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Abstract
Near oil and gas platforms oil detection services regularly detect oil slicks that
are a result of legal releases of produced water. These slicks are usually ob-
served using SAR imagery and the important task of observing and monitoring
these slicks is as of now carried out manually by human operators aggregated
with reported release information. In this thesis we propose three separate
approaches to simplify and improve this work through the use of image seg-
mentation and deep learning methods. The approaches are trained and tested
on a set of Sentinel-1 scenes over the Brage and Norne platforms off the coast
of Norway. The best performing approach was shown to be the direct use of the
deep learning algorithm Mask R-CNN on the Sentinel-1 scenes. This approach
was able to detect 81% of all slicks in the scenes and had an average user’s
accuracy of 78% and an average producer’s accuracy of 73%. The approaches
were also shown to have a significantly reduced ability to detect slicks when
the local wind speeds were below 2 m/s or above 11.5 m/s and when the daily
volume of oil released from the platforms was below around 150 kg.
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1
Introduction
In the last decades, Synthetic Aperture Radar (SAR) has emerged as one of the
critical components in a multitude of different earth observation and monitor-
ing tasks. SAR has been applied to, among other things, disaster monitoring
and management, agriculture and city planning and detection of man-made
objects [1–5]. SAR is capable of providing weather and natural illumination
independent coverage of the entire earth surface on a weekly basis. This in
addition to the unique ability of the radiowaves used to penetrate down into
the surface makes SAR useful for a myriad of different applications within the
field of earth observation.

SAR has been widely utilized when it comes to marine applications since
ground-based observation is limited for ocean areas [6, 7]. In particular, SAR
has proved very useful for marine oil spill detection [8]. Oil spills can include
accidental releases related to system failure or mechanically damaged equip-
ment, purposeful illegal releases, and legal releases of waste products from oil
production. The release of organic compounds and minerals that comes with
oil spills of any kind could have significant environmental effects [9, 10]. Early
detection and monitoring of mineral oil spills is an integral part of handling
and cleanup, and deterring illegal activities.

All films consisting of organic compounds on the ocean surface, including oil
slicks, appear as dark patches in SAR images. The low radiation response is
a result of the damping effect these types of films have on the capillary and
gravitational waves on the ocean surface and the change the film induces in

1



2 chapter 1 introduction

the surfaces dielectric properties [11]. The backscatter from these areas and the
ability to differentiate them from the surrounding open water is dependent on
weather conditions, oil characteristics, and sensor properties. Figure 1.1 shows
a typical example of what an oil slick looks like in a SAR image.

Figure 1.1: This scene shows an oil spill in the Red Sea and is from the Sentinel-1
mission. The image channel is VV and the data has been calibrated to
sigma nought, speckle filtered and is shown in decibel. Image: ESA

For decades SAR has been used for monitoring oil slicks through observation
by human operators. The current technique of manual detection and delin-
eation demands large amounts of time and resources compared to if these
processes were automated. As more SAR data has been made freely available
over the years, research on new ways to monitor and detect different types
of slicks has significantly increased [12]. In particular, some work has been
carried out on automating this process [13–15]. Probabilistic models have been
proposed and shown promise for this application [16]. Machine learning ap-
proaches have become more viable in recent years with more available data
and increased computational power. The deep neural network approach used
in [15] was shown to yield results comparable to the ones achieved by human
operators.

In SAR images, some features have very similar properties to oil slicks. These
features are known as oil slick look-alikes. Look-alikes can be, for example,
biogenic films, low wind phenomena, or grease ice. There are also many differ-
ent oil slicks, including natural leakage, accidental spills from human activity,
and purposeful releases of produced water. A recurring issue for automatic
detection of oil slicks is differentiating between different films, dark ocean
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features, and different types of oil slicks. A discussion on the different types of
oil slicks and look-alikes and the difficulties of distinguishing them is presented
in [17].

Produced water is a byproduct of oil production consisting of water and small
amounts of organic compounds and minerals. Oil platforms or other oil-
producing installations release produced water into the surrounding ocean
as a means of disposal. This activity is legal in most countries but does not
come without environmental and ecological concerns [18]. While general oil
spill detection in SAR is a longstanding field of study, both for research and
operational purposes [19], produced water in SAR is significantly understud-
ied [20–22]. Detection of produced water slicks in SAR shares the difficulties
of general oil spill detection, and the slicks are also in general small, short-
lived, and due to the low volume and concentration, more sensitive to weather
conditions [21]. Wind conditions have a significant effect on the ability to
detect produced water slicks as well as other oil slicks. Too low winds make
it difficult to separate the slicks from the surrounding waters and too high
winds reduced the slicks detectability. On occasion, the slicks are also very
narrow, down to only a few pixels across, making delineating and identifying
the exact positions challenging. One of the main areas of interest in this thesis
will be investigating how these factors affect a machine learning approach to
detection and delineation and how to handle these issues.

This thesis proposes automatic, machine learning-based approaches for detect-
ing and delineating produced water slicks in marine SAR images. In addition
we propose a semi-automatic approach to simplify the detection work for
human operators. The objective is to create flexible approaches, capable of
working under different local conditions, that can separate produced water
slicks from the surrounding water and differentiate them from look-alikes. The
model should be capable of detecting and precisely delineating the slicks while
ignoring other features such as natural films and low-wind areas. The work
carried out in this thesis will be closely related to earlier work with machine
learning-based detection of oil slicks [15, 23]. Building on the approaches de-
scribed in these papers, it will be attempted to target produced water instead
of mineral oil slicks in general. The method will be limited to two classes
that divide the images into produced water segments and background. The
background will include any feature that is not a produced water slick. This
detection of produced water can be combined with semantic detection of other
objects in the image to create a complete classification of the whole image, but
this is beyond the scope of this work. The main goals of this thesis are:

• Propose automatic or semiautomatic approaches for detecting and delin-
eating produced water slicks in marine SAR images.
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• Evaluate environmental and operational conditions that affect the per-
formance of the approaches and the viability of automatic and semiauto-
matic methods of produced water detection.

• Identify future improvements to data or modelling techniques that could
improve automatic detection and delineation of produced water slicks.

The data used in this thesis will consist of SAR images, slick detections and
in situ data. The SAR images are from the Sentinel-1 mission and are taken
over the Brage and Norne oil platforms off the Norwegian coast between 2018
and 2020. The slick detections are from KSAT and consists of masks of slicks
in the images in the dataset. In situ data is provided by platform operators
and the Norwegian Meteorological Institute and include local wind speeds and
produced water release infomration.

The first part of this thesis introduces the necessary concepts to understand the
background for the work carried out. A general description of how SAR works
and its most distinctive characteristics is given in chapter 2 and produced water
is described and discussed in chapter 3. Chapter 4 introduces the data that will
be the basis for the work in this thesis and chapter 5 describes the theoretical
background for the proposed methodology. In the second half of the thesis,
we go into the specifics of the proposed approaches. The method is described
in chapter 6 and the achieved results are shown in chapter 7. In chapter 8
the results are discussed, and potential error sources and shortcomings are
presented. Chapter 9 consists of the conclusion to this thesis and 10 outlines
some suggestions for future work.



2
Synthetic Aperture Radar
SAR is a a type of Radio Detection and Ranging (RADAR) commonly used for
earth observation. SAR is an active remote sensing technique that utilizes low-
frequency electromagnetic (EM) radiation [24]. This part of the EM-spectrum is
known as microwaves or radio waves and consists of radiation with wavelengths
of one millimeter to one meter. SAR is an active technique, meaning that it does
not depend on naturally present radiation, but instead provides radiation pulses
for illumination. This gives SAR the advantage that it is viable independent of
the natural lighting conditions of its intended target, making day and night
coverage possible. In addition to this,microwaves can penetrate the atmosphere,
clouds, and almost any weather condition, bypassing the issues of weather
dependency present in optical imagery. Earth observation SAR instruments are
commonly spaceborne and satellite-mounted.

2.1 RADAR

RADAR works by transmitting a pulse of EM radiation in the microwave
spectrum and measuring the radiation that is reflected back toward the in-
strument [25]. The pulse can be visualized as an ideal square wave pulse as
ilustrated in figure 2.1 a) and b). In this case, and ignoring any attenuation
effects, the radiation reflected back toward the instrument will be a convolution
of the original pulse. The reflected pulse will also have a time delay compared
to the original pulse and the size of this time delay represents the distance from

5



6 chapter 2 synthetic aperture radar

the instrument to the observed object. The attenuation effects are theoretically
known to be governed by the radar equation [26]:

%A =
%C�C�A_

2f

(4c)3'4 (2.1)

Where %A is the received power, %C is the transmitted power, �A and �C are
the gain factors for the transmitting and receiving antenna respectively, _ is
the wavelength f is the radar cross section and ' is the radius centered on
the radar or in other words the distance from the radar to the object. This
equation is often rearranged to more precisely denote the different aspects of
the signal:

%A =
%C�C

4c'2
f

4c'2
�A_

2

4c
(2.2)

Here each of the three different terms defines a different aspect of the signal.
The first term is the effective transmitted power per solid angle and per unit
area, the second term is the reflected power per solid angle and unit area in the
direction of the receiving antenna and the third term represents the efficiency
of the receiving antenna.

Although an ideal square wave can be useful for visualizing a radar pulse, in
the real world the pulses are instead approximately triangular pulses as shown
in figure 2.1 c) and d).
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Figure 2.1: Illustration of transmission and reception of radar pulses over time. a)
Illustrates a transmitted ideal square wave pulse. b) Illustrates a received
ideal square wave pulse. c) Illustrates a transmitted approximate trian-
gular pulse. d) Illustrates a received approximate triangular pulse. ΔA is
the range inaccuracy and the blue line represents the layer of clutter or
unwanted echo registered by the instrument.

The pulse not being an ideal square wave but approximately a triangular pulse
has an effect on the spatial resolution. Given that all RADAR systems has a
certain amount of noise and clutter in the measured signal the pulse will not
be detected before the amplitude surpasses this clutter layer. This results in
ambiguity in the exact position in range and two objects with overlapping tails
in the received signal will not be discernible for non-coherent radars [25]. The
range resolution for a non-coherent radar given by:

'A =
g2

2
(2.3)

Where g is the pulse length and 2 is the speed of light.

If the EM radiation transmitted is coherent however one can use pulse mod-
ulation to improve the range resolution [27]. A phase coherent RADAR is a
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RADAR in which the phases of the transmitted pulse is known. The phase of
the received signal can then be analysed and compared to the transmitted
pulse. Chirp Modulation is the most commonly used pulse modulation. Chirp
modulation is also known as linear frequency modulation since a sinusoidal
waveform with linearly increasing or decreasing instantaneous frequency over
time. Using chirp modulation one can achieve a minimum time resolution,
)<8=, given bandwidth � of:

)<8= =
1
�

(2.4)

Inserting this into equation 2.3 we get a range resolution for a coherent RADAR
using a chirp modulation of:

'A (2ℎ8A?) =
2

2�
(2.5)

The visibility of an object for a RADAR is described using what is known as
Radar Cross-Section (RCS) [28]. RCS is a measure of an object’s or target’s
ability to reflect RADAR signals in the direction of the RADAR Receiver. An
object’s RCS can be affected by the objects shape, material and angle relative to
the RADAR’s transmission. RCS, f , of an object is given by the equation:

f =
4cA2(A
(C

(2.6)

Where (A is the scattered power density in range r and (C is the power density
that is intercepted by the target. When observing an area on the ground that
contains multiple objects it is useful to use the related quantity normalized
radar cross-section or backscatter coefficient denoted by f0 (sigma nought). This
quantity is given by:

f0 =

〈
'�(8

�8

〉
(2.7)

Where '�(8 is the RCS of object i in the given area and �8 is the area on the
ground assisciated with that object.
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2.2 Radar with Synthetic Aperture

To create SAR images, consecutive pulses of microwave radiation are transmit-
ted in a side-looking direction from the instrument that is attached to some
moving platform, most often a satellite. The backscattered radiation is mea-
sured, and the time it takes for the transmitted radiation to return is used to
place an illuminated object in the range direction. The longer it takes for some
part of the pulse to return, the further away the object reflected off is from the
satellite. The sensor needs to be side-looking to avoid any ambiguity in the
across-track positioning of objects. Directions in SAR images are defined by
the azimuth and range directions. Azimuth signifies the direction parallel to
the travel path of the satellite. Range signifies the direction perpendicular to
this travel path.

Different surfaces in SAR images can be distinguished because they scatter
EM radiation differently [24]. Since SAR images are taken side-looking as
illustrated in figure 2.3, what is measured by the instrument is the backscatter
from a surface. When EM radiation hits a surface, it can be reflected in
two main ways: specular reflection and diffuse reflection as illustrated in
figure 2.2. Specular reflection is when the geometric properties of the radiation
are preserved. This means that the radiation reflects at an angle from the
surface equal to the incidence angle but in the opposite direction. If a surface
is a perfectly specular reflector, then all the radiation will be reflected in a
single outgoing direction. Diffuse reflection is when the radiation reflects in
all directions. A perfectly diffuse reflector is known as a Lambertian surface
and will reflect equally in all directions.

Diffuse reflectors that reflect in all directions will have higher backscatter than
specular reflectors that reflect more heavily in one direction. In general rough
surfaces are more diffuse reflectors while smooth surfaces are more specular
reflectors, making rough surfaces appear brighter in SAR images, and smooth
surfaces appear darker. A typical example of this relevant to the work in this
thesis is the relationship between clean ocean water and produced water slicks.
Produced water creates a smoother surface which therefore appears darker
than the rougher surrounding open waters.
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Figure 2.2: Illustration of specular and diffuse reflection.

SAR differentiates itself from the earlier method, Real Aperture Radar (RAR),
by using a synthetic aperture [24]. RAR only employs the antenna statically
and merely sends out a pulse of radiation and measures what is scattered
back. With RAR, the spatial resolution in the azimuth direction of the image
produced is limited by the size of the antenna. For practical reasons, the use
of a giant antenna to get improved resolution is not viable. SAR circumvents
this by simulating a larger antenna using the movement of the platform. This
makes it possible to get images with higher spatial resolution without needing
to employ massive antennas. The azimuth resolution of RAR is given by:

'0 =
d_

!
(2.8)

Where d is the nominal slant range, _ is the wavelength and '0 is the azimuth
resolution. We can see from this that the resolution improves with the a larger
antenna. Extrapolating on this equation we can find the azimuth resolution in
SAR. Given that the nominal slant range can be written as d = �

cos\ we get an
azimuth resolution given as:

'0 =
d_

!
=

_�

! cos\
(2.9)

Now by forming an antenna with length equal to 2'0 we get an azimuth range
for SAR:

'0 =
_d

2'0
=
!

2
(2.10)

As we can see from equation 2.10 the azimuth resolution gets better with
reduced antenna size for SAR. So by the employment of this principle one
circumvents the limitations of large antennas i RAR. The lower limitation on
antenna size is the increased noise resulting from a smaller antenna [24].

Range resolution of SAR is determined by the frequency bandwidth of the
transmitted pulse. This implies that it is affected by the time duration of the
range focused pulse. Large bandwidths yields a small pulse width and vice versa.
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When working with SAR one differentiates between slant range and ground
range [29]. Slant range is the natural result produced by the measurements
made by the RADAR instruments. Ground range is the result of correcting for
local terrain slope and elevation. Slant range only informs on the location of
objects in the image relative to the instrument, while ground range places
the objects in the image relative to eachother. Figure 2.3 illustrates ground
range and slant range. The slant range resolution is given in equation 2.3. The
ground range resolution is on the other hand is also dependent on the look
angle and is given by:

'A =
�g

2
1

sin\
(2.11)

Where 'A is the ground range resolution, and \ is the incidence angle. The
slant range is the resolution given the observed surface being perpendicular
on the incident radiation beam and the ground range is the actually observed
resolution when the surface is at an angle from the beam.

Figure 2.3: Illustration of slant range and ground range. \ is the incidence angle.

The microwaves and radio waves that SAR employs are divided into bands de-
pending on frequencies. Different bands have different properties and different
applications. The wavelengths mainly applied in SAR imagery are the X-, C-,
S-, L- and P- bands.
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Table 2.1: The different microwave-bands used in SAR.

Band Wavelength
(cm)

Frequency
(GHz)

Typical Applications

X 2.4-3.8 8-12 Urban monitoring, vegetation,
snow and ice

C 3.8-7.5 4-8 Global mapping, Ocean mar-
itime navigation

S 7.5-15 2-4 Agriculture monitoring
L 15-30 1-2 Medium resolution SAR
P 30-100 0.3-1 Biomass, Vegetation mapping

and assessment

2.3 Modes of SAR

SAR satellites can generally operate in three different acquisition modes. These
are the Stripmap (SM) mode, the scanning SAR (ScanSAR) mode, and the
spotlight mode. Each mode has its advantages, disadvantages, and applica-
tions [30].

In SM acquisition mode, the instrument is stationary and looks in a fixed
direction from the platform it is attached to. As the instrument moves, it
obtains continual imaging of the area the satellite moves over. SM provides
continual coverage over large areas. It creates vast amounts of data, so it is
only used in special situations where continual coverage over a large area is
necessary, such as in emergency management [30].

In the ScanSAR acquisition mode, the instrument sweeps over the target area
to create subswaths in the range direction. These subswaths are then combined
to create the whole image. ScanSAR makes it possible to increase the swath
width covering a larger area than other modes such as SM. However, this makes
the data more computationally complex and can result in some ambiguities
around the merging of the subswaths. This is particularly noticeable when
using polarizations with generally low amplitudes such as VH over maritime
areas. ScanSAR can also suffer from some edge effects between two beams
when they are spliced together and scalloping [31] as seen in figure 2.4. These
effects can complicate analysis and object detection.
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Figure 2.4: VH-channel Sentinel-1 scene over the Brage oil platform with clear edge
effects along the connection of the different beams and scalloping effects.
The image is presented in decibel.

When needing higher resolution images of one specific location, one would use
the spotlight mode. In spotlight mode, the beam is controlled to focus on one
spot for a longer duration of time while passing it. By keeping the beam fixed on
one area, one can create a longer synthetic aperture. While this does improve
the resolution of the image, it comes at the cost of spatial coverage.

2.4 Polarization

An important aspect of SAR data is what is known as polarization [32]. Polar-
ization refers to the geometric orientation of the oscillations in the electric field
of EM radiation. Vertical polarization means that the field oscillates up and
down when seen from straight ahead, while horizontal polarization means that
the field oscillates left to right, see figure 2.5. The polarization of EM radiation
is divided into linear polarization, circular polarization, and elliptical polar-
ization. For this thesis, only linear polarization is relevant. Linear polarization
is differentiated from the other two types by having a constant electric and
magnetic field direction. In contrast, circular and elliptical polarization have a
constant rotation of the fields.

Polarization allows us to gather more information from SAR imagery. By con-
trolling the polarization of the pulse from the instrument and the polarizations
that it can detect, one can observe the surface’s effect on polarization. The
backscattered radiation may have the same polarization as the original pulse or
the opposite. This provides us with four potential channels known as HH, HV,
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Figure 2.5: Polarization of electromagnetic radiation. The red line is vertically polar-
ized and the blue is horizontally polarized.

VH, and VV. H for horizontal and V for vertical, where the first letter denotes
the transmitted polarization and the second denotes the received polarization.
The different channels will have varying responses to different surfaces pro-
viding the observer with additional information compared to using only one
channel.

When using polarization in this way, it is known as polarimetric SAR. Polarimet-
ric SAR can be divided into three types based on how many different channels
are available. Single-polarization (single-pol) means that the instrument trans-
mits and receives only one polarization. Dual-polarization (dual-pol) means
that the instrument only transmits in one polarization but can receive both
types. Quad-polarization (quad-pol) is the most complete form of polarimetric
SAR. In quad-pol, the instrument can transmit and receive both polarizations
resulting in all four channels being available.

Using multiple polarizations does provide multi-dimensionality, which could
increases the precision of classification as shown in [33]. This is to be expected,
as increasing the amount of data used for classification should improve the
separability between classes [34]. However, using polarimetric data comes with
some challenges as well [35]. The increased amount of data makes analyses
more computationally demanding. This can make it necessary to view smaller
images by either reducing resolution or area covered. It is also worth noting
that the magnitude of the different polarizations are not equal. Usually, the
response in the cross-polarization is low compared to in the co-polarization,
especially for marine images. This might make the magnitude lower than
the noise, causing this part of the data to contribute little of interest to the
dataset. The dataset used in this thesis consists of dual-pol SAR images. The
two channels available are VV and VH.
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2.5 Incidence Angle Degradation

The pulse radiation from the SAR instrument will strike the ground at different
angles depending on where in the range direction we are looking. This is
illustrated in Figure 2.6. From Lambert’s cosine law [36] we know that the
observed radiant intensity of a surface is directly proportional to the cosine of
the angle between the direction of the incident radiation and the normal of
the surface.

�3 = :3 �8=2834=C cos\ (2.12)

Where �3 is the observed radiant intensity, :3 is the diffuse reflectance of the
surface, �8=2834=C is the incident radiation on the surface and \ is the incidence
angle.

This implies that the observed backscattered radiation will be higher in the
near-range part of the image where the incidence angle is steeper and lower in
the far range. This effect can emulate differences in surface types and create
erroneous classifications when segmenting or classifying different areas in an
image.

It has also recently been shown that the incidence angle degradation effect is
not equal for all types of surfaces [37]. Different surfaces will have different
degrees of degradation, and the impact of the effect may vary significantly
between them. This makes the degradation more challenging to map and
account for when processing and analyzing SAR images. However, the effect is
consistently approximately exponential in power, meaning that it is linear in
decibels with different slopes for different surfaces. We can see the degradation
in power and decibels in the graphs in figure 2.6. Figure 2.7 shows an example
of different incidence angle degradations for different surface types.
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Figure 2.6: This is an illustration of how SAR satellites work. SAR sensors are side-
looking, affecting the incidence angles for different parts of the swath.
The intensity reduction is approximately exponential in power or linear in
decibels, as seen in the graphs in the figure. Used with the permission of
Anthony Doulgeris [38].

Figure 2.7: Plot of incidence angle degradations for different surface types in a
Sentinel-1 marine SAR image. Each line represents a different class of
the image as determined by the segmentation algorithm described in sec-
tion 5.2. The x-axis consists of the incidence angle and the y-axis is the
intensity of the noise floor.



2.6 noise 17

2.6 Noise

Noise in a signal is any unwanted interference that is collected in addition to
the signal itself. The main types of noise in SAR images are speckle noise and
thermal noise.

Thermal noise refers to the noise generated by thermal agitation of the sensor
itself when collecting data [39]. When the charge carriers in the sensor are
thermally agitated, this is registered as a signal input in the sensor and becomes
part of the produced data. Thermal noise is existent in any electrical component
but is more prominent in higher temperatures. The power of thermal noise in
a sensor is given by the equation:

# = :1)X 5 (2.13)

Where N is the noise power, :1 is the Boltzmann constant, T is the temperature,
and X 5 is the bandwidth.

The most dominant form of noise in SAR imagery is speckle noise. Speckle is
a type of interference in the signal characterized by the image being speckled
with very dark and very bright pixels. This interference results from the coher-
ent nature of SAR imaging and the random position of individual scatterers
within each resolution cell. The produced signal is complex, consisting of both
magnitude and phase, and it can interfere both constructively and destructively.
This is why the pattern created consists of both very dark and very bright spots.
Even though speckle is an unwanted part of the signal that needs to be ac-
counted for when analyzing the images, it is not noise in the traditional sense.
It is instead an inherent part of the measured signal.

Figure 2.8 shows a good example of how speckle noise makes an image more
challenging to interpret statistically. In figure 2.8a the signal looks like it can
be best represented as one Gaussian distribution. This implies that a Gaussian
mixture model segmentation algorithm, such as the one that will be used in
this thesis, would group all the pixels in the same segment [37]. In figure 2.8b
the speckle noise has been removed, and we can see that the signal consists of
at least three distinct classes.

An important parameter for evaluating the quality of a signal is the signal-
to-noise ratio (SNR). SNR is a measure of the relationship between the noise
levels in a signal and the strength of the wanted signal. SNR is represented in
decibel and is given by:

(#' = 10 log10(
%B

%=
) (2.14)
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(a) Before speckle filtering

(b) After speckle filtering

Figure 2.8: Histograms of the VV intensity of a SAR image before and after speckle
filtering. The image has been f0 calibrated in both cases, and intensity
values are in decibel.

Where %B is the power of the signal and %= is the power of the noise. If the
SNR is too low either because of the signal having low power or the noise
having high power, the signal becomes more difficult to interpret. Another
parameter used to measure the sensitivity of a system is the Noise-Equivalent
Sigma Zero (NESZ). NESZ is a measure of how sensitive the system is to
area of low backscatter and is given by the value of the backscatter coefficient
corresponding to a SNR equal to one.
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Produced Water
Produced water is a waste product from oil and natural gas extraction. In the
process of extraction there are two main sources of produced water [40]. The
first is water that is already present in the subterranean pockets containing the
oil and natural gas mixing with the product as it is being extracted. The second
is the water pumped into the reservoir that is ultimately retrieved as produced
water. Produced water is a brackish and saline water and pollutants mixture
containing around 300-900 6/<3 organic carbons before cleaning [41]. In addi-
tion to containing organic compounds from the oil itself, produced water often
contains metals, production treatment chemicals and other pollutants. The ex-
act composition of the produced water depends on the technologies used, the
age and depth of the geological formation and the geographic location.

3.1 Treatment and Disposal

Due to environmental concerns most countries have strict regulations detailing
how produced water needs to be handled [42]. This has made development of
treatment techniques a valuable investment and many different technologies
have been developed over the years [43]. So far no viable treatment that can
remove all hydrocarbons andother impurities from the producedwater has been
created. This results in the need for disposal of the remaining waste products.
There are many possible approaches to this task [44] and the regulating bodies
of each oil producing country set the standards for the disposal process.

19
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The two platforms that will be investigated in this thesis are the Brage platform
and the Norne platform. They are both under Norwegian jurisdiction and there-
fore the most relevant subject for this work are the Norwegian government’s
rules and regulations for the handling of produced water. In Norway the law
prohibits release of produced water with a monthly mean oil content over 30
g/m3 [45] . Any party that is going to release produced water in Norwegian
waters are required to perform an environmental evaluation regarding the
effects and consequences of the release. It is also required that this evaluation
is repeated if the volume or concentration changes or every five years barring
any changes.

3.2 Produced Water in SAR

Water is denser than oil and oil andwatermolecules do not coalesce. This results
in the oil creating a film on top of the water surface. Since the oil molecules are
attracted to the water molecules this film spreads out and becomes relatively
thin, covering a large area. One of the main reasons SAR is so often applied in
oil slick detection and observation is the very distinct and recognizable look of
these features in radar images [46]. Oil slicks appear as dark patches in SAR
images. This is because the backscatter from the surfaces covered by an oil slick
are lower than that of the surrounding waters. This is the case for accidental
spills, natural leakage and produced water. There are two main drivers for the
intensity contrast between slicks and open water; the dampening effect that
the film has on the ocean surface and the change in dielectric properties in oil
slicks compared to clean water [11].

Radar backscatter caused by surface roughness is mainly a result of Bragg
resonance scattering [47]. Wind causes spatially-correlated ocean wave com-
ponents, of which those that are in phase with the incident radiation contribute
to resonant scattering. In addition, the effects of gravitational pull from celestial
bodies and gravitational differences distributed around the earth contribute
to causing waves on the ocean surface [48]. The dampening effect is a result
of the film counteracting the capillary and gravitational waves of the surface,
removing its inherent roughness. Oil released into the water will settle on the
surface and create a film. This film causes dissipation of the wave energy by
Gibbs surface elasticity and a reduction in the surface tension [49]. The energy
contained in the waves is partially absorbed by the monolayer surface elasticity
and the reduced surface tension reduces the energy transfer between adjacent
surfaces. The film also reduces wind drag on the surface, resulting in less
energy transfer from the wind to the water surface. This in turn combined with
the other wave-related effects of the film leads to less waves and a smoother
surface. This effect is illustrated in figure 3.1, where we can see how a film
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forms on the water surface and contributes to reducing surface waves.

The film also affects the dielectric properties of the surface. This change in
dielectric properties have an impact on the interaction between the surface and
the electromagnetic waves from the SAR-instrument. Oil has a lower relative
dielectric constant than seawater. The relative dielectric constant is around
n$A = 2.3− 80.02 [50] for oil and around n(,A = 76.01− 851.71 for seawater in
typical North Sea conditions (T=5°C, S=34.992) [51]. The emulsion between
seawater and the oil slick will have a relative dielectric constant that lies
between n$A and n(,A , in other words, one that is lower than that of the clean
seawater. A reduced dielectric constant means that the total energy that the
surface reflects is decreased [11]. Since the total reflected energy from the
surface will be lower for the slick compared to the surrounding waters, the
backscatter measured by the SAR instrument will also be lower, making the
slick appear darker in SAR images.

For the change in relative dielectric constant to have an effect on the measured
backscatter, the film must be thick [50, 52]. Figure 3.1 depicts how a slick
affects the dielectric properties of the water surface. If the oil slick forms only
a very thin layer or a sheen on the surface, the radiation passes through the oil
and reflects of the seawater underneath. In such a case the effective relative
dielectric constant for the surface will be the same at the relative dielectric
constant of clean water. Produced water, due to its low oil concentration, forms
very thin films on the surface [21]. It is therefore likely that the effect of
changes in dielectric properties are small and the dominating contrast driver
for produced water slicks is the dampening effect of the slicks on the capillary
and gravitational waves. This is also supported by the fact that wind conditions
have a large effect on detectability [21] and the damping ratio being close to
constant across each individual slick. Figure 3.1 shows that for a thicker slick
both wind dampening and dielectric effect the backscatter, while for a sheen
as is most often the case for produced water, only the wind dampening has an
impact.
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Figure 3.1: The effect of a sheen and a thicker oil slick on a seawater surface. The first
illustration shows clean ocean water, the second shows a thin sheen and
the third shows a thicker slick. Figure used with the permission of Camilla
Brekke [11]

The Bonn Agreement [53] has defined a color spectrum for classifying the
thickness of a slick based on the color and look in optical imagery. This has
been used by researchers to get information on the thickness of a slick based
only on earth observation approaches, without needing to rely on on-site
measurements [54]. A slick classified as a sheen, that will be too thin for the
dielectric properties of the surface to change, is defined in the Bonn agreement
as looking grey or silvery. Norsk Oljevernforening For Operatørselskap (NOFO)
has for the purposes of this research provided video over the Brage platform
containing a produced water slick. A screenshot from this video can be seen in
figure 3.2. In the image we can see the slick as the grey area stretching from
top to bottom in the middle. In this image we can clearly see that the slick
looks silver colored. This suggests that the slick is a sheen and therefore can
conclude that the dielectric properties will remain nearly unchanged.
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Figure 3.2: Screenshot from video provided by NOFO doing a flyover over the Brage
platform. The grey area in the middle of the image that stretches across
the image from top to bottom is an example of a produced water slick.

As a result of these contrast drivers slicks are visible in SAR images as dark
patches contrasted with the usually much brighter surrounding waters. How
large the contrast is has a significant effect on the visibility of the slicks. The
relation between the backscattered power from oil slicks and the surrounding
waters is known as the damping ratio [21]. This is a measure of how much
the backscatter of the surface is dampened by an oil slick. The damping ratio
can vary both with the roughness of the surrounding waters and with the
smoothness of the oil slicks. It has been shown that the damping ratio increases
both with increased winds up to 10 m/s and with increased thickness of the
film [55]. It has also been shown in literature that the damping ratio is useful
in differentiating different type of oil spills, determining whether an oil spill
will be detectable using SAR alone and other applications such as investigating
temporal changes [56, 57]. The damping ratio, Z , is given by:

Z =
fcleansea

fslick
(3.1)

Where fcleansea is the average intensity of an area with open water and fslick is
the average intensity of the slick or a part of the slick.

An increase in damping ratio would indicate that the slick is more separable
from the surrounding waters. The damping ratio is not a constant measure for
any one type of slick or even any one scene. As different areas in a scene could
be subject to different environmental conditions, the damping ratio could vary.
The damping ratio can in such a case be measured against an average value
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for the intensity values of the rest of the scene or some chosen area of interest.
The most relevant is often to evaluate the damping ratio based on the slick
and the open waters adjacent to it. This will give the clearest indication of how
easily a slick is detected in the image. The slicks in this dataset have damping
ratios of around 3–8.5dB. This is consistent with what has been found in earlier
works [21].

Although produced water slicks share the low backscatter property with all
oil slicks and oil slick look-alikes, there are some unique characteristics for
produced water slicks that make them possible to differentiate. Being the
result of controlled disposal from an oil platform, produced water slicks always
originate from one stationary point. This point is the platform, which is also
often clearly visible in SAR imagery because of the high backscatter from man-
made structures [58]. In addition the low concentration of hydrocarbons in the
produced water and the often relatively low volumes that are released result
in a slick that is much smaller than for example spillage from a large oil tanker,
making it distinguishable from these larger mineral oil spills [21]. In figure 3.3
we see a typical produced water slick from the Brage platform. Here we can
see the dark slick originating from the bright spot that is the platform.

Figure 3.3: Scene with a produced water slick from the Brage platform. The image is
in the VV-channel and in decibels. The slick begins in the middle of the
bottom of the image. Brage is marked with a red circle



4
Data
This chapter contains an introduction to, and a general description of the
dataset used in this thesis’s work. In chapter 8 one can find a more in-depth
discussion on how the characteristics of this data might affect the results.

Like many other earth observation research projects, this thesis is made possible
by the increases in freely available satellite data over the last decades. The
introduction of an open and accessible policy from a series of satellite owners
has heralded an explosion in scientific inquiry on the subject [12]. Freely
available SAR data from satellites has contributed to revolutionizing earth
observation in general and particularly machine learning approaches since
large quantities of data are now attainable for scientists worldwide.

4.1 Study Site

Norway has since the 1980’s been a big producer of fossil fuels due to the large oil
and gas reservoirs off the coast of the country. The Norwegian continental shelf
has over the decades been speckled with a significant number of drilling sites
and oil platforms. All these platforms need to dispose of producedwater,making
produced water slicks very prominent along almost the entire Norwegian coast.
We can see the installations off the coast of Norway in figure 4.1

25
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Figure 4.1: Locations of all fixed facilities and floating production facilities and main
facilities onshore under the Norwegian Petroleum Directorate.

The dataset used for this thesis consists of scenes containing produced water
slicks from two oil platforms, Brage and Norne near the coast of Norway. Figure
4.2 shows the location of both platforms. Norne is a floating platform, and Brage
a stationary platform. Both platforms continually release produced water into
the surrounding ocean and the slicks created by these releases are often visible
in SAR imagery and regularly detected by oil spill detection services.

The satellite scenes are chosen specifically to include the Brage and Norne
platforms, but because of the frequency of oil and gas producing installations
along the Norwegian coast, other platforms also fall within the satellite scenes.
These platforms also dispose of produced water and therefore also produce
slicks in the images, resulting in some scenes having more than one instance
of detected oil slicks. This is however not necessarily a weakness, as more
instances of slicks in the scenes result in more varied training data and a better
test for the flexibility of the approaches proposed in this thesis.
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Figure 4.2: Norne and Brage locations off the coast of Norway. Brage is located at
60.5425◦N, 3.0468◦E and Norne is located at 66.0138◦N, 8.0158◦E

4.2 SAR Images

Within this thesis SAR images from the Sentinel-1 mission is used. Sentinel-1
is a satellite constellation consisting of two satellites with two more planned
belonging to ESA [30]. The data from this mission is freely available to anyone.
The current satellites in the constellation are the Sentinel-1A launched in
2014, and Sentinel-1B launched in 2016. The two satellites are in a polar
orbit 180°apart. The constellation orbits at an altitude of 700km and has a
global revisit time of 6 days [30]. Sentinel-1 gathers data using a C-band SAR
instrument as described in table 2.1. The dataset used in this thesis consists of
388 images taken in 2018, 2019, and 2020 that cover the operational Brage and
the Norne oil platforms. Both platforms are located off the coast of Norway
with coordinates 60.5425◦N, 3.0468◦E for Brage and 66.0138◦N, 8.0158◦E for
Norne.

Sentinel-1 employs four different acquisition modes; SM, Interferometric Wide
Swath (IW), Extra Wide Swath (EW), and Wavemode (WV). Sentinel-1 uses an
improved version of ScanSAR known as Terrain Observation with Progressive
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Scans SAR (TOPSAR). In TOPSAR, the beam can be steered backward and
forward in the azimuth direction and the range direction. This contributes to
avoiding scalloping and creates a uniform image quality throughout the swath.
Sentinel-1 has two different operating modes that use the TOPSAR technique,
IW and EW. IW is the primary acquisition mode over land and coastal areas,
while EW is mainly used to observe sea-ice, over polar areas, and a few other
maritime applications. The general operating mode used by Sentinel-1 over
open ocean is WV. In this mode, the beam skips in a "leapfrog" acquisition
pattern. The data is collected as non-adjacent images with ample spacing
between them.

An overview of the different acquisition modes can be seen in figure 4.3.

Figure 4.3: Overview of Sentinel-1 acquisition modes. Image used with permission
from ESA. Image Copyright: ESA

The images used in this thesis are acquired in the IW swath mode, where the
mode specific information is presented in Table 4.1. The polarization options
for this data are dual-polarization HH+HV, VV+VH and single polarization
HH, VV. HH+HV and single HH is only used over polar environments and
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sea-ice zones. In all other scenarios, Sentinel-1 employs VV+VH or VV. The
data used in this thesis is hence in VV+VH mode. Figure 4.4 shows an example
of the images used in this thesis.

Table 4.1: Overview of some key characteristics for Sentinel-1 data in the IW mode.

Sentinel-1 IW properties
Range resolution 20 m
Azimuth resolution 5 m

Altitude 700km
Global revisit time 6 days

Frequency 5.405 GHz
Polarizations HH, VV, HH+HV, VV+VH

NESZ -22 dB

(a) Whole scene in VV (b) Whole scene in VH

(c) Subset of scene around Brage (red circle) in VV (d) Subset of scene around Brage (red circle) in VH

Figure 4.4: Example of a scene from the dataset. These images are displayed in decibel
after speckle filtering and calibration to sigma nought. The scene covers
the Brage platform and the subsets are a 40x40 km area, with the platform
in the middle. Location of the subsets are located with a red rectangle in
subfigure a and b. Brage is indicated by a red circle in subfigure c and d.
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To evaluate the quality of the data we can examine the SNR. The average SNR
for the scenes can be seen in figure 4.5 plotted against the incidence angle. As
the figure shows, for most parts of the scenes the SNR lies around 10 dB. For
the regions of interest, the slick areas, the SNR is lower and the average SNR
for the produced water slicks is calculated to be between -5 and 5 dB in the
VV band. This is unsuprising as the backscatter is lower for the slicks and with
lower signal strength the SNR will be reduced.

(a) VV (b) VH

Figure 4.5: SNR plotted against incidence angle. The mean SNR of all scenes in the
dataset is shown by the dot and the bar illustrates the standard deviation.

The 388 scenes in the dataset are separated into a training set and a validation
or test set. The training set consists of 288 scenes, while the validation set
consists of 100 scenes.

4.3 Ground Truth

Ground truth-based training and validation data is necessary to apply a ma-
chine learning method to the detection task. The oil spill detection services at
Kongsberg Satellite Service (KSAT) (www.ksat.no) have graciously provided
polygons with detections from the Sentinel-1 scenes in question to create train-
ing and validation data. This data consists of manually created outlines of
all features in the images the experts at KSAT have deemed to be Produced
water slicks. Figure 4.6 shows one of these polygons superimposed on the
corresponding scene.
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(a) Full scene with polygon

(b) Zoomed in on slick

Figure 4.6: Polygon marking a detected produced water slick plotted onto the cor-
responding scene. This image is of the Brage Platform located at about
60.5425◦N, 3.0468◦E.

KSAT makes detections based on a set of given parameters depending on
the current task. For the North Sea and the Norwegian Sea detections they
are based on size, length, and shape. For a slick visible in a scene to be
categorised as a produced water slick it must be smaller than 5:<2 and shorter
than 5:<. It is also expected that a produced water slick is tail-like and
connected to a platform. These parameters are the basis for the creation of
the polygons made by the human operators. This information was gathered
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through personal communication with Ola Ørjavik, a KSAT operator, on the
11th of June 2021.

The polygons delineating slick observations were used to create binary masks
to be used as ground truth for training data. The polygons were given as single
polygon files, and detections from the same scene were separated. First, each
polygon referring to the same scene was merged into one file, then they were
then transformed into binary masks. These masks were geocoordinated with
their scenes of origin and subsetted to cover the same areas as the scene. A
subset of one of the scenes can be seen together with the corresponding mask
in figure 4.7.

Figure 4.7: One scene over the Norne platform subsetted to 6000x6000 pixels on the
left with the corresponding and subsetted mask of the produced water
slick on the right.

These masks are for the work in this thesis considered ground truth. They are
assumed to correspond with the actual oil slick detection and the delineations
of these slicks. When training and testing the model the masks will be the
reference data and it will also be the basis for evaluating the strengths and
weaknesses of different approaches. The ground truth was also used before
analysis to reduce the number of scenes processed. Any scene that is found to
contain no slicks according to the reference data is ignored. It is worth noting
that the platforms continuously release produced water into the surrounding
waters when it is operational. This implies that the lack of detected slicks
in some scenes is not in fact due to there being no oil in the waters around
the platform, but the visibility of the slicks being too poor for the human
operators to detect it. This is the reasoning behind excluding these images
from the dataset, as they will provide no useful data to the deep learning
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neural networks. If the visibility of the slick is too low for human operators, the
neural network based model can not be expected to detect it, and training on
these images could contribute to confusing the model. The number of scenes
in this dataset, 388, is a result of this selection process.

4.4 In Situ Data

It is of interest to consider the performance of the proposed approaches under
different local conditions around the platforms. The two local conditions that
is considered in this thesis are the wind conditions and the release data for the
relevant platforms. In situ data from both platforms has been made available
for this thesis and is used in chapter 7 and 8 to evaluate the effects different
conditions might have on results. The in situ data consists of weather data and
release information from the platforms.

The effects of oil concentration and produced water volume has also been
discussed in [21]. The release data provides information on both volume of
produced water released and the oil concentration in this produced water on a
daily basis. The release data consists of daily averages for the oil concentration
and the total produced water volume over the course of 24 hours. The con-
centration and volume can be multiplied to get the total oil released into the
ocean. The releases do not vary much throughout the course of a day, so it can
be assumed that daily release data is representative for the local conditions at
the time the image is taken [21].

The operators of the two platforms, Wintershall for Brage and Equinor for
Norne, have graciously provided release data for the periods examined in this
thesis. Over the three year period our dataset was collected, Brage had an
average concentration of oil in the disposed produced water of 15.56 g/m3

and an average volume of discharged water of 14207 m3, while Norne had an
average concentration of 8.66 g/m3 and an average volume of 19035 m3

It has been shown that weather conditions can both effect the detectability
of oil spills and be used to differentiate them from other phenomenon [59].
The weather data contains information on wind speeds that we know could
effect the visibility of slicks in the SAR images. Wind data is divided into hourly
observations. Figure 4.8 shows the daily wind speeds for the two platforms over
the course of a year. We see here that in general, the average wind speed is a bit
lower during the summer months. The wind data used in this thesis is acquired
from the Norsk Klimaservicesenter (https://klimaservicesenter.no/).
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Figure 4.8: Daily wind speed at the two platforms over the course of a year.



5
Theoretical Background for
Method

In this chapter the concepts needed to understand the method applied are
introduced. This includes the basics of image analysis and the segmentation
algorithm and machine learning algorithm used in this thesis.

5.1 Image Analysis

The task of classifying different groups based on statistical attributes is one
that has been worked on for hundreds of years [60], constanly being improved
and applied to new fields. Since the advent of digital imagery, classification has
been one of the most prominent types of image analysis. Pixel classification
in digital images can broadly be divided into semantic segmentation, object
detection and instance segmentation. Each of these have over the years been
solved in many different ways [61–63]. We will not here go into detail for
every approach to these tasks but will provide an overview of what each task
entails.

Semantic segmentation refers to the process of dividing an image up based on
the classes that are contained in it [64]. Each pixel is assigned to a segment
based on some data or information and then grouped with the other pixels

35
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that are deemed to belong in the same segment. This process can include
classifying each segment, but can also only consist of grouping the pixels in
some meaningful way. Each segment is usually marked by a different color.
Object detection is, as the name suggests, a process meant to find objects in an
image of specific types. This consists of finding the objects location in the image
and marking it somehow, usually with a bounding box. Instance segmentation
combines the two other processes by first detecting objects in the image, then
segmenting only the objects themselves. An example of the result for each of
three process can be seen in figure 5.1. In the case of this work we will be
applying instance segmentation since we are interested both in the location of
slicks and their shape.

(a) Semantic Segmentation (b) Object Detection (c) Instance Segmentation

Figure 5.1: Three forms of image analysis done on the same scene from the dataset.

5.2 Segmentation Algorithm

For the work in this thesis, we will be applying the segmentation algorithm
described here [37]. This is a method for semantic segmentation of marine SAR
images. It is based on a Gaussian mixture model and takes into account the
incidence angle degradation. Earlier methods have adjusted for the incidence
angle effects in multiple ways, such as using Lambert’s Cosine Law [36], the
Minnaert Model [65], and variants of the Bragg Model [50]. All these ap-
proaches have in common that they assume a global degradation. This method,
on the other hand, considers that different classes do not necessarily share
incidence angle decays. The segmentation algorithm assumes a multivariate
Gaussian distribution for the clusters along constant incidence angle azimuth
lines.

?-,Θ(x, \ ) =
"∑
:=1

c:
1

2c3/2 |Σ|1/2
exp(−1

2
(x − (a: − b:\ )))Σ−1: (x − (a: − b:\ )))

(5.1)

This is a Gaussian distribution where the expectation value is dependent on
the incidence angle, which we have noted is assumed to be a linear relation in
dB. a: represents the mean value in decibels at \ = 0 and b: is the decay rate
that is specific for the cluster k.
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After the primary segmentation, the algorithm applies a Markov Random Field
smoothing to improve homogeneity within the different segments. This is
meant to avoid lone pixels that are segmented differently than the surrounding
area. Markov Random Field (MRF) is a probabilistic model that, when used
in image segmentation, is meant to capture an area’s homogeneity by giving
weight to the context of a given pixel. The conditional probability density
function (cpdf) is calculated for a pixel and the cliques it is a part of consisting
of its neighbors. We use the cpdf of a center pixel with intensity 8: given its
neighbors 8:1, 8:2, 8:3, 8:4 . Then from this we derive a cost function for the MRF
* (8: , 8:1...4) = +�1 (8: ) ++�2 (8: , 8:1...4) where:

+�1 (8: ) = 3;=[?�: (8: )] (5.2)

+�2 (8: , 8:1...4) =
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9=1

�(8: , 8: 9 )
�(8: , 8: 9 )

− ;=[�0 [
� (8: , 8: 9 )
�(8: , 8: 9 )

]] + ;=[�(8: , 8: 9 )] (5.3)

Here +�1 (8: ) and +�2 (8: , 8:1...4) are the single-clique and pair-clique potential
functions. Each pixel is treated and placed into the segment that provides the
highest cpdf. This can be done by minimizing the derived cost function.

This algorithm is designed to counteract the issues introduced by incidence
angle degradation. During testing, it was observed that this effect was negligible
after the images were reduced in size to only contain a 40x40 km area around
the platform. This is in contrast to the whole image that is 250 km across in
which the incidence angle degradation is significant and has a noticeable effect
on segmentation. The incidence angle adjustment included in the algorithm
might pick up on other differences in the across-track of the scenes, such
as antenna noise. This could result in false adjustments for incidence angle
degradation and corrupted results. In that case, it will be necessary to remove
the component dealing with the incidence angle effect from the algorithm and
instead use a simple gaussian mixture model.
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Integrated into the segmentation algorithm are options to do user-defined mul-
tilooking and reducing the number of pixels processed. Multilooking increases
radiometric resolution while decreasing spatial resolution. Pixel reduction
decreases the run time also at the cost of spatial resolution.
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5.3 Mask Region-Based Convolutional Neural
Network

The slicks that we are looking for in this work are often easily recognizable
by the human eye because of their distinctive shape and the contextual infor-
mation of their location in relation to oil platforms and other image features.
However, it is often more difficult to statistically or mathematically distinguish
the slicks from other areas and ocean surfaces in the images. This provides a
challenge when it comes to automatically identifying the slicks without human
arbitration.

Mask Region-Based Convolutional Neural Network (Mask R-CNN) is a deep
neural network aimed at image segmentation and object detection [66]. Mask
R-CNN is an expansion on the Faster R-CNN algorithm as described in [67]
with the added benefit of creating a semantic mask for the detected object. It
produces a bounding box containing the object instance and an object mask.
It is capable of working on both videos and images. Mask R-CNN is currently
viewed as the state-of-the-art approach to neural net-based object detection
and instance segmentation [68]. It has been applied to many different tasks
and shown viability for a wide variety of applications [68–70].

Mask R-CNN works in two stages. The first stage proposes an area of the image
where an object of interest might be located using a bounding box. The second
stage is the classification of the detected objects and creating a mask to describe
the objects’ location in the image more precisely. These stages are connected
to the backbone structure, Feature Pyramid Networks (FPN) [71]. FPN consists
of a bottom-up pathway, a top-bottom pathway, and lateral connections. The
Bottom-up pathway is a convolutional neural net that extracts features from the
images. The top-bottom pathway creates feature pyramid maps that are similar
in size to the bottom-up pathway. The lateral connections are adding operations
and convolutional operations between the two pathways on corresponding
levels. The advantage of FPN is that it maintains strong semantic features at
differing resolution scales.

First, a Mask R-CNN produces proposals for regions that may contain objects
using a region proposal network (RPN) [72] that scans all FPN top-bottom
pathways. This also requires the use of anchors that bind features to their
location in the original image. The anchors in a Mask R-CNN are boxes with
predefined locations and scales relative to the image. The anchors bind to
different levels of the FPN top-bottom pathways and uses their predefined
position to propose likely locations of objects in the image. This information is
then used to check the areas of interest more closely, and guarantees that the
proposed locations are not moved as the image is processed.



5.3 mask region-based convolutional neural network 39

The second stage consists of another neural net that generates object classes,
bounding boxes, and masks. These are aligned to the original image using
information provided by the RPN in the first stage of the process. We will only
be working with two classes for this work; producedwater and background, and
will only be evaluating the accuracy of the delineation based on the resulting
produced water masks. This can be expanded to include more classes, and
the bounding boxes can be used as a faster way to get detections without the
delineations, but this is outside the scope of this thesis. Figure 5.2 visualizes
how Mask R-CNN functions.

Figure 5.2: Mask RCNN first proposes possible regions of interest (RoI) based on
anchors. Of these regions of interest, any above a certainty threshold is
selected and the object within that bounding box is classified. Then the
region of interest is run through two convolutional networks to create a
mask of the instance.

As a supervised machine learning process, Mask R-CNN is dependent on train-
ing data. In this thesis, the training data will be binary masks of produced
water detections based on the observations provided by KSAT. The algorithm
used for this thesis was built around Matterports implementation of Mask
R-CNN [73].





6
Methodology
In this chapter an overview of the methods applied to the task of detection
and delineation of produced water slicks in this thesis is presented. The work
in this thesis consists of two stages. The first is detection of the produced
water slicks in the scenes. This includes both finding low backscatter areas and
the identification of these areas that represent slicks and not look-alikes. The
second is the delineation the produced water slicks. The level of success for
the whole process will be measured by a combination of the methods’ ability
to detect the produced water slicks and the classification accuracy. Three
different approaches are proposed here based on the two algorithms described
in section 5.2 and section 5.3. Figure 6.1 shows a flowchart of the workflow of
the method in this thesis.

41
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Figure 6.1: Flowchart of the different approaches used in this thesis. The yellow boxes
are the common steps for all approaches. The red boxes represent the
names of each individual approach and the blue boxes are the specific
steps for each approach.

6.1 Preprocessing Data

Because of difficulties in differentiating the slicks in the VH-band, it has been
excluded from the analysed dataset. Within this work the results are derived
using the VV-band. The SAR scenes are first subsetted to approximately 40×40
km around the two relevant platforms to reduce data size and computation
times. Thereafter is the data calibrated using the provided meta data [30],
then a 7× 7 Lee Sigma speckle filter is applied to remove speckle noise. Finally,
the data is converted to decibel for better analysis and visual representation.
An overview of the preprocessing steps is shown in figure ??.
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Figure 6.2: Flowchart of preprocessing steps.

6.2 Approaches

Here we propose three alternative methods for detection and delineation of
produced water slicks in SAR images. These methods will be compared against
each other for detection and delineation accuracy. Each method automates the
process either entirely or partly and is meant to be more efficient alternatives
to the existing process of manual detection by human operators.

6.2.1 Direct Mask Region-Based Convolutional Neural
Network

In the Direct Mask Region-Based Convolutional Neural Network (DMRCNN)
approach the Mask R-CNN algorithm is applied directly to the images after
the preprocessing stage. The images are processed as described in section 5.3.
First, the method is trained on the training set consisting of 288 scenes and
subsequently validated using the remaining 100 scenes to evaluate performance
and calculate the precision of the model. The training data consists of SAR
images, processed in the same way as described in the pre-processing stage,
and their corresponding masks made from the KSAT polygons. An example of
the training data used can be seen in figure 6.3.
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Figure 6.3: An example of the training data used for DMRCNN. The data consists of
the subsetted and preprocessed scenes and masks for the instances in the
scene. The image to the left is the image as fed to the neural network, the
image to the right is the masks used as reference data.

The Mask R-CNN was fed training data consisting of the preprocessed and
subsetted scenes, a bounding box containing the detections and the binary
mask.Table 6.1 shows the training parameters for the model used in this thesis.
The training time for this model was 42 hours.

Table 6.1: List containing the specific parameters used for training Mask R-CNN in
this thesis. The parameters were chosen based on experimentation and trial
and error.

Parameters for Training of Neural Network

Epochs
10 epochs for training head layers
+ 40 epochs for training all layers

Learning Rate
0.001 for first 10 epochs,
0.0001 for last 40 epochs

RPN Anchor Scales (16, 32, 64, 128, 256)
Steps Per Epoch 300
Validations steps 50
Regions of Interest per Scene 10
Backbone Resnet101
Minimum Detection Confidence 0.8

The algorithm will use all information contained in the dataset to make predic-
tions about detection and delineation. This includes size, spatial positioning,
context, and backscatter intensity. The information gathered during training is
used to create weights that are then used to predict detections in new images.
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The training data is passed through a series of layers as any convolutional
neural network to create the model.

Directly applying the Mask R-CNN method to the dataset should give the
algorithm access to all the information in the images. This would give the
method a broad set of features to create a model for object detection. The Mask
R-CNN has been shown to be promising for general oil detection in earlier
research [74] when applied directly to a dataset, and this approach also had
the advantage of simplicity. It only needs to be fed the relevant data without
any other analysis performed on it and is fully automatic and not reliant on
human intervention.

6.2.2 Human Assisted Segmentation Classification

Human Assisted Segmentation Classification (HASC) is a semi-automatic ap-
proach and is divided into two stages. First, an image is segmented using the
segmentation algorithm described in section 5.2. We can see an example of
the resulting product in figure 6.4. The slick is visible in the segmented image,
but the slick is segmented together with the low wind areas in the image. It
is therefore necessary to employ another approach to differentiate it. For that
reason, the resulting product is passed over to a human operator that identifies
the produced water slick in the image andmarks it. The marked and segmented
area containing the slick is then used to generate a mask or polygon of the
observation.

This approach combines the segmentation algorithm with the traditional de-
tection done by a human operator. This is intended to limit the time used by
the operator to search for possible slicks in scenes by first passing it through
the semantic segmentation of the algorithm. This will possibly provide more
precise delineation than what a human operator can, given the processing of
individual pixels that the segmentation provides. One of the most significant
weaknesses of the segmentation algorithm is that it only does its segmentation
based on backscatter values, not on any spatial parameters or context clues. By
adding the benefit of a human operator, one could filter out false detections and
misclassified areas and even potentially differentiate look-alikes and different
kinds of oil slicks. Though not fully automatic and still demanding human in-
tervention, this method would automate the delineation and simplify detection.
This could prove a viable alternative to a wholly automatic approach.
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Figure 6.4: A scene containing a slick from the Brage platform segmented by the
segmentation algorithm. The slick has been segmented together with the
low wind area in the right part of the image, but is clearly distinguishable
for a human operator. Each colors represent one segment as given by the
colorbar. These segments have not been classified.

Unlike the other approaches,HASC does not need training data only a validation
set for testing. Because this approach is not automatic the validation set for
this method consists of only ten random scenes from the whole validation
set.

6.2.3 Segmentation Assisted Mask Region-Based
Convolutional Neural Network

Segmentation Assisted Mask Region-Based Convolutional Neural Network (SAMR-
CNN) combines probabilistic semantic segmentation with Mask R-CNN. Mask
R-CNN is applied as described previously, but the input data is the segmented
images produced by the algorithm outlined in section 5.2 and not the original
scenes. An example of the training data used for this approach can be seen
in figure 6.5. The process will consist of two parts. First, the segmentation
algorithm is applied to the images to create segments such as the one shown
in figure 6.4. Then those segments are passed to the Mask R-CNN algorithm as
training data together with the binary masks. The Mask R-CNN processes the
training data and creates a model for object detection and delineation of the
slicks. Then the model is used to identify and delineate slicks in a different set
of segmented images to evaluate performance.
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Figure 6.5: Training data used for Segmentation Assisted Mask R-CNN. The data
consists of the subsetted and segmented scene and masks for the instances
in the scene. The image to the left is the image as fed to the neural
network, the image to the left is the masks used as reference data.

By first performing a semantic segmentation of the images based on pixel
intensity, one could more clearly divide up potential areas containing slicks
from surrounding water surfaces. When processing this, the neural net will have
fewer parameters to base its model on, focusing on spatial, pattern, and shape
information. Though more demanding than the direct Mask R-CNN approach,
it could prove to perform better. This approach is more time demanding in
the detection phase which could prove problematic for implementation for a
practical application.

For this approach the Mask R-CNN was fed training data created from seg-
mented scenes. The model was trained on a training set consisting of 288
scenes and their corresponding masks and tested on a validation set consisting
of 100 scenes and their corresponding masks. Table 6.2 shows the training
parameters for the model used in this thesis. The training time for this model
was 37 hours.
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Table 6.2: List containing the specific parameters used for training Mask R-CNN in
this thesis. The parameters were chosen based on experimentation and
trial and error.

Parameters for Training of Neural Network

Epochs
10 epochs for training head layers
+ 35 epochs for training all layers

Learning Rate
0.001 for first 10 epochs,
0.0001 for last 35 epochs

RPN Anchor Scales (16, 32, 64, 128, 256)
Steps Per Epoch 300
Validations steps 50
Regions of Interest per Scene 10
Backbone Resnet101
Minimum Detection Confidence 0.8

6.3 Evaluation

For it to be possible to draw any conclusions on the quality of the approaches
proposed in the thesis, a set of criteria for evaluation must be established. It
must be concluded exactly what is looked for in the results produced from each
approach. All objective measures of the results will be based on the reference
data that consists of the polygons from KSAT. These will be regarded as ground
truth when evaluating the performance of the approaches.

The first objective for each approach is to detect the slicks in the scenes. To
evaluate this performance the detection rate of slicks will be used. This will
be calculated by the number of correctly identified slicks, independent of the
precision of the slicks delineation, divided by the number of slicks in the scenes
according to the reference data. In addition the number of false positives will be
recorded. False positives will be the number of slicks identified by the approach
that are not slicks according to the reference data divided by the total number
of slicks identified. To evaluate the delineation the masks of the slicks created
by the approaches will be compared with the masks of the reference data at the
pixel-level. Omission errors and commission errors are both of interest when
considering the quality of the delineations, thus both the average producer’s
accuracy and the average user’s accuracy will be presented for each method
and used to evaluate performance 1. Producer’s accuracy is the number of
pixels correctly classified in a class by the classifier divided by the number of

1. Producer’s accuracy is also known as recall and user’s accuracy is also known as precision.
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pixels that are in that class according to the reference data. The user’s accuracy
is the number of pixels classified as the given class by the classifier divided by
the total number of pixels in that class according to the classifier.

0D =
#2

#?A43
(6.1)

0? =
#2

#A4 5
(6.2)

Where 0D is the user’s accuracy, 0? is the producer’s accuracy, #2 is the number
of pixels correctly classified as a given class by the classifier and#?A43 and#A4 5
are the number of pixels classified in that class by the classification method and
the reference data consisting of KSAT polygons respectively. Another measure
of accuracy often used in machine learning is the F1 score. This measure takes
into account both the user’s accuracy and the producer’s accuracy to provide
a complete measure of the performance of a model. The F1 score for each
approach will also be presented in chapter 7.

For the purposes of practical application, the training time for the machine
learning methods is less relevant than the time used for predictions after a
model is trained. The time cost for each approach will therefore be the time
it takes each approach to produce a result from a new scene presented to it.
The in situ data from the platforms will in this thesis be used to evaluate the
flexibility and robustness of the approaches under differing local conditions
related to wind and release data. As the goal is to provide amore efficientway to
detect and delineate produced water slicks the time cost and workload for each
method will also be discussed. A visual inspection and subjective evaluation
will also be presented to make note of trends and aspects not obvious in the
numeric data.

�1 = 2
0D0?

0D + 0?
(6.3)
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Criteria for Evaluation:

• Detection rate

• False positives

• Producer’s accuracy

• User’s accuracy

• F1 score

• Time cost

• Flexibility with differing local conditions

• Subjective visual inspection

In addition to looking into the overall performance of the approaches, each
approach is also tested on ten random scenes from the dataset from here on
referred to as the experimentation set. This is to better visualize how each of
them perform on specific scenes under specific conditions. These scenes were
randomly selected using a digital random number generator and sorted by
date.



7
Results
In this section we present the results of experimentation with the approaches
described in section 6.2. DMRCNN, SAMRCNN andHASC have each been tested
on Sentinel-1 marine SAR images taken over the Brage and Norne platforms.
The results are meant to give an indication of each methods ability to detect
and delineate produced water slicks. The evaluation of the experimentation
will be based on the criteria as stated in section 6.3.

The five measurable criteria for performance have been recorded and presented
in table 7.1. Here the accuracies are the average for each approach for the slicks
that were detected by it. This means that any slick that the approach failed
to detect does not count toward this accuracy. The detection rate here is the
percentage of all slicks in the validation set the approach was able to detect. We
can see from table 7.1 that DMRCNN has a significantly higher detection rate
than the two other approaches. SAMRCNN and HASC do on the other hand
achieve more precise delineations than DMRCNN. DMRCNN has the lowest
time cost and is significantly faster than both SAMRCNN and HASC. DMRCNN
produces the most false positives and HASC the least with zero for all scenes it
was tested on.
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Table 7.1: Results for the all approaches. Detection rate signifies the percentage of
slicks detected by the approach. The producer’s and user’s accuracy are the
average for each over all scenes. Both accuracies are based on the slicks
that were detected by the approach. The time cost is the time it takes
the approach to process one scene and produce a result. These results are
based on the whole validation set consisting of 100 scenes for DMRCNN
and SAMRCNN and the experimentation set (10 scenes) for HASC.

Overall Results

DMRCNN SAMRCNN HASC
Detection Rate 81% 53% 50%
False Positives 15% 11% 0%
Producer’s Accuracy 81% 87% 88%
User’s Accuracy 76% 81% 91%
F1 score 64% 44% 45%
Time Cost 5.7 Seconds 13.4 Minutes 11.2 Minutes

While the overall results provide useful information on its own, its is also of
interest to discuss how the different approaches compare on individual scenes.
Table 7.2 contains an overview of the accuracy for the experimentation set
as well as the average accuracy for all scenes in validation set. The accuracy
here is given by the producer’s accuracy and includes the instances where an
approach was unable to detect a slick.
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Table 7.2: Summary of results for all three approaches on the experimentation set.
For each scene the table includes the date the SAR image was taken, the
average wind speed (WS), the average oil concentration (Conc) and the
total released produced water volume (Vol) that day. The release data is
only for the named platform, and therefore only represents one slick in the
image. The accuracy given are the producer’s accuracy for each scene. The
average is the average accuracy for each method over all scenes, including
the ones where it was not able to detect slicks.

Date Platform WS
(m/s)

Conc
(g/<3)

Vol
(<3) DMRCNN SAMRCNN HASC

02.04.18 Brage 4.3 15.00 10135 76% 88% 92%
15.08.18 Brage 8.2 18.46 19285 64% 71% 74%
20.12.18 Norne 7.4 5.1 25462 74% – –
08.02.19 Norne 4.1 11.79 20437 79% 86% 89%
06.06.19 Norne 5.9 10.74 17594 80% 87% 88%
26.11.19 Brage 2.0 19.69 16203 – – –
25.02.20 Norne 5.7 5.5 21484 73% – –
17.06.20 Brage 4.2 21.42 8864 82% 88% 90%
17.08.20 Brage 2.6 8.4 12176 79% – –
01.10.20 Norne 5.5 16 20776 83% 84% 83%

Average Whole
Validation Set 66% 55% 57%
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7.1 Direct Mask Region-Based Convolutional
Neural Network

This approach was able to detect 81% of all slicks in the scenes, and 15% of
detections produced by the model were false positives. The average producer’s
accuracy was 81% and the average user’s accuracy 76%. The trained model
takes on average 5.7 seconds to process one scene. Table 7.3 shows the results of
DMRCNN for the experimentation set. The detections produced by this model
do, in general terms, match the ground truth as established by the human
operators of KSAT. There is some inaccuracy with precisely identifying the
edges of the slicks and a tendency of confusion with long, narrow slicks and
slicks containing complex geometries. In some cases themodel will also identify
two parts of the same slick as separate entities, particularly in long and narrow
slicks. This is for example the case for the scene dated 02.04.2018 in table 7.3.
Here one long slick is divided into to separate detections, causing the model
to detect three slicks in a scene that in reality only contains two. In figure 7.1
we can see an example of the results of the DMRCNN. The delineations in this
seem to be good based on a visual inspection, but we see that for the purple
slick it cuts out when the slick grows too narrow and for the turquoise only a
very small part of the slick is delineated.

Figure 7.1: One result produced by the Direct Mask R-CNN approach. The rectangles
made up of dotted lines are the bounding boxes of each detection and the
colored shapes within them represent the mask of the slick as predicted
by the method.
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Table 7.3: Results for Direct Mask R-CNN on the experimentation set. For each scene
the table includes the date the SAR image was taken, the average wind
speed, the average oil concentration and the total released produced water
that day. The release data is only for the named platform, and therefore
only represents one slick in the image. Also included are the number of
slicks in the scene, the number of slicks detected by the method and the
producer’s accuracy for each scene.

Date Platform WS
(m/s)

Conc
(g/<3)

Vol
(<3) Slicks Detected Producer’s

(Accuracy)

02.04.18 Brage 4.3 15.00 10135 2 3 76%
15.08.18 Brage 8.2 18.46 19285 4 3 64%
20.12.18 Norne 7.4 5.1 25462 1 1 74%
08.02.19 Norne 4.1 11.79 20437 1 1 79%
06.06.19 Norne 5.9 10.74 17594 1 1 80%
26.11.19 Brage 2.0 19.69 16203 7 0 –
25.02.20 Norne 5.7 5.5 21484 1 2 73%
17.06.20 Brage 4.2 21.42 8864 1 1 82%
17.08.20 Brage 2.6 8.4 12176 1 1 79%
01.10.20 Norne 5.5 16 20776 1 1 83%

7.2 Segmentation Assisted Mask Region-Based
Convolutional Neural Network

SAMRCNN was able to detect 53% of all slicks in the scenes and 11% of detected
slicks were false positives. For the scenes where the segmentation was able
to segment out the slicks, the end result after running the segmented scene
through the model was an average producer’s accuracy of 87% and an average
user’s accuracy of 81%. In cases where the method was not able to detect
slicks it was most often caused by the slick being segmented together with the
surrounding waters by the segmentation algorithm. This approach used an
average of 13.4 minutes to produce detections. In general the detection for this
approach was underwhelming, but the delineation once a slick was detected
was closely in line with the reference data as illustrated by the producer’s
and user’s accuracies. An example of a result from this method can be seen
in figure 7.2. The delineation seems very precise, but a false positive is also
included in the lower part of the image.
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Figure 7.2: One result produced by the Segmentation Assisted Mask R-CNN approach.
The rectangles made up of dotted lines are the bounding boxes of each
detection and the colored shapes within them represent the mask of the
slick as predicted by the method

Table 7.4: Results for Segmentation Assisted Mask R-CNN on the experimentation set.
For each scene the table includes the date the SAR image was taken, the
average wind speed, the average oil concentration and the total released
produced water that day. The release data is only for the named platform,
and therefore only represents one slick in the image. Also included are the
number of slicks in the scene, the number of slicks detected by the method
and the producer’s accuracy for each scene.

Date Platform WS
(m/s)

Conc
(g/<3)

Vol
(<3) Slicks Detected Accuracy

02.04.18 Brage 4.3 15.00 10135 2 2 88%
15.08.18 Brage 8.2 18.46 19285 4 4 85%
20.12.18 Norne 7.4 5.1 25462 1 0 –
08.02.19 Norne 4.1 11.79 20437 1 1 86%
06.06.19 Norne 5.9 10.74 17594 1 1 87%
26.11.19 Brage 2.0 19.69 16203 7 0 –
25.02.20 Norne 5.7 5.5 21484 1 0 –
17.06.20 Brage 4.2 21.42 8864 1 1 88%
17.08.20 Brage 2.6 8.4 12176 1 0 –
01.10.20 Norne 5.5 16 20776 1 1 84%
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7.3 Human Assisted Segmentation Classification

This method was tested on the experimentation set. In six out of the ten, slicks
were clearly separated from the surrounding water and could be picked out.
In the other four the slicks were segmented together with the surrounding
water and therefore impossible for a human operator to identify. There were
all together twenty slicks in the scenes of which ten were detected. This results
in a detection rate of 50%. In the scenes where the slick was possible to
pick out the approach produced an average users accuracy of 91% and an
average producers accuracy of 88%. Omission errors were more common than
commission errors meaning that compared to the ground truth data, it is more
common to make an error of excluding a pixel that is part of the slick than
including one that is not. This could be because the polygons that are used to
form the ground truth cover a slightly larger area than the slick itself because
of slightly inaccurate delineation from the human operator. Table 7.5 shows
the results for HASC for the experimentation set. In figure 7.3 an example of
one of the resulting segments is shown.

Figure 7.3: Result of one scene classified done by human assisted segmentation classi-
fication. The yellow pixels are classified as background and the blue pixels
are classified as produced water.
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Table 7.5: Results for Human Assisted Segmentation Classification on the experimen-
tation set. For each scene the table includes the date the SAR image was
taken, the average wind speed, the average oil concentration and the total
released produced water that day. The release data is only for the named
platform, and therefore only represents one slick in the image. Also in-
cluded are the number of slicks in the scene, the number of slicks detected
by the method and the producer’s accuracy for each scene.

Date Platform WS
(m/s)

Conc
(g/<3)

Vol
(<3) Slicks Detected Accuracy

02.04.18 Brage 4.3 15.00 10135 2 2 92%
15.08.18 Brage 8.2 18.46 19285 4 4 89%
20.12.18 Norne 7.4 5.1 25462 1 0 –
08.02.19 Norne 4.1 11.79 20437 1 1 89%
06.06.19 Norne 5.9 10.74 17594 1 1 88%
26.11.19 Brage 2.0 19.69 16203 7 0 –
25.02.20 Norne 5.7 5.5 21484 1 0 –
17.06.20 Brage 4.2 21.42 8864 1 1 90%
17.08.20 Brage 2.6 8.4 12176 1 0 –
01.10.20 Norne 5.5 16 20776 1 1 83%

7.4 Effects of Weather Conditions and Oil
Release

To evaluate the performance of each approach under different conditions the
dataset was organized based on in situ data. To get a large enough dataset
both the training set and the validation set was used for these experiments. For
the first experiment the dataset was grouped by local wind speeds around the
given platform, and the results of this can be seen in table 7.6. In general the
data shows that very high an very low wind speeds make the slicks difficult
to detect, which is to be expected as both have earlier been shown to lessen
the damping ratio of the slicks. This effect clearly has a stronger impact on the
segmentation-based approaches.
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Table 7.6: Producer’s accuracy of the approaches under different wind conditions. The
wind speeds are the average wind speed for each day. The accuracies are
the average accuracies of how many slick pixels were correctly classified.
For HASC ten randomly selected scenes from each group was used.

Wind Speed(m/s) DMRCNN SAMRCNN HASC Average

0.0-2.0 27% 0% 0% 9%
2.0-4.0 67% 21% 23% 37%
4.0-6.0 77% 59% 63% 66%
6.0-8.0 81% 63% 69% 71%
8.0-10.0 79% 66% 67% 71%
10.0-12.0 64% 43% 45% 51%
>12.0 17% 4% 6% 12%

For the second experiment the scenes were organized by the daily oil release
from the given platform. The oil release was calculated by multiplying the oil
concentration of the produced water with the released produced water volume
resulting in the total oil released over the course of a day. The results of this
experiment can be seen in table 7.7. In general it was shown that increased oil
release led to better detection. This is to be expected as increased oil release
leads to larger and more visible slicks as we can see from figure 7.4. It is clear
from this plot that there is some correlation between the slick size and the
released oil from the platform.

Figure 7.4: Scatterplot of all slicks plotted with oil release for the given day and the
size of the slick as determined by the reference data. The daily oil release
is calculated by multiplying the average oil concentration of the produced
water with the daily release volume.
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Mask R-CNN was shown to have some issues when delineating very large slicks
which explains the dip in accuracy for the two approaches that employs deep
learning when the oil content gets very high. Through a visual inspection in
the cases where Mask R-CNN underperformed it seems that in particular long
and narrow slicks or slicks with complex geometries produced lower detection
rates and higher degrees of inaccuracy for both approaches that employ Mask
R-CNN. One such slick is illustrated in figure 7.5.

Table 7.7: Producer’s accuracy of the approaches in relation to the amount of oil
released from the platform. The Oil Content is the daily release from the
platforms calculated by multiplying the concetration of the produced water
with the produced water volume. The accuracies are the average accuracies
of how many slick pixels were correctly classified. For HASC ten randomly
selected scenes from each group was used.

Oil Content(kg) DMRCNN SAMRCNN HASC Average

<100 32% 35% 46% 38%
100-150 59% 47% 51% 51%
150-200 71% 54% 56% 60%
200-250 77% 59% 61% 66%
250-300 83% 62% 63% 69%
350-400 79% 67% 69% 72%
>400 74% 65% 72% 70%

Figure 7.5: A scene of complex geometric shapes around the Norne platform.
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Discussion
In the previous chapter the experimental results for each of the proposed
approaches were presented. Here we discuss the results and their implications.
First, it is of interest to compare the approaches in accordance to the stated goal
of creating and evaluating robust approaches to produced water slick detection
and delineation. Thereafter the effects of external factors are discussed before
some error sources for this work are presented.

8.1 Comparison

HASC was shown to have very clear delineations by it’s high producer’s and
user’s accuracy in the cases where it detected a slick. Through visual inspection
and comparison with the original scenes this approach did even in some cases
seem more precise than the reference data produced by human operators.
HASC did however have a severe drawback in it’s ability to detect slicks,
with around five out of every ten slick being impossible to identify in the
segmented image. The segmentation algorithm is slow, taking upwards of
ten to fifteen minutes to produce a segmented image. This high time cost is
especially problematic when working with large amounts of data. HASC has
the disadvantage, when compared to the other approaches, that it is not fully
automatic. It is still dependent on human input to produce classifications. Even
so it does produce very accurate delineations with a very low degree of human
involvement. The forced human involvement could also function as a fail-safe
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and guarantee the quality of the results.

SAMRCNN is the slowest of the approaches tested in this thesis. It consists of
two steps,wherein the first segmentation takes upward of ten to fifteen minutes
as pointed out earlier. This becomes a bottleneck, resulting in long processing
times, even though the neural network is reasonably fast. SAMRCNN is fully
automatic and produces very precise delineations, but is hampered by the low
rate of detection in cases where the segmentation is unable to distinguish slicks
from the surrounding waters. There are also examples of the neural network
not being able to detect a slick even if the segmentation algorithm successfully
separates it, but this issue is far less common. As with HASC, the segmenta-
tion algorithm too often segments slicks in with the background, making it
impossible for the trained model to identify them. When the slick is segmented
successfully by the segmentation algorithm, this approach represents a fully
automatic method for detection and delineation of produced water slicks with
more precise delineations than DMRCNN as made clear by the accuracy of
SAMRCNN in the cases where it is able to detect a slick. We can see from
table 7.4 that the producer’s accuracy is very high in the cases where a correct
detection is made, but the overall performance of the approach is reduced by
the low detection rate.

DMRCNN, when trained, is fast compared to the other approaches, producing
results in only a few seconds. It can process and produce both bounding
boxes and masks for produced water slicks in the scenes efficiently. Using the
trained model is also simple and can be run on large datasets simultaneously.
The network can be trained for different datasets if the scenes one need to
observe somehow differs greatly from the ones used in this thesis. The Mask
R-CNN models does however take a long time to train. Depending on the
training parameters, training times of between 30 and 45 hours were recorded.
Even though the Mask R-CNN can be trained for differing data, this is time
demanding. DMRCNN was shown to have the highest detection rate of all
three approaches tested in this thesis. The delineations produced were not as
precise as the two other approaches and suffered particularly for slicks above
15 kilometers in length and less than 100 meters across and slicks containing
complex geometric shapes.

Both approaches that employ Mask R-CNN exhibited reduced accuracy and
detection for long narrow slicks and slicks with complex or unique geometries.
These types of slicks are not very common and are mostly formed when the
oil released through produced water over the course of a day is above around
400 kg. The rarity of these types of slicks is the most likely explanation for
the reduced accuracy of the machine learning based approaches. These are
dependent on training on the object they are meant to identify, and it is
expected that rare features will be more difficult for them. In earlier works



8.1 comparison 63

complexity (C) and spreading (S) have been used to describe the shape aspects
of the slicks [20]. Average accuracy seems to start decreasing at a threshold
value for both S and C. When either S becomes too low or C becomes too high
there is a drop-off both in delineation accuracy and rates of detection. The
dataset used here is not large enough to pinpoint these exact threshold values
or the relation between these attributes and the accuracy, but it is still worth
noting this weakness in these two approaches. Increasing the size of the dataset
could both provide the ability to map this relation and contribute to reduce
it’s effect. A larger dataset can be assumed to contain more examples of both
long narrow slicks and slicks with complex geometries, giving the Mask R-CNN
model more experience with these types of slicks. Increasing the number of
epochs for the training stage of the model was also noted to decrease this
discrepancy but did result in overfitting of the model and a decreased accuracy
for the validation dataset.
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Where P is the perimeter or length in kilometres of the slick, A is the area of
the slick and _1 and _2 are the two eigenvalues associated with the computed
covariance matrix.

Because of the higher detection rate of DMRCNN it in sum produces the
best result of the approaches described in this thesis. HASC and SAMRCNN
do however produce more precise delineations with HASC having the most
precise delineations when taking into account only the scenes where the
approach was able to detect the slicks. HASC also produces no false positives.
Of the three only DMRCNN and SAMRCNN are fully automatic, whereas
HASC depends on a human operator. SAMRCNN was the slowest to produce
detections with HASC being only slightly faster. DMRCNNwas by far the fastest
of the approaches when trained. Given the large number of platforms on the
norwegian continental shelf, the amount of data produced by satellites and
the need for fast production of results, the time needed to make detections,
may be one of the most significant factors when evaluating practical viability.
DMRCNN performs better overall as shown by it’s F1 score of 64% compared
to 44% and 45% for SAMRCNN and HASC respectively. SAMRCNN and HASC
do however, produce more accurate delineations in the scenes where slicks
are detected. Going through individual results for this approach shows that
the largest hindrance for detection is the segmentation algorithm. This implies
that an improved method for semantic segmentation could drastically improve
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results for both HASC and SAMRCNN.

A comparison could be made to the results achieved in similar project to
this thesis [15]. When attempting to automatically detect oil spill in SAR
images using deep learning, it was reported a F1 score of 73.1% for the best
hyperparameters. The best approach proposed in this thesis, DMRCNN, had an
f1 score of 64%. The discrepancy between these two perfomances is most likely
a result of the differing subject matters. While produced water is a type of oil
slick, it is often characterized by being smaller than the oil spills used in [15]
and also usually creates very thin films [11]. These factors make produced
water spills more difficult to detect than spills as discussed in section 3.2.
As [15] concludes with this method being practically viable based on these
results one could argue that with the improvements that will be discussed in
section 10.1 one or more of the proposed approaches in this thesis could also
be viable.

8.2 Effects of Weather Conditions and Produced
Water Releases

Environmental conditions have some clear implications on the performance of
all the proposed methods in this thesis. The produced water slicks are visible
due to the dampening of capillary and gravitational waves caused by the surface
film as discussed in section 3.2. The wind has an effect on the damping ratio
of a slick as theoretically discussed in [75]. This was also shown empirically in
this thesis and has also been shown in earlier research [50, 55]. For very low
wind speeds the damping ratio becomes small since the surrounding waters
become smoother. Comparing the SAR images with the in-situ data, a minimum
threshold for the slicks being observable seems to be around wind speeds of
2 m/s. When the wind speed is too high the damping ratio also becomes low,
because the dampening effect of the film is not sufficient to counteract the
waves caused by the wind. The upper limit for detectable slicks is around 11.5
m/s. These observations also closely resemble the conclusions reached in other
studies [21, 59].

The two approaches that employ a deep neural network, DMRCNN and SAM-
RCNN, are in general more successful at detecting larger slicks than smaller
ones. In both cases it is far more common for slicks that cover few pixels to be
ignored by the model, although the accuracy of the delineation is in general
better for smaller slicks once the slick has been detected. The data does imply
that the amount of oil released affects slick size as seen in figure 7.4. With
higher oil releases, either through increased release of producedwater or higher
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oil concentration in the produced water, the slicks in general become larger.
Conversely this implies that oil concentration and volume of produced water
has an effect on the detectability of the slicks for the deep neural network based
methods. Higher volumes of oil released results in improved detection for these
two approaches. This does however not hold as true for HASC where the ability
to distinguish the slicks is mostly dependent on the backscatter and not the
size of the slick, given that the algorithm processes the scenes at the pixel-level.
The segmenation algorithm provides functionality to process fewer pixels by
using multi-looking or mere pixel reduction. This makes the algorithm produce
results faster but also result in not every pixel being processed individually. In
the case of reduced pixel count for increased segmentation speed, some slicks
are too thin and may not appear in the segmented image. Some very small or
narrow slicks also seem to disappear as a result of the smoothing that is done
to maintain homogeneity of segments in the image. This is the most likely
explanation for there being any effect at all from oil releases on HASC.

Local conditions that have not been studied in this work that might have
an effect on results include rain and snow and ocean currents. It has been
suggested in earlier work [76] that heavy rainfall might contribute to quicker
dispersion of oil slicks due to the turbulence this produces on the ocean surface.
The effect was especially prominent for light oil releases which the produced
water slicks discussed in this thesis would be classified as. This implies that
heavy rainfall would shorten the time a slick would be observable within the
images, meaning the likelihood of detection could go down since constant
observation is not available. Ocean currents are known to be one of the main
drivers of an oil slicks movements together with wind drag [77]. This means
that both the direction of the slick and it’s spread is partially dictated by
the local ocean currents. With the knowledge that particularly the DMRCNN
approach’s performance is dependent on the size and form of the slick, one can
conclude that ocean currents could potentially have a large effect on a slick’s
detectability.

8.3 Error Sources

At the border of an object or between two different classes in an image one can
often find mixed pixels. These are pixels that do not obviously belong to either
class and often have a pixel value that lies somewhere in between the typical
values for the two classes [78]. This is most often a result of the surface area
covered by the pixel containing both types of surfaces making the resulting
intensity a combination of the two. This becomes an issue when doing image
segmentation and semantic object detection because the class affiliation of
the pixel is ambiguous. When the data contains these ambiguities delineation
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becomes less precise and can contribute to lowering the performance of the
object detection.

All the approaches proposed in this thesis classify every pixel binarily. This
results in the issues related to mixed pixels and set an upper limit to the
precision of delineations. Any producedwatermask suggested by thesemethods
can only be as precise as the pixels, meaning that the resolution of the image, in
this case 5x20 meters, represents the maximum precision of the models ability
do depict the ground truth.

Any supervised machine learning method is limited by the quality of the
training data. In the case presented in this thesis, one limiting factor for
training data accuracy are the potential human errors in the making of the
detection polygons. These are based only on human observation of the SAR
images. The delineation in some cases is sub-optimal as can for example be
seen in figure 8.1. In this figure one can clearly see that the polygon does not
perfectly align with the outline of the slick. This imperfection in turn makes
the model created by the neural network less accurate in its delineation and
therefore affects it’s performance. A perfect approach could in this case at the
very best be producing results that match exactly the ones created by human
operators.

The imperfect nature of the polygons also have an effect on the evaluation of
the result, since our empiric evaluation of the classification use the polygons as
reference data. A method performing better than the capabilities of a human
operator would by this evaluation standard have a lower accuracy than if the
method matched the quality of human interpretation perfectly. DMRCNN, in
particular, has a tendency to produce false positives and this is one of the
weaknesses of this approach. When viewing these false positives, some seem
to be actual slicks that the human operator has failed to detect, but without
reference data to document this, the exact prominence of this occurrence is
not possible to determine. These false positives are considered errors in the
evaluation of the method, but could in reality represent an advantage compared
to the current human-based slick detection work.
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Figure 8.1: A polygon marking a produced water slick from the Norne platform.

The methods described in this thesis were designed based on a very homo-
geneous dataset. The scenes themselves were taken over only two areas and
the variety in surface types included is limited. Both the training data and
the validation data for the deep learning based methods were from this same
dataset. It has therefore neither been tested nor trained on scenes from a
different source or from a different area. This might result in the proposed
method performing worse when presented with data from different areas. The
Mask R-CNN algorithm is designed to counteract this somewhat by augment-
ing the data during training, but before the method is tested on a broader
variety of different datasets the robustness and flexibility of the method can
not be confirmed. In addition to this the dataset does not contain many ex-
amples of other types of slicks and look-alikes. This means that the methods
ability to distinguish produced water slicks from other similar features may be
limited.
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The wind speeds used in this thesis to evaluate the effects local wind conditions
have on detectability are based on hourly measurements at approximately the
time the images were taken. For the purposes of a general understanding of
the effects this is sufficient, but it is worth noting that the data used does
not indicate the exact conditions at the exact time the SAR image was taken.
As wind speeds can change drastically over very short time increments, the
resulting analysis might be partially corrupted in cases where the current wind
conditions varies greatly from the closest measurement. In addition to this, the
measurements of the wind speeds used were taken at the platforms themselves.
The local wind speed could vary throughout the image, and this can in fact
be seen in some cases. This could effect the detectability, especially for slicks
from other platforms in the scenes and this could in turn have an effect on the
calculated results. These two factors combined lend some uncertainty to the
evaluation of the effects of wind on a slicks detectability.

For HASC the human interpretation used for testing in this thesis has not been
carried out by a trained expert. This might have affected the results for this
approach in particular as a trained operator may produce better results than
what is presented here.



9
Conclusion
The goal of this thesis was to create robust and flexible approaches for produced
water slick detection anddelineation. Themodels should be capable of detecting
and precisely delineating the slicks while ignoring other features such as natural
films and low-wind areas. The criteria for the work presented were stated as
follows:

• Propose automatic or semiautomatic approaches for detecting and delin-
eating produced water slicks in marine SAR images.

• Evaluate environmental and operational conditions that affect the per-
formance of the approaches and the viability of automatic and semiauto-
matic methods of produced water detection.

• Identify future improvements to data or modelling techniques that could
improve automatic detection and delineation of produced water slicks.

This thesis proposed three approaches to produced water slick detection and
delineation in marine SAR images. Two of these methods are wholly auto-
matic and based on deep learning with a convolutional neural network. The
third is a semiautomatic approach meant to simplify and expedite the work
for human operators. The neural networks were trained on pairs consisting
of a Sentinel-1 SAR image and a binary mask drawn at the oil spill detection
service at KSAT. The binary masks were regarded as ground truth and used
for training and validation. Through extensive experimental work the methods
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were evaluated and compared based on both the ability to detect slicks and
ignore other features in the scenes and the accuracy of the delineation. The
three approaches proposed were Direct Mask R-CNN (DMRCNN), Segmen-
tation Assisted Mask R-CNN(SAMRCNN) and Human Assisted Segmentation
Classification(HASC).

Of the three approaches, DMRCNN was the most successful method when it
came to detecting slicks in the scenes. This method is also the most easily
implementable consisting of only a trained neural network that can be applied
directly to SAR scenes. The network then performs both detection and delin-
eation simultaneously. This approach did however have a slightly less accurate
delineation than the two other approaches.

SAMRCNN combined the segmentation of the algorithm described in section
5.2 withMask R-CNN. The workloadwas divided between the two in such a way
that the segmentation algorithm performed the delineation and then the neural
network performed detection on the segmented images. This did improve upon
the delineation compared to the DMRCNN. This approach does however suffer
in the cases where the segmentation algorithm is not able to distinguish the
slicks in the scene from the surrounding waters. This approach is also more
computationally and time demanding than the direct approach.

HASC resulted in the highest accuracy scores of the three approaches proposed
in this thesis for the slicks it was able to detect. It did however have a detection
rate of only 50%. Although not fully automatic like the other two approaches,
it does represent a simplification of the process of detecting and delineating
the slicks. The approach contributed highly accurate delineation in the cases
where an instance was detected, but had the same issue as the Segmentation
Assisted Mask R-CNN when it came to detection. More slicks were not detected
than was the case for DMRCNN.

The limitations and effects of local weather conditions and release circum-
stances have been outlined in this thesis. It was observed that the local weather
conditions and the concentration and volume of the released produced water
had a significant effect on the results achieved. In general wind speeds below
2m/s and above 11.5m/s resulted in slicks being difficult to separate from the
open water or difficult to detect. In particular the two approaches that employ
the segmentation algorithm were sensitive to the wind conditions. The oil
concentration and volume of released produced water has a significant effect
on the size of a given slick. Mask R-CNN in particular performed worse when
attempting to detect very small slicks with areas of around 1:<2, resulting in
there being correlation between the amount of oil released and the results of
DMRCNN and SAMRCNN.
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In sum the DMRCNN showed the most viability for use in a practical application.
This approach had the highest accuracy when it came to detection of slicks, and
is also the simplest to implement after training the model. It should however
be noted that with improved semantic segmentation, SAMRCNN might have
the largest potential for improvement.
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Suggestions for Future
Work

To make the approaches described in this thesis more viable for practical
applications, improvements could be made. Here we have identified possible
areas for further work that could strengthen the methods and improve the
effectiveness of the classification and outlined some possible applications of
this theoretical and experimental work.

10.1 Improvements

The dataset used in this thesis consists of dual-polarization data. Each scene
includes as VV-band and a VH-band. As discussed in chapter 2 using multiple
polarizations in a dataset can provide supplementary information and in that
way improve the quality of image analysis. Adding dimensions to the data does
however provide additional noise and particularly if the added band has a low
SNR, such as is the case for the VH-band. Such bands provide very little useful
information while providing a large amount of additional noise. The difficulty
in interpreting the data in the VH-band is clearly seen in 10.1

Although the VH-channel was ignored in this work, research has shown that
cross-polarization is viable for detection of man-made phenomenon in marine
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Figure 10.1: Subset of scene containing the Brage platform after calibration and
speckle filtering presented in decibel.

areas [79]. These have very high backscatter in cross-polarization channels and
we can also observe in figure 10.1 how bright ships and platforms appear. Since
the produced water slicks that we are trying to detect in this research always
originates from a platform, combining platform detection with the produced
water slick detection presented in this thesis might improve performance.
Platform locations could be used as an internal sanity check for the location
of the slick in the algorithm or be included in the weights of the model. For
future work it would be of interest to see how incorporating this information
could effect the performance of the models described in this thesis.

In this thesis we have limited our dataset to consist of the Sentinel-1 scenes, the
detections from KSAT and some in-situ data. This limitation was specifically
chosen to work directly on detecting produced water slicks in the images
without the use of other known variables. However, for practical applications
there is no reason for excluding any information that can increases the efficiency
and performance of the detection method. The exact geographic locations of
the platforms is known and a usable metric for the method [20]. Instead of
either detecting the platforms or including their location only as a bright spot
in the image, their exact location could be fed directly into the algorithm either
before detection or as a sanity check after the fact. By establishing beforehand
the location of either all platforms in a given dataset or only the ones that are of
interest one could exclude any slick or look-alike that does not originate from
the platforms. This could also be used to ignore produced water slicks from
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other platforms if one is only interested in one or a few specific ones.

The Mask R-CNN that is utilized in this thesis is often referred to the state-
of-the-art algorithm for object detection and instance segmentation [68]. It is
built on top of the previous Faster R-CNN [67] algorithm and has been used
for a wide variety of applications such as self-driving cars, medical imagery
and microscopy [80–82]. It has proven to have good results for a myriad of
these applications and different types of images. In this thesis we discuss the
viability for the application on detection and delineation of produced water
slicks. Since Mask R-CNN’s creation in 2017 there has been some progress on
improving on it [83, 84]. By using an improved version of the network in the
future one could expect to achieve better results than what was noted in this
thesis. Especially would improving the networks ability to detect very small
objects significantly improve on the results. One proposed way to improve
detection of smaller objects is to multiply the number of small objects in the
training set [85]. This addresses the issue of small objects taking up relatively
small parts of the images giving the network less data to train on and also
results in more instances of small objects in the training set. As Mask M-RCNN
detects individual instances this should not corrupt the data in any way and
could prove a viable improvement of the network for the purposes of produced
water detection.

When evaluating the effects of local weather conditions on the performance
of the approaches in this thesis, only the current wind conditions were consid-
ered. Inertia in the local system, including surface waves and conditions and
wind-driven currents would imply that the effects of wind are not completely
instantaneous. It is likely that earlier wind conditions also have an effect on
the directions of the slick and its detectability. In figure 3.2 for example, we can
see that the slick is travelling in a different direction than the wind direction.
Including existing work on these long term effects of local conditions and
oil slick travel could provide interesting insight into the movement and drift
of produced water slicks and potentially improve detection accuracy for the
approaches proposed here [86].

10.2 Applications

As of now the main method used for detecting and delineating produced water
slicks in SAR images is manual observation by human operators. Automating
this process would cutmanpower hours needed for these operations, potentially
saving operating entities expenses and allow for more efficient use of human
assets. To be viable for this use, an implementation must be built based on the
theoretic background described in this thesis. Building on this work to create
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a program that automatically takes in SAR data as it’s coming in, detects and
delineates the images and stores it in a practical matter for the operating entity
is a suggested area for further work. For the direct Mask R-CNN approach this
would entail connecting the trained model to the existing framework of a given
operator. Then running the images through the preprocessing steps and the
model to produce results. For the Segmentation Assisted Mask R-CNN one has
to create an implementation that first runs the image through the segmentation
algorithm and then takes the result as input into the pretrained Mask R-CNN.
Human Assisted Segmentation classification requires an implementation of the
segmentation algorithm and a user interface for the human input. This user
input should be fast and only need simple keyboard inputs. When this approach
has been used in experiments for this thesis, the human input has been given
through coding, which is not practical for real world implementations.

One of the main concerns for the monitoring of produced water releases is
discrimintating between legal releases as part of regular operations and illegal
releases. As of yet the main method for bringing to light illegal releases or deter-
mining the release volumes of oil and gas installations is on site measurements.
This is a time demanding procedure that can be easily circumvented by groups
operating in bad faith. Discerning information about the hydrocarbon content
and volume of releases using remote sensing techniques would greatly improve
governing entities ability to monitor the relevant operators. It could prove very
useful to combine a statistical method [16] that can identify properties of the
released produced water from SAR data with the approaches for automatic
detection and delineation proposed in this thesis. This would provide daily
automatic tracking of release data for every installation under a governing
agency’s jurisdiction.

An interesting application for the approaches proposed in this thesis arises from
its potential synergy with inroads that have been made regarding detection
of other ocean features [13, 15, 87, 88]. By combining automatic detection of
produced water with automatic detection of other ocean features one could
in theory create a method for automatic classification of all marine features
from SAR data. A constant and wholly automatic classification of all features in
marine SAR images would be useful for a wide specter of different fields such
as military, environment and climate studies. This could also have significant
academic and economic values and be a great contribution to the field of earth
observation.
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