4: skin, lung; CCR6: mucosa;
CXCR5: B cell follicle) correlating with clinical reactivity

# (69, 81), ((82,
83))

Increase of IL-2-dependent CD154+ Treg cells with regulatory
(CD3+CD4+CD25hiCD127lowFoxP3+) and memory markers (CD45RO) correlating with
clinical threshold reactivity

# (69)

Increased coefficient of Teff/Treg (CD25+CD127+/-) correlating with clinical threshold
reactivity

# (70) ((83))

PBMC peanut/peptide-stimulated T
cells

Phenotype Th2 shift (expression gut-homing factor Integrin b7¯, CRTh2) relating to
clinical reactivity

(84)

Multimodal omics
Genomics PBMC-derived peanut-activated

CD154+ Teff/Treg (CD25+CD127+/-)
Increased diversity of the peanut-specific TCRb repertoire (CDR3 sequences) and
enrichment in the Teff compartment, in correlation with low threshold reactivity

# (70)

Salivary DNA-based HLA gene SNPs With the HLA-DQB1 region confirmed as a risk factor for clinical allergy, increased
odds ratios for SNPs in HLA (rs17612852, rs9275596, and rs1612904) correlate with
low reaction severity

# (85) ((86) (87,
88))

Transcriptomics PBMC-derived peanut-activated
CD154+ T cells

Differential gene expression patterns according to clinical phenotypes stratified by
threshold reactivity, pronounced gene expression associated to Th2 and Th17 cells in
individuals with low threshold reactivity

# (69) ((70))

Whole blood cells during food
challenge

Leucocyte compositional changes (naive B cells/CD4+ T cells¯, neutrophils) associated
with severity, upregulated “peanut severity genes” (eg, neutrophil-related function,
leucocyte function) correlating with severity scores

# (89) ((90))

Epigenetics Whole blood CD4+ lymphocytes “Peanut severity CpG” methylation associated with “peanut severity genes” (eg,
immune response, chemotaxis, macroautophagy regulation; moderator genes NFKBIA
and ARG1) and clinical reactivity scores

# (90)

(Continued)
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insights in the immune landscape of PA phenotypes, with
prospect of future multimodal omics, meaning the integration
of heterogeneous data from those sources.

Tordesillas et al. studied the in-vitro activation of
granulocytes (basophils, eosinophils, neutrophils), monocytes,
dendritic cells, T cells, B cells and NK cells in whole blood using
single-cell mass cytometry (71). More B cells and eosinophils but
less neutrophils were found in resting CD45+ cells from peanut-
allergic vs healthy individuals. After stimulation with peanut
protein, the highest response was observed for basophils (CD16,
CD23, CD63), but also monocytes, dendritic cells and
neutrophils became activated, pointing to an emerging role of
these myeloid cells related to clinical PA. Elevated plasma PAF
levels had been associated with increased severity of PA earlier
(72, 73). Basophils were found to form physical complexes with
platelets (CD61, CD141, CD42b) upon peanut activation,
suggesting a novel way of PAF-related anaphylaxis (Figure 1)
(71). Neeland et al. applied mass cytometry to study peripheral
immune signatures associated with clinical PA, using peripheral
blood mononuclear cells (PBMC) from peanut-allergic and controls
(74). Allergic infants distinguished from sensitized infants by
increased prevalence of a B cell cluster (CD19hiHLDRhi). Upon
in-vitro stimulation with peanut protein, increased levels of CD4 T
cells (CD40L+CD69+, memory CD45RA-CCR7+/-) discriminated
peanut-allergic from controls.

Other studies focused on analyzing the T cell compartment in
PA (81, 107–109). Chiang et al. compared peanut-allergic (OFC
positive at <1g cumulative peanut dose), high-threshold (OFC
negative at ≤1g cumulative peanut dose but sIgE to peanut and
clinical PA history), and healthy individuals (69). In-vitro PBMC
stimulation induced a significant increase in peanut-responsive T
cells (CD154+CD4+) and significant cytokine increases (mainly IL-
4, IL-13) in peanut-allergic patients only. Cytokine-positive T cell
counts (CD154+CD4+IL-4+ or IL-13+) correlated with sIgE-titers.
Peanut-allergic patients had higher shares of peanut-activated Th2
cells with homing markers (CCR4: skin, lung; CCR6: mucosa;
Frontiers in Immunology | www.frontiersin.org 5
CXCR5: B cell follicle) as compared to controls. Peanut-
responsive T cells presented with surface marker heterogeneity as
well as enrichment for effector memory T cells (CD45RO) and
regulatory marker expression (CD3+CD4+CD25hiCD127lowFoxP3+,
delayed IL-2-dependent activation). RNA sequencing of peanut-
activated T cells confirmed proinflammatory Th2-polarization with
multicytokine expression. This study pointed to the heterogeneous
nature of the peanut-specific Th2 response in presence of functional
Treg cells. The lack of T cell reactivity (peanut-specific Th2, Treg) in
high-threshold individuals discriminated those from peanut-allergic
individuals. In a similar approach, Ruiter et al. investigated the T cell
response to peanut protein comparing peanut-allergic (OFC
positive at <0.5g cumulative peanut dose) and hyporeactive (OFC
negative at ≤0.5g cumulative peanut dose but clinical PA history)
individuals (70). Compared to hyporeactive patients, stimulated
PBMC from peanut-allergic patients showed a higher CD154+CD4+

T cells response and stimulation index correlating with elevated
peanut-specific CD4+ T cell and complementarity determining
region 3 (CRD3; T cell receptor domain identified by RNA
sequencing) counts. Indeed, CDR3 constitutes the most critical
region responsible for recognizing processed antigens (110, 111).
Some peanut-specific CRD3 (17%) were found exclusively in
CD154+CD4+ T cells from peanut-allergic individuals (70). CRD3
were also more variable in effector T cells (CD25+CD127+) than
Treg cells (CD25++CD127-), suggesting skewing toward a
compartment with expanded effector T cell repertoire in allergic
but not in hyporeactive patients. The ratio of peanut-specific effector
T cell vs Treg discriminated individuals stratified by threshold
doses. The pronounced clinical reactivity of peanut-allergic
patients was concluded to correlate to peanut-specific effector
T cells characteristics (frequency, proportion, reactivity), rather
than a defective Treg response (Figure 1).

Multimodal Omics
Gene sequencing studies provided insights into FA immune
regulation and epithelial barrier function (112, 113). Genome-
TABLE 1 | Continued

Method Biomarker research area Interpretation in peanut allergy C E* References**

Commensal endotyping
Non-omics
Flow cytometry Fecal microbiome Increased IgE-binding to fecal microbes suggesting an anti-commensal Th2 response

contributing to the clinical reactivity and phenotype outcome
(91)

Microbiomics and gut issue typing
Genomics Fecal microbiome Decreased microbial richness associated with PA (92)

Increased alpha-diversity in low responsive individuals (93)
Bacteroidales, especially Bacteroides fragili increased in PA, Clostridium sp increased
in low threshold; high Oscillosiraceae sp, Lachnospiraceae sp, Ruminococcaceae sp,
Frimicutes sp and Bacteroides sp correlating with low threshold reactivity

(92, 93)

Clostridiales abundance decreased in PA, potentially leading to a decrease in
protective ROR-gt+ iTreg cell populations

(91, 92)

Transcriptomics Gut tissue-derived peanut-specific
IgE+ plasma cells

Local class switch resulting in IgE+ B cell counts correlating with serum sIgE-titers; at
the gut microbiome interface, local IgE-reservoir for mast cell FcϵRI-coating and thus,
candidate factors triggering clinical reactivity profiles

(94)
January 2021 | Volum
e 11 |
BAT, basophil activation test; CDR3, complementarity-determining region 3; FceRI, high-affinity IgE receptor; HLA, human leucocyte antigen; nsLTP, non-specific lipid transfer protein;
PBMC, peripheral blood mononuclear cell; sIgE, specific IgE; SNP, single nucleotide polymorphism; TCR, T cell receptor; Teff, effector T cell; Treg, regulatory T cell.
*Clinical evaluation (CE), as defined here by a patient-based study design with participant severity stratification (eg, symptoms, threshold dose); #, results reported in severity stratification
approach. **References in double-brackets, additional background literature based on different study design but supporting the relevance of the respective biomarker/biomarker
approach.
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wide association studies reported on loci correlated to specific FAs
(Table 1) (85–87, 114). Beyond aspects of disease susceptibility,
recent studies focused on genes involved in acute inflammation in
PA patients. Watson et al. analyzed the time-resolved
transcriptome in peripheral blood sampled from peanut-allergic
individuals during OFC (at baseline, 2 h/4 h later), comparing
peanut vs placebo (89). Indeed, specific gene expression changes
were induced by peanut intake. Gene upregulation was commonly
found (1,411/2,168 genes) correlating with evolving peanut-
induced inflammation. In leucocyte cell subsets after
deconvolution, resting macrophages (M0) and neutrophilic
granulocytes increased while naive CD4+ T cells decreased
during OFC. Genes associated with peanut-allergic reactions
were mostly found in a co-expression module with upregulated
genes related to inflammatory processes. Six key driver genes
were identified (3/6 with established role in inflammation)
as modulators of the peanut-reactive co-expression module.
The data-driven approach on genes involved in peanut-allergic
reactions was further developed by Do et al. using transcriptome
analysis during OFC (at baseline, 2 h/4 h later), in combination
Frontiers in Immunology | www.frontiersin.org 6
with baseline epigenomic profiling (90). The participants’ clinical
reactivity was stratified by threshold-weighted severity grades.
More than 300 genes (“peanut severity genes”) had significant
expression changes during OFC and were found to be associated
with reaction severity. Biological processes related to upregulated
peanut severity genes clustered by function, mostly around
neutrophils (activation, degranulation, neutrophil-mediated
immunity). With pronounced reaction severity, neutrophilic
granulocytes increased also in number while naive CD4+ T cells
and naive B cells decreased significantly during the course of
OFC. Most peanut severity genes clustered together by co-
expression. Gene interaction network analysis indicated the
central role of two genes, NFKBIA (NF-kappa-B-inhibitor
alpha, a regulator protein) and ARG1 (arginase, a catabolic
enzyme and immune regulator), on reaction severity. Epigenetic
modification correlating with reaction severity, as measured
by methylation signatures of CpG dinucleotides in CD4+

lymphocytes, was found for more than 200 CpGs (“peanut
severity CpG”). A causal relationship between methylation and
peanut severity genes gene expression was established, pointing
FIGURE 1 | Endotyping of peanut-allergic patients: from selected, established to newly discovered approaches. The association of IgE-signatures (IgG-profiles not
shown/reviewed in text) and basophil reactivity profiles with clinical phenotypes is widely established. Research fields on peripheral allergen tracing, deep immune
typing (eg, T cells), gene expression/modification as well as local gut immune responses and gut microbiome-host interactions represent putative endotyping axes
which require further investigations and finally, systems-level integration in future studies. Incr., increased; PA, peanut allergy.
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further to the relevance of epigenetic modifications in the context
reaction severity.

Commensal Endotyping
The gut represents the largest interface for the interaction
between the human body and food allergens. There is a
constant regulatory interaction between the immune system
and the intestinal microbiome (115). The microbiome might
promote Th2-immunity to food by regulating eosinophils
(frequency, function) in the gut (116).

Non-Omics
More recently, sIgE-binding to commensal bacteria was
discovered in food-allergic children, suggesting structural
similarities between food allergens and microbial structures
(91). Molecular mimicry of the microbiome plays a role in a
number of inflammatory diseases, such as celiac disease.
Here, structures on P. fluorescens, a commensal which is
overrepresented in celiac disease, have been found to mimic
human leukocyte antigen (HLA) locus HLA-DQ2.5- and activate
mucosal T cells, suggesting a pathological dysfunction of the gut
barrier (117). First studies comparing amino-acid sequence
similarities between known food allergens and microbiome
data revealed conserved regions of T-cell immune recognition
on commensal bacteria (118). Carrasco Pro et al. further showed
similarities between human microbiome sequences and
inhalation allergens (119).

Microbiomics and Gut Tissue Typing
The adaptive immune response is influenced by microbial
interactions with secreted IgA (120), together with lower
richness and lower local species diversity (alpha diversity),
accompanied by a dysbiosis of commensal strains (92, 93). A
previous study demonstrated that peanut allergy is marked by
higher Bacteroidales, especially Bacteroides fragilis and reduced
Clostridiales abundance (92). Low threshold reactivity to peanut
has been connected to an increase in Clostridium sp,
Oscillosiraceae sp, Lachnospiraceae sp, Ruminococcaceae sp,
Frimicutes sp, and Bacteroides sp (91–93).

At which gastrointestinal sites immune dysregulation and
allergic sensitization might develop is unexplored. Recently, large
numbers of allergen-specific B cells were described in the gut
(stomach, duodenum) of peanut-allergic patients (94). These
IgE+ cells are rarely found in the blood (121, 122). Gut IgE+B
cells counts were found to correlate with serum IgE-titer
concentrations. Importantly, inter-individual variations in this
local IgE+B but also variable mast cell IgE-loading by different
IgE+B clones might explain differential reaction phenotypes in
peanut-allergic patients’ reservoir (Figure 1). The high number
of IgE+ B cells in the gut combined with increased intestinal
permeability might explain the high sIgE-levels found in fecal
samples of food-allergic patients (123).

These findings give an idea of a new mechanism in which the
microbiome may initiate, trigger and influence allergic reactions.
This in turn may lead to novel ways to stratify patients, due to
their metaproteomic profile, as has been shown for other
inflammatory diseases (124, 125).
Frontiers in Immunology | www.frontiersin.org 7
CONCLUSION: PERSPECTIVE TOWARD
NEW INTEGRATIVE APPROACHES

Deciphering the immunological response to food proteins shall
enable the stratification of patients into reaction endotypes, for
advanced understanding of their phenotypic heterogeneity. The
ambitious but ultimate goal will be to identify clinically useful
predictors for allergic reactions to food, with emphasis on
predicting clinical outcome, severity and threshold dose, upon
allergen exposure in order to adapt avoidance protocols and
symptomatic medication (15, 126). Recent PA-studies
demonstrated the complexity of the immune mechanism, as
investigated during simulated allergen-specific stimulations or
during the course of clinical reactions (71, 74, 89, 90). Several
studies did even compare immune targets in individuals with
variable clinical reactions, based on severity or sensitivity (69, 70,
90). To explain clinical manifestations of reaction phenotypes,
various aspects are considered of fundamental relevance,
including the molecular IgE-signature/-repertoire, the potency/
repertoire of effector cells, the kinetics of allergen degradation/
absorption, allergen-specific T cell reactivity profiles, genes/
methylations and aspects of the gut microbiome including
composition and host interaction (Figure 1). The availability
of multiple omics technologies, proteomics, high-dimensional
mass cytometry, transcriptomics and epigenomics, allowed
identifying promising molecular and immunological targets for
future human studies. Taken individually, each omics-approach
has assets and drawbacks (reviewed by (127, 128) but together
they might unfold their full potential. Unbiased machine-
learning, integrated data analysis of heterogeneous datasets as
well as network-based approaches will be required to establish
algorithms for providing insights in disease pathophysiology and
for inferring biomarkers or biomarker signatures being
predictive for reaction phenotypes (33, 127, 129, 130). Finally,
those insights shall advance the stratification of individuals prior
to selection for oral immunotherapy or early food introduction
for prevention, both pioneer areas research in PA (131, 132).
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