

Faculty of Science and Technology

Department of Physics and Technology

Detecting Unhealthy Comments in Norwegian using BERT

Joakim Warholm

FYS-3900 Master’s Thesis in Physics May 2021

Abstract

In this work we present a new Norwegian labeled dataset of 7078 com-
ments for unhealthy comment detection. The dataset is used to fine-tune
a BERT model, and demonstrates that BERT has the ability to detect
subtle forms of toxicity, also in Norwegian. We compare how the different
newly released Norwegian BERT models perform when fine-tuned on our
dataset, and we also experiment with how English data can be utilized
to fine-tune one of the models. We fine-tune BERT to recognize un-
healthy comments in Norwegian, as well as a list of other characteristics a
comment may have such as being hostile, antagonising/insulting/trolling,
dismissive, condescending, sarcastic, or being an unfair generalisation.
Our AUC scores beat the AUC scores from previous work on detecting
unhealthy comments in English on all categories, except dismissive.

Acknowledgements
Thank you to my supervisor Jonas Nordhaug Myhre for all help throughout the
writing of this thesis. Thank you also to the annotators who created labels for
the dataset. Thank you to Per Egil for advice on how to use the Norwegian
BERT models he created. I also wish to thank my friends and family, including
the friends who have held me with digital company during the COVID pandemic.

1

Contents
1 Introduction 3

1.1 Related work . 5
1.2 Thesis Structure . 5

2 Background material 7
2.1 Krippendorff’s Alpha . 7
2.2 Machine Learning . 8

2.2.1 Training, validation, and test data 9
2.2.2 Cross validation . 10
2.2.3 Imbalanced data . 10
2.2.4 Transfer Learning . 11
2.2.5 Classifier Performance Metrics 11
2.2.6 Feedforward Neural Networks 12
2.2.7 Gradient Descent and Backpropagation 15
2.2.8 Cross Entropy Loss . 17
2.2.9 Optimization . 18
2.2.10 Recurrent Neural Networks 20

2.3 Natural Language Processing . 25
2.3.1 Word embeddings . 25
2.3.2 ELMo . 29
2.3.3 The Transformer . 31
2.3.4 BERT . 34

3 Results and Discussion 37
3.1 Dataset creation . 37

3.1.1 Gathering text . 37
3.1.2 Cleaning comments . 38
3.1.3 Annotation . 39
3.1.4 Final dataset . 40

3.2 Dataset statistics . 41
3.3 Experiments . 45

3.3.1 Method . 45
3.3.2 Cross-validation and Results 47
3.3.3 Experiments on Utilizing English Data 55
3.3.4 Supplementary Training 57

4 Conclusion and future work 59

A Annotation Guideline 63

B Libraries 65

2

1 Introduction
The internet allows anyone to engage in a discussion on any topic. At the turn
of the century there was a lot of optimism regarding the possibilities of open and
democratic debate through online fora (Quandt, 2018). However, online debates
can easily turn sour through the use of personal attacks, hostility, and other
forms of aggression. When discussions devolve to such levels, they are seldom
useful, and so it is desirable keep conversations friendly in order for them to
serve their purpose. Analysis of online discussions is a field of research including
detection of toxicity (Risch and Krestel, 2020) and hate speech (Jensen, 2020;
Saleem et al., 2017), how people change their mind through online debate (Tan
et al., 2016), and studies of the users themselves (Wang et al., 2016; Nadim
et al., 2021).

The prevalence of undesirable behavior online that we don’t see as often in the
offline world is related to the fact that some people have a tendency to say
and do things online that they would not say or do in a face-to-face situation.
This phenomenon has been given the name the online disinhibition effect (Suler,
2004). Pew research found that in 2021, 41% of Americans have experienced
some form of online harassment, and that online harassment has intensified since
their last survey in 2017 (Vogels, 2021). The same survey also shows that the
percentage of Americans who have experienced more severe types of harassment
such as physical threats or sexual harassment has increased since then. The
Equality and Anti-Discrimination Ombud of Norway found that either 7 or 9
percent of comments on the Facebook pages of NRK and TV 2 were hateful,
depending on the definition of a hateful comment (Amna Veledar, 2018).

Moderation is often necessary to avoid too many toxic comments which degrade
the quality of the conversation in online fora. Nadim et al. (2021) make a
study of the participants of heated online debates, and they reveal that the
participants themselves see moderation in some form as necessary. The large
amounts of text that is produced every day at popular fora makes moderation
challenging. In fact one of the sub-communities on the forum from which text
was gathered to make the dataset presented and used in this work, was closed
because the users kept breaking the rules1. Automated moderation tools can
ease the burden on moderators. This could in turn lead to better conversations
online, and make it unnecessary to shut down the places where discussions on
sensitive topics take place.

Advances made in the field of Natural Language Processing (NLP) in recent
years through Deep Learning (DL) techniques, open up new possibilities for
creating such automated moderation tools. In this thesis we train a deep learn-
ing model, specifically a BERT model (Devlin et al., 2019), to detect unhealthy
comments, and also to detect comments displaying a range of other character-
istics that may be regarded as sub-attributes of unhealthy comments. Deep
learning models require large amounts of data in order to tune their parameters
to achieve good results, something which is not easily available in low-resource
languages such as Norwegian. Fortunately newer language models such as BERT

1https://vgd.no/utdebattert/innvandring-rasisme-og-flerkultur/tema/1866749/tittel/kategorien-
stenges

3

make use of transfer learning, where a model is first trained on easily accessible
unlabeled data, to later be fine-tuned on a task-specific dataset, which need not
be so large. Three Norwegian BERT models have recently been released, and
we fine-tune them to classify comments into the categories unhealthy, sarcas-
tic, hostile, condescending, unfair generalisation, dismissive, and antagonistic,
using a dataset we created.

The three Norwegian BERT models which were recently released are: NB-
BERT-Base and NB-BERT-Large from The National Library of Norway2, and
NorBERT from the Language Technology Group at the University of Oslo3.
Access to BERT models which have been pre-trained on large amounts of Nor-
wegian text is a big step forward for Norwegian NLP. Based on conversations
with the main contributor to the creation of the NB-BERT models, we speculate
that these models may be able to learn from English data. In order to assess the
models’ bi-lingual capabilities, we do some exploratory experiments where we
fine-tune Norwegian BERT models on English data. Successfully learning from
English data opens up for the use of Cross-Lingual Transfer learning, where a
labeled dataset in one language can be used to train a model to perform tasks
in another language. Norwegian BERT model capable of learning from English
data opens up many possibilities for Norwegian NLP, as there are many datasets
available in English.

In this thesis we are not concerned with finding toxicity, or hate speech. In-
stead, we try to detect the more general category of “unhealthy” comments,
and the subtle indicators which may or may not be sub-attributes of unhealthy
comments, such as sarcasm, hostility, and all the other categories previously
mentioned. The category of unhealthy comments includes hateful and toxic
comments, but also other comments which are not made in good faith, and do
not invite engagement. The reason for choosing to focus on unhealthy com-
ments in general, and also on these subtle “sub-attribute” categories, is that we
want to see if a BERT model is able to assess the quality of an online comment,
beyond whether it is toxic/hateful or not. Once a conversation deteriorates to
include hate speech, or is in some other way overtly toxic, the conversation is
most likely never getting back to a place where it can be useful. Because of this,
if one can detect and try to prevent toxicity, or things that leads to toxicity,
before it occurs, that is preferable to removing such comments after the fact.
Instead of a moderation tool one might imagine that a prompt with a warn-
ing such as “This comment may be seen as hostile” shows up when the author
of a comment presses send, if their comment is seen as hostile. This would
give the author a chance to rethink and/or rephrase their comment, effectively
moderating themselves.

Fine-tuning BERT models for detecting undesirable comments of any kind re-
quires a dataset with examples of such comments. Datasets like that are not
easily available, especially in Norwegian. We contribute to this area by provid-
ing a new dataset of labeled comments. When looking for hateful comments
or comments with some other attributes such as the more general “unhealthy”

2https://github.com/NBAiLab/notram/
3http://wiki.nlpl.eu/Vectors/norlm/norbert

4

category, whether a comment displays such a characteristic or not is subjective
in nature. This makes even the dataset creation a challenging task, as the labels
are unavoidably influenced by the annotator’s biases. Some measures have been
taken to promote more agreement between annotators, as will be described later
in the thesis. The subjective nature of the labels also makes this a very chal-
lenging problem for machine learning models to solve. Our goal in this thesis is
to evaluate how well a BERT model can learn to classify comments into these
subjective categories.

1.1 Related work
Jensen (2020) used anomaly detection methods to detect hate speech in Nor-
wegian, and created a dataset of examples of such hateful comments to do so.
The comments are divided into 5 categories: (1) neutral, (2) provocative, (3)
offensive, (4) moderately hateful, and (5) hateful. We include some of these
comments in our dataset for our annotators to give new labels. Mixing in these
comments allows for the study of overlap between labels, which lets us compare
the two datasets.

Øvrelid et al. (2019) created NoReC_fine, a sentiment dataset for Norwegian
which builds on the original NoReC from Velldal et al. (2017). NoReC contains
reviews on movies, restaurants, music, product reviews, as well as several other
things. From NoReC_fine was also derived NoReC_sentence, which includes
binary labels into positive sentiment and negative sentiment. We utilize this
dataset to investigate whether NB-BERT can learn to do sentiment analysis in
Norwegian, when learning from an English sentiment dataset.

The work done in this thesis is inspired by Price et al. (2020), who created the
Unhealthy Comment Corpus (UCC), of 44,000 comments with crowdsourced la-
bels and confidence scores. Each comment is classified as either “belonging in a
healthy conversation” or not, as well as labels for whether or not the comments
are (1) hostile, (2) antagonistic, insulting, provocative, or trolling (summarized
as the label “antagonistic”), (3) dismissive, (4) condescending or patronizing
(summarized as the label “condescending”), (5) sarcastic, or (6) an unfair gener-
alisation. We aim to create a similar dataset, but in Norwegian. The annotation
guideline given to our annotators was therefore a translated version of the an-
notation guideline in (Price et al., 2020). They find that their baseline BERT
model outperforms humans on detection of all attributes, with the exception of
sarcasm.

1.2 Thesis Structure
This thesis starts with a description of Krippendorff’s α which is used as a re-
liability measure on the dataset we create. After that comes some background
theory about machine learning, first mentioning some machine learning tech-
niques that are common among many or all machine learning approaches, such
as how to best utilize the dataset, and how to deal with imbalanced data. Then
comes a description of the neural network approach to machine learning and
its application to natural language processing. We will start with a simple
feedforward neural network and work up to the BERT model which is used in

5

the experiments reported in the experiment section. Word embeddings and re-
current neural networks are also covered along the way, as well as the ELMo
model.

Following the background material is an explanation of how the dataset was cre-
ated, from the scraping process, to the cleaning of the text, to the choices made
in the annotation process. Some statistics about the dataset are also provided,
and the dataset is compared to two other datasets, namely the Unhealthy Com-
ments Corpus from (Price et al., 2020), and the Norwegian hate speech dataset
from (Jensen, 2020). After presenting the dataset comes a description of the
experiments done using the new dataset and the results of those experiments, as
well as discussion about the results. After that we try utilizing the hate speech
dataset from (Jensen, 2020), and the UCC from (Price et al., 2020) to see if we
could use that data to improve our initial results. As a proof of concept we also
fine-tune NB-BERT for sentiment analysis using English data, to see if it could
perform sentiment analysis on Norwegian data afterwards.

6

2 Background material
It is common to give a measure of agreement between annotators when present-
ing a new dataset. We choose to use Krippendorff’s Alpha for this measure,
and the background material therefore starts with a description of it. After
that comes a description of machine learning and some common techniques
used within machine learning, such as how to use the available data to train
and evaluate machine learning models. In this thesis we will be concerned with
the neural network approach to machine learning, and so an explanation of how
neural networks work, how they learn, and the tools used to make them learn
efficiently, is also provided. After that we present the recurrent neural network,
and some of its variants, before we move on to natural language processing and
the machine learning architectures responsible for the recent progress in that
field.

2.1 Krippendorff’s Alpha
There are several metrics for measuring the agreement between annotators,
including Cohen’s kappa (Cohen, 1960), and Fleiss’ kappa (Fleiss, 1971). Krip-
pendorff (2011) argues that these other reliability coefficients are specialized,
and that Krippendorff’s alpha, which we will refer to as α, is a generalization of
several known reliability indices, while also being applicable to many varieties
of data. α works for (Krippendorff, 2011)

• Any number of observers

• Any number of categories, scale values, or measures

• Any metric or level of measurment

• Incomplete or missing data

• Large and small sample sizes

The general from of α is

α = 1− D0

De

where D0 is the observed disagreement among labels, and De is the expected
disagreement if the labels were randomly assigned. α mostly ranges between 0
and 1, but can also be negative. α = 1 indicates perfect reliability while α = 0
means labels overlap as if random chance had produced them. A negative value
of α indicates systematic disagreement.

We will now show an example from (Krippendorff, 2011), of the calculation
of Krippendorff’s alpha for binary data with two observers. First construct a
reliability matrix. If for example two annotators label N = 10 datapoints as
either 0 or 1, one could end up with a reliability data matrix like this:

The next step is to create a coincidence matrix, which accounts for all values
contained in the reliability matrix:

7

Datapoint 1 2 3 4 5 6 7 8 9 10
Annotator 1 0 1 0 0 0 0 0 0 1 0
Annotator 2 1 1 1 0 0 1 0 0 0 0

0 1
0 o00 o01 n0

1 o10 o11 n1

n0 n1 n = 2N

In the coincidence matrix, each datapoint’s label is entered twice, once as c-k
pairs and once as k-c pairs, where k and c refer to each annotators label. For
example datapoint 1 is entered both as 0-1 and as 1-0, while datapoint 2 is
entered twice as 1-1.

For our example we get

0 1
0 10 4 14
1 4 2 6

14 6 20

The α-reliability is then computed as

α = 1− D0

De
= 1− (n− 1)

o01
n0 · n1

which for our example evaluates to

α = 1− (20− 1)
4

14 · 6
= 0.095

(Krippendorff, 2018, p.241) recommends to only rely on variables where α > 0.8,
and to only draw tentative conclusions when considering variables with 0.667 <
α < 0.8.

2.2 Machine Learning
Machine Learning (ML) can be defined as programming computers to optimize
a performance criterion using example data or past experience (Alpaydin, 2014).
When a model is defined with a certain set of parameters, we say that the model
learns when it optimizes these parameters using training data or past experience,
in order to perform better on the performance criterion. What this means in
practice is that one shows the model many examples, and tell the model what
the output should be, and the model updates itself to find the patterns that lets
it classify the examples correctly. We will soon look at the details of how this is
done. While traditional Artificial Intelligence (AI), which machine learning is a

8

subfield of, can solve problems that can be described with a set of mathematical
rules, some problems are not so easily translated into mathematics. To solve
these types of problems, we can use machine learning.

One subfield of machine learning, Deep Learning (DL), has exploded in popu-
larity in recent years. Deep learning models are machine learning models with
a high number of parameters. One major reason for the increased popularity
of DL models is that as technology grows more and more present in modern
society, enormous datasets grow along with it. Highly relevant for this thesis is
the text data that can be gathered from debate forums. Another major reason
for the growth of deep learning as a field is the fact that computers have grown
powerful enough that we can employ very large models with millions and some
times billions of parameters, to process a lot of data.

2.2.1 Training, validation, and test data

When doing machine learning, it is common to partition the available data into
two or three parts. The largest chunk of data is used for the training dataset.
This is the set of examples the model will look at and tune its parameters
according to. ML models tend to learn to separate the classes in the training set
very well, but the ultimate goal is not to have a model which performs well on the
training data, but to have a model which performs well generally, also on unseen
examples. A model’s performance on unseen examples is called generalization.
(Alpaydin, 2014, p.39). We want good generalization from our model, and so
we try to avoid so-called overfitting, which is where the model simply memorizes
the training data, and hasn’t actually found any general patterns. One can also
think of this as the model learning the noise in the dataset (Alpaydin, 2014,
p.39). The model is therefore tested on a separate holdout set of data, called
the test dataset.

The test dataset should not be used in any way to train the model, so in order
to evaluate the performance of the model during development, one may extract
a validation dataset from the remaining training data. The model does not
train on the validation set per se, but the machine learning engineer who is
building the model can use it to estimate different models’ generalization ability.
Different models may refer to different model architectures, such as doing a
linear regression versus training a neural network. It can also refer to different
sets of hyperparameters used to train the same model architecture multiple
times. Hyperparameters are parameters which the model does not tune itself,
and instead are defined by the programmer (Goodfellow et al., 2016, p.117). A
simple example of a hyperparameter is the learning rate used to train a neural
network. To tune this hyperparameter, one would train the model using the
training data with a certain learning rate, evaluate the model’s performance
on the validation dataset, try another learning rate evaluate on the validation
dataset, and repeat. The learning rate that perform best on the preferred metric,
which could for example be the accuracy, is used for the final training.

9

2.2.2 Cross validation

K-fold cross validation is a method of evaluating a model where the data is
partitioned k times into different sets of training and validation data. This
gives k different models, each trained and evaluated on its own unique partition
of the data. The mean and standard deviation of the results from the different
models can also give a better idea of the model’s general performance. K-fold
stratified cross validation is the same, except one makes sure to keep the ratio
of labels in the two partitions equal. So if the dataset has binary labels where
80% of the examples belong to class 1 and only 20% belong to class 2, stratified
cross validation ensures that all validation and training sets created during cross
validation keep this ratio of labels. This is useful in cases where the dataset is
imbalanced.

2.2.3 Imbalanced data

When dealing with imbalanced datasets, a model can often perform well on a
performance criterion by always predicting the majority class. The minority
class is often the most important or interesting one, but if the dataset is suffi-
ciently imbalanced, the model might ignore it all together. Heavily imbalanced
datasets affect both the model’s ability to converge during the training phase,
and the generalization of the model when running inference on a test set (Buda
et al., 2018). Two techniques seek to alleviate this problem by balancing the
occurrence of each class: oversampling, where examples from the minority class
are duplicated, and undersampling, where random examples from the majority
class are deleted (Buda et al., 2018).

Figure 2.1: How different values of γ affect the focal loss curve. A higher value
of γ gives less focus to well classified examples. Figure from (Lin et al., 2017).

Another way to prevent an imbalanced dataset from impeding model perfor-
mance is through cost sensitive learning, where one assigns different costs to
misclassification of different classes (Buda et al., 2018). An example of this is
weighted loss.

10

Lin et al. (2017) introduced focal loss, where the contribution to the loss from
well-classified examples is down-weighted by adding a modulating factor (1−pt)γ
to the cross entropy loss:

FL(pt) = −(1− pt)γ log(pt)

where pt is the probability the model has assigned to the ground truth class.
Visualization of the focal loss for different values of γ is shown in Figure 2.1.

2.2.4 Transfer Learning

Transfer learning refers to when what has been learned from training on one
task, can be used to perform better on another task (Goodfellow et al., 2016,
p.526). We can call training on the first task the pre-training stage (Goodfellow
et al., 2016, p.314). For this to work, it is necessary that some of the patterns
the model found to solve the pre-training task are useful also for solving the
final task. Transfer learning can often be very useful when it allows for the
utilization of more data. This is especially true if the pre-training task does not
require labeled data, and can instead be trained in an unsupervised manner,
since unlabeled data is much more easily available.

2.2.5 Classifier Performance Metrics

Predicted class

True class Positive Negative Total

Positive tp: true positive fn: false negative p
Negative fp: false positive tn: true negative n

Total p’ n’ N

Table 2.1: Confusion matrix. From Alpaydin (2014).

In order to evaluate and compare different classifiers, we need to measure their
performance on the test set. In a binary problem, there are four possible out-
comes for a given test example. If the true label is positive, and the model
predicts it to be positive, we call it a true positive. If the model predicts a pos-
itive example to be negative we call it a false negative. On a negative example,
if the model correctly predicts it to be negative, it is a true negative, and if the
model incorrectly predicts the negative sample to be positive, that is a false
posisitve (Alpaydin, 2014). True positivies, false negatives, false positives, and
true negatives are often summarized in a confusion matrix, as shown in Table
2.1.

Often we would like to summarize the results of testing in a single number.
Different metrics fit different situations. Some commonly used metrics are de-
fined in Table 2.2. If a model returns an estimated probability P̂ (C1|x) for an
example x belonging to the positive class, we have to decide on a threshold
θ for which examples we predict as positive, so that the output is positive if
P̂ (C1|x) > θ. If we want fewer false positives we can set θ closer to 1, but
this will come at the cost of fewer true positives. Likewise setting θ closer to

11

Name Formula

error (fp+fn)/N
accuracy (tp+tn)/N

sensitivity tp/p
specificity tn/n

precision tp/p’
recall tp/p

Table 2.2: Metrics used in binary classification problems. From Alpaydin (2014).

Figure 2.2: Example of a ROC curve. The colored area represents the AUC
score. The dotted blue line represents the performance of a classifier making
random guesses. Image taken from Bui (2020)

0 will give us more true positives, but also more false positives. To summarize
a model’s performance across different values of θ, it is common to look at the
Receiver Operating Characteristics curve, or ROC curve, where one plots the
true positive rate versus the false positive rate. An example can be seen in
Figure 2.2. To summarize the curve in to a single number one calculates the
area under the curve (AUC). A perfect classifier has an AUC of 1.

2.2.6 Feedforward Neural Networks

The core component of all machine learning models we will be concerned with
in this thesis is the feedforward neural network (also called a multilayer percep-
tron, artificial neural network, or simply neural network), which draws inspira-
tion from how the brain works (Haykin, 1999). It consists of layers of artificial
neurons, connected by weights, as seen in Figure 2.3. Each neuron also has
a bias. The weights are randomly initialized, and updated using some form
of gradient descent, after the gradient has been found using backpropagation.
Neural networks, gradient descent, and backpropagation form the basis for all

12

Figure 2.3: A feedforward neural network with an input layer consisting of two
input units, a single hidden layer consisting of two hidden units, and one output
unit in the output layer. Weight wrjk connects unit j from layer r with unit k
from layer r−1. The output unit and all hidden units also have a bias associated
with them.

architectures we will look at in this thesis, so it makes sense to start with a brief
explanation of them. We will start by going through the standard feedforward
neural network to understand what is happening at each step, and then move
on to explain gradient descent and finally a quick mention of what the back-
propagation algorithm does. The explanations of these things will be based on
(Theodoridis and Koutroumbas, 2008), (Goodfellow et al., 2016), and (Haykin,
1999).

Still using Figure 2.3 as our reference, we say that first some input is given to
the input neurons, x1 and x2. We feed in the data points simultaneously, i.e.
we input the vector [x1 x2]

> to the network. The input values are multiplied
by their corresponding weights, and the results of these multiplications are then
added together with the bias to form the activation potential for the next state
(Haykin, 1999). So for the activation potential of the hidden states in our
reference network, we get

v1 = x1w
1
11 + x2w

1
12 + b1 (1)

v2 = x1w
1
21 + x2w

1
22 + b2 (2)

This can be written in terms of matrix operations:[
v1

v2

]
=

[
w1

11 w1
12

w1
21 w1

22

][
x1

x2

]
+

[
b1

b2

]

Being able to write the necessary calculations in terms of matrix operations is
key for being able to perform the calculations in a practical amount of time when
the number of parameters (weights) grows to the order of hundreds of millions.
In order to go from the activation potential to the hidden state, we need to send

13

it through an activation function, f(x). Some examples of activation functions
are the tanh function, the sigmoid function, and the ReLU function. The
activation function is what introduces nonlinearity into our network, allowing it
to differentiate between classes that are not linearly separable. Our expression
for the states of the hidden layer, is then

h1 = f(v1) = f(x1w
1
11 + x2w

1
12 + b1)

h2 = f(v2) = f(x1w
1
21 + x2w

1
22 + b2)

or, if we define

h =

[
h1

h2

]
, v =

[
v1

v2

]
, W 1 =

[
w1

11 w1
12

w1
21 w1

22

]
, x =

[
x1

x2

]
, b =

[
b1

b2

]

we can write

h = f (v) = f (W 1x+ b)

Now that we have the hidden states, h1 and h2, we continue propagating forward
through the network by treating these states as the input for the next layer.
Defining

W 2 =

[
w2

11

w2
12

]

we then have

ŷ = f(W>
2 h+ bŷ)

as our output. This is the network’s estimate of what y should be, based on
the input x. Propagating the input through the network like we have just done
is known as forward propagation (Goodfellow et al., 2016, p.197). Since the
weights are randomly initialized, the result of the first forward propagation will
almost certainly be a very poor estimation. The network is essentially just
making a random guess. We can evaluate how bad a guess it is by defining a
loss function (also called a cost function or error function), which takes in the
model’s prediction ŷ and the ground truth y and outputs some scalar value J .

14

An example might be the squared error:

J(ŷ, y) =
1

2
(y − ŷ)2 (3)

The factor of 1/2 in equation 3 is there so the derivative of J with respect to
ŷ is simply y − ŷ. Usually we will have more than one data point to consider
when calculating the cost function. In that case we could use the mean squared
error:

J(ŷ,y) =
1

2N

N∑
i=1

(y − ŷ)2 (4)

We want J to be large when the model makes bad predictions, and lower when
the model makes good predictions. Modern neural networks mostly use the
negative log-likelihood as the loss function (Goodfellow et al., 2016, p.173). We
will now see how the network can use the output of the loss function to learn
to make better guesses, by updating the weights through backpropagation and
gradient descent.

2.2.7 Gradient Descent and Backpropagation

Figure 2.4: Illustration of the different types of critical points, where f ′(x) = 0.
At a minimum, f(x) is lower than all neighboring points. At a maximum, f(x)
is higher than all neighboring points. A global maximum and minimum is where
the function takes its absolute highest and lowest values, respectively. A saddle
point is neither a maximum or a minimum, but still f ′(x) = 0.

Gradient descent is a technique used to minimize a function, by taking small
steps in the opposite direction of the gradient of the function (Goodfellow et al.,
2016). To understand how this works, consider first a simple example where we
want to minimize with respect to x the function

y = f(x), x, y ∈ R

This means that we want to find the value of x which gives us the smallest value

15

for y. To get started in finding this x-value we can input some random number
x = x0 into the derivative of f(x), to get the slope of f(x) at that point which
we denote as f ′(x0). If the slope is positive, that means that an increase in
x will lead to an increase in y, and since we want to minimize y, we move in
the opposite direction of the slope, i.e. we take a small step in the direction of
negative x:

x1 = x0 − ε

where ε is some small positive number. If the slope is negative, we take a small
step in the direction of positive x:

x1 = x0 + ε

More generally, we update the input x as:

xi+1 = xi − ε sign(f ′(xi))

(Goodfellow et al., 2016). After updating x using this formula, we insert the
new value of x into the derivative to see whether we should keep going in that
direction or not. The method has converged to a so-called critical point when
f ′(xi) = 0. A critical point can be a local or global maximum or minimum, or
a saddle point, all of which are shown in Figure 2.4. Ideally we would like to
end up in the global minimum, but with gradient descent we risk getting stuck
in a local minimum or a saddle point, since the algorithm is over as soon as
f ′(x) = 0.

That was gradient descent in the simple case of a function with scalar input
and output. Let us now look at gradient descent in the more relevant setting
where we have a vector input, but still maintain a scalar output. Having a
scalar output is necessary for the concept of minimization to still make sense
(Goodfellow et al., 2016). We will use a two dimensional example, looking at
the function

y = f(x), y ∈ R, x ∈ R2

Our goal is still to find the input x which gives us the lowest y possible. When
we had a scalar input, we simply started with a random x and looked at the
derivative to find which direction to go, took a small step in that direction, and
looked at the derivative again with the new value of x, and repeated this until
convergence. We use the same logic here, but in this case, we don’t have a simple
f ′(x). Since our input is vector valued, we need to take partial derivatives of
the function with respect to each component of x. The partial derivative of f
with respect to xi, which we can denote as ∂xi

f , tells us how the value of f
changes when we take a small step in the direction of xi. We gather the partial
derivatives of f with respect to both (more generally, all) components of x, in
a vector called the gradient, denoted ∇xf . With a two-dimensional input, our
gradient is then

∇xf = [∂x1
f ∂x2

f]>

The gradient at a given point always points directly uphill, and the negative
gradient then points directly downhill (Goodfellow et al., 2016). Analogous to
the case with one-dimensional inputs, we can then minimize y = f(x) by taking
small steps in the direction of the negative gradient, reevaluate the gradient,

16

take a new small step, and repeat until convergence. Convergence in this case
means that all partial derivatives are equal to zero, i.e. the gradient is a zero
vector.

A neural network can be thought of as a complex function with many parameters
(weights). We utilize gradient descent to train neural networks by minimizing
the cost function with respect to the weights of the network. As we have seen,
in order to do that we first need to find the gradient of the cost function with
respect to the weights. It is straightforward to find an analytic expression for the
gradient, using the chain rule of calculus, but the problem with this approach is
how computationally expensive it can be to evaluate it (Goodfellow et al., 2016).
The backpropagation algorithm allows us to compute the gradient in a simpler
and less expensive manner. It was first introduced by Rumelhart et al. (1986),
and it is an algorithm that recursively applies the chain rule efficiently. The idea
is that when computing the gradient, many subexpressions may be repeated,
and recomputing them every time is inefficient. It is much better to save them
in memory, and reuse them when needed, which is what backpropagation does.

That’s the basic idea of how to train a feedforward neural network: the model
is given some input x which it uses along with its weights to produce an output
ŷ. The model’s output is compared with the ground truth y through a cost
function C, which is backpropagated through the network to find the gradient
of C with respect to the weights of the network. After obtaining the gradient
for each weight through backpropagation, gradient descent updates the weights
in such a way that the model’s output will be closer to the ground truth. This is
repeated this until gradient descent converges, which happens when the gradient
with respect to the weights is a zero vector (or close to a zero vector, in practice
you rarely get an actual zero vector). Given a training dataset, we would like
to use backpropagation and gradient descent to train the network to find some
pattern in the data, so that it can differentiate between the classes, and correctly
classify the datapoints as one class or another. The feedforward neural network
is the basic building block for much more complex models, as we will see later in
the thesis when some deep learning architectures are described. First, however,
we will take a look at some more tools used to train deep learning models,
starting with a look at the cross entropy loss.

2.2.8 Cross Entropy Loss

Our discussion of cross entropy starts with a definition of the Kullbeck-Leibler
divergence, which measures the difference between two probability distributions,
P (x) and Q(x). It is defined as (Goodfellow et al., 2016, p.72)

DKL(P ||Q) = Ex∼P
[
log

P (x)

Q(x)

]
= Ex∼P [logP (x)− logQ(x)]

When we train a neural network model with an example x, we wish to minimize
the distance between that datapoint’s label y(x), and the model’s output when
it is fed that particular datapoint, ŷ(x). If the model produces a score vector
z(x), one score for each possible output class, that score vector can be input

17

into a softmax function to produce a probability distribution over the possible
output classes:

softmax(z)i =
exp(zi)∑
j exp(zj)

Let the output of the softmax equal Q from our definition of KL-divergence.
Likewise, let the label of the example, y(x) be interpreted as a distribution
giving 100% probability to the true class, and 0% probability to the other classes,
in the case of single-label classification, and call it P . In order to get the model
to output a probability distribution as close to the label as possible, we wish to
minimize the KL-divergence DKL(P ||Q), with respect to the model’s output,
Q. However, Q does not participate in P , so this is equivalent to minimizing
the following expression with respect to Q (Goodfellow et al., 2016, p.73):

H(P,Q) = −Ex∼P logQ(x)

H(P,Q) is the Cross Entropy. Importantly, when we use cross entropy as a loss
function, x in the above equation represents the different possible classes, not
the input to the model. We interpret Q(j) as the model’s predicted probability
of the input example x belonging to class j. To avoid confusion we therefore
replace x with j in further equations, where j represents different classes. We
can write out the cross entropy as follows:

H(P,Q) = −Ej∼P logQ(j) = −
∑
j

P (j) logQ(j)

Here, P (j) = 1 when j is equal to the true class y, and 0 otherwise. The sum
therefore collapses and we are left with

H(P,Q) = − logQ(y)

If we wish to weight the loss, we create a weight functionW , whereW (j) returns
the weight given to class j. The weighted loss is then equal to:

H(P,Q)weighted = −W (y) logQ(x)

2.2.9 Optimization

In Section 2.2.6 and Section 2.2.7 an explanation was given of the basic idea
behind neural networks and how they are trained, where the loss is minimized
using gradient descent. In practice, pure gradient descent is not used for train-
ing deep models, because the gradient can only be calculated after seeing the
whole dataset, which is often large, and so each step of gradient descent would
take a very long time (Goodfellow et al., 2016, p.148). Instead of doing this, one
estimates the value of the gradient by backpropagating the loss from a mini-
batch of examples, and updates the weights with this estimate. This is called
Stochastic Gradient Descent (SGD) (Goodfellow et al., 2016, p.148).

Momentum Further innovations have been made on SGD, such as momen-
tum, where a fraction γ (called the momentum term) of the update vector at

18

the previous time step is added to the update vector at the current time step
(Ruder, 2017).

mt = γmt−1 + η∇θJ(θ)
θt = θt−1 −mt

Adam Several more innovations have been made, from Nesterov accelerated
gradient (Nesterov, 1983), to the one used in this work, Adam (Kingma and
Ba, 2017). Adam is short for Adaptive Moment Estimation, and it computes
adaptive learning rates for each parameter (Ruder, 2017). Adam computes
estimates for the first and second moment of the gradients:

mt = β1mt−1 + (1− β1)gt
vt = β2vt−1 + (1− β2)g22

Since mt and vt are initialized as zero-vectors, Kingma and Ba (2017) observe
that they are biased towards zero. They correct for this bias by replacing the
first and second moments by bias-corrected as such:

m̂t =
mt

1− βt1
v̂t =

vt
1− βt2

The model’s parameters are then updated using this rule:

θt+1 = θt −
ν√
v̂t + ε

m̂t

Weight Decay L2 regularization is a way of penalizing a model for the size
of its weights. The square of the norm of the model’s weights is added to the
loss, which could be for example the mean squared error loss (Goodfellow et al.,
2016, p.116).

J(w) = MSEtrain + λwTw

This incentivises the model to have smaller weights as it tries to minimize the
loss. Smaller weights regularize the model, meaning it is less likely to overfit to
the training data.

Weight decay is a term often used interchangeably with L2 regularization, as
they are equivalent when training with regular SGD, but Loshchilov and Hutter
(2019) showed that they are not equivalent when using adaptive gradient meth-
ods, such as Adam. They therefore proposed a new method for doing weight
decay with Adam, which they call Adam decoupled weight decay (AdamW).
The difference between AdamW and Adam with L2 regularization is shown in
Figure 2.5.

19

Figure 2.5: AdamW compared to Adam with L2 regularization. Algorithm from
(Loshchilov and Hutter, 2019).

Learning Rate Scheduling The learning rate does not need to stay constant,
and can instead be scheduled to change over the course of training. Mosbach
et al. (2020) recommends a linear increase of the learning rate for the first 10%
of training steps, and a linear decay to zero afterwards.

2.2.10 Recurrent Neural Networks

Figure 2.6: A vanilla RNN unrolled for two time steps. The input vector and
the hidden state are multiplied by their respective weights and added together.
The result of this addition is sent through a tanh activation function which
produces the new hidden state.

We now move on to the Recurrent Neural Network (RNN), which is a machine
learning architecture that utilizes neural networks, and naturally lends itself to
the processing of sequential data, such as text, which is a sequence of words. I
will briefly describe the general RNN architecture and then move on to describe
an improvement upon it, namely the addition of gates, as gated RNNs were the
go-to state of the art models before the Transformer models. An RNN works as
follows: first randomly initialize a vector called the hidden state h0. Then use
this hidden state, together with the first input, x1, to calculate a new hidden
state h1. In a vanilla RNN, this is done through the formula

20

h1 = f(W hh0 +W xx1 + b)

where f is some non-linear activation function, often the tanh function, W h and
W x are weights to be used on the hidden state and the input, respectively, and
b is the bias. This new hidden state h1, can be fed back into the same model, to
be used along with the next data point, x2, to calculate the next hidden state,
which is then fed back into the model again, etc. A diagram of a vanilla RNN
like this can be seen in Figure 2.6. The more general formula for the hidden
state at time step t is

ht = f(W hht−1 +W xxt + b)

The weights are the same at every time step, which means that RNNs utilize
parameter sharing. This allows the model to process data of whatever length,
and to generalize across them (Goodfellow et al., 2016).

The idea behind this architecture is that the model should learn to encode a
summary of what it has seen previously in the sequence, into ht. Then that
summary can for example be sent into a regular feedforward neural network
which can classify the sequence to some class. It is also possible to send the
hidden state at every time step through a feedforward neural network, in or-
der to classify each data point on its own, instead of the sequence as a whole.
The hidden state will be a lossy summary, because the hidden state ht is a
vector of fixed length, while the sequence can be of an arbitrary length. The
RNN learns through backpropagation and gradient descent just like the stan-
dard feedforward neural network. However, long-term dependencies are hard to
model with a vanilla RNN such as this. We can see why by looking at a simple
example, given in (Goodfellow et al., 2016). Consider a very simple recurrent
neural network on the form

ht = W>ht+1

Because this is simply repeated multiplication with the same matrix, we can
simplify it to

ht = (W t)>h0

Through eigendecomposition this can be written as

ht = Q>ΛtQh0

Now the eigenvalues are raised to the power of t, which will cause eigenvalues
less than one in magnitude to tend toward zero, and eigenvalues greater than
one in magnitude to tend towards infinity. In other words the gradient either
explodes or vanishes when it is propagated over many stages. Gated RNNs
seek to fix this problem by allowing the gradient to flow through other paths,
where it won’t neither vanish nor explode (Goodfellow et al., 2016). Because
the gradient is more stable in this way, gated RNNs are models with “longer
memory,” and the gated RNNs can also learn themselves what is worth keeping
in that memory, and what can be forgotten. We will now take a closer look at

21

a gated RNN called the LSTM.

LSTM The LSTM archictecture (Hochreiter and Schmidhuber, 1997; Gers
et al., 2000) seeks to improve the vanilla RNN by introducing what can be
thought of as a more long term memory. Instead of only passing the hidden
state from one step to another, another vector called the cell state is also passed
to the next time step. The cell state avoids the repeated multiplication with the
same weight matrix, so it also avoids the vanishing gradient problem that comes
along with that process. This is the long term memory of the LSTM, and the
LSTM itself controls what to put into the cell state, and what to remove from
it. It does this through so-called “control gates”. The control gates are simple
feedforward neural networks with a sigmoid activation function, and based on
their output, the cell state is changed. The sigmoid activation function is chosen
because it outputs values between 0 and 1, and so a pointwise multiplication
with its output is a good way to control how much of each component should
be let through.

Figure 2.7: An LSTM cell. The yellow boxes represent a feedforward neural
network with either a sigmoid activation function (σ), or a tanh activation func-
tion. When the lines from ht−1 and xt merge at the bottom left, it represents
a concatenation of them. The red circles represent pointwise operations.4

.

An LSTM cell diagram can be seen in Figure 2.7. The cell state travels through
the horizontal line at the top, and it is only modified through pointwise multi-
plication and addition, as controlled by the gates. From left to right, the gates
(yellow boxes with σ in them) are the forget gate, the input gate, and the output
gate. The forget gate is responsible for which parts of the cell state can be re-
moved. The input gate decides what new information to store in the cell state.
It does this in conjunction with the tanh feedforward neural network, which
outputs new candidate values of the cell state, C̃. The output from the input
gate is what decides which values in the candidate state are actually added to
the cell state. This final cell state is then sent through another tanh function,

4The diagram is inspired by diagrams found on colah.github.com

22

the output of which is multiplied with the output of the output gate, to decide
which parts are output as the next hidden state. The hidden state and the cell
state then flow on to be used in the next time step, or the hidden state can be
used for classification by for example sending it through a feedforward neural
network. It is also possible to stack LSTM layers on top of each other, where
the hidden state from each time step is fed in as the input (replacing xt) to the
next layer.

The LSTM and other gated RNNs have been very successful and were the state
of the art machine learning models for sequence modeling for several years
(Vaswani et al., 2017). In one area of research these models have been par-
ticularly successful, namely in its application to Neural Machine Translation
(NMT). We will now look at how LSTMs can be used for this purpose, by us-
ing a so-called sequence to sequence, or seq2seq, model. These models were
very successful; only 2 years after the paper which introduced seq2seq mod-
els (Sutskever et al., 2014) was published, Google Translate5 started switching
from Statistical Machine Translation (SMT) to NMT (Turovsky, 2016). Many
improvements have been made upon seq2seq models since they first appeared,
and one improvement in particular, called attention, has been very successful.
We will soon look at the attention mechanism, first in the context of a seq2seq
model, before we move on to the Transformer, an NMT model which drops the
RNN structure in favor of a model based entirely around the attention mecha-
nism.

Figure 2.8: Illustration of a sequence to sequence model for translation. The
input sentence is processed one word(-vector) at a time by the encoder. After
having processed the whole entire input sentence, the encoder produces a context
vector which is sent to the decoder for it to use in order to produce the output
sentence. The decoder produces the output sentence word by word.

Seq2seq models and attention To motivate the need for the attention
mechanism, we will first look at a seq2seq model without attention, mention
its limitations, and then explain how attention works to make the model better.
Seq2seq models work through two main components. The encoder, which is an
RNN that takes in the input sequence, does some manipulation of the input,
and feeds its output to the decoder, which is another RNN that uses the output
from the encoder to produce the output sequence. The encoder’s job is to create
a good encoding, i.e. a vector representing the input sequence well enough for
the decoder to be able to produce the correct output. The decoder produces an
output sequence, conditioned on the context vector from the encoder. A classic
use case for seq2seq models is translation. In that case the decoder takes in one

5translate.google.com

23

word at a time, and uses it to produce a context vector which the decoder uses
to produce the translation. A simple illustration of this is shown in Figure 2.8.

The encoder could be an LSTM, or some other form of RNN, which takes in
one word at a time (in the form of word vectors / word embeddings) along
with the previous hidden state, to produce a new hidden state. The hidden
state produced by the last word in the input sentence is used as the context
vector, which the decoder uses as the representation of the entire input sentence.
The decoder, which could also be an LSTM, uses the context vector as its
initial hidden state, along with the embedding of the <START> token. It
then produces a hidden state for each time step, which can be used to produce
a probability distribution for what the output word should be at that time
step. The hidden state is also sent to the next time step, along with the word
embedding of the word which the decoder predicted at the current time step, in
order to produce a new hidden state to be used to get a probability distribution
for the next output word. To get predictions of words from the decoder, one
could simply always choose the word with the highest probability from the
probability distribution, but other methods of choosing the output words, such
as beam search (Freitag and Al-Onaizan, 2017) also exist. The decoder stops
once the <END> token is produced, signifying that it has reached the end of
the output sentence.

That was a description of how a seq2seq translation model works at test time.
The training procedure works differently, and I won’t describe it here. See
(Sutskever et al., 2014) for details on this. The vanilla seq2seq models work
decently well, but a problem with this approach is that it is very hard for the
encoder to compress all the information of the input sentence into the context
vector. So a lot of information is lost at that step, and Bahdanau et al. (2016)
propose that the context vector being passed from the encoder to the decoder
works as a bottleneck for these models. As a solution they propose the attention
mechanism. Attention lets the model choose which parts of the input sequence
it should focus on, hence the name “attention.” When a seq2seq model uses
attention, the decoder has access not only to the last hidden state from the
encoder, but to all the hidden states from the decoder.

In order for the decoder to choose which parts of the input sequence to pay
attention to at any particular time step, each hidden state from the encoder is
given a score. The scoring is done by simply taking the dot product between the
hidden state at the current time step of the decoder, and each hidden state from
the encoder. These scores are then sent through a softmax function 6, giving us
what’s called the attention distribution. Each hidden state is then multiplied by
the its softmaxed score, before all hidden states are added together into what
becomes a weighted average of the input sequence. This weighted sum of the
input sequence is then concatenated with the hidden state from the decoder at
the current timestep, and this concatenated vector is what’s used to produce
the probability distribution for the output word. This concatenated vector can
also be sent to the next time step, instead of only the hidden state, as was the

6The softmax function takes in a list of real numbers and normalizes them, so the output
sums to one and so can be interpreted as a probability distribution.

24

case in the vanilla seq2seq model.

Attention solves the bottleneck problem, and also helps with the vanishing gra-
dient problem, and so it improves NMT performance. It also provides some
interpretability, because you can look at the attention distribution to see what
the decoder is focusing on when producing different parts of the output. At-
tention turned out to be so powerful that the current state of the art language
models are based entirely on the attention mechanism. These models are based
on the architecture of the original Transformer model, invented by Vaswani
et al. (2017), who taught us that attention is all we need. Before getting to the
transformer, though, we will look at how LSTMs can be used to create better
word embeddings than word2vec.

2.3 Natural Language Processing
Natural Language Processing (NLP) refers to using statistical methods to un-
derstand text in order to solve real-world tasks (Rao and McMahan, 2019). This
is done by transforming texts to usable computational representations. This sec-
tion will describe different methods for creating such representations of words,
starting with word embeddings

2.3.1 Word embeddings

When writing about language modeling and natural language processing in gen-
eral, it is important to explain how words can be represented mathematically,
so that machine learning models can get a useful representation of the sentences
we want it to analyse. We need to represent words in a way that a computer can
understand, which means we have to represent the words using numbers. The
simplest, most straight forward way to do this is to simply build up a vocabu-
lary, and assign a unique number to each word in that vocabulary. For example
the word “the” might be represented by the number 1, and the word “be” might
be represented by the number 2, etc. This is known as one-hot encoding, be-
cause you can represent the numbers associated with each word as a one-hot
vector the size of your vocabulary, with a 1 at the index which represents the
word. This means that if we had a vocabulary of size 4, the word “the” would
be represented as [1 0 0 0] and the word “be” would be represented as [0 1 0 0],
following the above example.

Obviously we need a larger vocabulary than of size 4, so this method of rep-
resenting words would lead to vectors with thousands of dimensions, with all
but one of the values being zero. Such sparse, high-dimensional representations,
are not well suited for analysis by neural networks (Goldberg and Hirst, 2017).
Another problem with using one-hot encoding to represent words, is that these
vectors don’t capture any meaning of the words they represent. The words “ap-
ple” and “orange” obviously have a lot in common, but one would not know that
just from looking at the vectors representing the two words, and so someone
who understands nothing but mathematics (a computer) can’t know that the
words are similar. What we would like, then, is a dense, lower dimensional
representation of the words, which captures some of the meaning behind the
words. How do we create such vectors? A quote from linguist John Firth can

25

give us a hint.

“ You shall know a word by the company it keeps

Firth (1957)”
The above quote tells us that if we want to know the meaning of a word, we need
to look at the words around it. We want our word representations to be useful
for predicting other words which appear around it. One way to create word
vectors using this idea is to use the word2vec algorithm (Mikolov et al., 2013).
This algorithm starts by first assigning a random initial vector to each word
in a fixed vocabulary, and the idea is to look at a similarity measure between
different word vectors and use this similarity measure to predict whether one
word is likely to appear next to another word. The vectors are then changed so
as to get better at this task.

In word2vec this is done using a simple neural network, but without a non-
linear activation function. In the beginning, when all words are simply assigned
random vectors, the neural network will not be able to predict very accurately
whether one word appears next to another, and the loss will be large. The
goal is of course to minimize the loss by adjusting the word vectors through
backpropagation and gradient descent. Then for every word in the text, define
that word as the center word, and the words around it as the outside words
(the context). Then use the similarity of the current word vectors for the center
word and the outside words, to predict the probability of the outside words
given the center word, or vice versa. When the center word is predicted based
on the context, the learning model is called the Continuous Bag-of-Words model
(CBOW), and when the context is predicted based on the center word, the
learning model is called the Continuous Skip-Gram model. An illustration of
the two learning methods can be seen in Figure 2.11.

We will take a closer look at the skip-gram method and ignore the CBOW
method, but the concept is exactly the same for both. As previously mentioned,
the skip-gram method uses the center word to predict the outside words. We
don’t really care about having a network which is good at predicting which
words appear next to each other, but giving the network this task forces it to
encode something meaningful into its hidden layer, and it is this hidden layer
we will use as our word vectors. Actually, since the hidden layer doesn’t have a
non-linear activation function, we may instead want to call it a projection layer.

We will look at a simple example where we train three-dimensional word vectors
based on a very small corpus, namely the sentence “The quick brown fox jumps
over the lazy dog.” First we need to create our one-hot vectors, so we assign 0
to “the,” 1 to “quick,” etc. and end up with the vocabulary seen in Figure 2.9,
which has eight unique words. Now we need to create our training instances,
meaning we need to create input/output examples for our model to train on.
First we choose a “window size,” which is a parameter that lets us choose how
wide a context we want the model to look at. For this example, let’s use a
window size of 2, meaning we create examples using the two words behind of
the center word, and the two words that follow. For our example, we would get

26

Figure 2.9: Vocabulary and associated one-hot vectors for this simple example.

the training examples

(The, quick)
(The, brown)
(quick, The)
(quick, brown)
(quick, fox)
(brown, the)
(brown, quick)
(brown, fox)
(brown, jumps)
etc.

These examples are written on the form (center word, outside word), and when
using the skip-gram method we want the model to output a high probability
for the outside word, given the center word. We are actually going to have two
vectors for each word while we train the network; one vector will be used to
represent the word as an outside word, and the other will be used to represent
the word as the center word. We will now look at how we set up a neural
network to learn from the first training instance, (The, quick).

Let’s say we want three-dimensional word embeddings. We then create a net-
work with a three-dimensional hidden layer (or projection layer). The input and
output layers have dimensions equal to the size of our vocabulary, in this case 8.
An illustration of this network can be found in Figure 2.10. For our training ex-
ample, (The, quick), we input the one-hot vector associated with “The.” When
the input vector is sent forward to the hidden layer, its one-hot nature causes
it to act as a selector in the first weight matrix, effectively picking out a word
vector from it. This word vector is multiplied by the weight matrix containing
what we can think of as the second set of word vector for each word, leaving us
with an (8 × 1) vector containing scores for each word in our vocabulary. The
scores are then softmaxed and sent into the cost function along with the one-hot

27

Figure 2.10: Skip gram. The one-hot encoding functions as a selector; it picks
out the correct word embedding from the weight matrix.

vector for the ground-truth output word, in this case the vector associated with
“quick.” This cost function returns a number which is backpropagated through
the network to find the gradients, and then the network’s weights (our word
vectors) are updated using gradient descent. Once the network is done training,
i.e. when the loss has converged, we simply throw away everything but the first
weight layer, which contains our word vectors.

These vectors capture some of the meaning in the words, and we can see this
in two different ways. First, similar words will tend to lie close together in the
embedding space. So for example the words apple and orange will lie pretty close
together, probably along with other fruits. This is because these words appear in
similar contexts, which means that the network needs to predict similar context
words for them in order to reduce the loss, and the way for the network to
do that is to make their vector representations similar. The other way to see
that the word embeddings capture something meaningful is that you can do
some simple math with the vectors, like subtracting or adding one vector from
another, and see that you end up with a meaningful result. For example if you
take the word embedding for “king” and subtract the embedding for “man,” and
then add the embedding for “woman,” the resulting vector will lie very close to
the embedding for “queen.”

An alternative to word2vec is GloVe (Pennington et al., 2014) which is trained
using a global word-word co-occurrence matrix, containing estimated probabil-
ities of one word occurring in the context of another word. GloVe trains with a
loss function which incentivizes the model to give each word a word vector such
that the dot product between word vectors equals the logarithm of probability
of those two words co-occurring. Whereas word2vec uses only local information
when iterating through the training corpus with a certain window size, GloVe
leverages both local and global information through the co-occurrence matrix.

28

Figure 2.11: An illustration of the two methods used for creating word vectors
with word2vec. The Continuous Bag-of-Words (CBOW) model predicts the
center word based on the context, and the Continuous Skip-Gram model predicts
the context based on the center word. Image taken from (Mikolov et al., 2013).

2.3.2 ELMo

Before moving on to the transformer architecture, we will briefly describe how
LSTMs were used to create better word embeddings than those from word2vec
or GloVe. With the aforementioned methods there was a fixed word embedding
for each word, but words often have different meanings based on the context
in which they are used. Take the word “stick” as an example. You can pick
up a stick from the ground, and you can stick a magnet on your refrigerator,
and you can stick to your word. ELMo (Peters et al., 2018) allows us to create
context-dependent word embeddings, where each version of the word “stick” gets
its own embedding.

ELMo stands for Embeddings from Language Models, because they are cre-
ated using the hidden states in a deep LSTM trained with a language modeling
objective. Language modeling is the task of predicting the next word in a sen-
tence, given the previous words. ELMo does bi-directional language modeling,
meaning it combines both a forward language model and a backward language
model, where a backward language model predicts the previous word given the
future words. This is done so that the embeddings can be made with context
from both sides, not just from the previous words.

The LSTM model used to create the ELMo embeddings has two bi-LSTM layers
meaning each that at each time step the LSTM cell sends its hidden state not
only forward to the next time step, but also “up” to the next layer. Since it is bi-
directional, and has two layers, each token has five representations: (1) the input
representation, i.e. the vector that is fed into the language model. ELMo uses
character level CNNs to produce the input representation. The input being given
at the character level means ELMo can produce embeddings for words never seen

29

Figure 2.12: ELMo architecture diagram. Diagram from Joshi (2019).

during training; (2, 3) a representation created using the context of the previous
words (one from each layer of the forward running language models); (4, 5) a
representation created using the context of the future words (one from each
layer of the backward running language models). ELMo representations are a
weighted sum of all representations:

ELMotaskk = γtask
L∑
j=0

staskj hk,j

where k is the token index, L is the number of layers, hk,j is a concatenation
of the forward and backward running representations of token k at layer j, and
hk,0 is the input representation of token k (e.g. a word vector from word2vec).
staskk are softmax-normalized weights the model can learn in order to weight
different representations according to their importance for performing well on
the loss function. γtask lets the model scale the whole ELMo representation
(Peters et al., 2018).

At the time of its release, ELMo embeddings achieved state-of-the-art results on
six NLP tasks, including question answering, textual entailment, and sentiment
analysis. It was clear that context dependent word embeddings were far superior
to fixed embeddings. The idea of getting word representations by training with
a language modeling objective would become important also for what would end
up beating ELMo namely embeddings from transformer models. We will now
describe the Transformer architecture.

30

Figure 2.13: Transformer model architecture. Diagram from Vaswani et al.
(2017).

2.3.3 The Transformer

Transformer models, based on the original Transformer, have taken over as the
new state of the art models for language modeling in the last few years.7 Vaswani
et al. (2017) present the Transformer as an NMTmodel, and just like the seq2seq
model, it consists of an encoder and a decoder. The encoder takes in the text
in the language you want to translate from, processes it, and the decoder uses
output from the encoder to produce the translated sentence. The encoder and
decoder both consist of several layers (6 layers in the original transformer), and
it turns out that these layers, when stacked on top of each other, produce very
powerful models for other NLP tasks than just translation. Stacking encoder
layers on top of each other is the basis for the BERT model, which is what we
will be using for our experiments in this work. Other transformer based models
such as the GPT models, are made up of decoder layers stacked on top of each
other.

Transformer models don’t work in a sequential manner; they instead process
text one sentence at a time (batches of sentences at a time when training with
SGD), as opposed to processing the sentences one word at a time. This ability
to further parallelize the processing is one of the key advantages of Transformer
models, because it means it can learn from a large dataset in a much shorter
time than RNN models. With the ability to train on large datasets comes the
ability to build huge models with millions and even billions of parameters. In

7See the leaderboard at https://paperswithcode.com/task/language-modelling

31

fact Vaswani suggests in his guest lecture at Stanford8 that the transformer
may not have better expressivity than LSTMs, and that instead maybe all the
transformer is is an architecture which learns very effectively through stochastic
gradient descent. We will now take a closer look at the components of the
transformer, starting with how the transformer utilizes attention.

Scaled Dot-Product Attention The Transformer uses what Vaswani et al.
(2017) calls Scaled Dot-Product Attention. The input is a set of query, key, and
value vectors, and the output is a weighted sum of the value vectors, where the
weights in the weighted sum are constructed from the key and query vectors.
What to use as query, key, and value vectors we will soon get to. The creation
of attention scores are produced includes taking the dot product between the
query and key vectors. For this reason, the query and key vectors must be of
the same dimension, dk. The value vectors are of dimension dv which need not
equal dk, but Vaswani et al. (2017) choose to keep them the same size. The
dot product between the query and key vectors are divided by

√
dk and these

scores and then softmaxed, resulting in an attention distribution which is used
to create a weighted sum of the value vectors. This way of doing attention is
efficient since all query, key, and value vectors can be packed into matrices Q,
K, and V respectively, and the attention function on all positions can therefore
be computed simultaneously as:

Attention(Q,K, V) = softmax
(
QKT

√
dk

)
V (5)

Division by
√
dk is done to prevent the dot products from getting too large.

Having too large values inside a softmax results in very small gradients, which
hinders learning.

Multi-Head Attention One could use scaled dot-product attention by using
the word embeddings as both key, value, and query vectors. However, in or-
der to give the model extra representation subspaces, the key, value, and query
vectors that are input into scaled dot-product attention are created by linearly
projecting the dmodel-dimensional embeddings h times through learned projec-
tion matrices, down to a lower dimension. In multi-head attention each triad of
key, value, and query projection matrices represents a head:

headi = Attention(QWQ
i ,KW

K
i , V W

V
i)

where WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk , WV
i ∈ Rdmodel×dv . After each head

is created, the next step is to concatenate them all and linearly project the
resulting vectors back to the original input dimension:

MultiHead(Q,K, V) = Concat(head1, . . . ,headh)WO

where WO ∈ Rhd×dmodel .

In the decoder, there are two types of multi-head attention. In “encoder-decoder
8The guest lecture can be found at https://youtu.be/5vcj8kSwBCY

32

attention” layers, the queries at each layer come from the decoder’s previous
layer, while the key and value vectors are linear projections of the encoder’s
output. The other type of multi-head attention is multi-head self-attention,
where the key, query, and value vectors are all created from the output of the
previous layer. Both the encoder and decoder use multi-head self-attention. For
each position (word-embedding / word representation) which is encoded with
multi-head self-attention, the encoder is allowed to attend to all positions from
the previous layer. For each position in the decoder, however, it can only attend
to positions up to and including that position (Vaswani et al., 2017).

Position-Wise Feed-Forward Network That covers how attention func-
tions in the transformer. The next component is the position-wise feed-forward
network. This is simply a feedforward neural network which is applied separately
and identically to each position. To be able to take in the word embeddings
its input dimension must be dmodel, and its output dimension must also be the
same so the next layer (which is identical) can take the output as input (Vaswani
et al., 2017).

Positional Encodings Because all positions are handled at the same time,
the transformer has no innate way to recognize the order of the words in the
input sentence, unlike RNN models. The order of the words in the input sen-
tence is obviously important, and in order to give the transformer information
about the positions of the words, a positional encoding is added to each word
embedding, before it is sent through the model. The positional encoding con-
sists of a vector of dimension dmodel with a certain pattern that the model can
learn to recognize in order to recognize the position of that particular word in
the sentence. The input to the model is the sum of the positional encoding and
the word embeddings.

Residuals and Layer Normalization There is a residual connection around
each sub-layer, in both the encoder and the decoder. A residual connection
means that the input to that layer is added to the output. Layer normalization
(Ba et al., 2016) is then performed on that sum, so the output of each sub-layer,
which is sent forward to the next layer is LayerNorm(x+Sublayer(x)). Vaswani
explains in his aforementioned guest lecture at Stanford that the residuals are
very important for carrying the positional information from the positional en-
coding forward in the network, but that they also carry more than just positional
information.

Layer normalization is a normalization method where each training instance is
shifted and rescaled using the mean and standard deviation of its features (Ba
et al., 2016). If for example the inputs to layer normalization is this small batch
of two 3-dimensional vectors

x1 = [1, 4, 5], and x2 = [1, 2, 3]

x1 has as its features the numbers 1, 4, and 5. The mean is then µ1 ≈ 3.3 and
the standard deviation is σ1 ≈ 1.7. For x2 we have µ2 = 2, and σ2 ≈ 0.82. Each

33

datapoint is shifted and rescaled using its own individual normalization terms:

x̂1 =

[
1− 3.3

1.7
,
4− 3.3

1.7
,
5− 3.3

1.7

]
≈ [−1.4, 0.4, 1]

x̂2 =

[
1− 2

0.82
,
2− 2

0.82
,
3− 2

0.82

]
≈ [−1.2, 0, 1.2]

Simply normalizing each datapoint can change what it represents. In case nor-
malizing is destructive for learning, it would be good for the model to have the
ability to undo the normalization. For this reason, two more parameters are
introduced: the gain parameter g and the bias parameter b, both of the same
dimension as the input. However, Xu et al. (2019) claim that the bias and gain
parameters increase the risk of the model overfitting. Given the input vector x,
of dimension H, the output of layer normalization is

y = f
[g
σ
�
(
x− µt

)
+ b
]
, µ =

1

H

H∑
i=1

xi, σ =

√√√√ 1

H

H∑
i=1

(xi − µ)2

� represents element-wise multiplication.

Normalization leads to faster convergence, and therefore reduces training time.
It does this by reducing internal covariate shift (Ba et al., 2016). Internal
covariate shift was defined by Ioffe and Szegedy (2015) as the change in the
distribution of network activations due to the change in network parameters
during training.

2.3.4 BERT

Figure 2.14: Overall pre-training and fine-tuning procedures for BERT. Diagram
from Devlin et al. (2019).

BERT, which stands for Bidirectional Encoder Representations from Transform-
ers, is a language representation model which at the time of its release achieved
state-of-the-art results on eleven NLP tasks (Devlin et al., 2019). Just like
ELMo, BERT encodes the context of a word into the word’s representation,

34

but unlike ELMo, it does not use bi-directional LSTMs to produce these repre-
sentations. Instead it uses encoder layers from the Transformer, which can be
trained much more effectively than LSTMs. ELMo has 93.6 million parameters9
and was pre-trained on one billion words. BERT in contrast, has 110 million
parameters in the base model, and 340 million parameters in the large model,
and was pre-trained on a total of 3.3 billion words (Devlin et al., 2019). The
architecture and training procedure(s) of BERT will now be described.

Architecture BERT is a Transformer encoder, with only a few changes. Let
L denote the number of encoder layers, and H the hidden size. The original
Transformer encoder had L = 6 layers, and a hidden size of H = 512. The
smaller BERT model, BERTBASE uses L = 12 and H = 768, while the large
model uses L = 24, and H = 1024. The encoder layers produce represen-
tations which are sent through a feedforward layer for the final classification
task. Which embeddings are sent to the feedforward layer depends on the task.
Training BERT happens in two stages. First the pre-training, where the task is
Masked Language Modeling (MLM), and Next Sentence Prediction (NSP). The
next stage is the fine-tuning, where the output layer used during pre-training
is thrown away and replaced with one to be used for the fine-tuning task, also
called the down-stream task.

Input/Output Representations BERT does not create word embeddings
exactly, but instead word-piece (Wu et al., 2016) embeddings. This means that
if one inputs the sentence

Tokenize this sentence

what is actually input to the model are the tokens

To ##ken ##ize this sentence

The prefix ## indicates that a token is a continuation of the previous token.
The word-pieces are created using the following algorithm (Schuster and Naka-
jima, 2012):

1. Initialize the token vocabulary with the basic unicode characters and in-
cluding all ASCII.

2. Build a language model using the current vocabulary.

3. Generate a new token by combining two token from the current vocabulary
to increase the size of the vocabulary by one. Choose the token out of all
the possible ones that increases the likelihood on the training data the
most when added to the model.

4. Repeat 2 and 3 until either a predefined vocabulary limit is reached, or
the likelihood falls under a certain threshold.

Since the vocabulary starts with basic characters, BERT will never the problem
9https://allennlp.org/elmo

35

that a word is out of its vocabulary. When the input sentence is divided into
tokens, some special tokens are added to the sequence before BERT takes it
as its input. All input sequences sent to BERT start with the [CLS] token,
whose embedding is used as a representation of the whole input when doing
sequence classification tasks. When inputting a pair of sentences, the sentences
are separated by the [SEP] token. A [MASK] token is used to mask out tokens
when doing Masked Language Modeling (MLM). All input sequences to BERT
must of the same length, and so [PAD] tokens are used to pad input sequences
to this length.

Masked Language Modeling ELMo concatenated the representations cre-
ated during forward (left-to-right) and backward (right-to-left) language mod-
eling, in order to use context from both sides when making word embeddings.
BERT is a stack of Transformer encoder, which already uses context from both
sides, but this bi-directional conditioning comes at the cost of words being able
to “see themselves.” For this reason, Devlin et al. (2019) use a masked language
modeling pre-training objective, where some percentage of the input tokens are
masked. The model is tasked with predicting 15% of the input tokens, based
on the context. The chosen tokens are replaced with the [MASK] token 80%
of the time, replaced with a random word 10% of the time, and left unchanged
10% the time. The reason for not using the mask token 100% of the time, is
to combat the mismatch between pre-training and fine-tuning, as the [MASK]
token is never seen during fine-tuning (Devlin et al., 2019).

Next Sentence Prediction Training BERT to understand the relationship
between sentences is done through the pre-training objective of next sentence
prediction. When creating a pre-training example, two masked sentences are
combined into one input sequence, seperated by the [SEP] token. Half the time
the second sentence is the sentence that followed the first sentence in the corpus
from the which the sentences were gathered (with label IsNext). The other half
it is a randomly sampled sentence from the corpus (with label NotNext). The
final embedding of the [CLS] token is used as a representation of the entire input
sequence, and it is this embedding that is sent into a feedforward layer with a
softmax on top for classification into either IsNext or NotNext. Devlin et al.
(2019) demonstrate that pre-training for next sentence prediction helps BERT’s
performance on question answering, and natural language inference.

Fine-tuning After pre-training BERT with masked language modeling and
next sentence prediction on a large amount of unlabeled text, the next step is to
fine-tune the model for a specific downstream task. To fine-tune the model, one
throws away the output layers from pre-training, and initialize a new feedforward
output layer. For token-level classification tasks, the token embeddings are fed
into the output layer. For sequence level classification tasks, the [CLS] token
embedding is fed into the output layer. The output from the feedforward layer is
softmaxed and a loss is computed, and back propagated. An overview is shown
in Figure 2.14.

36

3 Results and Discussion
This section will describe how our dataset was created, show some statistics
on the contents of the dataset, and also show comparisons between our dataset
and two other datasets, namely the Hate speech dataset from (Jensen, 2020),
and the English UCC from (Price et al., 2020). After that the experiments and
results from using our dataset will be presented. After experimenting with using
only our new dataset, we see if results can be improved by first fine-tuning on
the other labeled datasets which we compared our dataset to.

3.1 Dataset creation
We created a Norwegian version of the dataset made by Price et al. (2020), where
the goal is to detect subtler forms of toxicity, and therefore follow the guideline
for annotation they provide in the appendix of their paper. The annotators were
asked for each comment to label it as either healthy or unhealthy, and also to
label the comment as having any of the following characteristics: antagonisic,
condescending, dismissive, generalisation, unfair generalisation, hostile, and/or
sarcastic. There was also an extra label for meaningless comments, called “error”
to be used for example if the comment was just a placeholder token, or some
gibberish.

3.1.1 Gathering text

The dataset is a mix of comments scraped by us from the Norwegian forum
vgd.no (VG Debatt), a debate forum hosted by one of the biggest commercial
newspapers in Norway, and comments from a dataset created by Jensen (2020)
where text was gathered from Facebook, Twitter, and resett.no. Approximately
30% of the data is a mix of text with equal proportions from Resett, Facebook,
and Twitter, while the remaining 70% is from VG Debatt. We included com-
ments from this hate speech dataset in order to study the overlap between labels
from that dataset and the new labels provided by our annotators.

The reason for scraping text from a debate forum was to gather text from
discussions, where the author is more likely to be trying to convey a point. Initial
research seemed to indicate that tweets and Facebook comments are less often
trying to convince someone of something, and instead the focus is often to simply
air one’s opinion. We wanted text were people were trying to have a conversation
about a topic, and where they might disagree. Being able to disagree about
topics like politics and religion, in a healthy manner, can be quite challenging.
We guessed that we were most likely to find examples of unhealthy conversations
with such topics, and so the text from VG Debatt was gathered from these
three subcommunities: (1) Norwegian politics, (2) international politics, and
(3) immigration-racism-multiculturalism. VG Debatt has since then chosen to
close the latter category because of too many violations of the forum’s rules,
indicating that the users there were not able to have conversations on these
topics in a manner which the forum’s administrators deem healthy.

37

3.1.2 Cleaning comments

Before handing out the comments for annotation we wanted to remove URLs,
usernames, and exceedingly long comments. URLs do not provide useful infor-
mation, and so removing them can be seen as reducing the noise in the dataset.
We did not want comments of a certain class to be associated with a username.
Some users sign their comments by writing their username at the end, and users
often refer to each other’s usernames. We did not want any model we trained to
be biased in a way where it would classify comment based on a username it saw.
Most comments are not very long, and the model we set out to use, BERT, can
be trained faster on shorter input sentences, because it allows for a bigger batch
size. However, all input sequences to BERT must of the same length, and so if
only one sentence is long, all input sequences must be equally long. Therefore
it is better to discard the few long comments.

The text from the hate speech dataset by Jensen (2020) had already removed
usernames from their dataset. Tweets from Twitter had usernames replaced
with "user" (so it would say @USER) and the comments from Facebook had
names replaced with “Navn.” Comments longer than 250 characters have also
been removed from the hate speech dataset. The only further preprocessing
done with this data was the removal of URLs as well as replacing the username
placeholder for certain cases, as will be described later.

For the text from VG Debatt, which was what we gathered ourselves, the user-
names in a thread were also gathered along with the text when scraping the
forum. This allowed for the creation of a program which would search all com-
ments for usernames, and upon finding a username would prompt a question
about whether or not to remove that username from the comment. There was
also an option for removing that username from all subsequent comments, or
only this once, and an option to ignore all occurrences of that username. This
was done because some users use a common word for their username, and in
such cases we don’t want to remove all occurrences of that word in the dataset.
This method of removing usernames does not guarantee that there are no ref-
erences to users in comments, if for example a username is misspelled or a user
is referred to by a nickname, it would have gone undetected. Usernames in
these comments were intially replaced with “[BRUKERNAVN],” but we later
decided we wanted to have a common placeholder for names in comments from
all sources. The NB-BERT-Base tokenizer was used to tokenize all comments,
and only comments made up of fewer than 200 tokens were labeled.

In order to have a common placeholder for names, both “@USER” from the
Twitter data and [BRUKERNAVN] from the VG Debatt data was replaced
with “Navn.” As both first, middle and last names from Facebook have been
replaced with “Navn” the text gathered from there has many more occurrences
of the placeholder. A comment from Facebook will often start with “Navn Navn
Navn” for this reason. URLs have also been removed and replaced with a [URL]
token.

38

3.1.3 Annotation

The comments were labeled using Doccano10, an open source text annotation
tool. 6 annotators were hired to annotate the comments. The annotators were
divided into three groups of two. The annotation process was done in rounds,
and for each round every group got their own unique set of comments. There was
no strict deadline for when to be finished with each round, and the annotators
were free to choose their own hours. As a result, some groups labeled more
comments than others. A set of comments would consist either of text only
gathered from VG Debatt, or an equal mix of Twitter, Facebook and Resett
comments from Jensen (2020). The annotators were given 500 comments to label
in the first round, and 1000 comments in subsequent rounds. The annotators
were asked to label the comments based on whether or not they displayed any
of the following characteristics: (1) unhealthy, (2) sarcastic, (3) generalisation,
(4) unfair generalisation, (5) hostile, (6) insulting, antagonising, provocative,
or trolling, (7) condescending, and (8) dismissive. We gave the annotators an
annotation guideline translated from Price et al. (2020), which they were asked
to follow. The annotation guideline is shown in Appendix A. We included
the category of generalisation, even though we only used the label of unfair
generalisation, in order to follow the work of Price et al. (2020) as closely as
possible.

All groups were instructed to go through the first 20 comments together, which
was done in the hopes that it would lead to a common understanding of what it
means for a comment to be healthy or unhealthy, or to display any of the other
characteristics, and so would lead to more agreement between the annotators.
Group G1, as defined below, gave feedback that 20 comments was not enough to
see many examples of comments where they would need to discuss the category,
and so they asked to go through 50 comments together during the second round,
which was allowed. Annotators were also asked to hold off on comments they
found very difficult to categorize, and to discuss these comments with their
partner, to finish off the round. Also this was done in an effort to help maximize
agreement between annotators, as well as improving the overall quality of the
dataset, by having more accurate labels.

Since some annotators worked faster than others, two of the groups were rear-
ranged after the first round, to better match the speed of the annotators. Call
the annotators A1 to A6. The first groupings were then

G1−A4,A3
G2−A1,A6
G3−A2,A5

After seeing that annotators 6 and 5 were considerably faster than their partner,
10https://github.com/doccano/doccano

39

https://github.com/doccano/doccano

and since a round could not be finished until both members of a group were
done with their individual annotations, we rearranged group 2 and 3 to prevent
one annotator to act as a bottleneck for the group finishing a round. After
rearranging, group 1 was left unchanged and group 2 and 3 were replaced with
group 4 and 5:

G4−A5,A6
G5−A1,A2

3.1.4 Final dataset

healthy unhealthy generalisation unfair
generalisation sarcastic hostile antagonise condescending dismissive

Annotator 1 0 1 0 0 0 1 0 0 0

Annotator 2 1 0 0 0 0 0 0 0 0

Final label 0 0 0 0 0 0 0 0 0

Table 3.1: Example of how a comment ends up with no labels.

Only cases where both annotators agreed that a comment is unhealthy or has
a certain attribute have resulted in a usable data point. If the annotators dis-
agreed about all labels on a comment, the comment has no true label. An
example of how the final label of a comment is produced, is shown in Table 3.1.
Out of 8500 comments labeled, there were 1421 such comments with no agree-
ment on labels, and these comments have been discarded in the final dataset. If
annotators disagreed about a comment being healthy or unhealthy, but agreed
about some other attribute that the comment displays, the comment is not dis-
carded, even though it is not labeled as either healthy nor unhealthy. When
classifying healthy vs unhealthy comments, comments labeled neither healthy
nor unhealthy have been discarded, but they are utilized when classifying com-
ments for other characteristics, such as e.g. sarcasm or hostility, since annotators
can agree that a comment is sarcastic even if they disagree about whether or
not it belongs in a healthy conversation. Comments labeled as neither healthy
nor unhealthy have also been removed from the test set for reporting results on
healthy vs unhealthy comment classification.

The question of whether a comment is healthy or unhealthy is an inherently
subjective matter. Having 2 annotators per comment makes it possible to pro-
duce more robust labels since the annotators have to agree on the label for it
to stick. If both annotators agree that a comment does not have a place in a
healthy discussion, it reduces the chance of the labels being heavily influenced
by the annotators personal biases, although it is of course possible for annota-
tors to share the same biases. The people hired to annotate comments were all
students at UiT, and a lack of diversity in annotators background introduces
some cultural and geographical bias.

40

The category of sarcasm can be especially challenging, as sarcasm is often
detected by recognizing obvious and intentional untruthfulness in statements,
which may require some knowledge about the world, which the model does not
necessarily have. It should be noted, however, that one of the interesting devel-
opments with the larger transformer models is that they seem to gather some
general knowledge through the text they see during the pre-training phase. For
example GPT-3 is able to do simple mathematics even though it was never
trained specifically for that purpose (Brown et al., 2020). Sarcasm can be hard
to detect through text, even for human beings, as sarcasm is often indicated
through audible cues such as tone of voice. Training a text-based machine
learning model to do this task is of course also difficult in that case, since it will
only have access to the text. Sarcasm is also the attribute on which the baseline
model in Price et al. (2020) performs the worst, with an AUC score of 0.588.

Price et al. (2020) are able to compare their model to human judgement, since
they have many annotators and are able to hold out one annotation to act as a
“human model.” In our case we don’t have enough annotators to do that and
instead look only at ROC AUC for evaluating the overall performance of the
model. For an indication of human performance on this problem we can look
at the value of Krippendorff’s alpha, given in Table 3.5, and also at the “human
AUC” scores given in (Price et al., 2020).

The dataset was divided into a training set, a validation set, and a test set.
The test and validation sets were created in such a way that the proportions of
categories stayed true to the original full dataset. This choice was made in order
for the labels in the test and validation sets to have the same distribution as the
full dataset, and to ensure that there were at least 10 examples of comments
with the least common labels. This is the only manipulation made of the test
set, and the test set was not analyzed or used for anything during training.
The validation set is combined with the training set when doing k-fold stratified
cross validation.

3.2 Dataset statistics
After removing datapoints with “zero labels,” i.e. where the annotators did not
agree on any labels, we are left with a total of 7078 comments. The distribution
of the labels in the full dataset, before splitting it into training, validation, and
test data, is shown in Figure 3.1. About 16% of the comments are unhealthy,
similar to Jensen (2020) who found that 2382

13304 = 18% of comments from their
dataset were offensive. We see that we have not managed to gather very many
examples of the categories sarcastic, generalisation, unfair generalisation, hos-
tile, antagonise, or dismissive. The number of condescending and unhealthy
comments is substantially larger, so we can expect better performance on these
categories. Notice that the number of examples in Figure 3.1 does not add up
to the total number of comments, since categories overlap. A comment may for
example be both unhealthy and hostile, and thus counted twice.

Table 3.2 shows the number of comments in each of the datasets created from
the full dataset. We chose an 80%, 10%, 10% split between training, validation,
and test sets, respectively. This leaves as many examples as possible to be used

41

Figure 3.1: Barplot showing the number of comments from the different categories in our dataset.

for training, but in some cases only leaves 10 examples on which to report final
model accuracy. This makes it hard to say whether the results on the test
set are reliable, as one could imagine that 10 particularly hard examples have
been chosen, or 10 particularly easy ones. For the same reason, results on the
validation set can be hard to trust, so we instead combine the validation and
training set in some experiments, and use stratified cross validation to evaluate
the performance of the model.

Table 3.3 describes label overlap between our labels. We see that unhealthy com-
ments are mostly condescending or antagonistic/insulting/trolling, with some
hostility and unfair generalisation as well. Some are sarcastic as well, while only
very few of them are dismissive. Going the other way around we see that al-
most all comments labeled as either unfair generalisation, hostile, antagonistic,
condescending, or dismissive are also labeled as unhealthy. This means that our
annotators generally found these attributes to be markers of unhealthy com-
ments. None of the hostile or antagonising comments were labeled as healthy,
and only 9%, 6% and 8% of unfair generalisation, condescending, and dismissive
comments, respectively, were labeled as healthy. The reason for proportions of
healthy and unhealthy don’t add up to one is again disagreement between an-
notators, leaving a comment labeled as neither healthy nor unhealthy, but still
labeled as for example hostile.

In Table 3.4 we can see the overlap between our labels and the labels from the
hate speech dataset from (Jensen, 2020), for the comments from their dataset
that we also included in our own. The highest overlap is naturally between
healthy and neutral, as these two categories are almost equivalent. However, we
see that 43% comments from the hate speech dataset were labeled as unhealthy
by our annotators, even though they were labeled as neutral by the annotators

42

Table 3.2: The distribution of labels in our datasets. Prop represents the pro-
portion of comments with a particular label, as calculated from the full dataset,
i.e. before the split into train, validation, and test sets. The train, valida-
tion, and test sets were created in such a way that those proportions remain
approximately representative also for those datasets.

Attribute Train Val Test Prop

healthy 4680 518 576 0.82
unhealthy 927 102 114 0.16
sarcastic 184 20 22 0.03
generalisation 131 14 16 0.02
unfair generalisation 103 10 12 0.02
hostile 89 10 10 0.02
antagonise 223 24 27 0.04
condescending 408 45 50 0.07
dismissive 79 10 10 0.01

of Jensen (2020). This indicates that we have captured something else in our
dataset, as we indeed set out to do. For example many of sarcastic comments
have the label neutral, which also agrees with our observation in Table 3.3,
where we see that sarcasm is the only sub-attribute which does not strongly
indicate that a comment with that sub-attribute is also unhealthy.

Next we wanted to compare our dataset with the Unhealthy Comments Corpus
(UCC), (Price et al., 2020). We see in Figure 3.2a that the correlations between
labels in our data does not resemble the UCC very closely. Overall we can
see that our annotators also associated antagonising and hostile comments with
being unhealthy, but not to the same degree as the annotators for UCC. We also
see a similar negative correlation between a comment being condescending, and a
comment being sarcastic or a generalisation. The correlation between unhealthy
comments and sarcastic comments is negative also for our data, and also the
negative correlation is stronger than that in UCC, once again indicating that our
annotators did not associate sarcasm with being unhealthy. Price et al. (2020)
had 588 crowdworkers give a total of 244468 judgements on 44355 comments,
meaning they had an average of 5 annotators per comment, whereas we only
had 2 annotators per comment, on about 7000 comments.

We now descrive the annotator agreement in our dataset. Table 3.5 shows an
overall low value of α. As Price et al. (2020) mentions, reliability metrics such
as Krippendorff’s α do not work well for subjective task, since it is based on the
assumption that all disagreement between annotators indicates less reliability.
Disagreement between annotators can instead be a result of two different, but
both acceptable, interpretations of a comment. Since the annotators are not
given the context of the comments, some assumptions about the context may
be made by one annotator, and not by another. Also (Ross et al., 2017) and
(Jensen, 2020) see low agreement between annotators when considering annota-

43

Table 3.3: Proportions of overlap between our labels. Each cell represents the
proportion of comments which displays the characteristic as of that column,
which also displays the characteristic of that row. For example we can see
that 39.4% of all sarcastic comments are healthy, while only 1.7% of all healthy
comments are sarcastic.

healthy unhealthy sarcastic unfair
generalisation hostile antagonise condescending dismissive

healthy 1.0 0.0 0.394 0.091 0.0 0.0 0.062 0.083

unhealthy 0.0 1.0 0.364 0.855 0.958 0.949 0.812 0.917

sarcastic 0.017 0.062 1.0 0.036 0.042 0.051 0.045 0.167
unfair

generalisation 0.003 0.122 0.03 1.0 0.271 0.102 0.089 0.083

hostile 0.0 0.119 0.03 0.236 1.0 0.112 0.062 0.417

antagonise 0.0 0.241 0.076 0.182 0.229 1.0 0.214 0.583

condescending 0.005 0.236 0.076 0.182 0.146 0.245 1.0 0.5

dismissive 0.001 0.028 0.03 0.018 0.104 0.071 0.054 1.0

Table 3.4: Proportions of overlap between our labels and the labels from (Jensen, 2020).

healthy unhealthy sarcastic unfair
generalisation hostile antagonise condescending dismissive

hateful 0.0 0.03 0.0 0.0 0.1 0.04 0.01 0.0
moderately
hateful 0.0 0.07 0.03 0.16 0.1 0.12 0.04 0.0

offensive 0.02 0.16 0.05 0.2 0.23 0.15 0.16 0.25

provocative 0.09 0.3 0.11 0.31 0.31 0.3 0.33 0.42

neutral 0.89 0.43 0.82 0.33 0.25 0.37 0.46 0.33

tion of hateful text, which is similarly subjective in nature. Even though α does
not necessary reflect the quality of the dataset, it is still important to provide
such a metric, in order to compare with other datasets. α also lets us see how
agreement differs between the groups, and also between different categories. On
top of that it highlights the difficulty of the task at hand, and indicates that
even people have trouble categorising comments into these categories. The low
values of α also indicates that further measures needed to be taken to make sure
there was a common understanding between annotators of what it means for a
comments to be unhealthy, or to have any of the sub-attributes.

Group 1 stands out as the group which the highest agreement. Agreement in
that group also made a significant jump after the first round, perhaps as a
results of the annotators in this group asking to label 50 comments together as
opposed to 20, which they requested. It may also be a result of the post-round
discussion the groups were told to conduct, in order to come to an agreement

44

(a) Correlation between labels in our data. (b) Correlation between labels in UCC.

Figure 3.2

on what to label comments they found challenging. It seems based on α values
that the hardest category to agree on was antagonise, which is the category for
comments that were written with the intention to insult, antagonize, provoke or
troll other users. This may be caused by the fact that the annotation guideline
for this particular category asks about the intention of the comments: “Is the
intention of this comment to insult, antagonize, provoke, or troll other users.”
This necessitates that the annotators make an assumption about the motives of
the author of the comment in question. The assumptions made here naturally
vary between the different annotators.

3.3 Experiments
In order to investigate how best to create a BERT model which performs well
on our dataset we carry out a range of experiments. The main purpose of the
experiments is to find which of the different techniques for dealing with the
unbalanced dataset works best, so that technique can be used when training
the final model. We show and discuss the results of stratified cross-validation
for each category, as well as the final results on the test set.

3.3.1 Method

Since the datapoints have multiple labels, i.e. a comment can be both unhealthy
and sarcastic at the same time, a choice has to be for how to use it for classifi-
cation. Binary relevance is a very common approach to dealing with multi-label
classification (Dendamrongvit and Kubat, 2009), where the problem is split into
one task per class label, and so one effectively has one dataset per label (Zhang
et al., 2018b). This what we have chosen to do in this work, in order to assess
the difficulty of classification of each category separately, and also to test the
techniques for dealing with imbalanced datasets mentioned in Section 2.2.3, like
undersampling.

45

unhealthy sarcastic unfair
generalisation hostile antagonise condescending dismissive

group round α prop α prop α prop α prop α prop α prop α prop

1

1 0.541 0.228 0.315 0.036 0.498 0.067 0.424 0.091 0.566 0.046 0.258 0.05 0.466 0.024
2 0.924 0.158 0.908 0.048 0.82 0.032 0.691 0.021 0.937 0.032 0.882 0.09 0.895 0.032
3 0.807 0.119 0.565 0.021 0.661 0.011 0.548 0.01 0.61 0.019 0.669 0.054 0.588 0.019
4 0.804 0.148 0.668 0.03 0.282 0.005 0.497 0.014 0.264 0.006 0.628 0.058 N/A 0.0

2 1 0.412 0.105 0.339 0.024 -0.015 0.0 0.182 0.015 0.092 0.017 0.196 0.081 0.404 0.044

3 1 0.435 0.473 0.183 0.053 0.416 0.059 0.324 0.021 0.337 0.217 0.409 0.174 0.114 0.019

4
2 0.29 0.109 0.19 0.032 -0.011 0.0 0.181 0.003 -0.079 0.029 0.482 0.089 0.135 0.011
3 0.258 0.06 0.072 0.015 0.085 0.001 0.177 0.001 -0.127 0.015 0.475 0.047 0.121 0.007
4 0.474 0.094 0.232 0.026 0.08 0.004 0.174 0.006 0.019 0.032 0.349 0.033 0.055 0.001

5 2 0.465 0.304 0.304 0.042 0.274 0.034 0.174 0.007 0.175 0.076 0.167 0.09 0.049 0.001
weighted
average 0.567 0.165 0.407 0.032 0.323 0.018 0.351 0.015 0.286 0.041 0.486 0.072 0.362 0.014

Table 3.5: The Krippendorff’s alpha values (α) as well as the proportion (prop)
of comments categorised as having the different characteristics, for each group
on each category. Since only 500 comments were given out in the first round,
and some comments were labeled as “error” and thus discarded, the weighted
average is weighted with regard to the number of comments labeled by a group
on a certain round after the “error” comments have been removed.

5-fold stratified cross validation was used to find the best model. Since a new
validation set is made for each fold, there is no need to hold out a separate
validation set, and so the training set and validation set has been combined to
create the combined training set during cross validation. Making the cross vali-
dation 5-fold means that 20% of the combined dataset is used for the validation
set, and 80% for the training set, in each fold.

Since the dataset is imbalanced, and very heavily imbalanced in the case of
most sub attributes, the techniques mentioned in Section 2.2.3 are employed
and compared, namely undersampling, oversampling, weighted loss, and focal
loss. For unhealthy comment detection we don’t use focal loss, as that dataset
is not as heavily imbalanced as the datasets for the sub-attributes. The weights
in the weighted loss for characteristic c are calculated by:

Wc =

[
Nc
hN

, 1− Nc
hN

]
where Nc is the number of examples in the minority class (positive class), N is
the total number of examples, and h is a factor used to adjust the priority given
to the minority class. h starts with a value of 1, which gives each class a weight
equal one minus the probability that a random example belongs to that class.
Higher values of h are tried until results are no longer improving compared to
the previous cross-validation run with the previous value of h. Each increase is

46

done by doubling the previous value of h, which halves the weight given to the
majority class each time.

When using undersampling, random negative examples are removed until there
are equally many positive and negative examples left in the training dataset.
Positive examples are examples from the minority class, i.e. unhealthy com-
ments when classifying healthy vs unhealthy comments, hostile comments when
classifying hostile vs non-hostile comments, etc. When oversampling the train-
ing dataset, random positive examples are resampled until there are equally
many positive and negative examples. Since the dataset is so heavily imbal-
anced in the case of most sub-attributes, oversampling until the proportions of
labels are equals means that the model sees the same positive examples tens of
times. For example the class with the lowest number of examples, dismissive,
only has 99 examples. 10 of these as used for the test set, leaving 89 dismis-
sive comments to be used for training. In that case each of those 89 dismissive
comments will appear about 80 times over the course of one epoch of training.

We experiment with using three different models: NB-BERT-Base, NB-BERT-
Large, and NorBERT. First we do 5-fold stratified cross validation to find the
best model. We report the ROC AUC on all experiments. During these initial
experiments the class to which the model gives the highest probability is chosen
as the model’s prediction.

Unless otherwise specified, training is done with the following settings:

• Unweighted cross-entropy loss

• Learning rate of 2e-5

• 3 epochs

• Linear learning rate scheduler, with 10% warmup, and linear decrease to
zero after warmup.

• AdamW optimizer (10% weight decay, otherwise default values)

• Batch size of 16

3.3.2 Cross-validation and Results

The ROC curve and AUC scores from running inference on the test set on all
categories is shown in Figure 3.3. The AUC scores mostly beat the scores in
(Price et al., 2020), with the exception of dismissive comments. The ROC curves
look good. The resolution is low for the ROC curves for the categories with the
lowest number of examples, as there are only around 10 examples of the category
in the test set. Since there are so many negative examples compared to positive
(N >> P), and a ROC curve plots the true positive rate TP/P versus the false
positive rate FP/N , finding a few extra true positives at the cost of many more
false positives will look good on the ROC curve. With an unbalanced dataset
like this the precision-recall curve and the area under it would give a better idea

47

Figure 3.3: ROC curves with corresponding AUC score for all categories.

of the overall performance, but we have chosen to use ROC curves and calculate
AUC. This choice was made in order to compare with both the baseline results
from Price et al. (2020) who only report ROC curves and AUC, and the results
Jensen (2020) got for hate speech detection, who also optimize for AUC. The
experiments that leads us to these results will now be described, starting with
an investigation of whether choices should be made based on cross-validation,
or simply based on the validation set.

Initial experiments on NB-BERT-Base with 10-fold stratified cross-validation
revealed that results were quite dependent on the choice of validation set, as
shown in Figure 3.4. We see that the AUC score at the end of training ranges
from below 0.82 to around 0.9, depending on the partition of the training data.
Because of this we choose to use 5-fold stratified cross-validation for further
experiments, using the combined training set (training set and validation set
combined). Doing 5-fold stratified cross-validation for each experiment is five
times more expensive than only training one model per experiment, but it also
lets us trust the results more. Another thing that can be seen in Figure 3.4 is
that the maximum AUC score achieved on each run is very close to the AUC
score at the end of the run, which tells us that we are not overfitting when
we fine tune for 3 epochs. Having decided on running experiments using 5-
fold stratified cross-validation on the combined training set, we now start the
experiments by choosing a pre-trained BERT model to fine-tune.

There are three Norwegian BERT models available, and the first choice that
has to be made is which of these three models to use for further experiments.
To decide on this all three models were fine-tuned for detection of unhealthy
comments with the vanilla settings described in Section 3.3.1, and also with

48

Figure 3.4: ROC AUC score over the course of fine tuning NB-BERT-Base for
unhealthy comment detection with 10-fold stratified cross validation and vanilla
settings. The last and max values obtained for each run is shown, along with
their mean value and standard deviation.

undersampling, oversampling, and weighted loss. We base our choice of model on
how they perform on the task of detecting unhealthy comments, because that is
the main class for which we have the most examples. We theorize that the model
which performs the best on this task will also perform the best on detection of
comments containing the potential sub-attributes of unhealthy comments, such
as sarcasm, hostility, etc. The section on unhealthy comment detection therefore
starts with a search for which model to use.

Unhealthy comment detection. In Table 3.6 are the results of running 5-
fold stratified cross-validation on the different Norwegian BERT models, using
different techniques. We see that there are not great differences in NB-BERT-
Base and NB-BERT-Large in being able to differentiate between healthy and
unhealthy comments. Both the Large and Base NB-BERT model beat Nor-
BERT in all cases. As NB-BERT-Base was the best overall model for detecting
unhealthy comments, it was used for further experiments, including finding the
best weights for weighted cross entropy loss, when fine tuning the model.

Having decided on NB-BERT-Base as our model, and having observed that
weighted loss performs better than the other techniques, further experiments
were done with 5-fold stratified cross validation to find the best weights to use
in the weighted loss. In Table 3.7 we see that [0.02, 0.98] are the best performing
weights for weighted cross entropy loss, as the ROC AUC score is maximized
for these weights. When not enough weight is put on the positive examples,
the model predicts most examples as being healthy to minimize the loss, since
most comments are in fact healthy, as we saw in Table 3.2. If the weight on the

49

Table 3.6: 5-fold stratified cross validation when using different techniques on
different Norwegian BERT models after fine tuning for classification of healthy
vs unhealthy comments.

Model Technique ROC AUC

NB-BERT-Base

Vanilla 0.867
Undersampling 0.866
Oversampling 0.843
Weighted Loss 0.869

NB-BERT-Large

Vanilla 0.874
Undersampling 0.858
Oversampling 0.834
Weighted Loss 0.861

NorBERT

Vanilla 0.843
Undersampling 0.835
Oversampling 0.829
Weighted Loss 0.849

positive examples gets too high, however, the opposite problem occurs, where
the model predicts too many healthy examples as being unhealthy, because that
is less costly than wrongly predicting the heavily weighted unhealthy examples
as being healthy. In the end, [0.02, 0.98] are the weights chosen for training NB-
BERT-Base with weighted loss, as they produce the highest AUC. The ROC
curve showing the model’s performance on the test set was shown in Figure 3.3.
The confusion matrix is shown in Table 3.8.

The BERT classifier is able to correctly classify 92/135 = 68.1% of all unhealthy
comments in the test set, and 90% of the healthy comments. Considering the
low degree of agreement between annotators (α = 0.567), this result indicates
that BERT is able to distinguish between healthy and unhealthy comments

Table 3.7: 5-fold stratified cross validation results for different weights in the
cross entropy loss when classifying healthy vs unhealthy comments with NB-
BERT-Base

Loss Weight ROC AUC

[0.16, 0.84] 0.869
[0.08, 0.92] 0.870
[0.04, 0.96] 0.869
[0.02, 0.98] 0.872
[0.01, 0.99] 0.870
[0.005, 0.995] 0.782

50

Table 3.8: Confusion matrix for unhealthy comment detection on the test set.

AUC = 0.869 Predicted healthy Predicted unhealthy

Actually healthy 517 59
Actually unhealthy 43 92

To see how AUC score depended on dataset size, we fine tuned NB-BERT-Base
10 times for unhealthy comment detection, first training on a random sample
of 10% of the available data, then 20%, etc. up to the full dataset. For each
model we calculate the AUC score on the test set. The results are shown in
Figure 3.5. We see that AUC steadily increases along with dataset size, until
there is a dip at 60%, which is soon recovered from, and AUC keeps increasing.
This indicates that model performance would keep increasing if we had more
available training data.

Figure 3.5: NB-BERT-Base performance on the test set after training for 3
epochs for unhealthy comment detection, on 10% of the combined training
dataset, equivalent to about 600 training examples, to 100% of the dataset.
The combined training dataset refers to the combination of the validation set
and the training set.

The biggest jump in AUC score is seen when going from using 10% of the data
to 20% of the data, where the AUC score increases by about 8%. It increases
another 4% going from 20% of the data to 60%. When sampling 60% of the
original dataset size, equivalent to having about 3700 training examples, the
results are almost as good as when training on the full dataset. Assuming that
the ratio of positive examples (i.e. unhealthy comments) stayed approximately
the same at 16% when doing random sampling, that means about 600 training
examples of the positive class is enough to achieve good performance for this
task.

We will now move on to detection of comments containing the potential sub-

51

attributes of unhealthy conversations, namely hostile, antagonising, dismissive,
condescending, sarcastic, or unfairly generalising comments. For each sub-
attribute we have done stratified cross-validation to find the best method. Here
we also try using focal loss during the cross-validation, since the datasets here
are even more heavily unbalanced than the unhealthy comments dataset.

Table 3.9: Results of 5-fold stratified cross validation when using different meth-
ods for fine-tuning NB-BERT-Base for classifying comments as either conde-
scending or not condescending.

Method ROC AUC

Vanilla 0.846
Oversampling 0.776
Undersampling 0.848
Focal loss, γ=2 0.847
[0.071, 0.929] 0.784
[0.036, 0.964] 0.853
[0.018, 0.982] 0.862
[0.009, 0.991] 0.858

Condescending. The cross validation results for detection of condescend-
ing comments are shown in Table 3.9. Condescending is the sub-attribute for
which we have the most examples. The best weights achieve an AUC score of
0.862. The final model is trained on the training set, using the optimal weights
[0.018, 0.982]. The results are shown in Table 3.10.

Table 3.10: Confusion matrix for condescending comment detection.

AUC = 0.901 Predicted 0 Predicted 1

Actually 0 628 33
Actually 1 17 33

On the test set we get a higher AUC score than we did on average with stratified
cross validation.

Hostile. In Table 3.11 we see the results of cross validation for hostile com-
ment detection. Here, focal loss gives the best overall performance. As we
saw in Table 3.2, we gathered very few examples of hostile comments, and so
the model may simply not be able to find patterns that distinguish between
comments that are hostile and comments that are not hostile, based on so few
positive examples. Focal loss resulted in the best AUC score, and so the final
model is trained using that technique. The results on the test set are shown in
Table 3.12. We get surprisingly good results on the test set, compared to cross
validation. The AUC increases by 15%.

Antagonising/insulting/trolling. We have 247 examples of antagonising
comments in our combined training set. This is the sub-attribute with the

52

Table 3.11: Results of 5-fold stratified cross validation when using different
methods for fine-tuning NB-BERT-Base for classifying comments as either hos-
tile or not hostile.

Method ROC AUC

Vanilla 0.685
Oversampling 0.613
Undersampling 0.637
Focal loss, γ=2 0.752
[0.015, 0.985] 0.742
[0.0075, 0.9925] 0.723

Table 3.12: Confusion matrix for hostile comment detection.

AUC = 0.861 Predicted 0 Predicted 1

Actually 0 700 1
Actually 1 10 0

second highest number of examples, but also the attribute with the lowest value
of α, indicating that it was especially hard for our annotators to agree whether a
comment was antagonistic/insulting/trolling or not. In Figure 3.13 we see that
weighted loss gives us the best AUC score, and so it is again used for training
the final model. The results can be found in Table 3.14.Again we see a jump in
AUC score compared to the cross-validation.

Sarcasm. There were almost as many sarcastic comments as there were an-
tagonistic. The results of cross validation on sarcastic comments in Table 3.15
are slightly worse than the cross validation results for antagonistic comments,
and this may be partly due to the difference in the number of examples for each
category, but may also be due to the difficulty of detecting sarcastic comments
in general, which have been discussed previously. Weighted loss again gives the

Table 3.13: Results of 5-fold stratified cross validation when using different
methods for fine-tuning NB-BERT-Base for classifying comments as either an-
tagonising or not antagonising.

Method ROC AUC

Vanilla 0.785
Oversampling 0.724
Undersampling 0.707
Focal loss, γ=2 0.794
[0.038, 0.962] 0.800
[0.008, 0.992] 0.793

53

Table 3.14: Confusion matrix for antagonising/insulting/trolling comment de-
tection

AUC = 0.867 Predicted 0 Predicted 1

Actually 0 676 8
Actually 1 22 5

Table 3.15: Results of 5-fold stratified cross validation when using different
methods for fine-tuning NB-BERT-Base for classifying comments as either sar-
castic or not sarcastic.

Method ROC AUC

Vanilla 0.748
Oversampling 0.663
Undersampling 0.724
Focal loss, γ = 2 0.756
[0.032, 0.968] 0.702
[0.016, 0.984] 0.758
[0.008, 0.992] 0.762

best AUC score. The final model is trained using weighted loss with the weights
which produce the highest AUC score, and the results on the test set are shown
in Table 3.16.

Table 3.16: Confusion matrix for sarcastic comment detection.

AUC = 0.745 Predicted not sarcastic Predicted sarcastic

Actually sarcastic 680 9
Actually not sarcastic 20 2

Unfair generalisation. Unfair generalisation is another sub-attribute for
which we have very few examples. In this case stratified cross validation prefers
three different techniques for training the final model, depending on which met-
ric one values highest. For ROC AUC score, weighted loss with [0.018, 0.982]
performs the best, and so the final model for detecting unfair generalisation
comments is trained like that. The results are shown in Table 3.18.

Dismissive. The last sub-attribute to consider is dismissive, for which we
again have very few examples. Weighted loss gives the best AUC score. The
AUC score on this category is good compared to the number of examples, rel-
ative to other sub-attributes, which perhaps indicates that this is a category
which is easy to recognize, although it is not so common. The final model for
detecting dismissive comments is trained with weighted loss. Results on the test
set for the model trained with weighted loss is shown in Table 3.20.

54

Table 3.17: Results of 5-fold stratified cross validation when using different
methods for fine-tuning NB-BERT-Base for classifying comments as either un-
fair generalisation or not unfair generalisation

Method ROC AUC

Vanilla 0.810
Oversampling 0.698
Undersampling 0.711
Focal loss, γ=2 0.788
[0.018, 0.982] 0.814
[0.009, 0.991] 0.804

Table 3.18: Confusion matrix for unfair generalisation comment detection.

AUC = 0.797 Predicted 0 Predicted 1

Actually 0 696 3
Actually 1 11 1

3.3.3 Experiments on Utilizing English Data

We were informed by the main contributor to the creation of the NB-BERT-
Base that the model had seen some English text during pre-training. This lead
us to hypothesize that maybe cross-lingual transfer from English to Norwegian
would be possible, so that the English UCC from Price et al. (2020) could be
utilized. To see if NB-BERT-Base could in fact learn from English data, we
fine tune NB-BERT for sentiment analysis, first using 10000 examples from
the Amazon polarity dataset, made from reviews on Amazon (Zhang et al.,
2015), and then tested the model on sentences from the Norwegian NoReC_fine
(Øvrelid et al., 2019). We also fine-tuned that model further with different
numbers of Norwegian examples to see how that affected performance. The
results of these experiments are shown in Table 3.21.

We see that NB-BERT-Base is indeed able to learn from the English dataset,
with an AUC score of 0.907 on the Norwegian test set without ever having seen
Norwegian examples. Further fine-tuning the model with a few hundred exam-
ples improves the AUC further. When training on nothing more than 200 or
500 Norwegian examples, NB-BERT is not able to learn much, as shown the by
very low AUC score, but when the model is first trained on the English dataset,
we see a huge jump in AUC score. When training on the full Norwegian dataset,
the advantage of training on English data first, disappears. This indicates that
cross-lingual transfer is most useful in cases where few examples exist in the
target language.

Having observed that NB-BERT-Base can learn from English datasets, we in-
vestigate whether it can be useful for improving our previous results. To do
that we fine-tune seven NB-BERT models on the UCC, one for each category,
and then evaluate and fine-tune the models further on our Norwegian dataset.

55

Table 3.19: Results of 5-fold stratified cross validation when using different
methods for fine-tuning NB-BERT-Base for classifying comments as either dis-
missive or not dismissive.

Method ROC AUC

Vanilla 0.812
Oversampling 0.682
Undersampling 0.761
Focal loss, γ=2 0.844
[0.014, 0.986] 0.860
[0.007, 0.993] 0.857
[0.004, 0.996] 0.854
[0.002, 0.998] 0.846

Table 3.20: Confusion matrix for dismissive comment detection.

AUC = 0.802 Predicted 0 Predicted 1

Actually 0 698 3
Actually 1 10 0

We evaluate three different models on our validation set for each category: one
which has not seen any Norwegian examples; one that is trained on the Norwe-
gian training set for 1 epoch; one that is trained on the Norwegian training set
for 3 epochs. The reason for evaluating these three different models is to see if
some of the models lose generalisation by overfitting to the Norwegian training
set, and thus forgets what it learned from the English data. When fine-tuning
we use the best technique for training each category, which were found in Sec-
tion 3.3.2, both when training on the English and the Norwegian data. These
results are shown in Table 3.22.

We are now evaluating on the validation set, and no longer doing stratified
cross-validation, which means that the results are not directly comparable to
the validation results in Section 3.3.2. Comparisons will therefore be made

Table 3.21: AUC scores showing the results of cross-lingual transfer when train-
ing NB-BERT-Base for sentiment analysis. Vanilla refers to regular fine tuning
on the Norwegian dataset. Zero-shot means the model saw no Norwegian ex-
amples before being tested. Continued refers to continuing fine-tuning on the
Norwegian dataset after the English.

Norwegian examples Vanilla Zero-shot Continued

3894 0.949 0.907 0.941
200 0.612 0.907 0.917
500 0.639 0.907 0.920

56

Table 3.22: AUC scores for classification into all categories, using the model
first trained on the English UCC. Results are shown on the validation set when
doing no further fine-tuning on our dataset (zero-shot), and when training with
our training dataset for 1 epoch, and 3 epochs.

Zero-shot 1 epoch 3 epochs

unhealthy 0.693 0.796 0.838
sarcastic 0.698 0.723 0.684
unfair generalisation 0.883 0.905 0.904
hostile 0.608 0.897 0.896
antagonise 0.612 0.385 0.792
condescending 0.736 0.734 0.732
dismissive 0.905 0.921 0.859

through the test set. We run inference on the test set using the best performing
models from Table 3.22. The results are shown in Table 3.23.

Table 3.23: Test results after first fine-tuning NB-BERT on the UCC before
fine-tuning on our dataset for each category.

category AUC

unhealthy 0.838
sarcastic 0.815
unfair generalisation 0.866
hostile 0.855
antagonise 0.815
condescending 0.715
dismissive 0.868

The AUC decreases for unhealthy comments, condescending comments, hostile
comments, unfair generalisation. The AUC increases by 6.6% for dismissive
comments, 7% for sarcastic comments, 5.2% for antagonising comments. Overall
there seems to be some utility in first training on the English UCC, as it works
for some categories and not for others. This might be explained by the difference
in correlations between labels in the two datasets which we saw in Figure 3.2b
and 3.2a.

3.3.4 Supplementary Training

It has been shown that applying supplementary training to BERT on a related
task can improve results when fine tuning on the target task (Phang et al.,
2018). In this section we experiment with fine-tuning NB-BERT on offensive
comments before fine tuning on the final tasks of detecting the categories in our
dataset.

57

Table 3.24: AUC scores for classification into all categories, using the model
first trained on detecting offensive comments. Results on the validation set are
shown when doing no further fine-tuning on our dataset (zero-shot), and when
training with our training dataset for 1 epoch, and 3 epochs.

Zero-shot 1 epoch 3 epochs

unhealthy 0.826 0.909 0.918
sarcastic 0.512 0.686 0.708
unfair generalisation 0.844 0.856 0.831
hostile 0.872 0.893 0.801
antagonise 0.813 0.844 0.786
condescending 0.784 0.878 0.857
dismissive 0.774 0.889 0.816

We saw in Table 3.4 that there was some overlap between labels in our dataset
and labels in the hate speech dataset created by Jensen (2020). This indicates
that the tasks are related. We train NB-BERT for classifying comments from
that dataset as either neutral or offensive. To do this the 4 labels provocative,
offensive, moderately hateful, and hateful are combined into one single label
offensive, and the neutral comments are left as neutral. Some comments from
the hate speech dataset were used in our dataset, and those comments were
removed before training this model. This model was then further fine-tuned for
classifying comments into our 7 categories. Again three models are evaluated,
one zero-shot model, one trained for 1 epoch, and one trained for 3 epochs on
our dataset. The results on the validation set are shown in Table 3.24. The best
performing models are run on the test set, and those results are shown in Table
3.25.

Table 3.25: Test results after first fine-tuning NB-BERT for detection of offen-
sive comments before fine-tuning for each category.

category AUC

unhealthy 0.884
sarcastic 0.810
unfair generalisation 0.861
hostile 0.888
antagonise 0.894
condescending 0.905
dismissive 0.880

The AUC score increases by 7.8% for dismissive comments, 6.3% for unfair gen-
eralisation, 6.5% for sarcastic comments, 2.7% for antagonising comments, 2.7%
for hostile comments, 0.4% for condescending comments, 1.5% for unhealthy
comments, when first training on offensive comments.

58

4 Conclusion and future work
In this thesis a new dataset for comment classification in Norwegian, into cat-
egories of healthy, unhealthy, sarcastic, generalisation, unfair generalisation,
dismissive, hostile, antagonistic, and condescending, has been presented. The
process of creating the dataset has been described, and we conducted an anal-
ysis of the dataset, including a measure of agreement between annotators, and
the proportions of the different categories. This analysis showed that there was
mostly a low level of agreement between annotators, and that very few examples
were found for many of the categories. We found a good number of examples
for the main category, namely unhealthy comments, and the performance on
this category was good. We showed how having different numbers of exam-
ples for this category affects model performance, concluding that having around
600 examples of unhealthy comments would have been enough to train a good
classifier.

We also demonstrated that NB-BERT can learn from English datasets, getting
an AUC score of 0.907 on a dataset for Norwegian sentiment analysis, after
training only on English examples for sentiment analysis. We tried to utilize this
bi-lingual ability of NB-BERT by training on an English dataset of unhealthy
comments from Price et al. (2020), but were unsuccessful in improving our
results from this. We were however successful in improving results with a model
first trained to detect offensive comments from a Norwegian hate speech dataset
created by Jensen (2020).

There do not exist many Norwegian datasets of online comments, and for future
work in detecting unhealthy comments, having more examples of such comments
would lead to better results. Starting with this dataset it is possible to hire more
annotators to label the comments again, as well as new comments. Having more
annotators per comment would result in better labels overall, and more examples
would improve overall performance, especially for the categories with very few
examples. Having more people annotate the dataset would also allow for a
“human model” to compare results with, as is done in (Price et al., 2020), and
if the annotators are a diverse group it would also likely reduce shared biases
between annotators. It is also possible to experiment with how fine-tuning
BERT for sentiment analysis before doing unhealthy comment detection affects
the results, as the Norwegian sentiment dataset NoReC is quite large.

Zhang et al. (2018a) demonstrate that it is possible to detect linguistic cues that
predicts a conversation’s future health. They do this by capturing pragmatic
devices, such as e.g. politeness, used to start conversations in Wikipedia’s talk
page discussions, and analyze their relation to how the conversation develops.
Detection of the aforementioned sub-attributes of unhealthy comments can be
useful in future work on predicting the trajectory of conversations.

59

References

Alpaydin, E. (2014). Introduction to machine learning. MIT press, third edition.

Amna Veledar, R. B. (2018). Hatefulle ytringer i offentlig debatt på nett.

Ba, J. L., Kiros, J. R., and Hinton, G. E. (2016). Layer normalization.

Bahdanau, D., Cho, K., and Bengio, Y. (2016). Neural machine translation by
jointly learning to align and translate.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P.,
Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-
Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M.,
Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S.,
Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, I.,
and Amodei, D. (2020). Language models are few-shot learners.

Buda, M., Maki, A., and Mazurowski, M. A. (2018). A systematic study of the
class imbalance problem in convolutional neural networks. Neural Networks,
106:249–259.

Bui, H. (2020). Roc curve transforms the way we look at a classification problem.

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational
and Psychological Measurement, 20(1):37–46.

Dendamrongvit, S. and Kubat, M. (2009). Undersampling approach for im-
balanced training sets and induction from multi-label text-categorization do-
mains. In Pacific-Asia Conference on Knowledge Discovery and Data Mining,
pages 40–52. Springer.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). Bert: Pre-training
of deep bidirectional transformers for language understanding.

Firth, J. R. (1957). A synopsis of linguistic theory 1930-55., volume 1952-59.
The Philological Society, Oxford.

Fleiss, J. (1971). Measuring nominal scale agreement among many raters. Psy-
chological bulletin, 76(5):378—382.

Freitag, M. and Al-Onaizan, Y. (2017). Beam search strategies for neural ma-
chine translation. Proceedings of the First Workshop on Neural Machine
Translation.

Gers, F., Schmidhuber, J., and Cummins, F. (2000). Learning to forget: Con-
tinual prediction with lstm. Neural computation, 12:2451–71.

Goldberg, Y. and Hirst, G. (2017). Neural Network Methods in Natural Language
Processing. Morgan & Claypool Publishers.

Goodfellow, I. J., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT
Press, Cambridge, MA, USA. http://www.deeplearningbook.org.

Haykin, S. (1999). Neural Networks: A Comprehensive Foundation. Prentice
Hall, Upper Saddle River, NJ. 2nd edition.

60

http://www.deeplearningbook.org

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural
computation, 9(8):1735–1780.

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift.

Jensen, M. H. (2020). Detecting hateful utterances using an anomaly detection
approach. Master’s thesis, Norwegian University of Science and Technology
(NTNU).

Joshi, P. (2019). What is elmo: Elmo for text classification in python.

Kingma, D. P. and Ba, J. (2017). Adam: A method for stochastic optimization.

Krippendorff, K. (2011). Computing krippendorff’s alpha-reliability.

Krippendorff, K. (2018). Content analysis: An introduction to its methodology.
Sage publications.

Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Dollár, P. (2017). Focal loss for
dense object detection. In Proceedings of the IEEE international conference
on computer vision, pages 2980–2988.

Loshchilov, I. and Hutter, F. (2019). Decoupled weight decay regularization.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient estimation
of word representations in vector space.

Mosbach, M., Andriushchenko, M., and Klakow, D. (2020). On the stability of
fine-tuning bert: Misconceptions, explanations, and strong baselines. arXiv
preprint arXiv:2006.04884.

Nadim, M., Thorbjørnsrud, K., and Fladmoe, A. (2021). Gråsoner og
grenseoverskridelser på nettet: En studie av deltagere i opphetede og ag-
gressive nettdebatter.

Nesterov, Y. (1983). A method for unconstrained convex minimization problem
with the rate of convergence o(1/k2).

Øvrelid, L., Mæhlum, P., Barnes, J., and Velldal, E. (2019). A fine-grained
sentiment dataset for norwegian. arXiv preprint arXiv:1911.12722.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G.,
Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al. (2019). Pytorch:
An imperative style, high-performance deep learning library. arXiv preprint
arXiv:1912.01703.

Pennington, J., Socher, R., and Manning, C. (2014). GloVe: Global vectors
for word representation. In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pages 1532–1543, Doha,
Qatar. Association for Computational Linguistics.

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., and
Zettlemoyer, L. (2018). Deep contextualized word representations.

Phang, J., Févry, T., and Bowman, S. R. (2018). Sentence encoders on stilts:
Supplementary training on intermediate labeled-data tasks. arXiv preprint
arXiv:1811.01088.

61

Price, I., Gifford-Moore, J., Flemming, J., Musker, S., Roichman, M., Sylvain,
G., Thain, N., Dixon, L., and Sorensen, J. (2020). Six attributes of unhealthy
conversation.

Quandt, T. (2018). Dark participation.

Rao, D. and McMahan, B. (2019). Natural language processing with PyTorch:
build intelligent language applications using deep learning. " O’Reilly Media,
Inc.".

Risch, J. and Krestel, R. (2020). Toxic Comment Detection in Online Discus-
sions, pages 85–109.

Ross, B., Rist, M., Carbonell, G., Cabrera, B., Kurowsky, N., and Wojatzki, M.
(2017). Measuring the reliability of hate speech annotations: The case of the
european refugee crisis. arXiv preprint arXiv:1701.08118.

Ruder, S. (2017). An overview of gradient descent optimization algorithms.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning Repre-
sentations by Back-propagating Errors. Nature, 323(6088):533–536.

Saleem, H. M., Dillon, K. P., Benesch, S., and Ruths, D. (2017). A web of hate:
Tackling hateful speech in online social spaces.

Schuster, M. and Nakajima, K. (2012). Japanese and korean voice search. In
International Conference on Acoustics, Speech and Signal Processing, pages
5149–5152.

Suler, J. (2004). The online disinhibition effect. Cyberpsychology & behavior
: the impact of the Internet, multimedia and virtual reality on behavior and
society, 7:321–6.

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning
with neural networks.

Tan, C., Niculae, V., Danescu-Niculescu-Mizil, C., and Lee, L. (2016). Winning
arguments. Proceedings of the 25th International Conference on World Wide
Web.

Theodoridis, S. and Koutroumbas, K. (2008). Pattern Recognition, Fourth Edi-
tion. Academic Press, Inc., USA, 4th edition.

Turovsky, B. (2016). Found in translation: More accurate, fluent sen-
tences in google translate. https://blog.google/products/translate/
found-translation-more-accurate-fluent-sentences-google-translate/.
Accessed: 2020-11-20.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,
Kaiser, L., and Polosukhin, I. (2017). Attention is all you need.

Velldal, E., Øvrelid, L., Bergem, E. A., Stadsnes, C., Touileb, S., and Jørgensen,
F. (2017). Norec: The norwegian review corpus.

Vogels, E. A. (2021). The state of online harassment.

Wang, A., Hamilton, W. L., and Leskovec, J. (2016). Learning linguistic de-
scriptors of user roles in online communities. In Proceedings of the First

62

https://blog.google/products/translate/found-translation-more-accurate-fluent-sentences-google-translate/
https://blog.google/products/translate/found-translation-more-accurate-fluent-sentences-google-translate/

Workshop on NLP and Computational Social Science, pages 76–85, Austin,
Texas. Association for Computational Linguistics.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cis-
tac, P., Rault, T., Louf, R., Funtowicz, M., et al. (2019). Huggingface’s
transformers: State-of-the-art natural language processing. arXiv preprint
arXiv:1910.03771.

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., Krikun,
M., Cao, Y., Gao, Q., Macherey, K., Klingner, J., Shah, A., Johnson, M., Liu,
X., Łukasz Kaiser, Gouws, S., Kato, Y., Kudo, T., Kazawa, H., Stevens, K.,
Kurian, G., Patil, N., Wang, W., Young, C., Smith, J., Riesa, J., Rudnick, A.,
Vinyals, O., Corrado, G., Hughes, M., and Dean, J. (2016). Google’s neural
machine translation system: Bridging the gap between human and machine
translation.

Xu, J., Sun, X., Zhang, Z., Zhao, G., and Lin, J. (2019). Understanding and
improving layer normalization.

Zhang, J., Chang, J., Danescu-Niculescu-Mizil, C., Dixon, L., Hua, Y., Tara-
borelli, D., and Thain, N. (2018a). Conversations gone awry: Detecting early
signs of conversational failure. In Proceedings of the 56th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers),
pages 1350–1361, Melbourne, Australia. Association for Computational Lin-
guistics.

Zhang, M.-L., Li, Y.-K., Liu, X.-Y., and Geng, X. (2018b). Binary relevance for
multi-label learning: an overview. Frontiers of Computer Science, 12(2):191–
202.

Zhang, X., Zhao, J., and LeCun, Y. (2015). Character-level convolutional net-
works for text classification. arXiv preprint arXiv:1509.01626.

A Annotation Guideline
I denne jobben vil du bli bedt om å lese kommentarer og å uttrykke en samlet
mening om de hører til i en sunn samtale på nettet eller ikke.

Du vil også bli spurt om å identifisere om kommentarene inneholder en rekke
egenskaper som kan føre til en usunn samtale. Disse egenskapene er: sarkasme,
generalisering og urettferdig generalisering, fiendtlighet, aggresjon, om de er
avvisende, og om de er nedlatende.

Alle kommentarer er ekte kommentarer skrevet av ekte folk i samtaler/diskusjoner
på nettet. De fleste av dem er et svar på en eller flere kommentarer (som du
ikke blir gitt). Spørsmålene du skal besvare er laget slik at du ikke skal trenge
å vite hva de andre kommentarene er.

Kommentarene omhandler ofte politiske eller på annen måte kontroversielle
temaer. Du skal gjøre ditt beste for å ikke la dine egne meninger om disse
temaene påvirke din vurdering på om kommentaren hører til i en sunn samtale,
og om den inneholder noen av egenskapene nevnt ovenfor.

63

Du skal lese hele teksten til hver kommentar før du gjør din vurdering. Noen
ganger kommer egenskapene du leter etter på slutten av kommentaren.

Bruk alltid spørsmålene som står under som basis for dine annoteringer. Les
godt gjennom de følgende beskrivelsene og spørsmålene, og pass på at du har
en forståelse for alt innholdet, før du begynner annoteringen:

1. Sunne samtaler på nettet: Hva er kjennetegnene til en sunn samtale?

• Innlegg og kommentarer er skrevet i god tro.

• Innlegg og kommentarer er ikke overdrevent fiendtlig, og er ikke destruk-
tive.

• Kommentarene i samtalen oppfordrer generelt til engasjement.

• Samtalen kan inneholde robust engasjement og debatt

• Samtalen er i hovedsak fokusert på substans og ideer.

En sunn samtale krever ikke nødvendigvis at hvert innlegg og kommentar er:

• vennlig

• grammatisk korrekt

• godt konstruert eller godt strukturert

• renset og uten vulgaritet

• intellektuell eller substantiv

Med dette i bakhodet kan du svare på følgende spørsmål: syns du denne kom-
mentaren hører til i en sunn samtale på nettet? Hvis ja, marker den som sunn.
Hvis nei, marker den som usunn.

2. En kommentar er sarkastisk hvis den bruker ironi for å håne eller formidle
forakt, men kan også være sarkastisk ved at den mente meningen er forskjellig
fra det som bokstavelig talt ble skrevet (det vil si at all ironi her anses som
sarkasme). Sarkasme kan altså brukes på en stygg eller lekende måte. Ikke all
humor eller stygghet er sarkasme. Er denne kommentaren sarkastisk? Hvis ja,
marker den som sarkastisk.

3. Gjør denne kommentaren en generalisering om en gruppe mennesker? Hvis
ja, marker den som generaliserende.

4. Hvis ja på forrige spørsmål, ville en gruppe mennesker følt at generaliserin-
gen i kommentaren var urettferdig/feil? Hvis ja, marker den som urettferdig
generalisering.

64

5. Er denne kommentaren unødvendig fiendtlig? Hvis ja, marker den som
fiendtlig.

6. Er intensjonen med denne kommentaren å fornærme, antagonisere, provosere,
eller trolle andre brukere? Hvis ja, marker den som antagoniserende / fornær-
mende / trolling

7. En kommentar med en nedlatende tone vil generelt anta en holdning av
overlegenhet, og antyde at de(n) andre brukeren(e) er uvitende, barnaktig, naiv
eller uintelligent. Slike kommentarer vil vanligvis innebære at de(n) andre bruk-
eren(e) ikke skal tas seriøst. Er denne kommentaren nedlatende? Hvis ja, marker
den som nedlatende.

8. En kommentar er avvisende hvis den avviser eller latterliggjør en annen
kommentar uten god grunn, eller prøver å presse en annen bruker og deres
ideer ut av samtalene. Merk: En kommentar som uttrykker *uenighet* er ikke
nødvendigvis avvisende. Er denne kommentaren avvisende? Hvis ja, marker
den som avvisende.

9. Hvis kommentaren ikke inneholder noe meningsfullt, f.eks. at det bare står
[URL] eller at på en annen måte ikke er en setning, marker den som feil. Marker
den også som feil hvis det er et brukernavn i kommentaren, eller om det ser
ut som at noe som ikke burde blitt erstattet med [BRUKERNAVN] har blitt
erstattet.

Ha disse spørsmålene og beskrivelsene tilgjengelig mens du annoterer, slik at du
lett kan lese dem på nytt hvis du blir usikker på hva du skal markere noe som.

B Libraries
All models were made in python. The main libraries used outside of Python’s
standard libraries were:

• PyTorch (Paszke et al., 2019).

• Hugging Face’s Transformers library (Wolf et al., 2019).

• NumPy

• Matplotlib

• Seaborn

• scikit learn

• Pandas

• BeautifulSoup

65

