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Abstract

Severe ulcerative colitis (UC) is a potentially life-threatening disease with a potential colo-
rectal cancer (CRC) risk. The aim of this study was to explore the relationship between tran-
scriptomic and genome-wide DNA methylation profiles in a well-stratified, treatment-naive
severe UC patient population in order to define specific epigenetic changes that could be
responsible for the grade of disease severity. Mucosal biopsies from treatment-naive severe
UC patients (n = 8), treatment-naive mild UC (n = 8), and healthy controls (n = 8) underwent
both whole transcriptome RNA-Seq and genome-wide DNA bisulfite- sequencing, and prin-
cipal component analysis (PCA), cell deconvolutions and diverse statistical methods were
applied to obtain a dataset of significantly differentially expressed genes (DEGs) with corre-
lation to DNA methylation for severe UC. DNA hypo-methylation correlated with approxi-
mately 80% of all DEGs in severe UC when compared to mild UC. Enriched pathways of
annotated hypo-methylated genes revealed neutrophil degranulation, and immuno-regula-
tory interactions of the lymphoid system. Specifically, hypo-methylated anti-inflammatory
genes found for severe UC were IL10, SIGLEC5, CD86, CLMP and members of inflamma-
somes NLRP3 and NLRC4. Hypo-methylation of anti-inflammatory genes during severe UC
implies an interplay between the epithelium and lamina propria in order to mitigate inflamma-
tion in the gut. The specifically DNA hypo-methylated genes found for severe UC can poten-
tially be useful biomarkers for determining disease severity and in the development of new
targeted treatment strategies for severe UC patients.

Introduction

Ulcerative colitis (UC) is an inflammatory disorder that affects the mucosa and submucosa of
the colon and rectum and is a chronic disease with a relapsing course [1]. Disease severity is
wide ranging with most UC patients manifesting a mild to moderate disease activity [2, 3].
However, between 15-30% of UC patients will experience at least one incident of acute severe
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colitis during the disease course, requiring hospitalization for immediate medical treatment [2,
4, 5]. Patients whose inflammation is more severe and more extensive are more likely to
develop CRC [6]. In cases where medical therapy fails, colectomy is considered [2-5, 7]. The
underlying causes of UC are still not completely understood. It has been suggested that UC is
the result of a dysregulated immune response to environmental factors and commensal patho-
gens in a genetically predisposed host [8, 9]. Therefore, epigenetic mechanisms, such as DNA
methylation have been implied to play a key role in disease development of UC [10-13]. Meth-
ylation of cytosine groups in DNA molecules can change the structure and interactions of a
DNA sequence without changing the sequence [14]. In mammals, methylation primarily
occurs in CpG dinucleotides and when occurring in CpG rich areas of promoters is linked to
lasting stable repression of gene expression [15].

Epigenetic modifications, such as DNA hyper-methylation are believed to have a role in the
immune dysfunction associated with IBD [12, 13]. However, less attention has been devoted to
the role of DNA hypo-methylation for UC which represents one of the major DNA methylation
states that refers to a relative decrease from an ordinary methylation level. UC by itself might
induce hypo-methylation of DNA and a decrease in DNA methylation can have an impact on
the predisposition to pathological states and UC development. Global DNA hypo-methylation
has been suggested to contribute to neoplastic transformation which suggest that DNA hypo-
methylation plays a previously unappreciated role in intestinal adenoma initiation [16].

Recently, whole transcriptomic and genome-wide DNA methylation profiles for treatment-
naive UC have been established for mild and moderate disease [17, 18]. This study focuses on
the role of DNA hypo-methylation in a severe UC phenotype in comparison to a mild UC phe-
notype with the aim to identify DNA hypo-methylation patterns that might correlate with dis-
ease severity. This attempt makes it possible to identify biomarker groups that can help
determine new potential personalized treatment targets for patients with severe UC and might
improve the clinical outcome for this patient group.

Materials and methods
Patient material

Twenty-four mucosal biopsies were collected with a standardized sampling method from three
patient groups, newly diagnosed treatment-naive UC patients with severe disease activity

(n = 8), newly diagnosed treatment-naive UC patients with mild disease activity (n = 8), and
normal control patients (n = 8). The biopsies were taken from the recto-sigmoid part of the
colon. Subjects which underwent cancer screening, and showed normal colonoscopy and nor-
mal colonic histological examination, served as controls. Diagnosis of UC disease activity was
based on established clinical, endoscopic and histological criteria as defined by the ECCO
guidelines [19]. The inflammation grade was evaluated during colonoscopy using the UC dis-
ease activity index (UCDAI) [20]. Control biopsies showed normal colonoscopy, normal colon
histology and immunohistochemistry, with a clinical and an endoscopic score of 0. TNF-o.
mRNA expression was detected by quantitative real-time polymerase chain reaction (qQPCR)
[21]. All patient characteristics are depicted in Table 1. The samples were taken from an estab-
lished Biobank approved by the Norwegian Board of Health. The study was approved by the
Regional Ethics Committee of North Norway and the Norwegian Social Science Data Services
(REK Nord 2012/1349).

DNA and RNA isolation

Genomic DNA and total RNA were isolated with the Allprep DNA/RNA Mini Kit from Qia-
gen (Cat no: 80204) and the QIAcube instrument (QIAGEN, Hilden, Germany), according to
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Table 1. Patients characteristics.

Characteristics Control (n=8)
Male/Female 5/3

Age mean + SD 54.1 +22.3
TNEF-o Level £ SD 4246 + 1973
Endo Score mean + SD 0

Clinical Score + SD 0

UC mild (n=8)
6/2

39.6 £ 15.2
8400 * 3280
1.75 £ 0.46
7.75%+ 1.48

UC severe (n=8)
6/2

45.1+24.4
31350 + 26916
2.38 £0.52

9.75 + 2.12

SD, standard deviation; TNF, tumour necrosis factor

https://doi.org/10.1371/journal.pone.0248905.t001

the manufacturer’s instructions. The quantity and quality of both DNA and RNA were
assessed with Qubit 3 and Nanodrop One (Thermo Fisher Scientific, Wilmington, Delaware,
USA), respectively. RNA integrity was evaluated with the Experion Automated Electrophoresis
System (Bio-Rad, Hercules, CA, USA) and the RNA StdSens Analysis Kit (Bio-Rad, cat no:
700-7103), according to the manufacturer’s protocol. All RNA samples used for this analysis
had a RIN value between 8.0-10.0. Both DNA and RNA were kept at -70°C until further use.

Quantitative polymerase chain reaction (QPCR)

Quantitative polymerase chain reaction (QPCR) were used to measure TNF-o mRNA levels in
all biopsies. RNA quantity was assessed with NanoVue Plus (GE Healthcare, UK). cDNA syn-
thesis was performed with QuantiTect Reverse Transcription Kit (Qiagen, cat no: 205314),
and the QuantiNova Probe PCR Kit (Qiagen, cat no: 208256). CFX Connect Real Time PCR
Detection System (Bio-Rad, Hercules, CA, USA) was used for detection. The results were mea-
sured in copies/ug. Tissue samples with values <7000 copies/pg are considered non-inflamed,
while tissue samples with >7000 copies/pg are considered inflamed [21].

Library preparation and next generation sequencing

DNA libraries were prepared with the SeqCap Epi CpGiant Enrichment Kit (Roche, Switzer-
land). DNA was bisulfite converted using the EZ DNA Methylation-lightning Kit (Zymo
Research, USA, cat no: D5030) prior to the hybridization step and according to the manufac-
turer’s instructions. The amount of input material was 1060 ng of genomic DNA per sample.
DNA libraries quality were assessed using the Bioanalyzer 2100, and the Agilent DNA 1000 kit
(cat no: 5067-1504, Agilent Technologies, Santa Clara, USA), according to the manufacturer’s
instructions. DNA libraries generated fragments with an average size of 322 bp. DNA libraries
were diluted to 2 nM prior to sequencing. Whole transcriptome libraries were prepared with
the TruSeq Stranded Total RNA LT Sample Prep Kit from Illumina (cat no: RS-122-2203).
The amount of input material was 1ug of total RNA. The Bioanalyzer 2100 and the Agilent
DNA 1000 kit (cat no: 5067-1504, Agilent Technologies, Santa Clara, USA) were used to assess
the quality of the RNA libraries. RNA libraries generated fragments with an average size of 301
bp, libraries were normalized to 10 nM and diluted to 4 nM prior to sequencing. Both DNA
and RNA libraries were sequenced on the NextSeq 550 instrument, using a high output flow
cell 150 cycles (cat no: FC-404-2002, Illumina, USA) and according to the manufacturer’s
instruction. The libraries were sequenced using paired-end mode.

Data analysis

Base calling, quality scoring and quality check were performed as a first step including quality
check on the on-board computer of the NextSeq 550. The data analysis was carried out in the
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Bioconductor R framework (www.bioconductor.org). STAR-2.5.2b (https://github.com/
alexdobin/STAR) was used to align raw Illumina reads to UCSC genome browser
GRCH38p.11 (https://www.ncbi.nlm.nih.gov/grc/human/data). Htseq-count was used for
generating the raw gene count matrix [22]. DESeq2 was used to Vst-normalize the gene count
matrix [23], and compare severe UC vs mild UC in R (3.5.3) (https://doi.org/10.18129/B9.
bioc.DESeq) [24]. Differentially expressed genes (DEGs) between severe UC vs mild UC tran-
scripts were filtered with a read count > 30 and a corrected p < 0.05. P-values were corrected
for multiple testing using the method of Benjamini and Hochberg [25].

Pathway enrichment was performed using ReactomePA bioconductor packages hypergeo-
metric model (http://bioconductor.org/packages/release/bioc/html/ReactomePA.html). Reac-
tomePA hypergeometric model assesses whether the number of selected genes associated with
a reactome pathway is significantly larger than expected. P-values were corrected for multiple
testing using the method of Benjamini and Hochberg [25]. Principal component analysis
(PCA) of the transcriptome data was performed using the 1000 most variable genes [26].
Genes associated with the risk of IBD were downloaded from the genome-wide association
studies (GWAS) catalogue, using the search term IBD (www.ebi.ac.uk/gwas) [27].

For DNA methylation analyses, the Bismark Bisulfite Mapper v0.16.0 (www.bioinformatics.
bbsrc.ac.uk/projects/bismark/) was used to align reads to the same aforementioned genome
build and calculate methylated and un-methylated DNA positional count matrices. Relative
methylation is expressed as a number between 0-1 where 0 means 0% of C’s are methylated at
that position and 1 means 100% or all C’s are methylated. The global methylation analysis
mapped included more than 9 million cytosine sites genome- wide. In order to improve inter-
pretation of the dataset, further analysis was restricted to genomic regions within the promoter
regions of severe UC compared to mild UC DEGs. Significant differential methylation patterns
from above DEGs were found using the globalTest function of the BiSeq Bioconductor pack-
age (https://www.bioconductor.org/packages/release/bioc/html/BiSeq.html). Only promoters
with a global test p value less than 0.05 where kept. The promoter region was defined as 2000
bp upstream and 200 bp downstream of the transcription start site (TSS). Note that the same
patients were used to generate both the methylation and the gene expression data. We could
therefore correlate the average promoter relative methylation to the corresponding gene
expression. Those promoter/gene pairs with correlations less than -0.6 were kept. A negative
correlation occurs when methylation is high, and expression is low or vice versa. Global rela-
tive methylation patterns were analysed by principal component analysis (PCA).

Cell populations were estimated by absolute cell deconvolution using the RNA-Seq data.
Samples raw counts per million were submitted to the absolute procedure of Monaco. This is a
procedure specifically developed for deconvolution of human immune cell types from RNAseq
data. Results were merged for T-cells, neutrophils, monocytes, and B-cell types to obtain four
main types of immune cell populations [28]. The epithelial and stromal cell fractions were sub-
sequently estimated based on the epithelial cell markers, epithelial cell adhesion molecule
(EPCAM), cadherin 17 (CDH17), cadherin 1 (CDH1) and cadherin 18 (CDH18), and the stro-
mal cell markers, endoglin (ENG), thy-1 cell surface antigen (THY1), actin alpha 2, smooth
muscle (ACTA2) and collagen type IT alpha 1 chain (COL2A1). Cell populations estimates
were compared using ANOVA and Tukey’s range test [29].

Results and discussion

In this study an integrative epigenome data set, combining genome-wide methylation data
and whole-transcriptome data was established in order to gain insight into the molecular
mechanisms of severe UC and to explore the epigenetic variation induced by severe
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Fig 1. Principal component analysis (PCA). (A) PCA of gene expression data of the thousand most variable genes (transPCA). Unsupervised PCA analysis presenting the
difference between severe UC (red, n = 8), mild UC (orange, n = 8) and control (green, n = 8). The first two components explain 51% and 13.5% of the variability in the
gene expression data. (B) PCA depicting the global methylation (methPCA) of relative methylation counts (0-100%) for over 9 million cytosine positions including
normal (green, n = 8), treatment-naive mild UC (orange, n = 8) and severe UC (red, n = 8) patient tissue samples. The first two components explain 33% and 11% of the

variability in the methylation data.
https://doi.org/10.1371/journal.pone.0248905.g001

inflammation of the colon. The chosen experimental design used in this study was to compare
joined transcriptomic and DNA methylation data from each individual patient. This allows for
rigorous analysis of the transcriptomic and DNA methylation status of UC patients irrespec-
tive of inter-individual differences in environmental or genetic background. In addition, the
use of a thoroughly stratified patient group representing only treatment-naive patients with
severe UC for DNA methylation analysis offered a unique opportunity to investigate the DNA
methylation state prior to prescription of any medication (Table 1). This is of importance,
since UC medications such as immunosuppressive drugs have been shown to have short- and
long-term side effects on immune response and can change DNA methylation status [30-33].
Genome-wide DNA methylation in treatment-naive mild and moderate ulcerative colitis has
been reported previously [18, 34]. In this study, we report specific DNA methylation patterns
found for treatment-naive severe UC.

Initial principal component analysis (PCA) revealed a clear separation of severe and mild
UC patient phenotypes on both, the transcriptomic- and DNA methylation level (Fig 1). To
prevent confusion, the different PCAs discussed in this study are designated transPCA repre-
senting transcriptomic data, and methPCA representing DNA methylation data. TransPCA of
top thousand most variable differentially expressed genes resulted in a separation of severe and
mild UC and control samples along the first principal component (PC1) with 50.6% explained
variance, and 14% explained variance along the second principal component (PC2). A com-
plete list of all DEGs is depicted in S1 Table. Differentially expressed IBD susceptibility genes
(n =47) are listed in S2 Table. Two of the UC samples (#1 and #2) in the transPCA separated
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from the severe patient sample group, probably indicating a different phenotype of severe UC
(Fig 1A). Indeed, these extreme gene expressions may be related to high fractions of neutro-
phils and monocytes or loss of epithelial cells in these samples (Fig 2 and S4 Table).
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Fig 2. Cell fraction estimation between samples using cell deconvolution algorithm absolute deconvolution of human immune cell types. The
fractions of different cell populations in severe and mild UC and control tissue samples were estimated from gene expression data, using absolute cell
deconvolution as described in Materials and Methods. The deconvolutions were solved for the following cell types: epithelial cells, monocytes, T cells,
neutrophils, B cells, and stroma cells. Each panel shows the estimated percentage of the indicated cell types (y-axis) across all 24 samples sorted
according to sample ID numbers (y-axis). For ease of comparison, sample ID numbers are identical to those shown in PCA of methylation and gene
expression data (Fig 1). Plot markers are colour coded according to sample group. The fractions of epithelial and stromal cells were estimated from the
non-immune cell remainder and the expression levels of the stromal and epithelial marker genes. The epithelial markers (EPCAM, CDH1, CDH17 and
CDH18) and stroma markers (ENG, THY1, ACTA2 and COL2A1) were used. Severe UC is indicated by red dots, mild UC is indicated by orange dots,
and control is indicated by green dots. Statistical comparison of cell population estimates can be found in S4 Table.

https://doi.org/10.1371/journal.pone.0248905.g002
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PCA of global DNA methylation data (methPCA) depicts relative methylation counts [1-
100%] for over 9 million cytosine positions for the whole genome of all patient samples, severe
UC, mild UC, and normal controls (Fig 1B). The methPCA revealed a distinction between the
patient groups along the first component with 33% explained variance. Severe UC samples
showed a clear separation from both mild UC and control samples along the second compo-
nent with an explained variance of 11%. Sample (#10) representing a mild phenotype of UC in
the methPCA appeared to be an outlier, as a lower sequencing coverage was observed com-
pared to all the other samples (Fig 1B). This was also the case for one normal sample (#21).
These outliers were not removed from the dataset since the transcriptomic data of these sam-
ples did not show the same tendency. Further analysis revealed that 34, 8% of all significantly
DEGs correlated with DNA methylation. Limiting correlation to r < -0.6 resulted in a total of
79 genes of which 77, 2% were hypo-methylated (n = 61) (Table 2 and S3 Table) and 22, 8%,
were hyper-methylated (n = 18) (Table 3 and S3 Table). Approximately, 9% of the correlating
genes showed DNA methylation at CpG sites in the neighbourhood of the transcription start
site (TSS), whereas the remaining 91% of the genes showed methylation at cis-acting elements
like enhancers and DNAsel (Fig 3). This is somewhat different for mild UC, where approxi-
mately 30% of the genes showed DNA methylation at CpG sites and the remaining 70% of
genes showed methylation at cis-acting elements [18]. There exists no common opinion on
how many methylation sites are necessary for transcription regulation. That’s why correlation
analysis was applied in this study. These observed changes nevertheless correlated well with
expression changes but cannot explain the underlying molecular events that may cause the
transcriptional changes [35]. Complete lists of methylated DEGs correlating with transcription
and the respective profiles are depicted in S3 Table, SI Fig and Fig 3.

The major DNA methylation event in treatment-naive severe UC seems to be hypo-methyl-
ation. It is intriguing that approximately 80% of all significant DEGs which correlated to DNA
methylation were hypo-methylated in severe UC compared to mild UC (S3 Table). A global
hypo-methylation of mucosal DNA in UC compared to normal controls has been reported
earlier and it has been suggested that these epigenetic changes in the mucosa might contribute
to cancer development [36]. It is well-known that severe inflammation results in an
impairment of the epithelial mucosal layer which is followed by diffusion of commensal bacte-
ria and significantly increase of leukocyte infiltration into the gut [37]. This is confirmed by
hypo-methylation of leukocyte-specific transcript 1 (LST1), leukocyte associated immuno-
globulin-like receptor 1 (LAIR1), sialic acid binding Ig-like lectin 5 (SIGLEC5), and leukocyte
surface antigen CD53 (CD53) (Table 1), decreased fractions of epithelial cells and increased
fractions of neutrophils, T cells, and monocytes during severe UC compared to mild UC (Fig
2). Fractions of immune cell subtypes, stroma, and epithelial cells on the basis of the gene
expression data using cell deconvolution, showed that severe UC differed from mild UC by
increased proportions of monocytes (p = 0.03) and neutrophiles (p = 0.02) and a loss of stroma
(p =0.001) and epithelial cells (p = 0.001). No significant differences were found between mild
UC and normal controls (54 Table). In addition, pathway enrichment of significantly and dif-
ferentially DNA methylated genes revealed their involvement in two pathways, neutrophil
degranulation, and immuno-regulatory interaction between lymphoid and non-lymphoid cell
(Table 4). For both pathways only hypo-methylated genes could be annotated.

Seven IBD susceptibility genes were identified, B-lymphocyte activation marker BLAST1
(CD48), interleukin 10 (IL10), protein tyrosine phosphatase receptor type C (PTPRC), Slam
family members (SLAMF7 & SLAMF1), TNF superfamily member 8 (TNFSF8), and docking
protein 3 (DOK3) which all were hypo-methylated and up-regulated in severe UC (S2 Table).
The hypo-methylation of CD48, IL-10 and PTPRC has not been observed for mild UC [18]
and seem to be a specific feature of severe UC. It is interesting to note that only four genes of
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Table 2. Hypo-methylated genes in treatment-naive severe ulcerative colitis (UC).

Gene symbol log2 FC >1.0 transcription #c % methyl SD methyl
ADGRE3 1,55 82 9,92 25,04
ANGPTL2 1,02 114 12,71 18,31
C3AR1 1,91 27 12,06 23,4
CARDG6 1,19 20 25,09 4,86
CASS6 1,13 72 14,72 15,65
CD300A 1,29 94 9,54 23,5
CD300E 3,15 30 12,09 19,97
CD48* 1,06 36 15,17 8,37
CD53 1,41 37 12,03 15,32
CD86 1,21 27 14,53 12,22
CD93 1,60 102 14,18 22,72
CFP 1,37 69 13,67 17,7
CLMP 1,35 213 11,13 16,77
CSF2RB 1,44 59 7,06 25,37
CSF3R 3,42 89 13,10 19,6
CST7 1,79 39 11,59 8,4
CTSK 1,59 41 8,98 17,65
CXCR2 2,42 48 8,67 22,98
DNAH17 1,35 90 6,79 15,57
DOK3* 1,31 107 7,22 21,64
FAM124B 1,15 71 19,16 6,2
GNAI2 1,08 109 5,02 18,99
GPSM3 1,18 54 4,29 35,51
IL10* 1,77 27 8,18 9,56
IL18R1* 1,19 36 6,91 15,51
IL1IRN 2,98 67 7,36 18,99
ITGB2 1,23 98 20,99 10,13
ITPRIP 1,34 47 26,95 12,64
LAIR1 1,01 116 9,22 25,66
LILRA1 2,52 85 9,66 13,85
LILRB1 1,59 87 8,00 24,64
LILRB2 1,38 74 25,59 23,24
LINC00877 1,06 94 6,15 16,06
LST1 1,55 40 14,70 21,09
MYO1G 1,31 69 19,29 12,31
NFE2 2,93 40 14,94 9,4
NKG7 1,06 61 13,37 28,59
NLRC4 1,74 27 11,95 12,08
NLRP12 3,45 67 18,19 14,84
NLRP3 1,16 70 17,31 21,24
P2RY13 1,25 15 8,88 21,45
PLEKHO1 1,05 50 21,61 6,5
PPP1R18 1,43 147 11,27 13,71
PTPRC* 1,08 18 13,83 17,35
RHOH 1,10 45 21,01 4,74
SCARF1 1,45 97 19,1 23,68
SELPLG 1,38 78 11,57 6,3

(Continued)
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Table 2. (Continued)

Gene symbol log2 FC >1.0 transcription #c % methyl SD methyl
SEMA4A 1,23 47 20,45 8,21
SIGLEC5 2,27 54 8,02 30,56
SLA 1,29 35 20,31 6,25
SLAMEFI1* 1,29 44 15,47 9,16
SLAMF7* 1,09 21 9,93 31,92
SLAMEF8 1,60 46 11,27 20,1
SNX20 1,05 48 22,87 19,76
SPARC 1,76 72 13,47 23,71
SPI1 1,43 41 10,81 26,34
TIE1 1,58 52 9,44 14,43
TNFSF14 1,02 122 13,04 21,64
TNFSF8* 1,16 71 12,16 19,28
TREML2 1,72 48 7,52 25,03
WARS 1,25 31 3,28 9,94

#c indicates number of methylated cytosines; % methyl indicates % difference of DNA methylation severe UC vs. mild UC; SD indicates standard deviation; all results

shown with p< 0.05.
*indicates IBD susceptibility genes.

https://doi.org/10.1371/journal.pone.0248905.t002

Table 3. Hyper-methylated genes in treatment- naive severe ulcerative colitis (UC).

the top DEGs were differentially methylated, colony stimulating factor 3 receptor (CSF3R) and
NLR family pyrin domain containing 12 (NLRP12) which are hypo-methylated (Table 2), and
transmembrane protein 72 (TMEM?72) and UDP glucuronosyltransferase family 1 member A8
(UGT1A8) which are hyper-methylated (Table 3). UGT1A8 has been found to be hyper-

Gene symbol log2 FC >1.0 transcription #c % methyl SD methyl
C2orf82 -1,24 54 -21,84 14,36
C20rf88 -1,22 13 -5,89 12,73
CES2 -1,08 293 -4,39 12,17
DRAIC -1,43 45 -20,47 8,71
ENTPD5 -1,13 28 -22,12 7,49
MAGIX -1,13 107 -19,44 12,01
MMP28 -1,32 122 -3,99 20,58
NGEF -1,11 42 -15,9 14,13
P3H2 -1,26 21 -2,41 17,45
PFKFB2 -1,02 163 -4,59 29,1
PPARGCIA -1,51 42 -6,09 15,36
PRKG2 -1,42 100 -21,46 11,761
PVRL3 -1,04 30 -22,71 10,86
SLC22A18AS -1,45 115 -15,49 16,66
SLC51B -1,17 33 -19,92 8,45
TMEM?72 -1,61 58 -14,90 13,3
TRPM4 -1,07 109 -30,69 9,94
UGT1A8 -1,77 31 -13,65 16,15

#c indicates number of methylated cytosines; % methyl indicates % difference of DNA methylation severe UC vs. mild UC; SD indicates standard deviation; all results

shown with p< 0.05.

https://doi.org/10.1371/journal.pone.0248905.t1003
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Fig 3. Selection of the most specifically expressed and hypo-methylated genes in severe ulcerative colitis. On the
left of each individual illustration the differences in relative methylation levels between normal samples (green), mild
UC (orange) and severe UC (red) is shown. Red, green, and orange lines represent the mean relative methylation for
severe UC, mild UC and normal samples. The transcription start-site (TSS) is indicated as a vertical line. The x axis is
numbered relative to the transcription start site, where minus indicated number of base pairs downstream for TSS (200
bp), and positive number of base pairs upstream from TSS (up to 2000 bp). UCSC genome browser mapped CPG sites
(CPQ) indicated in dark green, enhancer sites (ENH) indicated in brown, and DNAsel sites (DNA) indicated in
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purple. On the right, boxplots of DESEQ2 log2 normalised values for the gene of interest in normal control (N), mild
UC (M) and severe UC (S) are shown. Genes are indicated: interleukin 10 (IL10), CXADR- like membrane protein
(CLMP), NLR family pyrin domain containing 3 (NLRP3), sialic acid binding Ig like lectin 5 (SIGLEC5), NLR family
CARD domain containing 4 (NLRC4) and T-lymphocyte activation antigen CD86 (CD86).

https://doi.org/10.1371/journal.pone.0248905.9003

methylated in mild UC in an earlier report [18]. A selection of the most specifically methylated
DEGs in severe UC clearly show the differences in relative methylation levels for severe UC
(S), mild UC (M), and normal samples (N) upstream from the transcription start site (TSS)
and indicate UCSC genome browser mapped CpG sites and cis- elements, like enhancers and
Dnasel sites (Fig 3) The boxplots of DESEQ2 log2 normalised values for interleukin 10 (IL10),
CXADR- like membrane protein (CLMP), NLR family pyrin domain containing 3 (NLRP3),
sialic acid binding Ig like lectin 5 (SIGLEC5), NLR family CARD domain containing 4
(NLRC4) and T-lymphocyte activation antigen CD86 (CD86) showed a clear correlation of
DNA methylation status and transcription, thereby clearly indicate specific alterations through
hypo-methylation of these genes in severe UC.

The observed hypo-methylation of the NLR family pyrin domain containing NOD-like
receptor family members (NLRP3 and NLRP12) in severe UC may maintain intestinal homeo-
stasis and adapt responses against multiple intestinal insults [37-39]. In response to inflamma-
tion, hypo-methylation of NRLP inflammasomes may confer anti-inflammatory signals in
order to improve severe colitis and to prevent further damage, thereby acting as a defence
mechanism to mitigate inflammation. The NLRP3 inflammasome is expressed in both, gut
epithelial (IEC) and immune cells (DCs, macrophages, B cells) and may therefore governing
the balance of intestinal homeostasis depending on specific cell populations [40-42]. Hypo-
methylation of NLRP12 and NLRC4 may regulate gut microbiota in order to supress intestinal
inflammation and subsequent intestinal damage in severe UC [43-47]. It is interesting to note
that the cassette of NLRs in severe UC is different from those found in mild UC, and that
PRRs like Toll-receptors (TLR1, TRL2, TRL4, TRL6, TLR8 and TLRY) are all up-regulated, but
not hypo-methylated in severe UC (S1 Table) [17, 18].

A similar interplay between the innate and adaptive immune system can be implied for
IL10, a cytokine which has pleiotropic effects in immuno-regulation and inflammation which
is expressed and hypo-methylated in severe UC but not in mild UC [17, 18, 48]. IL10 expres-
sion during severe UC might counteract excessive inflammatory immune responses by down-
regulating the function of antigen presenting cells (APCs), thus providing feedback regulation
for pro-inflammatory T cells [49-52]. The increased expression of IL10 produced by T cells
may also play a role in mediating tolerance against commensal bacteria, whereas the expres-
sion of IL10 in peripheral tissues may lead to down-modulation of the immune response. It
has been recently shown that macrophages in the lamina propria preferentially induce IL10
producing cells while DCs promote the generation of Th17 cells [53-55]. It can be therefore
believed that hypo-methylation and increased expression of IL10 counteracts severe

Table 4. Reactome enriched pathways of methylated genes in severe ulcerative colitis (UC).

Enriched pathways for severe UC vs. mild UC, p,q;. < | Gene symbol
0.05

Neutrophil degranulation (innate immune system) ADGRE3, C3AR1, CD53, CD93, CD300A, CFP, CXCR2,
DOK3", ITGB2, LAIR1, LILRB2, PTPRC*, SIGLEC5

Immuno-regulatory interactions between a Lymphoid CD300A, CD300E, ITGB2, LAIR1, LILRA1, LILRBI,
and a non-Lymphoid cell (adaptive immune system) LILRB2, SIGLEC5, SLAMF7*, TREML2

*indicates IBD susceptibility genes.

https://doi.org/10.1371/journal.pone.0248905.t1004
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inflammatory signals and aims to dampen severe intestinal inflammation. During severe UC,
hypo-methylation of IL10 might also induce tolerogenic DCs that exhibit high expression of
co-stimulatory molecules combined with highly expressed inhibitory leucocytes immunoglob-
ulin like receptors (LILRs) and secrete IL10 resulting in the induction of T cells with regulatory
capacities (Tregs) [56]. Many of these receptors (LILRA1, LILRBI and LILRB2) are more
hypo-methylated in severe UC than in mild UC (Table 2) [18]. LILRB receptors expressed on
immune cells bind to MHC class I molecules on antigen-presenting cells (APCs, DCs) and
transduces a negative signal that inhibits stimulation of an immune response. This suggests a
role of these receptors in balancing the inflammatory response in face of bacterial infection in
severe UC. Although other cells such as macrophages and B cells are also able to present anti-
gens via MHC, DCs are the only cell type to activate naive T cells and to induce antigen specific
immune responses in all adaptive immune cells [57, 58]. An increase of cell fractions in mono-
cytes, neutrophils, T-cells, B-cells and stroma cells were observed in all severe UC samples,
whereas the cell fraction of epithelial cells was significantly decreased in all severe UC samples
compared with mild UC (Fig 2 and S4 Table).

In concordance with enhanced fractions of T cells in severe UC (Fig 2) increased expression
of CD86, a coactivator DC marker involved in T cell activation during microbial infection was
observed in severe UC [59]. Other hypo-methylated genes of relevance for the defence of
severe inflammation is CXADR-like membrane protein (CLMP) which stabilizes the gut vas-
cular barrier localized between endothelial and epithelial cells in junctional complex involved
in cell adhesion and which is required for normal intestinal homeostasis and development (Fig
2 and Table 2) [60].

All the above discussed defence mechanisms might prevent a complete collapse of a func-
tional mucosal barrier during severe inflammation. It is therefore believed that the increase of
protective genes and anti-inflammatory pathways induced by hypo-methylation are defence
mechanisms, thereby counteracting and alleviating severe inflammation in the gut. Nonethe-
less, the study is not without limitations, the sample size used here can be considered low due
to low number of patients with a severe UC phenotype, but still show sufficiently separation in
the PCA (Fig 1). In addition, due to the heterogeneity of the tissue biopsies it is difficult to
account NLRP inflammasomes to specific and distinct cell type and single-cell sequencing
might overcome this problem. However, the strength of this study lies within the study design
where a treatment-naive patient group with severe UC have been used in order to compare
joint transcriptomic and DNA methylation data from each individual patient. This matching
of data reduces the chances of introducing influential variable and inter-individual differences
and avoid confounding effects of prior medications while highlighting lasting changes to the
regulatory patterns underlying the disease that may be of clinical utility.

Conclusion

Hypo-methylation of genes with anti-inflammatory character during severe UC implies a
functional interplay between the epithelium and lamina propria to mitigate inflammation in
the gut. The specifically DNA hypo-methylated genes found for severe UC can potentially be
useful biomarkers for determining disease severity and in the development of new targeted
treatment strategies for patients with severe UC.

Supporting information

S1 Fig. Hypo-methylated genes in severe ulcerative colitis. On the left of each individual
illustration the differences in relative methylation levels between normal samples (green), mild
UC (orange) and severe UC (red) is shown. Red, green and orange lines represent the mean
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relative methylation for severe UC, mild UC and normal samples. The transcription start site
(TSS) is indicated as a vertical line. The x axis is numbered relative to the transcription start
site, where minus indicated number of base pairs downstream for TSS (200 bp), and positive
number of base pairs upstream from TSS The regions upstream (up to 2000 bp). UCSC
genome browser mapped CPG sites (CPG) indicated in dark green, enhancer sites (ENH) indi-
cated in brown, and DNAsel sites (DNA) indicated in purple. On the right, boxplots of
DESEQ2 log2 normalised values for the gene of interest in normal control (N), mild UC (M)
and severe UC (S) are shown. Genes are indicated by the respective gene symbol.

(PDF)

S1 Table. List of significantly differentially expressed genes (DEGs).
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S2 Table. Differentially expressed IBD susceptibility genes in severe UC.
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