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Abstract
For quantitative PET imaging, attenuation correction (AC) is mandatory. Cur-
rently, all main vendors of hybrid PET/MRI systems apply a segmentation-based
approach to compute a Dixon AC-map based on fat and water images derived
from in- and opposed-phase MR-images. Changes in magnetic susceptibility
pose major problems for MRI, which may lead to artifacts resulting in tissue
misclassification in the segmented AC-map. Cases have been reported where
the liver has been misidentified as lung tissue due to iron overload, e.g. from
hemochromatosis or iron oxide MR contrast agents, resulting in severe under-
estimation of PET-quantification.

In this thesis, simulated tomography experiments were conducted to inves-
tigate the impact of susceptibility artifacts on adjacent tumors, focusing on
the misclassification of liver tissue as lung tissue. A digital phantom was pro-
grammed, and synthetic tumors and artifacts were introduced into a realistic
PET/MRI patient dataset. The data were reconstructed with attenuation maps
both with and without artifacts to compute the relative error ('�) in tumor
uptake.

It was shown that relevant errors can be introduced to tumors adjacent to the
artifact. A strong inverse square relationship between the distance (3) of the
center points of a tumor and an artifact was foundwith the '�. Further, because
the '� was known to be proportional to the volume (+ ) of misclassified tissue,
it was shown that it is possible to obtain a linear equation describing the '�
using only+ and 3. However, this assumes similar information, i.e activity and
attenuation, along the common line of responses (LORs) of the artifact and
tumor.

A correction method was developed to correct for lung-liver misclassifications.
The proposed method uses the already acquired opposed-phase Dixon images,
which are less sensitive to susceptibility changes. It successfully corrected 96%
of misclassified tissue down to a 50% MR-signal reduction from the liver. The
method benefits from using already acquired data to correct the artifacts, and
may be made fully automatic to function in real-time.
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1
Introduction
1.1 Motivation and objective

Hybrid positron emission tomography (pet) and magnetic resonance imaging
(mri) systems have over the last decade proven to be highly successful in both
pre-clinical and clinical applications. Particularly, when it comes to leveraging
the very sensitive functional information of PET together with the superb
soft tissue contrast and high-resolution structural and anatomical information
from MRI. For both neurological and abdominal imaging, this makes MRI the
preferred imaging modality to CT [1]. Another motivation for the fusion of
the two modalities is the significantly lowered radiation dose compared to
PET/CT, which could be particularly important for pediatric imaging, or for
patients requiring multiple consecutive scans [2, 3]. Besides the tasks of cancer
detection and staging, PET/MRI imaging is also becoming more important as a
quantitative indicator for individual treatment planning or response evaluation
for therapy [4].

Apart from the technical challenges that had to be overcome to successfully
integrate PET systems into MRI [5], methods of accurate attenuation correction
(ac) have been, and still are, the most challenging issue of hybrid pet/mri
imaging [6, 7]. AC is mandatory to provide a valid quantification of the distri-
bution of radioactivity in the human body, and when implementing MR-based
AC-methods, several aspects must be considered. Because image contrast in
MRI depends on tissue relaxation times and proton density, rather than electron
density which is relevant for the attenuation of 511 keV annihilation photons, it
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2 chapter 1 introduction

is not possible to obtain a direct mapping of MR-signals to photon attenuation
values. This also means that some tissue types, e.g. bone and lung tissue, are
difficult to visualize given the low proton density of these substances.

All main vendors of clinically available PET/MRI systems today have chosen a
segmentation-based approach for MRI-based attenuation correction (mrac)
[8]. Segmentation-based MRAC involves acquisition of a predefined MRI se-
quence and a subsequent series of post-processing steps to segment the image
into different tissue classes, where each voxel is assigned an a priori attenua-
tion coefficient according to the tissue class it belongs to. Apart from the well
known MRAC problems, such as the difficulty to represent bone or the limited
transaxial field of view (fov) of MRI systems, susceptibility problems pose
major problems for MRI and thus MRAC. Susceptibility artifacts can be subtle,
and typically show up as regions of lowered or zero intensity in the image [9,
p. 101].

Several cases have reported misclassification of liver tissue as lung tissue which
resulted in severe underestimation of radiotracer uptake in the liver [10, 11,
12]. Because the liver is a major site for iron storage in the body [13] this
organ is especially exposed for these kinds of susceptibility artifacts, and there-
fore segmentation errors in the MRAC. This is due to the strong magnetic
properties of iron. Hemochromatosis [11, 10] and several superparamagnetic
iron oxide MR contrast agents [12, 14] may induce these types of artifacts.
Hemochromatosis/iron overload in the liver is increasingly recognized as a
possible complication in cancer patients who receive multiple blood transfu-
sions as a part of their therapy [15, 16]. PET quantification errors from tissue
misclassification in segmented MRAC images are not only limited to the arti-
fact itself, but can propagate to adjacent tissue [17]. This effect has not been
thoroughly investigated before, and to the best of this authors knowledge, no
relationship between the distance from an artifact to a potential tumor has
been found.

In this thesis, it is argued that the quantification error will show a 1/32 rela-
tionship with the distance (3) between a tumor and a misclassifiend volume.
The hypothesis arise from considerations of the well known inverse square law.
As one of the fields which obey the inverse square law, a point radiation source
can be characterized by it. It states that the intensity of radiation is inversely
proportional to the square of the distance from the source. However, as the
inverse square law applies to point sources, it will be interesting to see if the
hypothesis holds for extended sources.

From a phantom study conducted by this author [18], it was found that the error
in tumor uptake was proportional to the volume (V) of misclassified tissue. It
was also argued that the number of common line of responses (lors) of a tumor
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and an artifact decides how large the quantification error becomes. In advance,
it is believed that the number of common LORs can be directly related to the
inverse square law. The results of this thesis show that it may be possible to
obtain a linear equation describing the error on a tumor adjacent to the artifact
using the ratio + /32. However, we will see that no simple generalization can
be made on the task of quantifying these errors, as additional information
from the adjacent tissue has to be taken into account. Here, it is suggested
that this additional information limits to the activity and attenuation along the
common lors of a tumor and an artifact. This is due to the nature of data
collection of PET-systems and also the process used for attenuation correction.
The primary aim of this thesis is to study PET uptake errors on tumors adjacent
to the susceptibility artifacts, focusing on misclassification of liver tissue (soft
tissue) as lung tissue.

Several studies have been conducted attempting to quantify the errors due
to artifacts in the attenuation maps. Often, these studies are based on the
insertion of simulated artifacts in the PET/MRI data collected from several
patients [17, 19, 20]. Taking into consideration the common LOR information,
a problem then arises in evaluation of the errors because of inter- (and also
intra-) patient variability in attenuation and activity distribution. Therefore,
for this thesis data from only a single patient is collected, and both simulated
tumors and artifacts are inserted into this patient’s PET/MRI data to study the
errors. In the aforementioned phantom study [18], no relationship regarding
distances could be investigated due to the fixed dimensions of the phantom.
For this thesis, a digital phantom is programmed. The relative error ('�)
in tumor activity is computed from reconstructions of what is assumed to
be ground truth PET images from both the digital phantom and the patient,
for attenuation maps with and without artifacts, using the ordered subsets
expectation maximization (osem) reconstruction algorithm. This solution
allows to keep both the attenuation and activity along the common LORs
similar, while other parameters such as artifact size, tumor size and the distance
between these can be varied. We thus manage to limit the influencing factors
in a controlled manner.

Because the liver is the largest internal organ in the body [21], it is believed
that misclassification of liver tissue has the potential to cause significant under-
estimation in PET quantification on adjacent tissue, which in the worst case
can leave tumors undetected after visual inspection of the images. The results
revealed that relevant errors can be introduced to adjacent tumors, even if only
parts of the liver are misclassified. Therefore, it is important to come up with
correction methods for these types of artifacts. Several strategies for susceptibil-
ity artifact correction have been proposed [22]. These include ultra-short echo
time (ute) MRI sequences [12], inpainting methods [23], atlas based meth-
ods and more advanced methods such as combination of atlas insertion and
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pattern recognition [24]. These methods all have their weaknesses, including
time consumption due to manual steps, the need of special software and large
patient atlas databases. Here, a solution that can be made fully automatic is
devised. It is based on Otsu’s method for thresholding, and utilizes the already
acquired Dixon data to correct the misclassified liver voxels.

In the next chapter (2), all theoretical concepts relevant for this thesis will
be covered. Chapter 3 provides a detailed description of the materials and
method used in this thesis. In chapter 4 the results are presented, and are
further discussed in chapter 5. Finally, chapter 6 states the conclusions from
the thesis.



2
Theory
This section will present basic theory behind the physics and working principles
of MRI-, PET- and combined PET/MRI-systems. It will also explain the most
important theory behind the image processing and statistical analysis utilized
in this thesis.

2.1 Basic MRI

A description of the minimum needed, basic theory, on MRI covering the
concepts relevant to this thesis will be given in this subsection. The theory
leads up to the explanation of how attenuation maps used for ac in hybrid
PET/MRI can be derived from magnetic resonance (mr)-data. It will also
explain why susceptibility artifacts may occur. Unless stated otherwise, the
source of information is from the textbook "MRI from picture to proton"
[9].

2.1.1 Physics of MRI

Resonance

mri is derived from nuclear magnetic resonance (nmr). In particular, it ex-
ploits the properties of the nuclei of hydrogen atoms as it is abundant in the
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6 chapter 2 theory

human body, especially in water and fat molecules. The nucleus of the hydrogen
atom is simply a proton, which is positively charged. All fundamental particles
have an inherent quantum mechanical property called spin, which makes them
act as they are rotating around their own axis. Basic electromagnetics tells
us that a moving charge (i.e. a current) has an associated magnetic field, so
the proton generates its own tiny magnetic field known as its magnetic dipole
moment, ®̀.

If the proton is placed in an external magnetic field it will experience a turning
force, known as a torque. This is similar to what happens to a compass needle
placed in the Earth’s magnetic field. As the compass needle, the proton will
try to align itself with the external field, but is constrained by the laws of
quantum mechanics. Since the proton cannot align exactly, it continues to
experience a torque and starts to precess around the direction of the external
field. The well-known analogy for this is the wobbling behavior of a slightly
tilted spinning top (gyroscope). A gyroscope will also experience a torque due
to the gravitational force and start to precess around the gravitational field
lines. The phenomenon is illustrated in figure 2.1.

Figure 2.1: Illustration of a proton’s precession due to an external magnetic field [25].

The precession frequency, also known as the Larmor precession frequency, l0,
of protons is proportional to the external magnetic field and is given by the
Larmor equation:

l0 = W�0, (2.1)

where W is a constant named the gyromagnetic ratio and is equal to 2.7 ×
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108rads−1) −1. The protons in a magnetic field all precess at the Larmor fre-
quency. This is known as the resonance condition.

Quantummechanics

Proton spin is an important part of understanding the origin of an MR signal.
At the presence of an external magnetic field, the spin of protons is said to
be quantized and it can precess in one of only two orientations; up, being
aligned parallel with the main field, or down, being aligned anti-parallel to the
external field. The orientation in which a proton chooses to precess depends
on its energy. The spin-down orientation requires more energy than that of
the spin-up orientation. The statistical distribution of protons between the two
states is given by the Boltzmann distribution:

#D?

#3>F=
= exp(Wℏ�0

:�)
) ≈ 1 + Wℏ�0

:�)
, (2.2)

where ℏ = ℎ/2c is Planck’s constant, :� is Boltzmann’s constant and T is
temperature. From equation (2.2) we find that the lower-energy state is slightly
favored, so that we end up with a net magnetization ®"0 in the direction aligned
with the external field, which conventionally is shown as the I-direction.

Measuring the magnetic moment

While ®"0 is parallel to ®�0 it is virtually impossible to measure it as ®"0 typically
is in the order of micro tesla (`) ) while a typical value for ®�0 is 1.5) or 3) .
To be able to measure ®"0, it needs to be tipped into the G~-plane, the plane
transverse to the I-direction. This is done by applying a radiofrequency (RF)
pulse to the precessing protons for a period of time, C . The RF pulse, created by
alternating currents in coils, is perpendicular to ®�0 and, due to the resonance
condition, must be oscillating at the Larmor frequency l0. In the rotating
frame of reference, i.e. from the precessing proton’s point of view, this is a
static magnetic field ®�1 in the transverse plane. The flip angle U of ®"0 is given
by:

U = W�1C . (2.3)

The RF pulse is called a 90◦ pulse if ®"0 ends up exactly in the G~-plane. This
process of flipping the magnetization is called excitation. Another important
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property of the RF pulse is that it makes the protons precess in phase about
®�0, which creates a net magnetization component in the transverse plane "⊥.
This net magnetization produces the measured EM-signal due to the voltage it
induces in a receiver coil that only is sensitive to magnetization perpendicular
to ®�0. The signal is known as the free induction decay (fid). In MRI, the FID
is commonly not measured directly, instead echoes are created.

Figure 2.2 shows a schematic representation of the basic principles of MRI we
have covered so far. Protons are represented as red balls spinning around their
own axis. When ®�0 (orange arrow) is applied, the protons will align with the
direction of ®�0 in one of the two possible orientations, spin-up, or spin-down.
The difference between the protons aligned parallel and anti-parallel to ®�0
(blue ball) represents the protons that are responsible for the MRI signal. The
sum of these protons can be described by ®"0 (blue arrow). If a secondmagnetic
field ( ®�1) orthogonal to ®�0 is applied, it is possible to tilt ®"0 of 90◦ along the
G~-direction ( ®"⊥, green arrow). When ®�1 is switched off, ®"⊥ returns to the
equilibrium through two relaxation processes.

Figure 2.2: Schematic representation of the basic principles of MRI [26].

Relaxation

Generally, there are two relaxation processes towards an equilibrium: (1) spin-
lattice relaxation and (2) spin-spin relaxation.

(1): Due to the torque of the external magnetic field, the magnetization vector
®"0 will begin to realign with ®�0 immediately after the RF pulse is switched
off. The process where the protons begin to relax their way from the higher
energy, excited state to their equilibrium position is known as )1 spin-lattice
relaxation. To lose energy, the protons interact with surrounding tissue and, as
this happens, the protons gradually return to their spin up/spin down states
and eventually become aligned with ®�0. A schematic representation of this
process is given in figure 2.3.
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Figure 2.3: Schematic representation of )1 relaxation [26].

(2): Spin-spin relaxation comes from the dephasing of the spins following
their phase coherence after the RF pulse. Although this makes the transverse
magnetization decay, there are no net loss of energy in this form of relaxation.
A schematic representation of this process is given in figure 2.4.

Figure 2.4: Schematic representation of )2 relaxation [26].

In the former process (1), i.e. the spin-lattice )1 longitudinal relaxation, )1 is
defined as the time it takes for the I-component of the net magnetization to
reach 1 − 1

4
≈ 63% of its original size. The latter process (2), the relaxation

in the G~-plane, or the spin-spin )2 transverse relaxation, is dominated by the
unavoidable inhomogeneity in ®�0 , but also the spin-spin interactions.)2 defines
the time it takes for the G~-component of magnetization to fall to 1

4
≈ 37% of

its original size following the RF pulse. Unlike )1, which increases with field
strength,)2 is independent of field strength, and in human tissues,)2 is always
shorter than )1.

Spatial encoding

To be able to localize the origin of a radiated RF signal, spatial encoding is
required in MRI. This is done by using gradients to record the two- (or three-)
dimensional spectrum of the object being measured. This spectrum is known
as k-space and is a matrix of individual spatial frequencies.
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The gradient coils create an additional spatially linear variation in ®�0 and
can be applied in any direction or orientation. An MRI system typically has
three sets of gradient coils, �G ,�~,�I , which give MR its three-dimensional
capability. Mathematically, the three orthogonal gradients of ®�0 are defined
as:

�G =
m ®�0

mG
,�~ =

m ®�0

m~
,�I =

m ®�0

mI
. (2.4)

When a gradient is applied, the total field experienced by nuclei will be de-
pendent upon the position in space. This also alter the Larmor precession
frequency of nuclei so that it too becomes spatially dependent. For example,
the I-gradient will be affected as follows:

l = W (�0 + I�I). (2.5)

This spatial encoding, performed in the I-direction, is better known as slice
selection and the�I gradient is often referred to as the slice selection gradient,
�(( . The same can be done for the G - and ~-directions, also referred to as the
frequency- and phase-encoding directions, respectively.

2.1.2 Contrast in MRI

In general, images in MRI have contrast which depends on either )1,)2 or
proton density (pd) and can be weighted towards any of these by adjusting
two operational parameters: echo time (te) and repetition time (tr). TE is
the time interval from excitation to the maxima of the following echo, and TR
is the time interval between excitations.

TE and TR are easiest to get an understanding of by discussing the spin echo
(SE) sequence. It involves a 90◦ excitation pulse, meaning the magnetization
vector ®"0 is flipped all the way into the transverse plane, repeated every TR. At
time )�/2 following the 90◦ RF pulse, a 180◦ pulse is applied. This rephases
the protons that are dephased due to inhomogeneities in the magnetic field,
creating an echo at time TE which is recorded. A mathematical description of
MR signals was given by Bloch in 1946 [27], where a set of equations used to
calculate the magnetization in the transverse plane "⊥ were proposed. The
Bloch equation also clearly shows the effect of TE and TR on the MRI signal
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when solved for the SE sequence:

"⊥()',)�) = "0(1 − 4
−)'
)1 )4

−)�
)2 . (2.6)

From (2.6), we see that at a relatively long TR ()' � )1), the effects of )1
largely disappear as the factor (1 − 4

−)'
)1 ) → 1. For short TE ()� � )2), the

same is true for )2 as 4
−)�
)2 → 1 .

To get a )1 weighted image, short TR and TE are required, while long TR and
TE are required to get a )2 weighted image. PD weighted images are obtained
from short TE and long TR, whereas the opposite configuration gives too small
signals to be useful.

Another common MRI sequence is the gradient echo (GE) sequence. In these
sequences, the echoes recorded are created by gradient coils, meaning the
dephasing due to field inhomogeneities is not reversed. Instead of )2, the
observed signal will now be dependent on a composite relaxation time ) ∗2
which includes )2, inhomogeneities due to differences in the main field and
tissue susceptibility, and diffusion of the protons. Unlike SE, GE sequences
often utilize flip angles (U) smaller than 90◦ which results in the following
equation for the transverse magnetisation:

"⊥()',)�, U) = "0
(1 − 4

)'
)1 )4

−)�
) ∗2

1 − cos(U) · 4−)'/)1
. (2.7)

The same observations as in equation (2.6) can be made here. Equation (2.7)
explains why iron accumulation in the liver may cause signal loss in GE MRI
sequences. The magnetic properties of iron induces a faster spin dephasing

and thus a shorter ) ∗2 . This means the factor 4
−)�
) ∗2 → 0, and we get signal

loss.

Tissue contrast and magnetic susceptibility

A natural property of all tissues is theirmagnetic susceptibility j . It is a measure
of how magnetized the tissue becomes when placed in a strong magnetic field
and depends on the electron arrangement in the tissue. In general, there are
four types of magnetic susceptibilities. Diamagnetic materials show very weak
magnetic susceptibility and as they produce an internal field in the opposite
direction of the external field. In the human body, most tissues are diamagnetic,



12 chapter 2 theory

while air and dense bone have j ≈ 0. Paramagnetic materials show stronger
susceptibility and tends to align with the external field, producing a field in
the same direction. Paramagnetic materials in the human body are e.g. deoxy-
haemoglobin and met-haemoglobin. Superparamagnetic materials are those
intermediate between paramagnetic and ferromagnetic, and examples include
iron oxide particles, which are common in MR contrast agents. Ferromagnetic
materials experience a large force when placed in an external field as they
easily become strongly magnetized. Metal alloys containing iron are often
ferromagnetic. Although the magnetic susceptibility of tissues is small, the
differences between e.g. tissues and air are large enough to induce local
magnetic field gradients. This means that hydrogen atoms on either side of the
boundary will experience different magnetic fields and will interact with each
other and relax more quickly.

The susceptibility problems may degrade the homogeneity of the external
magnetic field. The homogeneity of a magnet describes the uniformity (or the
quality) of its field, and reduced homogeneity can result in image degradation
and artifacts. As explained previously in this section,GE images should be called
) ∗2 weighted, and not )2 weighted. This is because of the effects of magnetic
field inhomogeneities due to an imperfect magnet or susceptibility effects in the
patient. Air pockets, dense bone and iron-rich blood breakdown products (met-
haemoglobin) present in the human body all affect the main magnetic field in
their immediate vicinity. These inhomogeneities further affect the relaxation of
tissues after being excited by an RF pulse, speeding up the apparent spin-spin
relaxation ) ∗2 . GE images depend on these spin-spin relaxation times ) ∗2 . The
GE sequences are thus more sensitive to magnetic field inhomogeneities than
SE sequences.

2.1.3 Dixon method

As described in subsection 2.1.1, protons precess at the Larmor frequency when
placed in a magnetic field. However, this frequency is not the same for all
hydrogen protons because it has a dependency on the shielding effects of the
molecule’s electron shell [28]. As a result, water and fat molecules have slightly
different resonance frequencies and go in- and out-of-phase with each other
as a function of time. This is known as a chemical shift, and the period of this
phase cycling is directly proportional to the magnetic field strength. In-phase
and opposed-phase conditions occur twice per cycle, as illustrated in figure
2.5. The figure illustrates the phase cycling at a magnetic field strength of 1.5T,
where it appears approximately every 2.2 msec. At 3.0T, it is twice as fast,
occurring every 1.1 msec [28].

The type of chemical shift, known as type 2 chemical shift, which is the subject
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Figure 2.5: Figure shows that fat and water protons precess at different frequencies.
Theis phases completely cancel at TE of 2.2 msec (opposed-phase), and
are additive at TE of 4.4 msec (in phase) [28].

of this thesis, occurs only with GE-imaging [28]. As mentioned before, GE-
sequences lack the 180◦ rephasing pulse that SE-sequences offer. Signal loss
due to susceptibility thus manifests with a signal intensity loss on the in-phase
images, because the longer TE allows for more ) ∗2 decay to occur.

In 1984, Thomas Dixon suggested a method for creating images of just fat and
water [9, p. 93]. The solution eventually became to combine the in-phase and
opposed-phase GE images, with the idea that the signal in the in-phase image
(8? is the sum of the signals from fat ( 5 and water (F:

(8? = (F + ( 5 . (2.8)

The signal in the opposed-phase image (>?? is the difference:

(>?? = (F − ( 5 . (2.9)

By simple addition, subtraction and averaging, water-only and fat-only images
can be found:

1
2
((8? + (>??) =

1
2
((F + ( 5 + (F − ( 5 ) = (F (2.10)

1
2
((8? − (>??) =

1
2
((F + ( 5 − (F + ( 5 ) = ( 5 . (2.11)

This is the fundamental theory behind how attenuation maps are derived from
MRI. The post-processing steps in order to derive attenuation maps from the
Dixon data will be explained later (section 2.3.1).
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2.2 Basic PET

In this subsection, the basic theory on the physics and working principles of
PET scanners are presented. Particularly important is the part on the mathe-
matics of attenuation correction, which is the fundamental theory behind the
methodology chosen in this thesis, i.e. it explains how simulated tomography
experiments can be conducted. Unless stated otherwise, the source of infor-
mation is from the textbook "PET: Physics, Instrumentation, and Scanners "
[29].

2.2.1 Physics of PET

Positron emission

An atomic nucleus consists of nucleons (protons and neutrons). Inside a nucleus,
two opposing forces are acting: The strong force, which is an attractive force
between nucleons, and the repulsive coulomb force between the positively
charged protons. An unstable nucleus has either an excess number of protons
or neutrons, which creates an unbalance in the opposing forces and makes the
nucleus prone to radioactive decay. A radioactive decay leads to a change in the
number of protons or neutrons in the nucleus and a more stable configuration.
Such decay prone nuclei are known as radionuclides. PET is a nuclear imaging
technique that exploits the unique decay characteristics of radionuclides that
decay by positron emission (V+-decay or beta-plus-decay). The process of beta-
plus-decay is essentially the conversion of a proton into a neutron, positron (4+)
and neutrino(a). An example of a radionuclide that decays in such a manner
is 18� :

18� →18 $ + 4+ + a. (2.12)

The net released energy during positron emission is shared between the resul-
tants; the daughter nucleus, the positron and the neutrino.

Annihilation

A positron ejected following a V+-decay has a very short lifetime in tissue due
to the high electron density of tissue. Its kinetic energy rapidly decreases as
inelastic interactions with atomic electrons (4−) in the tissue occur. Once it has
lost most of its energy it will combine with an electron, its anti-particle, and the
masses of both particles will be converted into photons. This process is known
as annihilation. Because the electron and positron are almost at rest when
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this occurs, the energy released comes largely from the mass of the particles.
The energy can be computed from Einstein’s famous mass-energy equivalence
as:

� =<22 =<4−2
2 +<4+2

2, (2.13)

where<4− and<4+ are the masses of the electron and positron, respectively,
and 2 is the speed of light. Inserting values into equation (2.13), we find that
� = 1.022MeV. This energy is released in the form of two high energy photons,
and because the particles are almost at rest when the annihilation occurs, the
net momentum is close to 0. From the laws of conservation, we know that both
energy and momentum must be conserved, as would not be the case if only one
photon was emitted. Then, we would get a net momentum in the direction of
the photon. Instead, we get two photons that are simultaneously emitted 180◦

apart, i.e. in opposite directions. As the particles not necessarily are perfectly
at rest at the time of annihilation, the direction of the emitted photons is not
exactly 180◦, but very close to. For energy to be conserved, it must be evenly
distributed between the two photons so each photon will have an energy of
511:4+ . These high energetic photons belongs to the gamma portion of the
electromagnetic spectrum, and have a good chance of escaping the body for
external detection. This lead directly to the fundamental concept of PET. Thus,
a PET scanner is designed to detect and localize simultaneous annihilation
photons emitted following a V+-decay.

Photon interactions in matter

The two dominant mechanisms by which 511:4+ photons interact with matter
in the human body are through photoelectric effect and Compton scattering.
The former describes the process when the energy of a photon is completely
absorbed by an atomic orbital electron (generally inner shell). This causes
the electron to escape the atom with an energy equal to that of the incident
photon, and the energy of the electron is rapidly absorbed by the surrounding
tissue. An outer-shell electron then fills the vacancy and causes an x-ray with
energy equal to the binding energy of the electron to be emitted. In Compton
scattering, the incident photon transfers part of its energy to an outer shell,
essentially a “free” electron ejecting it from the atom. The photon, which has
excess energy, is scattered at an angle depending on the amount of energy it
has lost due to ejecting the electron [30].
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Linear attenuation coefficient

Interactions, including both absorption and scattering of annihilation photons
in matter, can be described by the exponential relationship:

� (G) = �0 exp(−`G), (2.14)

where �0 is the initial photon intensity, G is the thickness of matter which a
photon traverses, and ` is the linear attenuation coefficient (lac). ` describes
the probability per unit distance that an interaction will occur.

In the case of 511 keV photons, it is largely described by the influence of
photoelectric absorption and Compton scattering:

` ≈ `?ℎ>C>4;42CA82 + `�><?C>= . (2.15)

Table 2.1 shows linear attenuation coefficients for some tissue types that are of
interest in this thesis.

Table 2.1: Linear attenuation coefficients for different tissue types [8, p. 56].

Tissue class Linear attenuation coefficient (`)

Air 0.0cm−1

Lung 0.0224cm−1

Fat 0.0854cm−1

Soft tissue 0.1000cm−1

2.2.2 PET image formation

Photon detection

PET cameras must have a high efficiency for detecting 511 keV photons. Scin-
tillation detectors are widely used gamma-ray detectors that form the basis for
almost all PET scanners today. A typical PET-system consists of a large number
of detectors placed around the object to be imaged, and the most common
detector configuration is the ring geometry. With a ring geometry, the PET
scanners fov is the space enclosed by the detector ring.

Scintillation is a form of luminescence that applies specifically to the light
emission from crystals exposed to photons from radiation. The process of
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converting photon energy to light can be summarized as absorption of the
photon energy by the crystal, leaving it in an excited state. The gamma photon
transfers its energy in photoelectric and Compton interactions. As the excited
electrons in the crystal return to their original state, they release photons in
the visible portion of the electromagnetic spectrum. In most standard clinical
PET scanners, photo-multiplier tubes (pmts) are used to convert these photons
into electrical signals, but unfortunately, PMTs are very sensitive to external
magnetic fields [31]. Hybrid PET/MRI systems therefore use the semiconductor
analog of PMTs, called avalanche photodiodess (apds), and these magnetically
insensitive semiconductor photodiodes are capable of operating in high mag-
netic fields. In addition, APDs are also more compact, have a higher quantum
efficiency and require a lower supply voltage than PMTs.

Coincidence detection

In PET collimators are not required. Instead, PET cameras are based on the
detection of simultaneous and oppositely directed 511 keV photons. This is
referred to as coincidence detection. The absence of collimators results in a high
sensitivity of the detectors. If two detectors located on opposite sides of the
annihilation register coincident photon impacts, we know that the annihilation
occurred along a line between these detectors. This line is referred to as a
lor. A coincidence circuit makes sure mostly true coincidence events are
counted, that is, events that arise from a single annihilation. Unfortunately, the
true coincidences registered are contaminated with undesirable events, which
include random, scattered and multiple coincidences due to interactions within
the patient. These events have a degrading effect on the final image and need
to be corrected to produce an image that gives a best possible representation
of the radioactive distribution within the FOV [30]. Figure 2.6 illustrates the
four main coincidence event types.

To improve the overall detection efficiency, the detectors of modern PET systems
usually extend 15 cm or more in the axial direction. This can be accomplished
by stacking several rings of detectors next to each other. Many slices of data can
then be acquired simultaneously, ultimately producing a set of image slices that
can be stacked into a 3-D image volume. The detectors are designed to record
as many of the annihilation photons as possible. Therefore, in block detector
systems, each detector is in electronic coincidence with a fan of detectors on the
opposite side of the ring. This is illustrated in figure 2.7, where we can observe
that the object is simultaneously sampled from many different angles.
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Figure 2.6: Illustration of the four main coincidence event types [29, p. 36].

Figure 2.7: Schematic drawing of a PET scanner of ring geometry. [29, p. 8].
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Time of flight

As a sidebar, theory on time of flight (tof) is included here. It is not considered
elsewhere in this thesis, because it is not a feature of the PET/MRI machine
the patient dataset were collected from.

As described above, coincidence detection only localizes the annihilation pho-
tons to within a line joining the detector pairs. To get a more precise measure-
ment as to where on this line the annihilation occurred, TOF-information can
be used. This method involves computing the difference in arrival time, ΔC , of
the two photons at the detectors, and the location 3 of the annihilation with
respect to the half-way point between the two detectors:

3 =
ΔC × 2

2
, (2.16)

where 2 is the speed of light. In practice, with the currently available detector
technology, the positional resolution with TOF information is in the order of
2<, instead of the desired accuracy of a few<<. As stated by Cherry, "even a
timing resolution as fine as 100 ps would only yield a positional resolution of
≈ 1.5 cm" [29, p. 8].

Data representation - the sinogram

The raw data acquired by a PET-scanner consists of the detection of annihilation
photon pairs. It is usually histogrammed into a 2D matrix, where each matrix
element corresponds to the number of events recorded by a specific pair of
detectors, i.e. along a LOR. Each row of the matrix consists of data acquired at
a different angle of rotation q from 0◦ to 180◦, i.e. projections of the activity
at a particular q . Each column represents the radial offset A from the center of
the scanner. Which element in the A, q matrix that relates to the radioactivity
at location (G,~) is given by the relationship:

A = G cos(q) + ~ sin(q) (2.17)

A point source at a location (G,~) traces a sinusoidal path in the matrix B (A, q),
which is known as a sinogram. Figure 2.8 illustrates the formation of the
sinogram based on a 12 detector PET system. In such a 2D mode, there is
a separate sinogram for each slice location along the axial direction of the
patient.



20 chapter 2 theory

Figure 2.8: Illustration of the formation of a sinogram [30, p. 179].

2.2.3 Image reconstruction

As the PET raw data only defines the location of the pairs of annihilation
photons in the object being scanned to within a LOR across the object, image
reconstruction is necessary. The role of the reconstruction step is to convert
the LORs into a 2D or 3D image that quantitatively reflects the distribution of
positron-emitting atoms within the object. There are two basic approaches to
image reconstruction. One is analytic in nature and utilizes the mathematics
of computed tomography to relate the LOR measurements to the activity distri-
bution. Common algorithms that does this include filtered back projection and
Fourier reconstruction [29]. A second approach is to use iterative methods that,
in a series of successive iterations, attempt to model the data collection process
and find the image that is most consistent with the measured data.

In this thesis, reconstructions are done with the iterative osem algorithm,
which is an accelerated version of the popular maximum likelihood expec-
tation maximization (mlem) algorithm. The OSEM algorithm has become
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a major workhorse in todays scanners [29]. Maximum likelihood (ml) is a
standard statistical estimation method which essentially assume a statistical
model for the measured data, and expectation maximization (em) is an effi-
cient algorithm to find the ML estimate. While reconstruction quality of the
MLEM algorithm is good, the application of EM is slow and computer inten-
sive. Within each iteration, the OSEM algorithm processes the data in subsets
and thus accelerates convergence with a factor proportional to the number of
subsets.

A full description of the implementation of OSEM is beyond the scope of this
thesis. All relevant information on the algorithm can be found in the original
published paper [32].

2.2.4 Attenuation correction

The probability of 511 keV photons interacting with matter in the human
body before hitting the detectors is relatively high. The result of this is the
potential detection of scattered photons in a different LOR, or attenuation or
removal of primary photons from a given LOR. To be able to provide accurate
quantification of the radioactive distribution, it is thus necessary to correct for
photon attenuation in the reconstruction process. This process is known as
ac.

AC accounts for the fact that annihilation photons originating from deeper
locations within the object must pass through more matter, and therefore has
a higher probability of being attenuated on its way to the detector. Figure 2.9
shows the effect of AC for a cylinder with uniform radioactivity distribution,
where it can clearly be observed that the outer edges of the cylinder appears
to have a higher activity than the central portion. This demonstrates the need
for AC to obtain quantitatively accurate representations of the radioactive
distribution within the patient.

Figure 2.9: Effect of AC on a cylinder with uniform activity distribution [29, p. 57]

The matter enclosed by the detector’s FOV includes scanner hardware com-
ponents, e.g. table top, RF coils, positioning aids, etc., and patient tissues,
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which all need to be considered in the AC as they potentially can attenuate
photons.

2.2.5 The mathematics of attenuation correction

In computed tomography, the reconstruction problem is to obtain a tomographic
slice image from a set of projections. The projections are formed by drawing a
set of parallel rays through the 2-D object of interest for different angles between
the rays with respect to the object. The collection of all projections at several
angles creates the previously described sinogram and the implementation
of this is known as the Radon transform, which can be used to simulate a
tomography experiment. The interested reader is referred to [33] for a wealth
of information on the Radon transform.

To get a grasp on the problem of attenuation correction in PET we consider the
idealized, two-dimensional example as given by Berker and Li [34], following
their exact notation. Their problem formulation goes as follows: Consider two
positive, real functions representing spatial distributions of radioactivity con-
centrations (_, activity map) and linear attenuation coefficients (`, attenuation
map) where we wish to create a mapping _, `: R2 → R+0 , where R+0 denotes
the set of non negative real numbers. _, ` are assumed sufficiently smooth and
decaying towards 0 rapidly enough such that all following integral expressions
are well-defined. Lines in the plane are parameterized by polar coordinates,
(B, q) ∈ [R × [0, 2c)]. The distance to (0, 0) is given by B, and the angle with
the ~-axis is given by q . With ; a parameter along the line, we thus have, in
vector notation:

xB,\ (;) = Bû + ; n̂, (2.18)

where û = (cos(q), sin(q))) and n̂ = (− sin(q), cos(q))) are unit vectors.
Figure 2.10 illustrates a line ! indicated by its parameterization (B, q) and the
(B, ;) coordinate system, rotated by q with respect to (G,~).

Further, Berker and Li [34] states that in PET, we can describe measurements
without attenuation by the non-attenuated activity sinogram, ?, where ? :
R × [0, 2c) → R+0

? (B, q) = R(_(B, q)) :=
∫ ∞

−∞
d; xB,q (;), (2.19)
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Figure 2.10: Illustration of the parameterization to polar coordinates. [34]

where R(·) denotes the Radon transform.

In PET, the count of detected annihilation photons by each detector corresponds
to the measurement of the concentration of radiotracer along some part of
the line on which the detector lies. This amounts to knowing the value of the
Radon transform along a portion of that line [33, p. 35]. Since the photons
travels through some attenuating material, they lose energy. Because of this,
Berker and Li [34] calls the need of the attenuated activity sinogram,<, which
describes the measured data:

<(B, q) =
∫ ∞

−∞
d; xB,q (;) · 0(B, q, ;). (2.20)

Here, 0(B, q, ;) : R × [0, 2c) → (0, 1] denotes the attenuation factors. The
attenuation factors are independent of the position along the line ; . With help
of the Beer-Lambert law, the relation of 0 to the attenuation map is given
as:

0(B, ;, q) = 0(B, q) = exp[−
∫ ∞

−∞
dA ` (xB,q (A ))] . (2.21)

The fact the attenuation factors is independent of the position along the line
means that attenuation effects are constant along each LOR. Hence, 0 can
therefore be separated from the integrand, from which it follows that (2.20)
simply is the Radon transform of _ multiplied with 0, which in turn is given by
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the Radon transform of the attenuation map:

< = 0 · R(_) = exp[−R(`)] · R(_). (2.22)

This theory is the basis for the simulated tomography experiments conducted
in this thesis. Assuming that we have a ground truth PET image (_∗), or activity
map as Berker and Li [34] named it, and an attenuation map (`) available,
the data that are uncorrected for attenuation can be estimated. This is what
Berker and Li referred to as the attenuated activity sinogram, which describes
the measured data of the PET system.

To preform AC, hybrid imaging modalities such as combined PET and CT
(pet/ct) and PET/MRI creates an estimate ˆ̀ ≠ ` of the attenuation map by
the CT/MRI part of the system. For hybrid PET/CT systems, AC is obtained
by performing a low dose (80 − 140:4+ ) CT scan of the patient. This latter
approach is a transmission measurement, where the CT part acts as an external
radiation source. Because the photon-tissue interactions occurring in PET and
CT build on the same physical principles, the data obtained from the CT scan
can be converted to LACs at the 511 keV photon energy levels used for PET.
This usually provides a quite accurate geometric representation of the tissue
distribution as Hounsfield units (hu) [2]. The PET/MRI hybrid system cannot
measure LACs as the MR part does not give any information about the electron
density of the tissue, i.e. there are no one-to-one relationship between the
MR signal and the photon attenuation in tissue. Instead, MRI commonly use
AC maps based on a Dixon sequence to create an estimate of the distribution
of attenuating elements in the FOV. This approach is known as segmentation
based MRAC, and the idea behind it is to partition the image into a given
set of tissue classes and assign a pre-defined attenuation coefficient to the
tissue class each image voxel belongs to. The number of tissue classes varies
between PET/MRI manufacturers. The attenuation corrected image _ can thus
be obtained according to equation 2.24:

_ = '−1(0−1 ·<) = '−1(exp['( ˆ̀)] ·<) (2.23)
= '−1(exp['( ˆ̀)] · exp[−'(`)] · '(_)). (2.24)

2.3 Hybrid PET/MRI systems

Hybrid PET/MRI systems combine the physiological and molecular imaging ca-
pability of PET with the excellent anatomical imaging capability of MRI. Unlike
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PET/CT machines, PET/MRIs not only provides reduced ionizing radiation and
improved soft tissue contrast, but also a range of MR specific variations such as
functional MR, spectroscopic NMR and diffusion tensor imaging. The fusion of
the two image modalities has proven to be very challenging due to the mutual
detrimental effect on each other’s performance. The technical challenges and
design solutions of PET/MRI systems are beyond the scope of this thesis, but
more information on the issue can be found in [35]. Figure 2.11 shows the
system design of a hybrid PET/MRI scanner.

Figure 2.11: Illustration of a hybrid PET/MRI system [2, p. 244]

2.3.1 MRAC on the Siemens Biograph mMR

The following description of AC on the Siemens Biograph mMR, from which
patient image data is collected from in this thesis, is adopted from Catana [7]
where a description of the attenuation correction methods applied by the main
vendors of clinical PET/MRI-machines are given:

In the approach adopted for the Siemens Biograph mMR scanner (Siemens
Healthineers, Erlangen, Germany) the whole body is segmented into four tissue
classes (air, lung, fat and soft tissue) from the MR data collected using a two-
point Dixon volume interpolated breath-hold exam (VIBE) sequence. Only the
data from the thorax is acquired at breath hold, and in-phase, out-of-phase,
water and fat images are generated at each bed position. By applying threshold
operations to the fat and water images, voxels corresponding to fat and soft
tissue are obtained. Lung tissue is identified as regions of low signal, and
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the lungs are segmented by connected component analysis of the internal air
cavities. A morphological closing filter is applied to minimize misclassification
of bone, heart and aorta as air. The respective LACs for the different tissue types
are given in table 2.1. Ultimately, a 3-D Gaussian filter is applied to generate the
attenuation map that is combined with the hardware attenuation map during
reconstruction. [7]

From this, it becomes clear that in the presence of susceptibility artifacts,
regions of lowered signals in the MR-data may cause the threshold operations
to fail, and tissue misclassification occurs. When this occurs in tissue around the
lungs, e.g. in the liver, the connected component analysis may falsely identifies
these low intensity regions as lung tissue.

2.4 Image processing

This section describes the basic theory behind the image processing steps
conducted in chapter 3. Unless stated otherwise, the source of information is
the textbook "Digital Image Processing" [36]. The notation is, for the most part,
identical to the cited source.

2.4.1 Image segmentation

Thresholding

Due to its simple and intuitive properties, thresholding has a central position in
applications of image segmentation. In its simplest form, the method chooses
pixels in an image 5 (G,~) with and intensity greater than or less than some
fixed threshold constant ) . In this way, a segmented image 6(G,~) can be
created:

6(G,~) =
{
1 5 (G,~) > )
0 5 (G,~) ≤ ) .

(2.25)

Often thresholding problems are more difficult, involving a histogram with
several dominant modes corresponding to different objects. If we consider a
case with two lighter objects on a dark background, multiple thresholding can
classify a pixel as belonging to the background if 5 (G,~) ≤ )1, to one object
class if )1 < 5 (G,~) ≤ )2, and to the last object class if 5 (G,~) > )2. That is,
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the segmented image is given by:

6(G,~) =


0 5 (G,~) > )2
1 )1 < 5 (G,~) ≤ )2
2 5 (G,~) ≤ )1,

(2.26)

where 0, 1, 2 are three distinct label values. Figure 2.12 illustrates histograms for
which the describedmethods, i.e. single thresholding andmultiple thresholding,
may be applied.

Figure 2.12: Illustration of intensity histograms that can be partitioned by (left) single
threshold and (right) multiple thresholds.[36, p. 743]

Otsu’s method

In the view of statistical-decision theory, thresholding may be viewed as a
problem whose objective is to minimize the average error from assigning pixels
to two or more groups or classes. The Bayes decision function is an elegant and
well known closed-form solution to this problem. Otsu’s method is an attrac-
tive alternative to this, as it avoids the process of estimating any probability
density functions and can be implemented for real-time applications. Otsu’s
method is optimal in the sense that is maximizes the between-class variance, or
equivalently, minimizes the intra-class variance between two (or more) classes.
It is thus a one-dimensional discrete analog of Fisher’s Discriminant Analysis,
and equivalent to a globally optimal k-means [37]. In addition to its optimality,
an important property of Otsu’s method is that is is solely based on computa-
tions performed on the histogram of an image, which is easily obtained as a
1-dimensional array. The following description of the implementation of Otsu’s
method adopted from Gonzalez [36]:

Assume an image of size"×# is represented in! intensity levels, {0, 1, 2, ..., !−
1}. Let the number of pixels at intensity level 8 be denoted by =8 , and the total
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number of pixels in the image be"# = =0 +=1 + ... +=!−1. The probability of
intensity level 8, ?8 = =8/"# , from which it follows that:

!−1∑
8=0

?8 = 1, ?8 ≥ 1. (2.27)

For the two class case, a threshold, ) (:) is selected such that the pixels of
the image are divided into two classes,�1,�2, with intensity levels [0, :], [: +
1, ! − 1], respectively.

Using the threshold, the respective probability distributions for the two classes
�1,�2 are:

%1(:) =
:∑
8=0

?8 (2.28)

%2(:) =
!−1∑
8=:+1

?8 = 1 − %1(:) . (2.29)

The respective means of classes �1,�2 are:

<1(:) =
1

%1(:)

:∑
8=0

8?8 (2.30)

<2(:) =
1

%2(:)

!−1∑
8=:+1

8?8 (2.31)

and the global mean of intensity levels,<� = %1<1 + %2<2.

The effectiveness of the threshold at level : can be evaluated by the normalized
dimensionless measure:

[ (:) =
f2
�
(:)
f2
�

, (2.32)
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where f2
�
is the global variance, given by:

f2
� =

!−1∑
8=0

(8 −<� )2?8, (2.33)

and f2
�
(:) is the between-class variance, given by:

f2
� = %1(:) (<1(:) −<� )2 + %2(:) (<2(:) −<� )2. (2.34)

The optimal threshold is the value of : that maximizes equation (2.32), and
thus maximizes the between-class variance [36].

Region growing

As the name implies, region growing is a region-based segmentation method
that groups pixels into regions based on predefined criteria for growth. Com-
monly, we start with a set of "seed" points from which regions are grown by
appending to each seed those neighboring pixels that have similar properties
to the seed. The similarity measure can be e.g. ranges of intensity or color. The
formulation of a stopping rule is just as important as the criteria for growth
when it comes to performance of region growing algorithms. The growth should
stop when no more pixels satisfy the criteria for inclusion in that region, but
criteria such as intensity values, color and texture only consider local conditions
and do not take into account the "history" of the growth. The performance
of region growing algorithms can be greatly improved by additional criteria
that utilize the concepts of size, region statistics or shape, but these types of
descriptors are based on the assumption that an a priori model of expected
results is (partially) available. [36]

2.5 Statistical analysis

This section explains the relevant theory for the statistical analysis utilized in
this thesis. The source of information is the textbook "Introduction to Statistics
and Data Analysis" [38].
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2.5.1 Linear regression

Regression analysis is in many fields one of the most widely used techniques of
quantitative research. In any area of research where one is interested in study-
ing the relationship between a variable of interest, called the response variable,
and a set of explanatory variables, regression analysis can be utilized.

In linear regression models, one aims to find a linear relationship between the
response variable, ~, and the explanatory variable G from a set of observations
(G8, ~8). Thus, a linear function is created: ~ = 0G + 1. Here, 1 represents the
intercept of the line with the ~-axis, and 0 represents the slope of the line.
However, as each observation potentially deviates by 48 from the line given
by the function, the linear model can be written as follows to take this into
account: ~8 = 0G8 + 1 + 48 . Each deviation 48 is called an error, and represents
the deviation of the observations from the regression line.

Suppose we are given a data set of = observations (G8, ~8). By the method of
least squares, one can determine 0 and 1 such that the sum of the squared
distances between the observations and the line ~ = 0G + 1 is minimized. We
thus fit a line to the data set such that the errors are minimized:

min
0,1

=∑
8=1

428 = min
0,1

=∑
8=1

(~8 − 0G8 − 1)2. (2.35)

This in an optimization problem that can be solved by the principle of minima
to obtain the estimates of 0 and 1, denoted 0̂ and 1̂ respectively.

By comparing an observation (G8, ~8) with the point predicted by the regression
line (G8, ~̂8), their difference is called the residual, and is given by: 4̂8 = ~8 −~̂8 =
~8 − (0̂G + 1̂). The residuals are not the 48s themselves, but an estimate.

A quantitative measure of the "goodness" of fit for a regression model is given
by the '2 value. This value indicates how much variation of a response variable
is explained by the explanatory variable(s). It can be derived by variance
decomposition of the data, where the total variation of ~ is partitioned into
two components: sum of squares due to the fitted model and sum of squares
due to random errors in the data, from which we get the formula:

'2 = 1 − Unexplained variation
Total variation

(2.36)
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From this, it follows that 0 ≤ '2 ≤ 1, and the closer '2 is to 1, the better the
fit. An '2 of 1 means that all variation in the response variable is completely
explained by movements in the explanatory variable(s).

The residual standard error, also known as the rootmean squared error (rmse),
is also a useful measure of describing the fit of a model. It is defined as the
square root of the variance of the residuals, i.e. the standard deviation of the
residuals. The RMSE is an absolute measure of fit, in contrast to '2 which
is a relative measure of fit. It also has the useful property of being in the
same units as the response variable, and tells how wrong the regression model
is on average. A small RMSE value indicates a better fit, because it means
observations are closer to the fitted line.





3
Materials and methods
In this chapter, the steps taken in order to study the effect of susceptibility
artifacts on adjacent tumors is presented in detail (section 3.1). The focus is on
susceptibility artifacts leading to the false assignment of lung tissue attenuation
values to liver tissue. A method for correcting voxels in the attenuation map that
has been falsely assigned the attenuation value of lung tissue is also proposed
(section 3.2).

3.1 Artifact impact on adjacent tumors

Observer interest in the segmentedMRAC images is not in the display of images,
but instead in their application to AC. In the quantitative evaluation of errors in
such images,we need to look at how the errors showup in the reconstructed PET
images. The method chosen in this thesis is inspired by the work of Hofmann et
al. [24]. In their study, differences in reconstructed 2-D PET-image slices were
compared for attenuation maps from a CT transmission scan to those from
predicted pseudo-CT images. Here, 2-D PET image slices are reconstructed,
but for attenuation maps with and without simulated susceptibility artifacts.
Simulated PET avid tumors at varying distances from the artifact are inserted
into, what is assumed to be, ground truth PET images. To assess the errors, the
relative change in activity of the simulated tumors is calculated from the PET
images reconstructed with attenuation maps with and without artifacts.

33
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Below follows a description of how emission data and attenuation maps were
acquired, allowing to run simulated tomography experiments from 2-D image
slices of a digital phantom and realistic patient dataset. After that, descriptions
of how the digital phantomwas created and how simulated tumors and artifacts
were inserted into the patient dataset are given. All relevant Python code that
was implemented can be found in the appendix (A.2).

3.1.1 Acquiring emission data and attenuation maps for
reconstruction

As a starting point for the study, 2-D ground truth PET images (_∗) and at-
tenuation maps (`) are assumed available. In order to study how errors in
attenuation maps with artifacts (`0AC ) propagated to the reconstructed PET
image (_), the attenuated activity sinogram (<) had to be obtained from _∗

and `. This was done according to formula (2.22), i.e.:

< = exp[−R(`)] · R(_∗).

In this way, emission data similar to the form that the PET-scanner measures
it was obtained. It would be better if raw sinogram data could be obtained
directly from the PET/MRI-machine, but this dataset could not be accessed
due to problems with handling the (binary) format of these files. The Radon
transformwas implemented using the transformmodule of the scikit-image [39]
Python library. The number of projections was chosen to be 256 between angles
0◦ to 180◦, equivalent to having 256 detector pairs. The Siemens BiographmMR
consists of a PET detector with 8 rings and 56 detector blocks in each ring.
This yields a total of 224 detector pairs in the axial FOV of 25.8 cm [40] that
potentially can measure a coincidence from an image slice within the axial FOV
of the scanner. As the Radon transform is a computationally heavy operation,
a large number of projection angles would cause the simulated tomography
experiment to run slowly. Therefore, the number of projection angles were
chosen based on a trade-off between time and resolution.

In attenuation maps, LACs are typically given in units cm−1, or some scaled
version of this. Therefore, these had to be converted to unit pixel−1 to be
valid for reconstruction. From the spatial pixel spacing of the images, of unit
[mm/pixel], a simple conversion factor (CF) was obtained:

CF [cm/pixel] =
pixel spacing [mm/pixel]

10 [mm/cm]
. (3.1)
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The attenuation maps were multiplied with the conversion factor prior to
performing the Radon transform.

Because the reconstruction method is not perfect,< was reconstructed with
both ` and `0AC to neglect any errors introduced by the reconstruction algorithm.
The respective reconstructed PET images _, _0AC were obtained as:

_ = Rec(< · exp[R(`)]) (3.2)
= Rec(exp[−R(`)] · R(_∗) · exp[R(`)]) (3.3)
= Rec(R(_∗) · exp[R(`) − R(`)]) (3.4)
= Rec(R(_∗)) (3.5)

and

_0AC = Rec(< · exp[R(`0AC )]) (3.6)
= Rec(exp[−R(`)] · R(_∗) · exp[R(`0AC )]) (3.7)
= Rec(R(_∗) · exp[R(`0AC ) − R(`)]). (3.8)

Rec(·) denotes the reconstructionmethodwhich in this thesis was implemented
using the OSEM algorithm from the Tomopy library in Python [41]. Differences
in _0AC and _ are dependent on the exact used reconstruction method. However,
the focus in this thesis was not to compare different reconstructionmethods. For
the simulated PET images, 2-D slices were reconstructed with OSEM, neglecting
normalization, scatter and random coincidences to isolate the bias on activity
due to artifacts in the attenuation maps only. The hyperparameters of the OSEM
algorithm, i.e. the number of iterations (#� ) and number of subsets (#(), were
chosen by searching for the combination of #�, #( that gave the reconstructed
image most similar to the ground truth image when reconstructed with the
attenuation map without artifacts:

min
#�,#(

|_ − _∗ |. (3.9)

It was found that #� = 12 and #( = 1 gave the best result.

As the change in activity of a simulated tumor was of interest, the tumor was
for each reconstruction defined as a volume of interest (voi), and the mean
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relative error (re) was calculated according to equation (3.10):

'� [%] =
mean[_+$�0AC ] −mean[_+$� ]

mean[_+$� ]
· 100%, (3.10)

where _+$�0AC , _
+$� denotes the VOI, being the tumor, on the PET-images recon-

structed with ` and `0AC , respectively.

3.1.2 Creation of a digital phantom

Phantom experiments are widely used in the field of medical imaging to
evaluate and analyze the performance of imaging modalities. To the best
of this author’s knowledge, a PET/MRI phantom where one can insert, and
vary the placement of, volumes of high activity does not exist. Performing
measurements on physical phantoms can also be a time consuming task which
exposes the persons performing the experiment to unnecessary amounts of
ionizing radiation. Instead of making an attempt of building such a phantom,
for this thesis, a digital phantomwas programmed using Python 3.9. The digital
phantom was designed to operate in 3-D, but only the 2-D slice of maximal
radii of the simulated tumors and artifacts was chosen for reconstruction due
to limited computational resources. This means the artifact and tumor volumes
are given in 2-D area. Figure 3.1 shows a 2-D slice of the digital phantom. A
description of how the digital phantom was created follows below.

Figure 3.1: Illustration of 2-D slice for _∗, ` and `0AC for the digital phantom. TBR = 4.

For reconstructions, ground truth activity maps (_∗) and attenuation maps
(`, `0AC ) were needed. These were created as separate 3-D image volumes of
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dimensions 150 × 150 × 150. As the digital phantom was designed to mimic a
sphere of water-like soft tissue, spheres containing the information on activity
and attenuation were inserted into the image volumes. These were of diameter
148, which left one row/column in the edges of the 3-D image volumes empty.
This was a requirement for the Radon transform algorithm.

Because positron emission itself is well characterized by the Poisson distribution
[42, 43,44], the spherical volume in _∗was filledwith background activity values
drawn from a Poisson distribution. Smaller, spherical high activity regions,
mimicking PET avid tumors, could then be placed at any location within the
image volume (figure 3.1). For ` and `0AC , the attenuation value of soft tissue
was assigned to all voxels within the spherical volume. For voxels outside, the
attenuation values were set to 0, representing air. To simulate artifacts in `0AC ,
smaller, spherical volumes was inserted where the attenuation value of lung
tissue replaced that of soft tissue. The phantom was created with an isotropic
voxel spacing of 2 × 2 × 2 mm/voxel, yielding a physical diameter of 29.6
cm to the overall phantom. A conversion factor as described in equation (3.1)
was calculated and multiplied with the attenuation maps to obtain the correct
attenuation value for each voxel.

3.1.3 Setups of the digital phantom

Individual reconstructions were run for several different setups of the digital
phantom, where tumor diameter, artifact diameter and the distance between
the center points of the tumor and artifact was varied. The range tumor di-
ameters were 1.0, 1.2, 1.6, 2.0 cm, all relevant tumor sizes for primary tumor
characteristics according to the TNM cancer grading system [45]. To obtain
more statistics and to investigate the effect of tumor activity on the quantifi-
cation error in the presence of artifacts, several tumor-to-background ratios
(tbrs) were investigated. The TBRs were selected to 1.5, 2, 4, 8. The artifact
diameters were selected to 1.0, 2.0, 4.0, 8.0, 12.0 cm. 12 cm was chosen as the
maximal artifact diameter, because it is comparable to the mean liver size of
men, at 10.5 cm [46]. A liver span up to 2 cm larger is also considered normal
[46]. The tumor distances to the artifacts was in the range of 1.2 to 21 cm be-
tween their center points. As the interest was on how errors propagated outside
the artifact, all cases where a tumor and artifact overlapped were removed. The
cases where any point in a tumor exceeded the dimensions of the image were
also removed. Reconstructions were done for all combinations of TBRs, tumor
diameters and artifact diameters for all valid distances. The purpose of the
digital phantom experiment was not to obtain any realistic quantification, but
to see how the different factors influenced the error on adjacent tumors.

In figure 3.1, the phantom setup for tumor diameter of 1.6 cm, artifact diameter
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of 8 cm and a distance of 8 cm between their center points is illustrated for
TBR equal to 4. The setup in figure 3.1 was used for studying the effect of tumor
activity on the error. To evaluate this effect, contour plots of the relative error
in the whole reconstructed images were created:

Relative error contour plot =
_0AC − _

_
. (3.11)

To validate the assumption that the quantification error of an adjacent tumor
depends on the information on common LORs with the artifact, a noise-free
phantom reconstruction was also run. The setup for the reconstruction can be
seen in figure 3.2.

Figure 3.2: Noise free phantom setup.

3.1.4 Simulating tumors and artifacts in a patient dataset

To see if the discoveries made in the digital phantom experiment could be
transferred to a realistic situation, a dataset from a patient who underwent
a whole body 18F-FDG PET/MRI examination on the Siemens Biograph mMR
PET/MRI-machine at the University Hospital of Northern Norway (UNN) was
collected (appendix A.1). Because misclassification of liver tissue as lung tissue
occurs when the MR signal from liver tissue is too low to be distinguished from
the nearby lung tissue, a 2-D axial slice where both the liver and lung were
visible was selected for analysis. The original activity map and attenuation map
of the selected slice is seen in fig 3.3.

The size of the axial PET image slice was 344 × 344, with a pixel spacing of
2.08262×2.08262mm/pixel. The size of the axial image slice of the attenuation
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Figure 3.3: Figure of the activitymap (left) and attenuationmap (right) of the selected
slice from patient for analysis.

map was 287 × 412, with a similar pixel spacing as that of the PET image. To
be able to reconstruct the PET image with the attenuation map, these had to be
of similar sizes. Therefore the attenuation map was registered and resampled
to match the PET image, i.e. 344 × 344. This was done using the Resample
image module in 3D Slicer [47, 48]. To avoid introducing any new information
in the resampled attenuation map, the interpolation method was chosen to be
nearest neighbor. The resampled image slice of the reference attenuation map
(`) is shown to the right in figure 3.3.

To create `0AC , circular artifacts of different diameters with lung-equivalent den-
sity were inserted into `. This was done manually with use of the pyplot.ginput
function of thematplotlib [49] Python library. The artifact diameters used were
1.0, 2.1, 4.2, 8.3 cm. Larger artifact diameters than these were not included
because we wanted the artifacts to be contained within the liver. From the
Dicom metadata of the patient PET images, it was found that the PET-images
had been smoothed with a Gaussian filter of 3 mm full width at half maximum
(fwhm). Therefore, after multiplying with the conversion factor as described
in equation 3.1, the attenuation maps were also convolved with a 3mm FWHM
Gaussian kernel prior to reconstruction. This was done with the filters module
of the skimage Python library. To create the ground truth PET-images (_∗),
simulated tumors of 1.67 cm was placed on the PET image slice in fig 3.3. Each
tumor was placed within the patients liver, as this was a region that showed ho-
mogeneous uptake. Again, this was done with use of the pyplot.ginput function
of the matplotlib [49] Python library. This allowed to run individual simulated
tomography experiments and reconstruct PET-images with tumors at different
distances from an artifact (section 3.1).
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With the assumption that the information, i.e. activity and attenuation, along
common LORs of a tumor and an artifact was crucial for the magnitude of the
quantification error, two situations were considered. In the first, for each artifact
size, a tumor was placed at 10 different distances along a line from the artifact.
Individual reconstructions were run for each tumor-artifact distance. For each
reconstruction, the tumor thus had similar information along its common LORs
with the artifact. Figures 3.4 and 3.5 show the tumor’s locations (blue points)
and the center point of the artifact (orange points) for artifact diameters of 1.0
cm and 8.3 cm, respectively.

Figure 3.4: Illustration of placement of tumors and artifact where the artifact diameter
is 1.0 cm. Tumors placed along a line.

Figure 3.5: Illustration of placement of tumors and artifact where the artifact diameter
is 8.3 cm.

Next, individual reconstructions were run for the tumor placed at 10 random
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locations around the artifact. Thus, for each tumor-artifact distance, the tumors
common LOR information with the artifact was randomized. This was done
for the same artifact diameters as before, i.e. 1.0, 2.1, 4.2, 8.3 cm. The tumor
locations for artifact diameter of 8.3 cm is illustrated in figure 3.6.

Figure 3.6: Illustration of placement of tumors and artifact where tumors have been
randomly placed.

Because no patient information was available, e.g. weight, no SUV calculations
could be done. Therefore, the TBR was used to decide the activity in the
simulated tumors. Kim et al. [50] found that malignant nodules showed a SUV
ratio versus liver of 2.09± 0.96. To obtain sufficient statistics, the liver activity
of the patient was found by calculating the mean activity in 10 spherical vois of
2 cm inside the liver. The average uptake of these were found to be 2042 Bq/ml.
The activity of the simulated tumors was therefore set to be 4000 Bq/ml, giving
a TBR of 1.96.

As all changes in the attenuation map will lead to changes in the reconstructed
image, we also looked at which of our artifact sizes that introduced what can
be considered a relevant difference. Because the mean activity in VOIs was
compared (equation 3.10), a difference was considered relevant if it was larger
than the variation in the mean activity in VOIs of the same size in a region
of homogeneous activity distribution. To determine this variation, the mean
value of the VOIs used for determining the activity of the inserted tumors was
calculated:

0E6 =

∑10
:=1+$�:

10
. (3.12)
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The level of significance (ΔB86) was then set to the standard deviation of the
means of the VOIs:

ΔB86 =

√∑10
:=1 (+$�:−0E6)2

9

0E6
· 100% (3.13)

3.2 Correction method for lung-liver
misclassifications

In the reported cases [10, 11, 12] where iron overload has shown to cause
misclassification of liver tissue as lung tissue, the opposed-phase image from
the T1-weighted Dixon MR sequence revealed normal moderate MR signal
intensity. The corresponding in-phase image has demonstrated signal loss due
to susceptibility artifact from excessive iron accumulation in the liver. This
motivated using the opposed-phase image as an "atlas" to correct the wrongly
assigned voxels. By doing so, the common problems of atlas/template-based
correction methods, such as image registration problems and the need for
large patient databases, are effectively eliminated. It also guarantees perfect
anatomical match of the data used for correction with the attenuation map
itself.

As no realistic patient data where this artifact is present could be obtained
from the PET/MRI scanner in Tromsø, it was synthetically introduced into
the data from the same patient as used for the previous study. A combination
of thresholding and region growing was applied to the Dixon water image to
segment the liver, and create a boolean liver mask. The water image was chosen
because the liver showed most contrast to the surrounding tissue/organs there.
The segmentation was done using the Segment editor module of 3D Slicer [47,
48]. A number of seed points for region growingwere placed inside the liver, and
the was growing stoppedwhen it reached background voxels, i.e. voxels outside
the liver. The background was found by using global thresholding. Figure 3.7
shows the workspace in 3D Slicer where the liver have been segmented from
the Dixon water image.

The full 3-D datasets of the water and opposed-phase Dixon images, in the
vertical, horizontal and axial directions, were of sizes 240 × 412 × 157, while
the attenuation map was of size 287 × 412 × 157. Therefore, the water and
opposed-phase images were registered to the attenuation map and resampled
to obtain similar sizes of the datasets, again using the Resample Imagemodule of
3D Slicer [47, 48] with nearest neighbor interpolation. The (3-D) attenuation
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Figure 3.7: The workspace in 3D Slicer showing the segmentation of the liver. The
top image shows the whole 3D segmentation and the bottom row an axial
(left), coronal (middle) and saggital (right) slice.

map, opposed-phase image and liver segmentation mask were exported as
Dicom image files from 3D Slicer for further prosessing in Python, where the
correction algorithm was implemented.

3.2.1 Correction algorithm

To introduce the artifact where the full liver had been wrongly assigned the
attenuation value of lung-tissue, the 3-D boolean liver mask was used to change
all values in the attenuation map where the mask had value 1. Figure 3.8 shows
a coronal slice of the original attenuation map, and the same slice where the
artifact has been introduced.

To correct the image, first, a 3-D correction mask was obtained, i.e. all voxels in
the attenuation map that have the attenuation value of lung tissue. Using this
correction mask, the corresponding voxels in the 3-D opposed-phase image was
extracted. By use of the skimage [39] Python library, Otsu’s method was applied
on the histogram of their intensity values. From this, a threshold to separate
soft tissue voxels from lung tissue was obtained. All voxels that were included
in the mask, and had a value greater than the obtained threshold,were assigned
soft tissue attenuation value in the attenuation map. The implementation of
the suggested correction method is given as Python code in the appendix
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Figure 3.8: Coronal slice of original attenuation map (left) and the same slice where
the artifact has been introduced (right).

(A.3).

As data from only one patient was available, this dataset was modified in order
to test the method for varying liver signal intensities in the opposed-phase
image. To achieve this, the liver mask was used to reduce the intensity value of
liver voxels in the opposed-phase image. This was done simply by multiplying
all voxels in the opposed-phase image, contained in the mask, by a reduction
factor < 1. Figure 3.9 shows examples of a coronal slice with different liver
signal intensities.
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(a) Normal liver signal. (b) Liver signal reduced 20%.

(c) Liver signal reduced 40%. (d) Liver signal reduced 60%.

Figure 3.9: Illustration of opposed-phased imageswith different liver signal intensities.





4
Results
This chapter contains the results from the studies described in chapter 3. The
chapter is split into two sections; the first, section 4.1, presents the results
from the study on misclassifications in segmented MRAC images. The second,
section 4.2, shows the performance of the proposed correction method for
misclassification of liver tissue as lung tissue.

4.1 Artifact impact on adjacent tumors

Here, the results obtained from the experimental method described in section
3.1 are given. First, the findings of the effect of tumor-artifact distance are
presented. Thereafter, the effect of tumor activity is illustrated. All linear
regression analysis preformed to obtain the results has been done with use of
the statsmodels [51] Python module.

4.1.1 Effect of tumor distance to artifacts in segmented
MRAC images

Reconstructions on the digital phantom

The purpose of the digital phantom experiment was not to obtain any quantita-
tively valid results, but rather to investigate the effect of susceptibility artifacts

47
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on adjacent tumors in a controlled manner, such that any observations made
in a realistic case could be explained or supported. As explained in section
4.1, several phantom setups were created. Individual reconstructions were pre-
formed for each setup, where tumor diameters, artifact diameters, TBRs and
the distance (3) between the center points of each tumor and artifact was
varied. From the reconstructed images, _, _0AC , the '� (equation 3.10) of the
tumors was calculated. The goal of this was to observe any dependency of the
'� on 3. The '� was expected to have a linear dependency on the volume
of an artifact (+ ) [18]. Therefore, in each plot, data points are grouped with
respect to the artifact diameters.

Figure 4.1: '� vs. 3 for the digital phantom experiment.

From the plot of '� versus 3 (figure 4.1), a clear inverse trend can be observed.
Because 3 gives the distance between the center points of the artifact and
tumors, data points from reconstructions with larger artifact diameters are
shifted to the right.

To test the hypothesis that the '� would show a proportionality with 1/32, the
data shown in figure 4.1 was linearized, and an individual regression analysis
was preformed for data points obtained from reconstructions with the different
artifact diameters. This was done in order to obtain the values for '2 and
'"(�, describing the fit of the data to the regression lines. As can be observed
in figure 4.2, the regression lines all show a good fit to the data, proven by the
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high '2 values in table 4.1. The '"(�s, describing the standard error of the
regression lines, increases with the artifact diameters, meaning the data points
are more spread around the regression line for larger artifact diameters. This
increased spread of data points is better visible in figure 4.1.

Figure 4.2: '� vs. 3−2 for the digital phantom experiment.

Table 4.1: Parameters measuring the goodness of fit for regression lines in figure 4.2.

Artifact diameter [cm] '2 '"(� [%]
1.0 0.9482 0.3
2.0 0.9606 0.7
4.0 0.9635 1.4
8.0 0.9640 2.3
12.0 0.9502 3.2
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Because the '� was expected to have a linear relationship with + [18] and
showed a proportionality with 1/32, a regression analysis was also preformed
on the dataset in figure 4.1 with the ratio + /32 as explanatory variable. The
purpose of this was to see if we could obtain a linear equation describing the
'� using only + and 3: '� = 0 + /32 + 1. The results from this analysis is
visualized in figure 4.3, where data points are plotted, grouped as before, with
the regression line. The values describing the fit of the model are '2 = 0.9461
and '"(� = 2.5%.

Figure 4.3: '� vs. + /32 for the digital phantom experiment.
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Reconstructions on the patient dataset

A similar analysis as that done on the digital phantom data was also conducted
for the patient dataset, where simulated tumors and artifacts had been intro-
duced (section 3.1.4). This was to investigate if the findings from the digital
phantom in the previous section would also be valid for a real patient with
a realistic activity distribution, i.e. where the activity distribution was less
homogeneous.

Because the information along common LORs of an artifact and a tumor was
assumed to have a significant impact on the '�, two situations were considered.
In the first, individual reconstructions were run for a tumor placed at different
distances from the artifact along a line. For each reconstruction, the tumor
thus had similar information along the common LORs with the artifact. In the
second, the tumors common LOR information with the artifact was randomized
by randomly placing it around the artifact location. In figures from this analysis,
we have also included a black dashed line which indicates the relevant error
(ΔB86) computed from equation (3.13). The relevant error was found to be
ΔB86 = −5.7%. Data points below this line have errors that can be considered
relevant.

Figure 4.4: '� vs. 3 for the patient dataset. Tumor placed along line.
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Table 4.2: Tabulated values of '� [%] observed in figure 4.4. Any '� ≤ ΔB86 is marked
with an asterisk.

Artifact
diameter 1.0 cm 2.1 cm 4.2 cm 8.3 cm

'� 3 '� 3 '� 3 '� 3

-2.5 1.9 -13.1* 1.9 -38.3* 2.6 -29.3* 5.4
-1.1 2.9 -3.7 3.0 -12.4* 3.7 -18.3* 6.2
-0.6 3.8 -1.8 4.1 -7.2* 4.8 -14.8* 7.1
-0.3 4.8 -1.1 5.3 -4.7 5.6 -12.1* 8.0
-0.2 5.8 -1.8 6.4 -3.8 6.9 -10.1* 8.8
-0.2 6.7 -0.6 7.5 -2.8 8.0 -9.2* 9.7
-0.1 7.7 -0.5 8.6 -2.4 9.1 -8.7* 10.6
-0.1 8.6 -0.4 9.7 -2.0 10.2 -7.6* 11.4
-0.1 9.6 -0.2 10.8 -1.4 11.3 -6.8* 12.3
-0.0 10.5 -0.1 11.9 -1.2 12.3 -5.9* 13.2

As can be observed in figure 4.4, when common LOR information is considered
the '�s show the same inverse trend with 3 as we saw for the digital phantom
experiment (figure 4.1). The '�s in figure 4.4 are also given in tabulated value
(4.2).

Figure 4.5: '� vs. 3−2 for the patient dataset. Tumor placed along line.
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The analysis performed on the linearized data of figure 4.4 show that the
regression lines have a good fit to the data (figure 4.5), proven by the high
'2 in table 4.3. Here, the '"(� does not strictly increase with the artifact
diameter.

Table 4.3: Parameters measuring the goodness of fit for regression lines in figure 4.5.

Artifact diameter [cm] '2 '"(� [%]
1.0 0.9986 0.0
2.1 0.9855 0.5
4.2 0.9665 0.2
8.3 0.9709 1.2

The regression analysis performed on the data with + /32 as explanatory
variable also show a good fit to the obtained regression line, with '2 = 0.9636
and '"(� = 1.5% (figure 4.6)

Figure 4.6: '� vs. + /32 for the patient dataset. Tumor placed along line.

For the situation when the tumor were randomly placed around the location
of the artifacts, the analysis was less conclusive.
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Figure 4.7 shows the'� versus3 for this situation. The tabulated values of figure
4.7 are also given (table 4.4). Interestingly, several tumors are not assigned
relevant errors at distances which they were in the prior situation.

Figure 4.7: '� vs. 3 for the patient dataset. Random placement of tumors.

Table 4.4: Tabulated values of '�s observed in figure 4.7. Any '� ≤ ΔB86 is marked
with an asterisk.

Artifact
diameter 1.0 cm 2.1 cm 4.2 cm 8.3 cm

'� 3 '� 3 '� 3 '� 3

-0.4 1.9 -3.5 3.1 -8.3* 4.4 -19.3* 5.8
-2.4 2.0 -0.9 4.7 -5.7* 4.5 -2.1 5.9
-1.3 2.8 -0.1 5.1 -0.9 5.1 -19.1* 6.1
-0.2 3.0 -0.4 6.4 1.7 5.2 -0.3 6.2
-0.3 3.1 -0.1 6.6 -0.9 6.0 2.4 8.2
-0.3 4.0 -0.1 7.8 -2.9 8.1 -9.9* 8.4
-0.4 4.9 -0.1 8.5 1.2 8.4 -0.9 8.5
-0.2 5.0 -0.0 9.5 -2.0 9.9 -1.9 10.5
-0.1 5.1 -0.0 11.1 -0.1 10.9 -8.3* 10.6
-0.1 6.3 -0.0 11.4 -1.5 13.0 -3.3 13.0
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The inverse trend observed previously (figure 4.5) is no longer present. This
results in a bad fit of the regression lines (figure 4.8) to the data, indicated by
the low '2 values and higher '"(� in table 4.5.

Figure 4.8: '� vs. 3−2 for the patient dataset. Random placement of tumors.

Table 4.5: Parameters measuring the goodness of fit for regression lines in figure 4.8.

Artifact diameter [cm] '2 '"(�

1.0 0.4089 0.6
2.1 0.5235 0.8
4.2 0.3111 2.34
8.3 0.1797 2.40

Naturally, the regression line with + /32 as explanatory variable also show a
bad fit to the data. Figure 4.9 shows the regression line, with '2 = 0.4098 and
'"(� = 3.6%.
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Figure 4.9: '� vs. + /32 for the patient dataset. Random placement of tumors.
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4.1.2 Effect of tumor activity

To study the effect of tumor activity in the presence of artifacts, reconstructions
were run for the phantom setup as shown in figure 3.1, but with differing
TBRs. Results are here presented as contour plots of the relative error from the
reconstructed activity images according to equation (3.11).

For the reconstruction of the noise free phantom setup, the contour plot of
the relative error is overlayed on _∗, containing the simulated tumor, and `0AC ,
containing the artifact (figure 4.10). This indeed shows that underestimation of
activity, indicated by dark blue areas, occurs on the common LORs. Interestingly,
the underestimation of the attenuation values also lead to a strong positive
bias in the vertical direction around the tumor.

Figure 4.10: Contour plot of the relative error overlayed on _∗ (left) and `0AC (right)

When background noise is present, the contour plots of the relative error show
underestimation around the artifact location (figures 4.11 to 4.14). An important
observation to be made is that, for increasing TBR, the error propagates further
in the direction of the simulated tumor, i.e. in directions of higher activity.

For the following figures (4.11 to 4.14), subfigures (a) show the reconstructions
with ` and `0AC , denoted _, _0AC . Subfigures (b) show the contour plot of the
relative error between _, _0AC .
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(a) Reconstructions with ` (left) and `0AC (right)

(b) Contour plot of the relative error of reconstructions in figure 4.11a

Figure 4.11: Illustration of the error of phantom reconstructions with TBR=1.5
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(a) Reconstructions with ` (left) and `0AC (right)

(b) Contour plot of the relative error of reconstructions in figure 4.12a

Figure 4.12: Illustration of the error of phantom reconstructions with TBR=2
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(a) Reconstructions with ` (left) and `0AC (right)

(b) Contour plot of the relative error of reconstructions in figure 4.13a

Figure 4.13: Illustration of the error of phantom reconstructions with TBR=4
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(a) Reconstructions with ` (left) and `0AC (right)

(b) Contour plot of the relative error of reconstructions in figure 4.14a

Figure 4.14: Illustration of the error of phantom reconstructions with TBR=8
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4.2 Performance of correction method

Here, the performance of the proposed method for correcting voxels that
wrongly has been assigned the attenuation value of lung tissue (section 3.2.1)
is presented. The artifact was synthetically introduced into the 3-D attenuation
map of the patient data we used for the previous study, as illustrated in figure
3.8.

From the 3-D attenuation map containing the artifact, we extracted a 3-D
boolean mask of all voxels that had been assigned the attenuation value of
lung tissue. With this mask, histograms of the intensity values of voxels in
the corresponding 3-D opposed-phase Dixon image were created. Figure 4.15
shows the histograms obtained from opposed-phase images with different liver
signal intensities, as illustrated in figure 3.9. We observe two distinct classes on
each of these histograms, and the threshold obtained from performing Otsu’s
method. This shows that a valid threshold can be obtained, even for lowered
liver signal intensities on the opposed-phase images, allowing us to separate
liver tissue from lung tissue.

(a) Normal signal intensity (b) Liver signal reduced 20%

(c) Liver signal reduced 40% (d) Liver signal reduced 60%

Figure 4.15: Histograms for intensity values of voxels.

By inspection of the histograms in figure 4.15, we observe two distinct classes.
The class corresponding to lung voxels is in the lower intensity range, and the
class corresponding to soft/liver tissue is in a higher intensity range. As the
signal intensity in the liver decreases, naturally, the threshold obtained from
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Otsu’s method decreases.

To evaluate the performance of the correction method, the percentage of cor-
rectly changed liver voxels in the attenuation map with artifact was computed.
The percentage of lung voxels that were incorrectly changed was also included
(table 4.6). The performance was assessed for several different liver signal
intensities on the opposed-phase image.

Table 4.6: Performance of correction method for different liver signal intensities in
the opposed-phase images.

Liver signal Liver[%] Lung[%]

100% 96 0
90% 96 0
80% 96 0
70% 96 0
60% 96 0
50% 96 1
40% 95 1
30% 94 3
20% 93 10
10% 75 31

To visually illustrate the performance on the attenuation map, figure 4.16
shows the result of the correction algorithm for the same coronal slice as in
figure 3.8. This illustration is created with normal liver signal intensity on the
opposed-phase image. Small areas at the lower border of the liver and the
adjoining tissue can be seen where the algorithm has not been able to correct
the attenuation values.



64 chapter 4 results

Figure 4.16: Performance of correction method illustrated for the same coronal slice
as in figure 3.8.
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Discussion
Here, we will discuss the results presented in chapter 4, starting with the
findings on the impact of susceptibility artifacts on adjacent tumors. Thereafter,
the proposed correction method will be evaluated.

5.1 Misclassifications in segmented MRAC

The results showed that relevant errors ('� ≤ ΔB86 = −5.7%) can be introduced
to tumors adjacent to the artifacts, even if only a part of the liver is misclassified.
In general, artifacts of diameter 1 cm did not show relevant errors at any
tumor-artifact distance, 3, (tables 4.2 and 4.4), but for larger artifact diameters,
correction methods are needed. However, the 3 at which an artifact of a given
diameter caused '� ≤ ΔB86 varied, even for similar tumor-artifact distances, 3.
This is particularly interesting, and may be explained by the effect of common
LOR information.

By considering the setups of artifact diameter 8.3 cm (figures 3.5 and 3.6), i.e.
when common LOR information of each tumorwas similar and randomwith the
artifact, an interesting observation can bemade. In the first case (figure 3.5), the
tumors will, in general, have much activity and attenuating material along the
common LORs with the artifact. This is due to the position of the tumors relative
to the artifact. In anatomical terms, they are located in a more lateral direction
relative to the artifact. In the latter case (figure 3.6), several tumors are located
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more in the anterior direction, and thus have less activity and attenuating
material along the common LORs with the artifact. From the digital phantom
experiments, it became clear that larger errors could be expected in directions
of high activity (section 4.1.2). In addition, as was pointed out by Berker and Li
[34], the same is true for directions of high attenuation. This means that, due
to the ellipse-like shape of the patients upper body, tumors located in the more
anterior direction relative to the artifact should suffer less error. The opposite
is then true for tumors located in a more lateral direction. The suggestion
therefore is that the tumors located in a more anterior direction relative to the
artifact are the ones that do not get assigned relevant errors in the cases where
tables 4.2 and 4.4 disagree. This is a subject that should be further investigated.
An isolated study on the effect of attenuation was not done in this thesis, but
the effect of attenuation along common LORs should also be further studied. If
more attenuation leads to larger PET quantification errors in segmented MRAC
images with misclassifications, then areas where, for example, much bone is
present, or in the attenuation map of overweight patients, quantification errors
should be larger due to the increased attenuation.

Another interesting observation that can be made from table 4.4 is that, in a
few cases, '� > 0. This contradicts what was found in the phantom study [18],
i.e. that wrongly assigning a lower attenuation value to a tissue type should
cause underestimation of the activity. Positive bias is also present on the contour
plots from the digital phantom experiment (figures 4.11 to 4.14). It has been
observed that the OSEM reconstruction algorithm overestimates the activity
concentrations in low count regions [52, 53], which can explain this. The
OSEM algorithm has an inherent non-negativity constraint, to accommodate
the physical non-negativity of photon attenuation [32]. However, the strong
positive bias we observe in the vertical direction on the contour plots is harder
to explain, and has been observed previously [54, 55]. As the Radon space is
closely related to the Fourier frequency space through the central slice theorem
[33], an assumption is that the step function-like decrease in attenuation
caused by the artifact introduces this, but this was not further investigated in
this thesis.

The observation that the error propagates further in the direction of higher
activity from figures 4.11 to 4.14 is important. It shows that activity distribution
must be considered in the evaluation of PET/MRI images with artifacts present.
In the case where a tissue type is wrongly assigned a lower attenuation value,
particular care must be taken. A tumor located between an artifact and an area
of high activity accumulation can potentially suffer a larger quantification error,
which in the worst case can leave it impossible to detect. For 18F-FDG examina-
tions, high activity accumulation can be seen in the brain, heart, kidneys and
urinary tract [56]. Therefore, tumors around these organs may suffer larger
errors in the presence of segmentation errors in the MRAC images.
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The method used in this thesis should be considered experimental, and it is not
sure if the exact same errors would be observed if reconstructions were done
on a PET/MRI machine. Both because the assumption of using reconstructed,
thus processed, PET/MRI images as ground truth images is weak, and also due
to the multiple reconstruction parameters and pre-/post-processing steps that
were not considered in this thesis. In addition, here, the reconstructions were
done on 2-D image slices, whereas e.g. the Siemens Biograph mMR has the
capability to do reconstructions on 3-D sinograms. This means a tumor and
an artifact can have 3-D common LORs. However, the results from using 2-D
circular artifacts may be considered as a worst case scenario for 3-D spherical
artifacts of equal diameters. Obviously, the shape of an artifact will influence
the errors. Here, we have considered circular shapes, but it would have been
interesting to see the effect of, e.g., ellipse-shaped artifacts with different widths
and heights. This may provide insight in whether it is better (worse) to have
more (fewer) common LORs, but less (more) misclassification along common
LORs. Again, as circular artifacts were considered here, the results can be
considered a worst case for elliptical misclassifications of similar semi-major
axis diameters for the 3s considered. Furthermore, the results are based on
the analysis of only one patient. Therefore, no generalizations should be made
from the results regarding at which 3 a relevant error occurs. As we have
seen, the errors can be expected to vary depending on activity and attenuation,
which, between different patients, also varies. Still, the main purpose of this
thesis was not to accurately quantify the errors, but rather to study the more
general implications of susceptibility artifacts, and especially, how the error
behaved with respect to 3. This was the main reason for using data from only
one patient.

By considerations of the inverse square law, 3 was expected to have a inverse
square relationship with the '�. By logical reasoning, the annihilation photons
from a tumor that passes an artifact also obey the inverse square law, and can
thus be directly related to the number of common LORs. Assuming similar
information along the common LORs, the results showed the hypothesis to be
true, indicated by the high '2 values of the regression lines in tables 4.1 and
4.3. However, this was only tested for tumors placed in regions of homogeneous
uptake. When comparing the '2 values of tables 4.1 and 4.3, we see a better fit
for regression lines belonging to the patient dataset. As we did reconstructions
with only one TBR and tumor size, this dataset has less variation which resulted
in a better fit.

The '� was also expected to be proportional with + [18]. Therefore, the
attempt was made to see if the ratio + /32 could explain the '�. If a linear
equation '� = 0 ·+ /32 + 1 may be obtained, this could serve as a quick and
easy-to-use tool to judge whether artifacts of a given + causes a relevant error
on an adjacent tumor. From geometrical considerations, artifact size, tumor size
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and the distance between the tumor and artifact are all factors determining
the number of common LORs. Relating these three factors essentially boils
down to a geometrical problem. Here, the fact that we were working with
(2-D) extended sources, not point sources which the inverse square law applies
to, was neglected. Although a relationship with tumor size was not obtained,
figures 4.3 and 4.6 both show a good fit with the regression line ('2 = 0.964
and 0.9636, respectively). If a relationship with tumor size is obtained, a
better fit can be assumed. The regression line obtained from the case where
information along the common LORs was random showed a bad fit to the
data, with '2 = 0.4098, and a large spread of data points around the line
('"(� = 3.58%). This means a generalized linear model cannot be obtained
using only the ratio+ /32 to describe the errors. Regardless, this is a promising
result showing that there may be value in grouping the tumors on lines/in
sectors when studying the errors induced by susceptibility artifacts. In areas
of the body where susceptibility artifacts occur more frequently, e.g. around
common locations of metal implants, such as hip prosthesis, dental implants or
metal wires in the sternum [17], this may be used as a basis for further studies.
The results show that, for tumors with similar common LOR information, a
linear equation 0 · + /32 + 1 may be obtained to predict at what distance
'� ≥ ΔB86 for a given artifact diameter. By solving the inequality for 3, we
get:

'� ≥ ΔB86 (5.1)
0 + /32 + 1 ≥ ΔB86 (5.2)

3 ≥
√

0 ·+
ΔB86 − 1

, (5.3)

which would have been most interesting to test if more data was available.
However, if such a model can be obtained, more uncertainty can be expected
for larger artifact diameters, judging from the strictly increasing '"(� for the
regression lines obtained from the digital phantom experiment 4.1.

Ladefoegd et. al [54] has previously conducted a study on dental artifacts in
the head and neck region. They found that changes in SUV<40= following cor-
rection for dental artifacts was largest near the signal void, and that differences
decreased in regions further away. This can be explained by our finding that
the error propagates as the inverse square of the distance. Ladefoegd et. al also
stated that "The effect of the artifact decreased with the distance to the signal
void in a non-simple pattern...". From the work conducted here, we have seen
that this "non-simple" pattern depends on the activity distribution, and should
also have a dependency on attenuation [34].
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In a study on the effect of susceptibility artifacts related to metallic implants
on adjacent lesions by Svirydenka et. al [17], only a weak inverse correlation
between tumors affected by artifacts and distance was found. Here, it has
been shown that a 1/32 can be obtained by taking common LOR information
into consideration. Svirydenka et. al also observed that the errors outside the
artifacts propagated in a "fan-shaped fashion". The findings in this thesis, i.e.
that larger errors can be expected in directions of high activity, can also explain
this.

5.2 Correction method

The devised correction method used information from the (3-D) opposed-
phase Dixon images to correct misclassified liver voxels. The method does not
require any manual steps or special software to function and, most importantly,
guarantees perfect anatomical matching. Compared to previously suggested
methods for susceptibility artifact correction, this has several benefits. By
utilizing already acquired data, no extra scanning time is required for dedicated
MR sequences to image tissues with short) ∗2 relaxation time. This is a limitation
of UTE-based approaches [7]. Other approaches, such as atlas based methods,
require a reliable and locally precise intersubject registration. This can be hard
to obtain because of high intersubject variability, which gives need for large
patient atlas databases [24]. Time consumption is also an issue with atlas based
methods, due to the computationally intensive image registration between the
atlases and target MRI volumes [7].

The results (table 4.6) show that the proposed method were able to correct
96% of misclassified voxels without changing the value of any lung pixels for
a liver signal reduction down to 50% in the opposed-phase image. After this,
the algorithm performed increasingly worse. By inspection of the histograms
in figure 4.15, we see that if the signal is too low, classes will eventually overlap
which makes them harder to discriminate. A small overlap between the classes
can be observed in figure 4.15d. When this occur, the algorithm will not be
able to discriminate all voxels correctly which leads to the false assignment
of soft tissue attenuation values to lung voxels and vice versa. The proposed
method thus requires sufficient signal from the liver to be able to separate the
classes. Here, it was found that 50% of normal signal intensity from the liver
is required in order to work without mixing classes. It is not obvious if this is
valid in every case, as the analysis is based on the results of only one patient.
It is neither not easy to say for which iron loads or ) ∗2 -reductions we obtain
sufficient signal from the liver. If iron loads are very high and the ) ∗2 is very
short, the devised method might not work. However, none of the reported cases
[10, 11, 12] where the misclassification of liver tissue as lung tissue occurred
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have shown any substantial signal loss from the liver in the opposed-phase MR
images. Therefore, the method is promising.

In figure 4.16 it was seen that the algorithm was not able to correct small areas
at the border of the liver. As explained in section 2.1.2 on "Tissue Contrast
and Magnetic Susceptibility", small differences in the magnetic properties of
adjoining tissues degrade the homogeneity of the externalmagnetic field. These
inhomogeneities further affect the relaxation of the tissues, speeding up the
apparent spin-spin relaxation times ) ∗2 , explaining why we get lower signal
intensity on the borders of the organ. Therefore, these voxels fall below the
threshold and are not corrected. Morphological dilation can be used to correct
for this, but then we run into the risk of assigning the wrong attenuation values
in other areas. This might not, however, be a large problem. As discussed in
the previous section, small misclassifications may not introduce relevant errors,
especially if a tumor is located far away from the artifact.

5.3 Summary

In this thesis, the impact of susceptibility artifacts on adjacent tumors have
been investigated through simulated tomography experiments. In particular,
the consequences of misclassification of liver (soft) tissue as lung tissue was
examined. These artifacts can occur from iron overload in the liver due to
faster ) ∗2 spin dephasing that occur when iron substances is present in tissue.
This in turn presents as a signal loss in the areas of high iron accumulation on
the acquired MR-images, which lead to errors in the creation of attenuation
maps. Because the liver is a major storage for iron in the human body, this
organ is especially exposed for susceptibility artifacts. This can lead to the false
assignment of liver tissue as lung tissue in the attenuation maps. Particularly, by
causing the connected component analysis, meant for detecting lung tissue, to
fail, thus making in unable to separate lung tissue from liver tissue. The artifacts
did, in some cases, cause relevant underestimation ('� ≤ 5.7%) on tumors
adjacent to the artifact, which demonstrated the need for correction methods.
A novel approach for correcting these types of artifacts was presented. The
suggestedmethod is based on using Otsu’s method on the opposed-phase Dixon
image for finding the best threshold to separate lung and liver voxels.

The question as to how large errors can be before theymight influence diagnosis
remains open. Our use of the relevant error as ΔB86 = −5.7% is not based on
any visual interpretations, but rather errors that cannot be explained by image
noise. However, being aware of the parameters that has the potential to increase
errors is important. The findings that the '� show a proportionality 32, + /32,
and reaches further in the directions of increased activity is also important, and
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can be useful knowledge for radiographers and nuclear medicine radiologists in
the evaluation of PET/MRI images with segmentation errors in the attenuation
maps.





6
Conclusion
Susceptibility artifacts presenting as misclassification of liver (soft) tissue as
lung tissue in the attenuation maps used for AC in hybrid PET/MRI imaging
may introduce relevant underestimation (ΔB86 ≤ −5.7%) on tumors adjacent
to the artifact. This has been shown through computing the relative error ('�)
of synthetic tumors introduced in a realistic PET/MRI patient dataset. The
PET images were reconstructed from emission data acquired from simulated
tomography experiments, for attenuation maps with and without synthetic
artifacts in the patients liver. For reconstructions, the OSEM-algorithm was
used.

The information along common LORs, i.e the activity and attenuation, of an
artifact and a tumor have a large impact on the error caused by the artifacts.
From contour plots describing the '� on the whole 2-D reconstructed images
of a digital phantom, the underestimation caused by the artifacts were shown
to extend further in directions of higher activity. It is also believed that the
same is true for directions of high attenuation [34]. Here, due to the ellipse-
like shape of the patients torso, this effect lead to tumors located in a more
anterior/posterior direction relative to the artifact to suffer less error, because
of the lower activity and attenuating material on the common LORs with the
artifact. This is a topic that should further investigated.

Assuming similar common LOR information between a tumor and an artifact,
the '� is proportional with the inverse square of the distance (3) between the
center points of the artifact and tumor. This was indicated by high '2 values
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obtained from linear regression analysis on the '� obtained from reconstructed
images with tumors a of the digital phantom (average '2 = 0.9573) and the
patient dataset (average '2 = 0.9804).

Because the '� is also proportional to the volume (+ ) of an artifact [18], a
linear equation describing the '� may be obtained: '� = 0 · + /32 + 1. If
sufficient data is obtained, this may be used to predict at which 3 we get
'� ≥ ΔB86:

'� ≥ ΔB86

0 + /32 + 1 ≥ ΔB86

3 ≥
√

0 ·+
ΔB86 − 1

,

which would be a quick and easy-to-use tool to find out when errors are too
large to be acceptable.

A method for correcting lung-liver misclassifications in the attenuation map
was also proposed. By using Otsu’s method for thresholding on the opposed-
phase image from a standard Dixon sequence, it was able to correct 96% of
pixels down to 50% reduction in liver signal. The algorithm benefits from
using already acquired data to correct the artifacts, and may be implemented
in real-time.
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A
Appendix
A.1 Patient dataset

The data protection official at UNN accepted the patient dataset to be used
for this thesis, and claimed it exempt from permission from the regional ethics
committee, as no personal data of the patient was accessed. The patient also
gave his/hers informed written consent for the image data to be used for
the purpose of this thesis. Before the data were accessed by the author, all
patient information had been anonymized according to data protection recom-
mendations in the Siemens Biograph mMR operator manual. The use of the
PET/MR images was also filed in compliance with the hospital data protection
regulations.

A.2 Python code for running simulated
tomography experiments and
reconstructions

Here, the Python code written for running simulated tomography experiments
and reconstructions is listed. An object oriented design was chosen. Properties
of each class is documented in the respective classes.
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A.2.1 Class for simulating tomography experiments and do
reconstruction

# Recquired libraries/packages/functions
import tomopy
import numpy as np
from skimage.filters import gaussian
from skimage.transform import radon

class Recon:
"""
Class to reconstruct activity maps with two different attenuation
maps.
"""
def __init__(self, amap, umap, umap_art, filtering=True):

"""

:param amap: Activity map. Must be an instance of the Amap class.
:param umap: Attenuation map. Must be an instance of the Umap
class.
:param umap_art: Attenuation map with artifact. Must be an
instance of the Umap class
:param filtering: Boolean attribute to specify if Gauss filter
should be applied.
"""
self.pixel_spacing = 2 # Pixel spacing xy-direction [mm/pixel]
self.filtering = filtering

self.fwhm = 3 # Full width at half maximum for Gaussian filter
self.nangles = 256 # Number of projection angles used for Radon

# transform

self.amap = amap
self.umap = umap
self.umap_art = umap_art

# Initialization of sinograms
self.sino_amap = None
self.sino_umap = None
self.sino_umap_art = None

self.sino_nac = None
self.sino_ac = None
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self.sino_ac_art = None

# Initialization of reconstructed images
self.recon_org = None
self.recon_art = None

def run(self):
"""
Method to run simulated tomography experiment.
:return: Nothing
"""
if self.filtering:

self.gauss_filter(fwhm=self.fwhm)
# print('Doing filter')

self.sino_amap = self.create_3d_sinogram(self.amap)
self.sino_umap = self.create_3d_sinogram(self.umap)
self.sino_umap_art = self.create_3d_sinogram(self.umap_art)

self.sino_nac = self.de_atennuate(self.sino_amap, self.sino_umap)
self.sino_ac = self.apply_ac(self.sino_nac, self.sino_umap)
self.sino_ac_art = self.apply_ac(self.sino_nac, self.sino_umap_art)

self.recon_org = self.do_recon(self.sino_ac)
self.recon_art = self.do_recon(self.sino_ac_art)

def gauss_filter(self, fwhm):
"""
Method to apply Gaussian filtering to activity map and attenuation
map(s).
:param fwhm: Full width half maximum of Gaussian filter.
:return: Nothing
"""
self.amap = gaussian(self.amap, sigma=self.fwhm2sigma(fwhm),

preserve_range=True)
self.umap = gaussian(self.umap, sigma=self.fwhm2sigma(fwhm),

preserve_range=True)
self.umap_art = gaussian(self.umap_art,

sigma=self.fwhm2sigma(fwhm),
preserve_range=True)

def create_3d_sinogram(self, img_stack):
"""
Computes slice-wise Radon transform of a 3-D stack of images.
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:param img_stack: image stack
:return: stack of sinograms
"""
sino_stack = np.zeros((img_stack.shape[0], img_stack.shape[1],

self.nangles))
theta = np.linspace(0, 180, self.nangles, endpoint=False)
for i in range(img_stack.shape[1]):

sino_stack[:, i, :] = radon(img_stack[:, i, :], theta,
circle=True, preserve_range=True)

return sino_stack.T

def de_atennuate(self, sino_amap, sino_umap):
"""
Method to de-attenuates sinogram. I.e, reversed attenuation
correction to obtain non-attenuated sinograms.
:param sino_amap: Sinograms of activity map
:param sino_umap: Sinograms of attenuation map
:return: Non-attenuated sinograms
"""
nac_stack = np.zeros_like(sino_amap)
for i in range(sino_amap.shape[1]):

nac_stack[:, i, :] = np.exp(-sino_umap[:, i, :]) \
* sino_amap[:, i, :]

return nac_stack

def apply_ac(self, sino_amap, sino_umap):
"""
Method to apply attenuation correction in the Radon space.
:param sino_amap: Sinograms of activity map
:param sino_umap: Sinograms of attenuation map
:return: Attenuation corrected sinograms
"""
ac_stack = np.zeros_like(sino_amap)
for i in range(sino_amap.shape[1]):

ac_stack[:, i, :] = np.exp(sino_umap[:, i, :]) \
* sino_amap[:, i, :]

return ac_stack

def do_recon(self, sino):
"""
Reconstruct sinograms using OSEM algorithm from the Tomopy python
package.
:param sino: Sinograms to reconstruct
:return: Reconstructed images
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"""
theta = tomopy.angles(sino.shape[0])
recon = tomopy.recon(sino, theta, algorithm='osem', num_iter=12

, num_block=1)
return recon

def fwhm2sigma(self, fwhm):
"""
Method to compute the full width half maximum from the standard
deviation of a Gaussian.
:param fwhm: full width half maximum
:return: standard deviation that corresponds to the specified full

width half maximum.
"""
sigma = (fwhm / self.pixel_spacing) / (np.sqrt(8 * np.log(2)))
return sigma

A.2.2 Class for activity maps

class Amap:
"""
Class for activity maps. Can either create digital phantom, or take
an existing activity map.
"""
def __init__(self, size=None, lam_bg=None, amap=None, noise=False):

"""

:param size: If specified, a digital phantom will be created.
:param lam_bg: Mean background activity value (values will be
drawn from a Poisson distribution)
:param amap: Existing activity map
:param noise: Boolean statement to decide if background noise
should be present in the digital phantom.
"""
self.lam_bg = lam_bg
self.noise = noise

if amap is not None:
self.amap = amap
self.size = self.amap.shape

else:
self.size = [size[0], size[1], size[2]]
self.amap = np.zeros(self.size)
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self.voi_mask = np.zeros_like(amap)

if noise:
self.bg_noise = self.background_noise()
self.amap += self.bg_noise

def make_sphere(self, center_point, r):
"""
Method creates a spherical mask in a 3D Euclidean space of size
[size x size x size]
:param center_point: center point of sphere
:param r: radius of sphere
:return: boolean mask where pixel values = 1 where the sphere is
"""
x0, y0, z0 = center_point
x = np.arange(0, self.size[1])
y = np.arange(0, self.size[0])
z = np.arange(0, self.size[2])
xx, yy, zz = np.meshgrid(x, y, z)
mask = (xx - x0) ** 2 + (yy - y0) ** 2 + (zz - z0) ** 2 <= r ** 2
return mask

def background_noise(self):
"""
Adds background noise (Poisson noise) to a spherical region within
the 3D euclidean space as defined by size [size x size x size].
The spherical region has its center point at the center of the 3D
space and radius size-1
:return: poisson noise
"""
mask = self.make_sphere(center_point=[self.size[1]/2,

self.size[0]/2,
self.size[2]/2],

r=self.size[0]/2-1)
poisson_noise = np.random.poisson(lam=self.lam_bg,

size=np.asarray(mask).shape)
poisson_noise[(mask == False)] = 0
return poisson_noise

def introduce_lesion(self, center_point, r, mean, const=True,
voi=False):

"""
Creates a spherical "lesion" inside the 3D eulidean space
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[size x size x size].
:param center_point: Center point of lesion
:param r: radius of lesion
:param mean: mean activity of lesion
:param const: Boolean statement to decide if lesion should have

noise. If true, the activity in each pixel is
drawn from a Poisson distribution; Poisson~(mean)

:param voi: Boolean statement. If true, the lesion is defined as a
volume of interest and a mask is created to be able
to calculate the activity within the lesion for
analysis.

:return: Nothing (changes class attributes)
"""
mask = self.make_sphere(center_point, r)
if const: # If noise in the tumor is not allowed

self.amap[(mask == 1)] = mean
else: # If we want noise in the tumor

random_pool = np.random.poisson(lam=mean, size=np.sum(mask))
self.amap[(mask == 1)] = np.random.choice(random_pool,

np.sum(mask))

if voi:
self.voi_mask = mask

def reset_amap(self):
"""
Function to reset the activity map. If background noise is present,
the activity map is reset to the noise.
:return: Nothing
"""
if self.noise:

self.amap = np.copy(self.bg_noise)
self.voi_mask = np.zeros_like(self.amap)

else:
self.amap = np.zeros(self.size)
self.voi_mask = np.zeros_like(self.amap)

def slice_z(self, slc_center, slc_width):
"""
Method to select slices in z-direction: selected slices =
slc_center +/- slc_width.
:param slc_center: Center z-slice
:param slc_width: width from center slice
:return: Nothing
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"""
slc_start = int(slc_center - slc_width)
slc_stop = int(slc_center + slc_width + 1)
self.amap = self.amap[:, slc_start:slc_stop, :]
self.voi_mask = self.voi_mask[:, slc_start:slc_stop, :]

A.2.3 Class for attenuation maps

class Umap:
"""
Class for activity maps. Can either create digital phantom, or take
an existing activity map.
"""
def __init__(self, size=None, umap=None):

self.size = size
if umap is not None:

self.umap = umap
self.size = self.umap.shape

else:
self.umap = np.zeros(self.size)

def make_sphere(self, center_point, r):
"""
Method creates a spherical mask in a 3D Euclidean space of size
[size x size x size]
:param center_point: center point of sphere
:param r: radius of sphere
:return: boolean mask where pixel values = 1 where the sphere is
"""
x0, y0, z0 = center_point
x = np.arange(0, self.size[1])
y = np.arange(0, self.size[0])
z = np.arange(0, self.size[2])
xx, yy, zz = np.meshgrid(x, y, z)
mask = (xx - x0) ** 2 + (yy - y0) ** 2 + (zz - z0) ** 2 <= r ** 2
return mask

def introduce_attenuating_object(self, center_point, r, uval):
"""
Method to introduce a spherical attenuating object in the
attenuation map.
:param center_point: center point of attenuating object
:param r: radius of attenuating object
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:param uval: Linear attenuation coeffifient of the attenuating
object.
:return: Nothing
"""
mask = self.make_sphere(center_point, r)
self.umap[(mask == 1)] = uval

def introduce_artifact(self, center_point, r, uval):
"""
Introduces a spherical artifact to the attenuation map.
The artifact attenuation map is a separate attribute within the
class.
:param center_point: Center point of artifact
:param r: radius of artifact
:param uval: linear attenuation coefficient of artifact volume
:return: Nothing
"""
mask = self.make_sphere(center_point, r)
self.umap = np.copy(self.umap)
self.umap[(mask == 1)] = uval

def slice_z(self, slc_center, slc_width):
"""
Method to select slices in z-direction: selected slices =
slc_center +/- slc_width.
:param slc_center: Center z-slice
:param slc_width: width from center slice
:return: Nothing
"""
slc_start = int(slc_center - slc_width)
slc_stop = int(slc_center + slc_width + 1)
self.umap = self.umap[:, slc_start:slc_stop, :]

A.3 Python code for correction method

The Python code for the proposed correction method is given below.

# Required packages/libraries/functions
import numpy as np
from skimage.filters import threshold_otsu

def correction_method(attenuation_map, oop_images):
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"""
Proposed correction method for correcting voxels in the liver of an
attenuation map that has been falsely assigned the attenuation value of
lung tissue

:param attenuation_map: Attenuation map with lung/liver
misclassification
:param oop_images: Opposed-phase Dixon images used to to obtain the
attenuation map. NB! Must be registered and resampled to the
attenuation map for method to work.
:return: Corrected attenuation map
"""
mask = np.zeros_like(imgs_umap) # Initialize mask

# Create boolean mask. Mask=1 at all locations where the attenuation
# map has the attenuation value of lung tissue. Mask=0 elsewhere.
mask[imgs_umap == 224] = 1

# Find corresponding voxels in the opposed-phase image.
voi = imgs_oop[mask == 1]

# Find best threshold to separate lung/soft tissue in opposed phase
# image
thresh = threshold_otsu(voi, nbins=256)

# Create correction mask containing all voxels in the opposed-phase
# image that are >= obtained threshold
correction_mask = (imgs_oop >= thresh) & (mask == 1)

# Change all voxels in the attenuation map that =1 in the correction
# mask. Assign soft tissue attenuation values.
imgs_umap[correction_mask == 1] = 1000
return imgs_umap
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