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DNA in our cells is constantly modified by internal and external factors. For exam-
ple, metabolic byproducts, ionizing radiation (IR), ultraviolet (UV) light, and medicines
can induce spontaneous DNA lesions [1–3]. However, DNA modifications can also be
programmed. In particular, the recombination activating gene (RAG) can induce breaks
generated during the V(D)J recombination in developing B and T lymphocytes [1,2]. In
addition, activation-induced cytidine deaminase (AID) makes DNA break during the
class-switch recombination (CSR) and somatic hypermutation (SHM) in B cells [1,2].

One focus of this Special Issue is on the non-homologous end-joining (NHEJ) DNA
repair pathway and DNA repair and DNA damage response (DDR) factors. Oksenych et al.
and others found the functional redundancy of these factors in mammalian cells. In particu-
lar, a genetic interaction was found between the X-ray repair cross-complementing protein
4 (XRCC4)-like factor (XLF, also known as Cernunnos) and the DNA-dependent protein
kinase catalytic subunit (DNA-PKcs) [4,5], the paralog of XRCC4 and XLF (PAXX) [6–9],
and the modulator of retrovirus infection (MRI, also known as Cyren) [10]. Moreover, a
genetic interaction was found between the NHEJ factor XLF and DDR factors, including
Ataxia telangiectasia mutated (ATM) [11], histone H2AX [11], and p53-binding protein 1
(53BP1) [12].

Another aspect of this Special Issue is the various anti-cancer therapies and their
combinations. These therapies, such as IR and cisplatin, induce extensive DNA damage
in rapidly growing cells [3]. These DNA damages, if unresolved over time, can induce
DDR and cell cycle checkpoint arrest, which leads to p53-mediated Bcl-xL-controlled
apoptosis [13].

In addition, Castaneda-Zegarra et al. [14] describe the generation and characterization
of a mouse model lacking the NHEJ factor MRI. The MRI-deficient mice exhibited a nearly
normal development and life-span. The MRI-deficient mice did not show any detectable
alterations in the count of mature B and T lymphocytes when compared to heterozygous
and wild-type (WT) controls. The development of the brain in these mice was also normal.
One detectable phenotype was a significant reduction in CSR levels in MRI-deficient mice
when compared to WT controls.

Furthermore, Beck et al. [15] presented a double-deficient model lacking XLF and a
DDR factor, the mediator of DNA damage checkpoint protein 1 (MDC1). While single-
deficient Xlf−/− and Mdc1−/− mice were alive, the double-deficient Xlf−/−Mdc1−/− mice
were embryonic lethal. Progenitor B cell lines (vAbl) lacking both XLF and MDC1 possessed
significantly reduced levels of V(D)J recombination when compared to single-deficient and
WT controls.

Translesion DNA synthesis (TLS) is a major source of the point mutations accu-
mulating in the genomes of our cells. In addition, mammalian DNA-dependent RNA
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polymerases are also able to introduce mistakes into the RNA structure and, thus, result
in modified proteins via “transcriptional mutagenesis”. Rodriguez-Alvarez et al. [16] de-
veloped and presented a new technology in order to detect TLS. In particular, the authors
present the enhanced green fluorescent protein (EGFP)-based reporter that can be used for
the direct and sensitive detection of mutagenic DNA lesions bypasses.

Seelinger et al. [17] generated and characterized single-knockout human cell lines
lacking helicase-like transcription factor (HLTF), SNF2, histone-linker, PHD, and RING fin-
ger domain-containing helicase (SHPRH), and a double-knockout HLTF/SHPRH. Various
DNA damage types were introduced in these cells using UV light, methyl methanesul-
fonate (MMS), mitomycin C (MMC), and cisplatin. The authors identified both common
and distinct functions of HLTF and SHPRH in human cells and suggested a model with
SHPRH being a central player in regulating DDR via a protein kinase CHK2.

Finally, Naumenko et al. [18], in an elegant in vitro-based study, demonstrated that Y-
box-binding protein 1 (YB-1) likely regulates the cellular events of PARylation via poly(ADP-
ribose) (PAR) and DNA.

Future research in DNA repair and DDR will focus on identifying new factors facilitat-
ing these processes, elucidating the specific functions of these factors and their mechanisms
of action. Such research will be challenged by the complex genetic interactions between
DDR factors. Research in this area will benefit from introducing novel technologies and
model systems. It will facilitate the development and approval of medicines and their
combinations for the treatment of various cancers, immune disorders, and viral infections.
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