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ABSTRACT The multiple signal classification algorithm (MUSICAL) is a statistical super-resolution
technique for wide-field fluorescence microscopy. Although MUSICAL has several advantages, such as its
high resolution, its low computational performance has limited its exploitation. This paper aims to analyze
the performance and scalability of MUSICAL for improving its low computational performance. We first
optimize MUSICAL for performance analysis by using the latest high-performance computing libraries
and parallel programming techniques. Thereafter, we provide insights into MUSICAL’s performance bottle-
necks. Based on the insights, we develop a new parallel MUSICAL in C++ using Intel Threading Building
Blocks and the Intel Math Kernel Library. Our experimental results show that our new parallel MUSICAL
achieves a speed-up of up to 30.36x on a commodity machine with 32 cores with an efficiency of 94.88%.
The experimental results also show that our new parallel MUSICAL outperforms the previous versions of
MUSICAL in Matlab, Java, and Python by 30.43x, 2.63x, and 1.69x, respectively, on commodity machines.

INDEX TERMS Computational nanoscopy, parallel programming, optimization, super-resolution imaging,
image enhancement.

I. INTRODUCTION
In biomedical imaging, there is a limitation in resolving
details smaller than the Abbe diffraction limit, which itself
is the ratio of the fluorescence emission wavelength to twice
the numerical aperture of the microscopy. There are sev-
eral techniques to overcome the resolution limit, such as
single-molecule localization microscopy (SMLM) [1]–[6],
including stochastic optical reconstruction microscopy
(STORM) [7], photo-activated localization microscopy
(PALM) [8]–[9], multiple signal classification (MUSIC)
[10]–[12], structured illumination microscopy (SIM) [13],
and fluorescence fluctuations based super-resolution
microscopy (FF-SRM) [14]. The multiple signal classifica-
tion algorithm (MUSICAL) [15] belongs to the family of
fluctuations-based super-resolution microscopy and is the
primary focus of this work.

The associate editor coordinating the review of this manuscript and

approving it for publication was Shadi Alawneh .

In the original research article of MUSICAL [15],
the authors showed several advantages of MUSICAL, such
as providing resolution down to 50 nm, low requirements on
the number of frames and excitation power, working at high
fluorophore densities, and working with any fluorophore that
exhibits blinking on the time scale of the recording. Agarwal
and Macháň [15] focused on the conceptual physics and
statistics-rooted development of MUSICAL, rather than opti-
mizing the computational performance. Their article nonethe-
less included a comment on the potential of parallelizability,
which was not been investigated further.

Input to the algorithm is a video of a fluorescently labeled
sample acquired using a high-speed camera. The algorithm
considers a sub-video per pixel by using a small neighbor-
hood kernel around it and generates a local super-resolved
sub-image. The sub-images are then superimposed at the
original location of the pixels to obtain the full field of
view of the super-resolved output image. Since the sub-video
for each pixel is independently processed, MUSICAL has
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the potential for parallelization. The first implementation
of MUSICAL was conducted in Matlab 2012b. The pro-
gram used a graphical user interface (GUI), which is
convenient for users. However, parallelization was not
implemented.

To improve the running time and usability of MUSI-
CAL compared with the first implementation in Matlab,
open-source MusiJ version 0.94 [16] was implemented using
Java with ImageJ, open library ND4J version 1.0.0-beta6.
In open library ND4J, researchers adopted a multi-threading
technique and OpenBLAS for solving large matrix mul-
tiplication. Currently, another protected improvement of
MUSICAL using Python has outperformed the MusiJ-based
version [17]. The Python-based version has used NumPy in
Python for numerical and linear algebra functions.

In [15]–[17], no auto-thresholding schemes were
employed, and the user had to choose a threshold manually
by visual inspection of a singular value graph. This is incon-
venient, heuristic, and time-consuming. To make MUSICAL
more user-friendly, soft-thresholding schemes derived from
a new generalized framework for indicator function design
were proposed [18] which included auto-thresholding based
on the range of the second singular value. That research also
showed that those schemes significantly alleviated the subjec-
tivity and sensitivity of hard thresholding while retaining the
super-resolution ability. Therefore, computationally efficient
auto-thresholding techniques may be quite helpful.

However, a MUSICAL implementation which can per-
form high-throughput super-resolution microscopy through
better efficiency in terms of computational performance is
desirable. The previous versions of MUSICAL in Matlab,
Java, and Python have several limitations in libraries and
techniques for performing high-throughput microscopy; for
example, no parallelization technique was used inMUSICAL
in Matlab, there were no pointers to optimize memory and
caches in all the programs, and OpenBLAS, which does not
have the best performance for large matrix multiplication,
was adopted in ND4J for MusiJ in Java. Through our new
MUSICAL implementation in C++, we resolved all the
listed limitations of the previous versions of MUSICAL by
using Intel Threading Building Blocks (TBB) and the Intel
Math Kernel Library (MKL), and by running our program
on Intel Xeon central processing units (CPUs). To achieve
this goal, we used several approaches for a new parallel
MUSICAL in C++, such as using C++ pointers to outper-
form the other programming languages mentioned, choosing
the best multi-threading technique, optimizing the algorithm
and functions through performance analysis, choosing the
best function to perform high-throughput super-resolution
microscopy, and proposing a fast auto-threshold algorithm.

The contributions of this paper are summarized as
follows.
• We optimize MUSICAL for a performance anal-
ysis. To analyze the correct performance of indi-
vidual components in MUSICAL, we optimize and
implement MUSICAL in C++ to remove the overhead

of high-level programming frameworks such as Java,
Python, and Matlab.

• We provide insights into MUSICAL’s performance.
We have discovered that MUSICAL’s performance
mainly depends on large matrix multiplication algo-
rithms, disproving the hypothesis that MUSICAL’s per-
formance is dominated by singular value decomposition
(SVD) [17].

• We develop a new parallel MUSICAL in C++, evaluate
the performance of MUSICALmethods inMatlab, Java,
Python, and C++, and analyze the scalability of our new
parallelMUSICAL on commoditymachines. Our exper-
imental results show that our new parallel MUSICAL
achieves a speed-up of up to 30.36x on a commodity
machine with 32 cores.

II. OVERVIEW OF MUSICAL ALGORITHM
Various MUSICAL flowcharts have been presented in Mat-
lab [15], MusiJ in Java [16], and Python [17]. To simplify
matters for other researchers who want to re-implement
and understand how we improve the algorithm in a C++
implementation, we present another flowchart of MUSICAL
in Fig. 1. In this flowchart, one block is like a func-
tion. In this manner, we were able to perform a more
systematic performance analysis and simplify our program
optimization.

As illustrated by Fig. 1, we calculate or load a point spread
function (PSF) matrix in step 2. To optimize our program,
we put all mask computations, such as a diagonal Gaussian
mask in step 3, mapping a charge coupled device (CCD)
mask in step 4, and making a three-dimensional (3D) stack
image in step 5, outside loops for multi-threading and scan-
ning windows. To make MUSICAL more user-friendly and
easier to use, we propose an auto-threshold algorithm in
step 6. Steps 7 and 8 are multi-threading and scanning all
pixels, respectively, to obtain windows for super-resolution
processing.

An input stack image in 3D (x-y-t) is divided into several
partitions. Each partition is scanned for every pixel, where
one pixel corresponds to a 3D-cropped window in step 11.

Singular values and singular vectors are calculated for that
window in step 12. Then, singular values are compared with
the auto-threshold value to determine the row positions in
step 13. Those positions divide singular vectors into two
parts, i.e., the signal part and the noise part. Afterward,
we divide the projection of the PSF onto the signal part by
the projections onto the noise part of the input window and
use the power factor α to obtain a reconstructed window in
step 14.

We next rotate the reconstructed window so that it has the
same direction as the input window in step 15 and update that
result into the whole reconstructed image in step 16.Whenwe
scan all pixels of the input image, we stitch all reconstructed
windows together to get the final super- resolution image in
step 17.
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FIGURE 1. The flowchart of the multiple signal classification algorithm (MUSICAL), adapted from [15].
Pink shading indicates contributions of this paper. 3D = three-dimensional; CCD = charge-coupled
device; ROI = region of interest.

As highlighted by pink shading in Fig. 1, our contributions
are a proposed auto-threshold algorithm (step 6), choosing
the best multi-threading technique (steps 7–8), and choosing
the best high-performance computing through large matrix
multiplication (step 14).

III. NEW PARALLEL MUSICAL IN C++

We collect all the salient properties of the body of work
on MUSICAL [15]–[17], such as using floating-point arith-
metic (double-precision floating-point arithmetic was used
in Matlab in [15]), using a squared matrix to get eigen-
values and eigenvectors, sharing buffers for matrices, and
multi-threading. In this paper, through the performance
analysis, we improve MUSICAL’s running time. We first
propose an auto-threshold algorithm to avoid changing a

manual threshold frequently. That algorithm is useful for our
experiments. We contribute to the improvement of MUSI-
CAL in multi-threading optimization by selecting the best
multi-threading technique and optimizing large matrix mul-
tiplication by selecting the latest and best large matrix multi-
plication technique.

A. PROPOSED AUTO-THRESHOLD ALGORITHM
For more user-friendly and easier usage, we propose an
auto-threshold algorithm as shown in Fig. 2. The idea of the
proposed algorithm comes from how users select a manual
threshold in [15]. In that research, the authors sketched sin-
gular value matrix curves where the x coordinate indicates
the square of the window size, the y coordinate presents the
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FIGURE 2. Proposed auto-threshold algorithm.

FIGURE 3. Selected manual threshold on singular value curves in [15].
The x coordinate indicates the square of the window size; the y
coordinate presents the eigenvalues in logarithmic scale.

eigenvalues in logarithmic scale, and the number of curves
equals the number of pixels in a single input frame.

Since singular values are sorted from the biggest value
to the smallest value, the singular value curves are mono-
tonically decreasing. Users normally select a threshold in
the middle vertical direction of the first interrupted point of
singular value curves as presented in Fig. 3. Based on that
action, we propose an auto-threshold algorithm as in Fig. 2.
The details of the algorithm are provided as follows.

Singular value matrix S has a height corresponding to the
square of the window size (Nw) and a width corresponding to
the multiplication of width (W ) and height (H ) of the input
stack image, N 2

w × W ∗ H , which was explained and calcu-
lated in [15]. It is the input of the proposed auto-threshold
algorithm.We convert the singular valuematrix to a row array
by taking the mean of all the columns. We take the mean of
column c as follows:

Sc =

W×H∑
i=1

STic

W × H
, (1)

where Sc is the mean of a set of column c, and
W×H∑
i=1

STic is the

sum of elements from column c of the transposed singular
matrix S. By computation in Eq. (1), we get S:

S =
[
S1 S2 . . . SM

]
, (2)

whereM equals N 2
w.

Next, we take differences and approximate derivatives for
the row array S to get the row array D as follows:

D =
[
S2 − S1 S3 − S2 . . . SM − SM−1

]
. (3)

With the differential array D with M-1 length, we find the
minimum value and its index.

argmin
j∈[1,M−1]

Dj. (4)

We trace the minimum index j of the row array D and
we finally find the auto-threshold value S j. The result of
the auto-threshold algorithm is used for determining the row
position of a singular value for each window in the next
step. The proposed auto-threshold algorithm adopts the same
action of users for selecting a threshold. Furthermore, it com-
putes automatically without user interaction in our MUSI-
CAL program. By doing this, theMUSICAL program ismore
convenient and user-friendly.

B. MULTI-THREADING TECHNIQUES
Multi-threading is the ability of a CPU to execute multiple
threads concurrently. In our implementation in Windows,
we divide the input stack image into partitions.We choose the
best setting for partitions among several settings. The optimal
number of partitions is discussed in Section IV. Then, each
partition is sent to the core to process simultaneously.

No multi-threading technique was used in the first imple-
mentation of MUSICAL in Matlab [15]. For the next imple-
mentation of MusiJ in Java, ThreadPool, Executors, and an
implementation of a lambda function were used for multi-
threading [16]. Another improvement with pool and async
in Python was implemented [17]. However, by implementing
and testing all multi-threading techniques, we choose the best
technique and apply it to our MUSICAL in C++.

In our implementation, we experiment with various multi-
threading techniques, such as the Parallel Patterns Library’s
(PPL) future async combined with parallel_for, Intel TBB

4 VOLUME 9, 2021



Q. Do et al.: Highly Efficient and Scalable Framework for High-Speed Super-Resolution Microscopy

TABLE 1. Running time of our multiple signal classification algorithm in
C++ for multi-threading techniques.

FIGURE 4. Running time graphs for our multiple signal classification
algorithm in C++ for multi-threading techniques.

version 2020.2.216’s parallel_for, C++’s thread, Boost ver-
sion 1.73.0’s async input/output thread_pool, OpenCV ver-
sion 3.4.10’s parallel_for, and PPL’s parallel_for.
We test those multi-threading techniques five times under

the same conditions, such as partitions per core= 1, the same
optical and MUSICAL parameters, and we present the aver-
age running times in Table 1 and the error bars in Fig. 4.
Through experiments with two stack images— InVitroSam-
ple1.tif of size 160 × 160 × 49 and 30.08.19-14.26.00.tif
of size 2048 × 2048 × 500—we select the most suitable
multi-threading technique for our program.

In Table 1 and Fig. 4, we see that with stack image 160×
160 × 49, future async combined with PPL’s parallel_for
gives us the best performance (12.85 s), and the second
best performance is obtained by using TBB’s parallel_for
(13.07 s). The time difference between the two methods is
1.71%. The time difference between the two techniques is
defined as

1T =
T1 − T2
T2

× 100%, (5)

where T1 and T2 are the running time of multi-threading
techniques 1 and 2, and 1T is the time difference between
the two techniques.

However, using the previously mentioned partitions per
core for the larger stack image of size 2048 × 2048 ×
500, the best performance is obtained by TBB’s parallel_for
(2387.18 s), and the lower performance byC++’s std::thread
(2396.57 s), while future async combined with PLL’s paral-
lel_for uses 2546.95 s. The time difference between the two
best methods is 0.39% and that of TBB’s parallel_for and
future async combined with PPL’s parallel_for is 6.69%.

By this performance analysis of various multi-threading
techniques and the experimental results in Table 1 and Fig. 4,
we conclude that TBB’s parallel_for gives us the most
suitable multi-threading technique for our program. TBB
also gave the best multicore programming solution in other
research [19]. That is further evidence of our optimal imple-
mentation for the multi-threading technique.

C. HIGH-PERFORMANCE COMPUTING TECHNIQUES FOR
LARGE MATRIX MULTIPLICATION
In Fig. 1, obtaining the ratio and power block in step 14
includes large matrix multiplication, which is multiplication
between the eigenvector matrix and the PSF mapping matrix.
The size of the eigenvector matrix is N 2

w×N
2
w, while the size

of the PSF mapping matrix is N 2
w × N 2

w × Sub2, where Sub
is the subpixel per pixel factor to present how much super
resolution we want to have. N 2

w and N 2
w× Sub

2 are the height
and width of the CCD matrix, respectively.

In applications, the window size is less than or equal to 11,
Nw ≤ 11, while Sub ≤ 20. In our tests, we use Nw = 7
and Sub= 20 based on the optical characteristics of the stack
image, a discussion of which is out of the scope of this paper.
The choice implies that we have a matrix multiplication of
49×49 and 49×19600 to get a resultingmatrix of 49×19600.
The running time of that multiplication is long since it lies
inside a loop of all pixels of the input stack image. This means
that the number of large matrix multiplications is the same as
the number of pixels of the input stack image. Hence, find-
ing the optimal large matrix multiplication is of paramount
importance for our MUSICAL in C++. To find the best
large matrix multiplication technique, we use stack image
InVitroSample1.tif of size 160 × 160 × 49 since it is large
enough in terms of the number of pixels and is suitable for
the waiting test time. Other input stack images have similar
results.
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TABLE 2. Running time for large matrix multiplication per window for
various techniques with stack image size 160× 160× 49.

FIGURE 5. Large matrix multiplication per window graph of various
techniques for stack image size 160× 160× 49.

We know that MusiJ uses open library ND4J where Open-
BLAS is adopted. Table 2 and Fig. 5 show that MusiJ’s
running time for large matrix multiplication per window is
1.48 ms, 178.98 ms, and 5.58 ms for the minimum, max-
imum, and average time, respectively. We test the latest
large matrix multiplication techniques such as OpenCV’s
cv::gemm, Eigen’s large matrix multiplication, C Basic Lin-
ear Algebra Subprograms’ (CBLAS) cblas_sgemm which
belongs to Intel MKL.

First, we test with OpenCV version 3.4.10’s large matrix
multiplication. The OpenCV time for large matrix multipli-
cation per window is 24.32 ms, 311.8 ms, and 55.71 ms
for the minimum, maximum, and average time per window,
respectively. That performance is worse than the result of
MusiJ.

Second, we adopt Eigen version 3.3.7’s large matrix multi-
plication. The Eigen time for large matrix multiplication per
window is 0.15 ms, 193.96 ms, and 11.72 ms for the mini-
mum, maximum, and average time per window, respectively.
The result of Eigen is better than that of OpenCV; however,
it is still worse than the result of MusiJ.

Third, we adopt CBLAS’s large matrix multiplication
technique from Intel MKL version 2020.2.254. CBLAS’s
running time for large matrix multiplication per window is
0.23 ms, 29.26 ms, and 2.41 ms for the minimum, maximum,
and average time, respectively. Finally, with this technique,
we achieve the best performance compared with the others,

such as the large matrix multiplication techniques in Java,
OpenCV, and Eigen. Hence, we choose CBLAS of IntelMKL
for our large matrix multiplication.

We run the entire program with various large matrix multi-
plication techniques (Table 3). Our MUSICAL in C++ with
large matrix multiplication using CBLAS / Intel MKL gives
us the best performance compared with other techniques,
such as using Eigen, OpenCV, or Java where OpenBLAS
was adopted. By combining Tables 2 and 3, Fig. 6 shows
that MUSICAL’s speed-up is proportional to the large matrix
multiplication’s speed-up.

TABLE 3. Multiple signal classification algorithm’s (MUSICAL) running
time using various large matrix multiplication techniques with stack
image size 160× 160× 49.

FIGURE 6. Proportionality of multiple signal classification algorithm
(MUSICAL) speed-up relative to that of large matrix multiplication
techniques for stack image size 160× 160× 49.

Through this analysis, this paper provides the insight that
MUSICAL’s performance mainly depends on the perfor-
mance of large matrix multiplication algorithms, disproving
the myth that MUSICAL’s performance is dominated by
SVD [17].

In general, matrix multiplication is time-consuming in
terms of the order of O(n3). However, when applying sev-
eral techniques such as optimizing cache, shared-memory
parallelism, etc., the currently smallest running time for
matrix multiplication is O(n2.3728596) [20] and it is applied
in CBLAS. That is further evidence that CBLAS / Intel MKL
has the best performance compared with others.

D. PERFORMANCE ANALYSIS
We have referred to an open-source MusiJ implemented
in Java [16]. We implement our MUSICAL in C++ and
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TABLE 4. Performance analysis and optimization for our multiple signal classification algorithm in C++ with stack image size 160× 160× 49. 3D =
three-dimensional; ROI = region of interest.

optimize our program based on the performance analysis.
To analyze the true performance of individual components in
MUSICAL, we implement ourMUSICAL in C++ to remove
the overhead of high-level programming frameworks such as
Java, Python, and Matlab. That counts as our contribution.

Most of the running time of our MUSICAL is used
for the blocks on the right-hand side in Fig. 1. Hence,
we should focus on those blocks for performance optimiza-
tion. Table 4 shows the results of the performance analysis
and the program optimization for our MUSICAL in C++.
Since there are two loops there, we show the minimum, max-
imum, and average time per thread or window. Table 4 and
Fig. 7 compares the average time per window of each
step’s inside the loop of our MUSICAL in C++ and MusiJ
in Java.

We improve the current implementation of MUSICAL
to analyze the true impact of individual components on
MUSICAL’s performance. For example, wemove CCDmask
mapping outside the loop. In this way, the implementation
time for step 9) initial variables per thread is minimized to
10.92 ms compared with a time in Java of 242.25 ms. Our
new MUSICAL also outperforms MusiJ in Java in step 11)
3D crop, 13) determine row position, 15) rotate 180 degrees,
and 16) update region of interest (ROI) as 0.33ms, 0.0013ms,
0.018 ms, and 0.081 ms compared with 0.49 ms, 0.0014 ms,
0.14 ms, and 0.79 ms, respectively.

FIGURE 7. Comparing average time per window of each step’s inside loop
of our multiple signal classification algorithm in C++ and MusiJ in Java.
3D = three-dimensional; ROI = region of interest.

As mentioned, the best performances in calculating sin-
gular values and singular vectors in step 12, and obtain-
ing the ratio and power in step 14, belong to C++ using
CBLAS / Intel MKL compared with those using Java, Eigen,
and OpenCV. For calculating singular values and singular
vectors per window, CBLAS / Intel MKL uses 0.62 ms on
average while Java, Eigen, and OpenCV consume 1.19 ms
and 0.81 ms, and 0.66 ms, respectively.

Similar to obtaining ratio and power, the average run-
ning time per window of CBLAS / Intel MKL is 2.41 ms
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while Java, OpenCV, and Eigen use 5.58 ms, 55.71 ms, and
11.72 ms, respectively. As a result, we use our new C++
version of MUSICAL with MKL to analyze the actual per-
formance of individual components in MUSICAL.

From Table 4, we compute the time percentage of each
component of our MUSICAL as shown in Fig. 8. We can
count three blocks using the most running time, such as 14)
obtaining ratio and power (69.65%), 12) calculating singular
values and singular vectors (17.92%), and 11) 3D cropping
(9.54%). This means that MUSICAL’s performance mainly
depends on the performance of large matrix multiplication in
step 14) obtaining ratio and power.

FIGURE 8. Time percentage of each component in the main multiple
signal classification algorithm execution. 3D = three-dimensional;
ROI = region of interest.

We apply our proposed auto-threshold algorithm, the
multi-threading technique of TBB, and the high-performance
computing technique for large matrix multiplication of
CBLAS / Intel MKL to our MUSICAL in C++. In addition,
we optimize our implementation. Fig. 9 shows the perfor-
mance analysis of our MUSICAL in C++ on stack image
160× 160× 49.
On the left-hand side of this figure, the program runs

through each block only once. However, on the right-hand
side of this figure, the program runs through each block,
where the number of times is equal to the number of pix-
els of the input stack image. For this reason, there are two
loops on the right-hand side of this figure, indicating the
multi-threading loop and the scanning window loop for all
pixels.

Since we use GUI for convenience and a buffer to keep the
current variable values, we can minimize the running time for
the PSFmappingmatrix in step 2 for the second time running.
In addition, we can save that matrix to a file. If users do not
change the input parameters, the running time for this step is
reduced to the loading time of the file or the loading time of
data from the buffer.

Making a mapping CCD mask in step 4 is also
time-consuming since it has large matrix multiplication
where we apply CBLAS of Intel MKL. Since it occurs only
once, the running time for this step is not significant.

Our proposed auto-threshold algorithm in step 6 takes
3.89 ms, once. That running time is small; hence, our pro-
posed algorithm is simplified. For calculating a singular value
matrix, we can reduce that time by reducing the number
of scanning windows. For example, we can use a gating
technique in which the input stack image is scanned 16 times,
for example, in the vertical direction. That minimizes the
running of this step. However, that step occurs once, and it
is not the intended scope of this paper.

On the right-hand side of this figure, there are two loops.
Hence, adopting high-performance and parallel program-
ming inside these loops is important. We use the best multi-
threading technique, i.e., TBB, to save a maximum of 10.47%
of time consumed as mentioned in Section III.B. Next,
the squaring matrix for calculating singular values and singu-
lar vectors also saves time as presented in [17]. In particular,
applying the large matrix multiplication of CBLAS / Intel
MKL in step 14 gives us 2.41 ms per window, which reduces
by half the time of that step compared with MusiJ, as shown
in Table 4. That is a significant improvement in MUSICAL’s
performance.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
Experiments for this paper were undertaken on an HP
Z4 G4 workstation with Intel Xeon W-2123 3.6 GHz CPU,
32 GB RAM, 8 logical processors, 4 cores, and a 64-bit sys-
tem. The number of threads used by our MUSICAL program
was 8.

To check the improvement of our MUSICAL in C++
compared with other recent research, we chose an input
stack image that was large enough and was suitable for the
waiting test time. Then, we chose four input stack images:
LiveCellMicrotubulesSample1.tif (144 × 144 × 49), InVit-
roSample1.tif (160 × 160 × 49), InVitroSample2.tif (360 ×
208 × 49), and 30.08.19-14.26.00.tif (2048 × 2048 × 500).
To simplify, we call these 144 × 144×49, 160 × 160 × 49,
360×208×49, and 2048×2048×500 for later presentation
of results. We undertook experiments five times with these
images, recorded the average time results (Tables 5-6), and
indicate the error bars in Figures 10-11.

We used the same input parameters for programs inMatlab
2019b, Java, Python, and C++. The optical parameters of
144 × 144 × 49, 160 × 160 × 49, and 360 × 208 × 49
were emission wavelength 510 nm, numerical aperture 1.49,
magnification 100, pixel size 6500 nm, and window size 7.
In addition, the optical parameters of 2048 × 2048 × 500
were emission wavelength 640 nm, numerical aperture 1.2,
magnification 1, pixel size 108 nm, and window size 7. All
input stack images used the same MUSICAL parameters,
such as the activated auto-threshold option, alpha factor 4,
subpixels per pixel 20.

A. PERFORMANCE EVALUATION
We compared the implementations in Matlab, Java, Python,
and our C++ program in terms of their running time.
This provided critical insight to show how our program
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FIGURE 9. Performance analysis of our multiple signal classification algorithm (MUSICAL) in C++ with
stack image 160× 160× 49. 3D = three-dimensional; CCD = charge-coupled device; ROI = region of
interest.

TABLE 5. Our multiple signal classification algorithm’s running times compared with other methods. SMC++, SJC++, and SPC++ represent the increasing
time of Matlab, Java, and Python compared with C++, respectively. NA = not applicable.

was optimized. Using the whole possible hardware resource
was also important. In these experiments, we tested with 1,
4, and 8 threads; then we determined what number of threads
provided the best performance for multi-threading.

In Table 5, we define a speed-up factor, SXY , of our program
compared with the other reference programs implemented in
Matlab, Java, and Python as follows:

SXY =
TX
TY
, (6)

where TX and TY are the running times of implementations X
and Y . SXY indicates the factor with which the implementa-
tion Y performs faster than the implementation X . In detail,
SMC++, SJC++, and SPC++ represent the comparative advan-
tage of C++ implementation over Matlab, Java, and Python
implementations, respectively.

Table 5 shows us that our MUSICAL in C++
used the optimal TBB’s multi-threading technique and
high-performance computing in CBLAS / Intel MKL’s large
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FIGURE 10. Our multiple signal classification algorithm’s running time curves compared with other methods.

matrix multiplication. The optimized program gave us the
best results compared with other programs using Matlab,
Java, and Python in all thread numbers. Among different
numbers of threads, using 8 threads provided us the best
results.

With stack image 144 × 144 × 49, our program used a
minimized time in 8 threads of 10.48 s and Matlab, Java,
and Python had a running time of more than 26.51x, 2.24x,
and 1.54x, respectively. To guarantee that our C++ program
showed improvement compared with other programs in Mat-
lab, Java, and Python, we tested with other sizes. With our
MUSICAL in C++ and 8 threads with stack image 160 ×
160×49, our program provided a minimized running time of
12.85 s.Matlab, Java, and Python used a running time ofmore
than 30.43x, 2.02x, and 1.57x, respectively. In experiments
with 360× 208× 49 we obtained a minimized running time
for our program of 39.67s in 8 threads, while Matlab, Java,

and Python had a running time of more than 26.18x, 1.93x,
1.32x, respectively; using 4 threads, our program used shorter
time than Java by 2.63x.

We tested for another input stack image of size 2048 ×
2048× 500, the largest input stack image we had. We under-
took similar experiments for various numbers of threads
and all the other implementations such as Matlab, Java, and
Python. However, there were limitations for libraries and
programs in Matlab and Java—we could not get their results
for those two programs for the large input stack image. Hence,
in Table 5, we only show the results of Python and C++.

In Table 5, our MUSICAL in C++ shows better per-
formance compared with that in Python for all numbers of
threads for stack image 2048× 2048× 500. Our MUSICAL
in C++ used 2387.18s with 8 threads, while the running time
in Python was 1.29x greater, and it was 1.69x greater for
4 threads. The speed-up performance of our MUSICAL in
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FIGURE 11. Our multiple signal classification algorithm’s scalability on our Linux server.

C++ with 8 threads was not good compared with that of 4
threads for two reasons:

• The CPU cache per core was 2.06 MB, while the cache
requirement for subpixel= 20 was 3.66MB. Because of
a lack of high-speed memory, the program used lower-
speed memory, such as RAM.

• The CPU speed was reduced when using more
than 2 cores in W-2123 CPU frequency behavior
since the AVX512’s instructions for multiplications of
floating-point numbers created a lot of heat, forcing the
cores to clock down.

However, the performance of our MUSICAL in C++ was
better than in the other programs. This was due to the best
multi-threading technique of Intel TBB and the best large
matrix multiplication in CBLAS / Intel MKL. On the other
hand, MUSICAL in Python uses classic pool and async for
the multi-threading technique and NumPy for large matrix
multiplication.

To demonstrate the improvement obtained by using our
method, we present the running time of MUSICAL programs
in Matlab, Java, Python, and C++ in Fig. 10. The blue curve
at the bottom of Fig. 10 shows that our MUSICAL in C++
outperformed that in Matlab, Java, and Python in terms of the
running time, with the same input conditions and the same
system platform.

Through the experimental results of four input stack
images for programs in Matlab, Java, Python, and C++, our

MUSICAL in C++ provided us the best results compared
with the others. It outperformed when the number of threads
was 1, 4, or 8, especially 8. Hence, we conclude that our
MUSICAL in C++ provided us the best performance in
terms of the running time, with the same input conditions and
the same system platform.

B. SCALABILITY EVALUATION
To test the scalability of MUSICAL in an upgrading sys-
tem, we transferred the MUSICAL program to our Linux
server. We used a Red Hat Linux server with Intel Xeon
Gold 6130 processor, CPU 2.1 GHz, 32 cores, 2 sockets,
16 cores per socket, CPU minimum speed 1 GHz and CPU
maximum speed 3.7 GHz, and a 64-bit system. The software
and libraries used were g++ 10.2.1 and OpenCV 3.4.14,
respectively, where MKL and TBB should be activated ON
(Intel TBB and Intel MKL version 2020.4.304).

We experimented with our Linux server as in Visual Studio
C++ 2019, Windows 10, with the four stack images. We ran
the experiments five times, obtained the average running time
and the speed-up factor as defined in Eq. (6), and present the
error bars in Fig. 11. To improve scalability and parallelism,
we took the following steps:
• Big enough number of partitions: Since scalability
depends on the computational load and the number of
partitions to enable parallelism, the number of parti-
tions should be 300–500 times the number of cores,
i.e., 10368 partitions for stack image 144× 144× 49,
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12800 partitions for stack image 160 × 160 × 49,
18720 partitions for stack image 360 × 208 × 49, and
16384 partitions for stack image 2048× 2048× 500.

• Last-Level Cache (LLC) misses less than 5%: We
used the perf stat -r 5 -e task-clock, cycles, instruc-
tions, LLC-loads, LLC-load-misses function to monitor
utilized cores and LLC misses. Through our experi-
ments, to improve the scalability we also guaranteed
LLC misses of less than 5%, which did not hurt overall
performance.

• Cache balance: Our Linux server used an Intel Xeon
Gold 6130 processor, which has a 22 MB cache for
16 cores, i.e., a 1.375 MB cache for each core. However,
MUSICAL needs a 3.66 MB, 2.06 MB, and 0.92 MB
cache for the CCD mask of subpixel factors 20, 15, and
10, respectively. When we used a high subpixel factor,
for example 20 or 15, the efficiency of cores was high,
but LLC misses were more than 5%. When we used
a small subpixel factor, for example 10, the efficiency
of cores was not very high, but we guaranteed that
LLC misses were less than 5%. To balance the scalabil-
ity, CPU cache, and cache requirement of MUSICAL,
we used a subpixel factor of 10.

• Using the AVX2 instructions: We chose the AVX2
instructions when we built OpenCV on our Linux
server. With that option, we used 256-bit vectors instead
of 512-bit vectors, which made overheat and clock
down.

• Optimal CPU speed: The Intel Xeon Gold 6130 pro-
cessor reduced speed when we increased the number
of cores from 3.5 GHz to 1.9 GHz [21], since the
AVX2’s or AVX512’s instructions for multiplications
of floating-point numbers created a lot of heat, forcing
the cores to clock down. To assess the scalability while
discounting this effect, we clamped CPU speed such
that all cores should use the same speed as 1.9 GHz by
using function: sudo cpupower -c all frequency-set -u
1900MHz. Finally, our new parallelMUSICAL achieved
a speed-up of up to 30.36x on our Linux server with
32 cores (efficiency 94.88%) as shown in Fig. 11 and a
minimized running time of stack image 2048× 2048×
500 in 99.59 s. Other images shared in [15] have similar
scalability results.

Through the results in Table 5 and Figs. 10 and 11, we con-
clude that if we upgrade the system platform, i.e., increase the
number of cores together with their caches, our MUSICAL’s
running time will decrease in linearity.

C. AUTO-THRESHOLD EVALUATION
In [15]–[17], there was no auto-threshold algorithm. Users
chose a manual threshold based on a singular value matrix
graph [15] and [16], as shown in Fig. 12, or directly put a
threshold value in a text file based on their experience [17].
It is inconvenient, heuristic, and time-consuming to take at
least several seconds to choose a threshold compared with an

FIGURE 12. Manual threshold selection in the latest researches.

FIGURE 13. Evaluation example for the proposed auto-threshold
algorithm.

auto-threshold time of 3.89 ms as shown in Fig. 9. If users
choose a threshold without a singular value matrix graph,
it can sometimes be wrong threshold and then the object can-
not be reconstructed in the MUSICAL results, for example
in Fig. 13b.

Since a threshold is a singular value to divide a singular
value matrix into two parts, i.e., a signal part and a noise
part, we can choose a number, for example 0.1. Then, it may
work, although not perfectly for all cases. To guarantee that
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TABLE 6. Auto-threshold results. MUSICAL = multiple signal
classification algorithm.

the auto-threshold algorithm may return a bad value, we have
‘‘Manual Threshold’’ option.

To test the accuracy of the proposed auto-threshold algo-
rithm, we set the ‘‘Auto-Threshold’’ option in the GUI of
our MUSICAL in C++. For convenience, we selected two
numbers of frames, such as 49 frames and 500 frames. The
three outputs were auto-threshold value, auto-threshold eval-
uation, and MUSICAL’s running time. Through extensive
simulations, we obtained perfect auto-threshold accuracy as
shown in Table 6.

To evaluate our proposed auto-threshold algorithm,
we tested each case and observed the results. If the contents of

FIGURE 14. InVitroSample1.tif image quality for a) original, b) result in
Matlab [15], c) result in Java [16], d) result in Python [17], and e) our
result in C++.

objects had super resolution as is the purpose of MUSICAL,
it was a successful auto-threshold case. Otherwise, it was a
failed case. Fig. 13 demonstrates a successful case and a failed
case as an example of auto-threshold algorithm evaluation.
If we had used a random threshold, the MUSICAL results
may have been the same as the failed auto-threshold results.

Using the 74 stack images in the shared research of [15],
we get 100% successful auto-threshold results. Through the
experimental results in Table 6, we see that our proposed
auto-threshold algorithm is reliable. Hence, we conclude that
our proposed auto-threshold is more user-friendly, since it can
be used automatically without user interaction and is suitable
for real-life applications (auto-threshold time 3.89 ms and
100% successful auto-threshold results).

D. IMAGE QUALITY
This research focuses on optimizing the running time of
MUSICAL while keeping a similar quality of reconstructed
MUSICALoutput image comparedwith other previousmeth-
ods. Hence, we compared the output of our MUSICAL in
C++ with that in other recent research, such as programs in
Matlab, Java, and Python.

Fig. 14 uses InVitroSample1.tif of size 160 × 160 ×
49 as an example of an image quality comparison of our
MUSICAL in C++ with other methods. Through running
MUSICAL programs in Matlab, Java, Python, and C++,
we obtained a super-resolution output image of size 3200 ×
3200. We did the same for the other input stack images. The
results in Fig. 14 show that our MUSICAL in C++ retained
a similar image quality compared with the other MUSICAL
programs in Matlab, Java, and Python.

E. FUTURE WORK
Through the scalability analysis, in future work, we will
extend our research to a cluster of computers and use graphics
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processing unit (GPU) for our program. The efficiency of the
cluster and GPU approach was also proved in [22]. In addi-
tion, a review of computational approaches from the past to
the future to obtain super-resolution microscopy is presented
in [23].

For a cluster of computers, new programming codes are
needed to coordinate the work of all computers together.
One candidate is open-source UPC++ developed by the
Lawrence Berkeley National Laboratory. Since we can divide
the input stack image into partitions, i.e., the maximum
number of partitions is the same as the number of pixels,
and MUSICAL can enable parallelism with those partitions,
a larger number of cores in a cluster can be utilized to speed
up MUSICAL. By increasing the number of cores, we may
get better results.

Since we need results for real-life applications with large
input stack images, i.e., 2048 × 2048 × 500, another choice
is using GPU. GPU has its own high-performance parallel
programming. In addition, one normal GPU has thousands
of cores. These conditions are suitable for MUSICAL’s high
scalability and parallelism.

V. CONCLUSION
In this paper, the optimization of MUSICAL has been
achieved through performance analysis. By using C++ with
the latest high-performance computing and parallel program-
ming techniques, our new parallel MUSICAL in C++ out-
performed the other MUSICAL versions in Matlab, Java,
and Python. With the same input conditions and the same
system platform, the optimized MUSICAL in C++ has a
running time 30.43x, 2.63x, and 1.69x shorter compared
with that in Matlab, Java, and Python, respectively, while
the image quality of the MUSICAL output is similar to
that in the other programs. In particular, our new parallel
MUSICAL achieves a speed-up of up to 30.36x on our
Linux 32-core server (efficiency 94.88%).Moreover, we have
provided insights into MUSICAL’s performance and scala-
bility to determine further performance improvement possi-
bilities, for example exploiting GPUs and high-performance
computing clusters. Finally, we have proposed a simplified
auto-threshold algorithm to improve MUSICAL’s usabil-
ity. We expect that significantly faster and scalable MUSI-
CAL implementation will enable MUSICAL to perform
high-throughput super-resolution microscopy in which the
computation time is the main roadblock.
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