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Abstract
In the article a convergent numerical method for conservative solutions of the Hunter–
Saxton equation is derived. The method is based on piecewise linear projections,
followed by evolution along characteristics where the time step is chosen in order to
prevent wave breaking. Convergence is obtained when the time step is proportional to
the square root of the spatial step size, which is a milder restriction than the common
CFL condition for conservation laws.
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1 Introduction

The Hunter–Saxton (HS) equation is given by

ut (t, x) + uux (t, x) = 1

2

∫ x

−∞
u2

x (t, y) dy − 1

4

∫ ∞

−∞
u2

x (t, y) dy. (1.1)

It was derived, in differentiated form, from the nonlinear variational wave equation
ψt t − c(ψ)(c(ψ)ψx )x = 0 as an asymptotic model of the director field of a nematic
liquid crystal [13]. Furthermore, the Hunter–Saxton equation is the high frequency
limit of the Camassa–Holm equation [6]. It is completely integrable [14] and can be
interpreted as a geodesic flow [17].

Another main property is that weak solutions are not unique, see e.g. [15,16]. The
main reason being the following: Solutions of (1.1) may experience wave breaking in
finite time, i.e., ux → −∞ pointwise while the energy ‖ux (t, ·)‖2 remains uniformly
bounded and the solution u stays continuous. Furthermore, a finite amount of energy
is concentrated on a set of measure zero.

We illustrate wave breaking with an example by considering a peakon solution
— a soliton-like solution that is continuous and piecewise linear in space. It is not a
classical solution. Indeed the function is not differentiable at the break points between
the linear segments.

Example 1 (Wave breaking for peakons) A particular peakon solution that illustrates
wave breaking is given by

u(t, x) =

⎧⎪⎪⎨
⎪⎪⎩

1 − 1
2 t, x < −1 + t − 1

4 t2,

− 1
1− 1

2 t
x, −1 + t − 1

4 t2 ≤ x ≤ 1 − t + 1
4 t2,

−1 + 1
2 t, 1 − t + 1

4 t2 < x,

with 0 ≤ t < 2. Note that for t < 2,

(
ux (t, x)2

)
t
+
(

u(t, x)ux (t, x)2
)

x
= 0,

that is ‖ux (t, ·)‖2 is a conserved quantity. As t → 2−, we see that ux (t, 0) → −∞
while the interval [−1+ t − 1

4 t2, 1− t + 1
4 t2] shrinks to a single point Fig. 1. One can

check that the function u remains uniformly bounded and uniformlyHölder continuous
with exponent 1

2 on [0, 2] × R.

It is possible to extend weak solutions past wave breaking in various ways, see
[1–3,9,19]. One could ignore the part of the solution that blows up. That amounts to
continuing the solution in Example 1 as u(t, x) = 0 for all t ≥ 2. Such solutions are
called (energy) dissipative and are unique [5,7]. A different approach is to “reinsert”
the energy after wave breaking to get (energy) conservative solutions. To extend the
solution in Example 1 as a conservative solution we let the formula defining u hold for
t ≥ 2 as well. Uniqueness of conservative solutions is only known in several special
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Fig. 1 The solution in Example 1 as t tends to 2 (left). The (characteristic) curves describing the position
of the break points in Example 1 (right)

cases [25,26]. The different solution concepts mimic the ones for some closely related
equations: the Camassa–Holm equation [4], the nonlinear variational wave equation
[21], and various generalizations of these equations.

From now on we focus on weak solutions that preserve the energy, that is con-
servative solutions. It has been shown in [2] that there exists a Lipschitz continuous
semigroup of weak conservative solutions to (1.1). Existence of solutions is proved
using Lagrangian coordinates and characteristics. Note that the curves describing the
position of the break points in Example 1 are examples of characteristic curves.

To prolong the solution past wave breaking and to attempt to overcome the non-
uniqueness of weak solutions past wave breaking, we include the cumulative energy
F as part of the solution. The HS equation is then reformulated as

ut + uux = 1

2
F − 1

4
F∞, (1.2a)

Ft + uFx = 0, (1.2b)

with appropriate initial conditions and the conditions

F(t, x) = μ(t, (−∞, x)) for some positive, finite Radon measure μ(t, ·),(1.3a)
lim

x→∞ F(t, x) = F∞, (1.3b)
∫ b

a
u2

x (t, x)dx = μac(t, (a, b)), (1.3c)

whereμac(t, ·) is the absolutely continuous part ofμ(t, ·). A closer look at the imposed
conditions reveals that one challenge is to find a numerical method that respects con-
dition (1.3c). The key to overcome this difficulty is to consider (1.2) with the slightly
more general conditions (1.3a), (1.3b), and

∫ b

a
u2

x (t, x) dx ≤ F(t, b) − F(t, a). (1.4)
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This new system is a reformulation of the so-called two-component Hunter–Saxton
(2HS) system, which not only generalizes the HS equation, but can also be studied
using the same methods and ideas, see [9,19]. Moreover, every conservative solution
to the HS equation can be approximated by smooth solutions of the 2HS system. Of
particular interest for us is the fact that if u and F are piecewise linear and continuous
on some interval [c, d] and

∫ b

a
u2

x (t, x) dx < F(t, b) − F(t, a) for all c ≤ a < b ≤ d,

then this property will be preserved along characteristics and no wave breaking takes
place. Furthermore note that applying a piecewise linear projection operator to pairs
(u, F) satisfying (1.3c) yields pairs (ũ, F̃) satisfying (1.4). Thus using the method
of characteristics and piecewise linear projection operators as building blocks for a
numerical method seems to be a good choice.

1.1 Numerical methods for the Hunter–Saxton equation

Despite receiving a considerable amount of attention theoretically, relatively little
numerical work has been done on the Hunter–Saxton equation. In [11] a finite dif-
ference method was constructed and proved to converge to dissipative solutions. In
[22,23] discontinuous Galerkin methods were introduced, followed by a convergence
proof in the dissipative case but not in the conservative case. More recently, a geomet-
ric numerical integrator, based on the complete integrability of (1.1), was introduced
and studied in [18]. The method seems to converge to the conservative solutions, but
no proof was presented. In [20] a difference method that converges for smooth solu-
tions of a modified Hunter–Saxton equation in the periodic setting was introduced.
The analysis in [20] does not apply to our setting since the method relies crucially on
the modification of the equation, and even for (1.1) the periodic case and the real line
case are essentially different [24].
In this paper, we contribute to this line of research by introducing a convergent numer-
ical method for the conservative solutions of the Hunter–Saxton equation (1.2). The
method, introduced at the beginning of Sect. 2, is inspired by Godunov-type meth-
ods for conservation laws and is based on piecewise linear projections, followed by
evolution along characteristics forward in time. As for finite difference (and volume)
schemes for conservation laws, where one limits the time step Δt to prevent shocks
from occurring, we limit the size ofΔt to prevent wave breaking [see (2.3)]. In contrast
to the situation for conservation laws, we get the improved bound Δt ≤ C

√
Δx for

some C that depends on the initial data.
After establishing some a priori bounds of the numerical solutions in Sect. 2.1, we

show in Sect. 2.2 that the numerical approximation converges with a rate ofO(
√

Δx)

to the unique solution of (1.2) whenever the solution is Lipschitz continuous. We also
prove the existence of a convergent subsequence of the proposed numerical method
in the general case, which converges to a weak solution preserving F . Unfortunately,
the present lack of a satisfactory uniqueness theory for conservative solutions of (1.1)
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prevents us from guaranteeing that the sequence as a whole converges to the unique
conservative solution. However, we perform numerical experiments towards the end
of the paper, see Sect. 3, showing that the numerical approximations seem to converge
towards the desired solutions also in the case of non-Lipschitz solutions.

2 Numerical conservative solutions of the Hunter–Saxton equation

For the (to be defined) numerical solutions to approximate conservative solutions of
the HS equation, we will require that they mimic certain aspects of these solutions.
In particular, we will design a method such that the numerical approximations are
pairs (u, F) in a suitable function spaceD, which resembles the one used for the 2HS
system in [19]:

Definition 1 Let the space D consist of pairs (u, F) such that

u ∈ L∞(R),

ux ∈ L2(R),

F ∈ L∞(R),

F is monotonically increasing,

F is left continuous,

lim
x→−∞ F(x) = 0,

‖F‖∞ = F∞,∫ b

a
u2

x (x) dx ≤ F(b−) − F(a+).

Remark 1 Given a pair (u, F) ∈ D, there exists a positive finite Radon measure μ,
such that F(x) = μ((−∞, x)).

Let Tt be the conservative solution operator associated to (1.2), as defined in [19],
mapping every initial data (u, F) to the corresponding solution at time t . For continu-
ous and piecewise linear initial data (u, F), the conservative solution of (1.2) takes a
particularly simple form as long as no wave breaking takes place: The solution is again
continuous and piecewise linear and the breakpoints x j (t) travel along characteristics,
i.e. along the curves x j (t) given by

x j (t) = x j (0) + u(0, x j (0))t + 1

4

(
F(0, x j (0)) − 1

2
F∞

)
t2, (2.1)

we get

u(t, x j (t)) = u(0, x j (0)) + 1

2

(
F(0, x j (0)) − 1

2
F∞

)
t, (2.2a)

F(t, x j (t)) = F(0, x j (0)), (2.2b)
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with linear interpolation between the breakpoints. Thus the Eqs. (2.2) implicitly define
the solution operator Tt in the case of continuous and piecewise linear initial data
(u, F).

Turning our attention once more towards Example 1, we see that the two curves

x1(t) = −1 + t − 1

4
t2 and x2(t) = 1 − t + 1

4
t2

describe the position of the breakpoints. Furthermore, at the breaking time t = 2 we
have x1(t) = x2(t). In the general case of a continuous and piecewise linear initial
data (u, F), wave breaking occurs at times t where at least two break points coincide,
i.e., x j (t) = xk(t) for some j 	= k.

Using the above observations, we will now derive the numerical scheme. The idea
is to use piecewise linear projection operators PΔx to project the solution at each time
step, and TΔt to evolve the solution one time stepΔt ahead. To improve the readability,
we define points in space and time

tn = nΔt, n ∈ N,

x j = jΔx, j ∈ Z.

Definition 2 Define the projection operatorPΔx : D → D so that (ū, F̄) = PΔx (u, F)

is given by

ū(x j ) = u(x j ),

F̄(x j ) = F(x j ),

with linear interpolation in between grid points ΔxZ.

Remark 2 The operator PΔx is well defined since it is assumed that F is (left) contin-
uous, and thus one can evaluate F at any point.

Assume now that the time step Δt is so small that no wave breaking occurs as the
piecewise linear approximation is evolved from one time step to the next. Then the
scheme is defined by (U 0, F0) = PΔx (u0, F0) and

(U n+1, Fn+1) = PΔx TΔt (U
n, Fn) for n ≥ 0.

We will need to interpret the numerical solution as a function from [0,∞) × R to
R × R+.

Definition 3 Wedefine the numerical solution (uΔx , FΔx ) at a point (t, x) ∈ [0, T ]×R

by
(uΔx , FΔx )(t, x) = PΔx Tτ (U

n, Fn)(x) for t = τ + tn, τ ∈ [0,Δt).

That is, we follow the solution along lines x = x j from one time step to the next, and
interpolate linearly in between.
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After each evolution Δt forward in time, the solution is projected onto the space
of continuous piecewise linear functions. As multiple peakons can be glued together
to form multipeakons, which solve (1.2), we can continue computing the solution
forward in time after each projection.

Remark 3 Note that as the numerical approximation consists of linear interpola-
tions between grid points and solving exactly between time steps, FΔx satisfies
0 ≤ FΔx (t, x) ≤ F∞.

We introduce a CFL-like condition that ensures that characteristic curves x j (t) do
not collide as long as we evolve the equations less thanΔt . In particular, the condition
prevents wave breaking, which occurs when x j (t) = x j+1(t) for some j ∈ Z and
t > 0. We arrive at the following bound on Δt in terms of the initial data and the grid
length Δx . The condition is not a true CFL condition in the sense that characteristics
may travel past several cells [x j , x j+1] during one time step.

Definition 4 (CFL-like condition) We require that Δt satisfies

Δt ≤ α

2
√

F∞

√
Δx, α ∈ (0, 1]. (2.3)

Note that (2.3) is less restrictive than the CFL conditions used for conservation laws,
which reads Δt < CΔx for some C depending on the initial data and the particular
flux function.

Remark 4 In the upcoming proofs we will use

Δt = 1

2
√

F∞

√
Δx (2.4)

to prove convergence. From (2.1) we find that if condition (2.4) holds, the character-
istics x j (t) and x j+1(t) starting from neighbouring grid points are at least a distance
1
2Δx apart for all 0 ≤ t ≤ Δt , i.e., x j (t) + 1

2Δx < x j+1(t) for all t ∈ [0,Δt].
Remark 5 Note that we could have chosen any fixed α ∈ (0, 1] to take the step from
(2.3) to (2.4) (with 1 replaced by α). As a consequence the least distance between
characteristics x j (t) and x j+1(t), starting from neighboring grid points, would be
given by β(α)Δx and could be computed using (2.1).

Similarly to the forward characteristics governed by (2.1), there are characteristics
backwards in time. In particular, we can associate to any grid point (x j , τ ) with tn ≤
τ ≤ tn+1, the unique point (tn, ξn

j (τ )) given by

ξn
j (τ ) = x j − u(tn, ξn

j (τ ))(τ − tn) + 1

4

(
F(tn, ξn

j (τ ))) − 1

2
F∞

)
(τ − tn)2 (2.5)

and
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448 K. Grunert et al.

u
(
τ, x j

) = u(tn, ξn
j (τ )) − 1

2

(
F(tn, ξn

j (τ )) − 1

2
F∞

)
(τ − tn),

F
(
τ, x j

) = F(tn, ξn
j (τ )).

Remark 6 The numerical scheme can be written in the more familiar form

U n+1
i = U n

j + 1

2

(
Fn

j − 1

2
F∞

)
Δt

− U n
j + 1

4 (Fn
j − 1

2 F∞)Δt

1 + U n
j+1−U n

j
Δx Δt + Fn

j+1−Fn
j

Δx Δt2

Δt

Δx

(
U n

j+1 + 1

2
Fn

j+1Δt − U n
j − 1

2
Fn

j Δt

)
,

Fn+1
i = Fn

j − U n
j + 1

4 (Fn
j − 1

2 F∞)Δt

1 + U n
j+1−U n

j
Δx Δt + Fn

j+1−Fn
j

Δx Δt2

Δt

Δx

(
Fn

j+1 − Fn
j

)
,

where the backward characteristic from xi at tn+1 satisfies ξn
i (Δt) ∈ [x j , x j+1], see

(2.5).

2.1 A priori bounds of the numerical solutions

In this section, we prove certain a priori bounds of the proposed method, which are
needed to prove convergence. We begin with some preliminary results on the interpo-
lation operator PΔx .

Proposition 1 For (u, F) inD, let (u p, Fp) = PΔx (u, F). Then we have the following
estimates

‖u − u p‖∞ ≤ √
F∞

√
Δx,

‖u − u p‖2 ≤ √
F∞Δx,

‖F − Fp‖1 ≤ F∞Δx,

‖F − Fp‖2 ≤ F∞
√

Δx .

Proof For any grid point x j we have u(x j ) = u p(x j ) and F(x j ) = Fp(x j ) by the
definition of PΔx . Hence, using the properties in Definition 1, for any x ∈ [x j , x j+1]
it holds that

|u(x) − u p(x)| =
∣∣∣∣ x j+1 − x

Δx
(u(x) − u(x j )) + x − x j

Δx
(u(x) − u(x j+1)

∣∣∣∣
≤ x j+1 − x

Δx

√
x − x j

√
F(x) − F(x j )

+ x − x j

Δx

√
x j+1 − x

√
F(x j+1) − F(x)

≤ √
F∞

√
Δx,
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which proves the first inequality. Next, we have

‖u − u p‖22 =
∑
j∈Z

∫ x j+1

x j

(
u(x) − uΔx (x)

)2 dx

=
∑
j∈Z

∫ x j+1

x j

(
x j+1 − x

Δx

(
u(x) − u(x j )

)+ x − x j

Δx

(
u(x) − u(x j+1)

))2

dx

≤
∑
j∈Z

∫ x j+1

x j

(
x j+1 − x

Δx

√
x − x j

√
F(x) − F(x j )

+ x − x j

Δx

√
x j+1 − x

√
F(x j+1) − F(x)

)2

dx

≤
∑
j∈Z

∫ x j+1

x j

(
F(x j+1) − F(x j )

)
Δx dx

≤ F∞Δx2,

and thus ‖u − u p‖2 ≤ √
F∞Δx . The L1-estimate for F is proved as follows,

‖F − Fp‖1 =
∑
j∈Z

∫ x j+1

x j

|F(x) − FΔx (x)| dx

≤
∑
j∈Z

∫ x j+1

x j

F(x j+1) − F(x j ) dx

≤
∑
j∈Z

(
F(x j+1) − F(x j )

)
Δx

≤ F∞Δx .

From the L1-estimate one can obtain the L2-estimate,

‖F − Fp‖22 =
∑
j∈Z

∫ x j+1

x j

|F(x) − FΔx (x)|2 dx

≤
∑
j∈Z

∫ x j+1

x j

(
F(x j+1) − F(x j )

)2 dx

≤
∑
j∈Z

(
F(x j+1) − F(x j )

)2
Δx

≤ F2∞Δx .


�
To prove that the numerical approximation converges, we wish to employ the

Arzelà–Ascoli theorem to ensure convergence of a subsequence of uΔx , and sub-
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sequently a version of the Kolmogorov compactness theorem to get convergence of a
subsequence of FΔx . To invoke the Arzelà–Ascoli theorem, we need uΔx to be uni-
formly equicontinuous and equibounded. For the Kolmogorov compactness theorem
we need that FΔx is of uniformly bounded total variation, that FΔx (t, ·) is continuous
in t in the L1(R)-norm, and that FΔx (t, ·) does not escape to infinity as Δx tends to
zero. First we establish some immediate properties of the solutions (uΔx , FΔx ).

Lemma 1 The numerical solution (uΔx , FΔx ) satisfies

|uΔx (t, x)| ≤ ‖u0‖L∞(R) + 1

4
F∞t, (2.6a)

0 ≤ FΔx (t, x) ≤ F∞ (2.6b)∫ b

a
u2

Δx,x (t, x) dx ≤ FΔx (t, b) − FΔx (t, a), for all a ≤ b. (2.6c)

Moreover, FΔx (t, ·) is continuous and monotonically increasing. If suppμ0 ⊆ [a, b],
then supp FΔx,x (t, ·) ⊆ [a(t), b(t)] for some smooth curves a(t), b(t). Finally, if
T .V .(u0) < ∞ we have the estimate T .V .(uΔx (t)) ≤ T .V .(u0) + 1

2 F∞t .

Proof The bounds on uΔx (t, x) and FΔx (t, x) follow from (2.2) and Definition 3.
Since both (2.2) and the projection operator preserve the monotonicity of F , we have
that FΔx is monotone increasing. Continuity follows from the fact that characteristics
emanating from different grid points are at least 1

2Δx apart as long as the time step is
controlled by (2.4).

We show
∫ b

a u2
Δx,x (t, x) dx ≤ FΔx (t, b) − FΔx (t, a) for all a ≤ b. To begin with

let t = 0. Since uΔx (0, ·) and FΔx (0, ·) are both piecewise linear and continuous
it suffices to show the result for x j ≤ a ≤ b ≤ x j+1. By assumption one has that∫ b

a u2
x (0, x)dx ≤ F(0, b) − F(0, a) and direct calculations yield

∫ b

a
u2

Δx,x (0, x) dx = (b − a)

(
u(0, x j+1) − u(0, x j )

Δx

)2

≤ b − a

Δx

(
F(0, x j+1) − F(0, x j )

)
≤ FΔx (0, b) − FΔx (0, a).

Now, let t = tn +τ , and denote by τ 
→ (ũ(τ ), F̃(τ )) the conservative solutionwith
initial data (uΔx (tn), FΔx (tn)). Furthermore, assume that (uΔx (tn), FΔx (tn)) satisfies
(2.6c). Then we have for each spatial grid point x j that ũ(τ, x j ) = uΔx (tn + τ, x j )

and F̃(τ, x j ) = FΔx (tn + τ, x j ). Moreover

∫ b

a
ũ2

x (τ, x) dx ≤ F̃(τ, b) − F̃(τ, a),

since this property is preserved along characteristics. Applying the projection operator,
we can follow the same lines as in the case t = 0, to obtain that (2.6c) holds for all
t ∈ [tn, tn+1].
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Numerical conservative solutions of the HS equation 451

By assumption suppμ0 ⊆ [a, b]. Let x j− be the closest gridpoint to a from below,
and let x j+ be the closest gridpoint to b from above. Then FΔx,x (0, ·) is supported in
[x j−, x j+] ⊆ [a −Δx, b+Δx]. Furthermore, FΔx (0, x j−) = 0, FΔx (0, x j+) = F∞,
uΔx (0, x j−) = uleft, and uΔx (0, x j+) = uright.

Next we show that also FΔx,x (Δt, ·) is compactly supported. By (2.1), we have
x j−(Δt) = x j− + uleftΔt − 1

8 F∞Δt2 and x j+(Δt) = x j+ + urightΔt + 1
8 F∞Δt2.

Thus FΔx,x (Δt) is supported in the interval [a + uleftΔt − 1
8 F∞Δt2 − 2Δx, b +

urightΔt + 1
8 F∞Δt2 + 2Δx]. Iteratively, we get that FΔx,x (kΔt) is supported in

[
a+uleftkΔt + 1

8
F∞(kΔt)2−(k +1)Δx, b+urightkΔt + 1

8
F∞(kΔt)2+(k +1)Δx

]
.

Here it is essential that

uleft(kΔt) = uleft − 1

4
F∞kΔt .

Since Δx = 4F∞Δt2, we have that (k + 1)Δx = Δx + 4F∞(kΔt)Δt . From the
interpolation between temporal grid points we get

supp FΔx,x (t) ⊆ [a(t), b(t)],
a(t) = a + uleftt −

(1
8

t + 4Δt
)

F∞t − 2Δx,

b(t) = b + urightt +
(1
8

t + 4Δt
)

F∞t + 2Δx .

The total variation estimate follows from the fact that it holds for conservative solu-
tions, and that the projection operator can only reduce the total variation. 
�
Remark 7 (Spatial Hölder continuity) An immediately derivable property of the
numerical solution from (2.6c) is spatial Hölder continuity of uΔx :

|uΔx (t, x) − uΔx (t, y)| ≤ √
F∞

√|x − y|.

In order to obtain temporal Hölder continuity for uΔx we will need to compare a
numerical solution with itself several time steps ahead.

Lemma 2 For each i, n, k there are non-negative constants β ink
j such that

Fn+k
i =

kCΔx∑
j=−kCΔx

β ink
j Fn

i+ j , (2.7a)

U n+k
i =

kCΔx∑
j=−kCΔx

β ink
j

(
U n

i+ j + 1

2
Fn

i+ j kΔt

)
− 1

4
F∞kΔt, (2.7b)

kCΔx∑
j=−kCΔx

β ink
j = 1, (2.7c)
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where

CΔx =
⌈(

‖u0‖∞ + 1

4
F∞tn+k

)
Δt

Δx

⌉
.

Proof We prove the lemma by induction on k. First note that the statement is trivially
true for k = 0. Then assume that it holds for k = l. We show that it must then hold
for k = l + 1 as well. We have that

|ξn+l
i (Δt) − xi | ≤ sup

i
|U n+l+1

i |Δt + 1

4
F∞Δt2 ≤

(
‖u0‖∞ + 1

4
F∞tn+l+1

)
Δt,

where ξn+l
i (Δt) is a backwards characteristic, cf. (2.5). Hence, if we define C̃Δx =⌈(‖u0‖∞ + 1

4 F∞tn+l+1)
)

Δt
Δx

⌉
we have that x j ≤ ξn+l

i (Δt) ≤ x j+1 for some j such

that |i − j | ≤ C̃Δx and |i − j − 1| ≤ C̃Δx . Furthermore, we have

Fn+l+1
i = ξn+l

i (Δt) − x j

Δx
Fn+l

j+1 + x j+1 − ξn+l
i (Δt)

Δx
Fn+l

j .

Let

s = ξn+l
i (Δt) − x j

Δx
.

Since C̃Δx is greater than the CΔx in the inductive assumption, we get

Fn+l+1
i = s

lCΔx∑
j ′=−lCΔx

β
( j+1),nl
j ′ Fn

j+1+ j ′ + (1 − s)
lCΔx∑

j ′=−lCΔx

β
jnl
j ′ Fn

j+ j ′

=
(l+1)C̃Δx∑

j=−(l+1)C̃Δx

β
in(l+1)
j Fn

i+ j ,

with

(l+1)C̃Δx∑
j=−(l+1)C̃Δx

β
in(l+1)
j =

lCΔx∑
j ′=−lCΔx

sβ( j+1),nl
j ′ +

lCΔx∑
j ′=−lCΔx

(1 − s)β jnl
j ′ = 1.

The computation for U n+k
i is analogous. Indeed, we have

U n+l+1
i = ξn+l

i (Δt) − x j

Δx
U n+l

j+1 + x j+1 − ξn+l
i (Δt)

Δx
U n+l

j

+ 1

2

(
ξn+l

i (Δt) − x j

Δx
Fn+l

j+1 + x j+1 − ξn+l
i (Δt)

Δx
Fn+l

j

)
Δt − 1

4
F∞Δt
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= ξn+l
i (Δt) − x j

Δx

lCΔx∑
j ′=−lCΔx

β
( j+1),nl
j ′

(
U n

j+1+ j ′ + 1

2
Fn

j+1+ j ′lΔt

)

+ x j+1 − ξn+l
i (Δt)

Δx

lCΔx∑
j ′=−lCΔx

β
jnl
j ′

(
U n

j+ j ′ + 1

2
Fn

j+ j ′lΔt

)

+ 1

2

ξn+l
i (Δt) − x j

Δx

lCΔx∑
j ′=−lCΔx

β
( j+1),nl
j ′ Fn

j+1+ j ′

+ 1

2

x j+1 − ξn+l
i (Δt)

Δx

lCΔx∑
j ′=−lCΔx

β
jnl
j ′ Fn

j+ j ′ − 1

4
F∞(l + 1)Δt

=
(l+1)C̃Δx∑

j=−(l+1)C̃Δx

β
in(l+1)
j

(
U n

i+ j + 1

2
Fn

i+ j (l + 1)Δt

)
− 1

4
F∞(l + 1)Δt .


�
Next is an important corollary which provides a discrete Hölder continuity estimate

for the numerical solution uΔx .

Corollary 1 (Discrete temporal Hölder continuity) The numerical solution satisfies

|U n+k
i − U n

i | ≤ C
√

kΔt,

with

C = √
F∞

√(
‖u0‖∞ + 1

4
F∞tn+k

)
+ 2

√
F∞

√
Δx + 1

4
F∞

√
tn+k .

Proof Using Lemma 2, we compute

U n+k
i − U n

i =
kCΔx∑

j=−kCΔx

β ink
j

(
U n

i+ j + 1

2
Fn

i+ j kΔt

)
− 1

4
F∞kΔt − U n

i

=
kCΔx∑

j=−kCΔx

β ink
j

(
U n

i+ j − U n
i

)
+

kCΔx∑
j=−kCΔx

β ink
j

(
1

2
Fn

i+ j kΔt

)
− 1

4
F∞kΔt,

and thus, remembering Remark 7, (2.7c), and (2.4),

∣∣U n+k
i − U n

i

∣∣

≤
kCΔx∑

j=−kCΔx

β ink
j

∣∣∣U n
i+ j − U n

i

∣∣∣+ 1

4
F∞kΔt

≤ √
F∞

√
kCΔxΔx + 1

4
F∞kΔt
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≤ √
F∞

√
k

(
‖u0‖∞ + 1

4
F∞tn+k

)
Δt + kΔx + 1

4
F∞kΔt

≤ √
F∞

√
k

(
‖u0‖∞ + 1

4
F∞tn+k

)
Δt + 2k

√
Δx

√
F∞Δt + 1

4
F∞kΔt

≤
(√

F∞

√(
‖u0‖∞ + 1

4
F∞tn+k

)
+ 2

√
F∞

√
Δx + 1

4
F∞

√
tn+k

)√
kΔt .


�
We are now ready to prove that for each T > 0 the solutions uΔx are uniformly

Hölder continuous on [0, T ] ×R. Uniform Hölder continuity implies equicontinuity,
which is necessary for the Arzelà–Ascoli theorem.

Lemma 3 (Hölder continuity) Let 0 ≤ t, s ≤ T and x, y ∈ R, then

|uΔx (t, x) − uΔx (s, y)| ≤ C
√|t − s| + |x − y|,

where

C = 4max

{
4
√

F∞
√

‖u0‖∞ + 1

4
F∞T , 2

√
F∞,

√
F∞

√
(‖u0‖∞ + 1

4
F∞T ) + 2

√
F∞

√
Δx + 1

4
F∞

√
T

}
.

Proof Assume first that tn ≤ s < t ≤ tn+1 and x j ≤ x ≤ x j+1. We start by adding
and subtracting uΔx (s, x) and obtain

uΔx (t, x) − uΔx (s, y) = uΔx (t, x) − uΔx (s, x) + uΔx (s, x) − uΔx (s, y).

Then, we have by definition,

uΔx (t, x) − uΔx (s, x) = x − x j

Δx

(
uΔx (t, x j+1) − uΔx (s, x j+1)

)

+ x j+1 − x

Δx

(
uΔx (t, x j ) − uΔx (s, x j )

)
.

Note that at the spatial grid points xl the solution uΔx (t, xl) equals the conservative
solution given by (2.2) with initial data (uΔx (tn, ·), FΔx (tn, ·)) evolved t − tn < Δt
forward in time. For conservative solutions given by (2.2)we do haveHölder continuity
with the constant C depending on F∞, ‖u0‖∞, and T only. To be more specific it has
been shown in the proof of [9, Theorem 3.14] that

|uΔx (t, x j ) − uΔx (s, x j )| ≤ √
F∞

√
‖u0‖∞ + 1

4
F∞t

√|t − s| + 1

4
F∞|t − s|,
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for all j ∈ Z. Hence, we have

∣∣uΔx (t, x) − uΔx (s, y)
∣∣

= ∣∣uΔx (t, x) − uΔx (s, x) + uΔx (s, x) − uΔx (s, y)
∣∣

≤ ∣∣uΔx (t, x) − uΔx (s, x)
∣∣+ ∣∣uΔx (s, x) − uΔx (s, y)

∣∣
≤ x − x j

Δx

∣∣uΔx (t, x j+1) − uΔx (s, x j+1)
∣∣+ x j+1 − x

Δx

∣∣uΔx (t, x j ) − uΔx (s, x j )
∣∣

+ ∣∣uΔx (s, x) − uΔx (s, y)
∣∣

≤ √
F∞

√
‖u0‖∞ + 1

4
F∞t

√|t − s| + 1

4
F∞|t − s| +√

F∞
√|x − y|

≤ K
√|t − s| + |x − y|,

for K = 2max
{
2
√

F∞
√

‖u0‖∞ + 1
4 F∞t,

√
F∞

}
.

We look at the general case tn−1 ≤ s ≤ tn ≤ tn+k ≤ t ≤ tn+k+1, and x j−1 ≤ y ≤
x j ≤ x j+l ≤ x ≤ x j+l+1. Then, by Corollary 1, we have,

∣∣uΔx (t, x) − uΔx (s, y)
∣∣

≤
∣∣∣uΔx (t, x) − U n+k

j+l

∣∣∣+
∣∣∣U n+k

j+l − U n
j

∣∣∣+
∣∣∣U n

j − uΔx (s, y)

∣∣∣
≤ K

√
|t − tn+k | + |x − x j+l | +

∣∣∣U n+k
j+l − U n

j+l

∣∣∣+
∣∣∣U n

j+l − U n
j

∣∣∣
+ K

√|tn − s| + |x j − y|
≤ K

√
|t − tn+k | + |x − x j+l |

+
(√

F∞
√

(‖u0‖∞ + 1

4
F∞tn+k) + 2

√
F∞

√
Δx + 1

4
F∞

√
tn+k

)√
kΔt

+√
F∞

√
lΔx + K

√|tn − s| + |x j − y|

≤ 4max

{
K ,

√
F∞

√
(‖u0‖∞ + 1

4
F∞tn+k) + 2

√
F∞

√
Δx + 1

4
F∞

√
tn+k

}

×√|t − s| + |x − y|.


�
To use the Kolmogorov compactness theorem we need uniform regularity of FΔx

in t .

Lemma 4 Let 0 ≤ t, s ≤ T , then

‖FΔx (t) − FΔx (s)‖1 ≤ C |s − t | + DΔt + 12F∞Δx,

where C = 6
(‖u0‖∞+ 1

4 F∞(17Δt+T )
)
F∞ and D = 8

(‖u0‖∞+ 1
4 F∞(Δt+T )

)
F∞.
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Proof To begin with let tn ≤ s < t ≤ tn+1. Assume first that there exists j ′ such that
x j ′ ≤ ξn

j (t) < ξn
j (s) ≤ x j ′+1. Then

FΔx (t, x j ) − FΔx (s, x j ) = x j ′+1 − ξn
j (t)

Δx
FΔx (t

n, x j ′) + ξn
j (t) − x j ′

Δx
FΔx (t

n, x j ′+1)

− x j ′+1 − ξn
j (s)

Δx
FΔx (t

n, x j ′) − ξn
j (s) − x j ′

Δx
FΔx (t

n, x j ′+1)

= ξn
j (t) − ξn

j (s)

Δx

(
FΔx (t

n, x j ′+1) − FΔx (t
n, x j ′)

)
.

Otherwise, we have that there exist j− and j+, possibly equal, such that x j−−1 <

ξn
j (t) ≤ x j− ≤ x j+ ≤ ξn

j (s) < x j++1. Then

FΔx (s, x j ) − FΔx (t, x j ) = FΔx (t
n, ξn

j (s)) − FΔx (t
n, ξn

j (t))

= x j− − ξn
j (t)

Δx

(
FΔx (t

n, x j−) − FΔx (t
n, x j−−1)

)

+ ξn
j (s) − x j+

Δx

(
FΔx (t

n, x j++1) − FΔx (t
n, x j+)

)

+
j+−1∑
i= j−

(
FΔx (t

n, xi+1) − FΔx (t
n, xi )

)
.

The number of terms in the above sum is bounded from above by |ξn
j (t) − ξn

j (s)|.
Direct calculations yield

∣∣ξn
j (t) − ξn

j (s)
∣∣

≤ ∣∣uΔx (t
n, ξn

j (s))(s − tn) − uΔx (t
n, ξn

j (t))(t − tn)
∣∣

+ 1

4

∣∣∣
(

FΔx (t
n, ξn

j (t)) − 1

2
F∞

)
(t − tn)2 −

(
FΔx (t

n, ξn
j (s) − 1

2
F∞

)
(s − tn)2

∣∣∣
≤ (|t − s| + 2Δt)‖uΔx (t

n, ·)‖L∞ + 1

4
F∞(|t − s| + Δt)Δt

≤ (‖u0‖L∞ + 1

4
F∞(Δt + T )

)
(|t − s| + 2Δt),

and therefore

| j+ − j−| ≤
⌊(

‖u0‖∞ + 1

4
F∞(Δt + T )

) |s − t | + 2Δt

Δx

⌋
.

Due to condition (2.4) characteristics (forward aswell as backward) fromneighbouring
grid points have a minimum distance of 1

2Δx . Hence for each j ′, the maximal number
of backward characteristics ξn

j (Δt) ending up in [x j ′, x j ′+1] equals two. Hence we
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have the bound

∫
R

∣∣FΔx (t, x) − FΔx (s, x)
∣∣ dx

=
∑
j∈Z

∣∣FΔx (t, x j ) − FΔx (s, x j )
∣∣Δx

=
∑
j∈Z

∣∣FΔx (t
n, ξn

j (t)) − FΔx (t
n, ξn

j (s))
∣∣Δx

≤ 2

⌊
(‖u0‖∞ + 1

4
F∞(Δt + T ))

|s − t | + 2Δt

Δx

⌋

×
∑
j∈Z

(
FΔx (t

n, x j+1) − FΔx (t
n, x j )

)
Δx

+ 6
∑
j∈Z

(
FΔx (t

n, x j+1) − FΔx (t
n, x j )

)
Δx

≤ 2
(
‖u0‖∞ + 1

4
F∞(Δt + T )

)
F∞(|s − t | + 2Δt) + 6F∞Δx .

The general case 0 ≤ s < t ≤ T can now be found by iteration over time steps and
using condition (2.4),

‖FΔx (t) − FΔx (s)‖1 ≤ 6
(‖u0‖∞ + 1

4
F∞(17Δt + T )

)
F∞|s − t |

+ 8
(‖u0‖∞ + 1

4
F∞(Δt + T )

)
F∞Δt + 12F∞Δx .


�

2.2 Convergence of the numerical solutions

In this section we prove that there exists a convergent subsequence of (uΔx , FΔx ), and
that the limit is a conservative weak solution of (1.2), which satisfies condition (1.4).
First we rigorously define, as in [2,9,19], conservative weak solutions.

Definition 5 Apair (u, F) is a conservative solution of (1.2)with initial data (u0, F0) ∈
D if

u|t=0 = u0 and F |t=0 = F0

u ∈ C0, 12 ([0, T ] × R) , for all T ≥ 0,

(u(t), F(t)) ∈ D for all t ≥ 0,

‖F(t)‖∞ = F∞ for all t ≥ 0,
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and for all test functions φ ∈ C∞
c ([0,∞) × R) we have

∫ ∞

0

∫
R

φt (t, x)u(t, x) + φx (t, x)
1

2
u(t, x)2 + φ(t, x)

(
1

2
F(t, x) − 1

4
F∞

)
dxdt

+
∫
R

φ0(x)u0(x) dx = 0, (2.8)
∫ ∞

0

∫
R

φt (t, x) + u(t, x)φx (t, x)dμ(t)dt +
∫
R

φ0(x)dμ0 = 0, (2.9)

whereμ(t) is the finite positive Radonmeasurewith F(t, ·) as its distribution function,
see Definition 1.

We prove the existence of a convergent subsequence of (uΔx , FΔx ).

Theorem 1 To any initial data (u0, F0) ∈ D such that μ0 has compact sup-
port, there exists a convergent subsequence of (uΔx , FΔx ). The convergence is in
C
([0, T ], L1(R)

)
, pointwise a.e. in x for FΔx , and uniform on [0, T ] × R for uΔx .

Moreover, the limit (u, F) satisfies

u|t=0 = u0 and F |t=0 = F0

u ∈ C0, 12 ([0, T ] × R) ,

(u(t), F(t)) ∈ D for all t ≥ 0,

‖F(t)‖∞ = F∞.

Here the relation between the positive Radon measure μ0 and F0 is given by F0(x) =
μ0((−∞, x)).

Proof We have from Lemma 1 that the family uΔx is uniformly bounded on [0, T ]×R

and that uΔx,x (t, ·) has compact support for all t ∈ [0, T ]. Furthermore, by Lemma 3
uΔx is uniformly equicontinuous. Hence the conditions for the Arzelà–Ascoli theorem
are satisfied and there exists a convergent subsequence (uΔx,i , FΔx,i ) of (uΔx , FΔx )

such that uΔx,i converges to some u ∈ L∞([0, T ] × R) for each T > 0. The limit
of uΔx,i is bounded and Hölder continuous with the same constants as the individual
uΔx,i .

Next we show that the limit u satisfies ux (t, ·) ∈ L2(R) for all t ∈ [0, T ]. By
construction we have that ‖uΔx,x (t, ·)‖L2 ≤ √

F∞ for all t ∈ [0, T ]. Thus there
exists a subsequence (uΔx,ik (t, ·), FΔx,ik (t, ·)) of (uΔx,i (t, ·), FΔx,i (t, ·)), so that
uΔx,x,ik (t, ·) converges weakly to v in L2(R). Thus for any φ ∈ C∞

c (R) we have

∫
R

(
v(x) − ux (t, x)

)
φ(x) dx = lim

Δx→0

∫
R

(
uΔx,x,ik (t, x) − ux (t, x)

)
φ(x) dx

= − lim
Δx→0

∫
R

(
uΔx,ik (t, x) − u(t, x)

)
φx (x) dx

= 0,
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and v(·) = ux (t, ·). Thus we have uΔx,x,ik (t, ·)⇀ux (t, ·) in L2(R). A closer look
reveals that the above argument shows that every weakly convergent subsequence has
the same limit and therefore uΔx,x,i (t, ·)⇀ux (t, ·) in L2(R) for all t ∈ [0, T ].

Combining Lemma 1 and [10, Theorem 12], we obtain, that for each t ∈ [0, T ],
there exists a subsequence (uΔx,i j (t, ·), FΔx,i j (t, ·)) of (uΔx,i (t, ·), FΔx,i (t, ·)) such
that FΔx,i j (t, ·) converges pointwise everywhere and in the L1-norm to a function of
bounded variation. Following the lines of the proof of [12, Theorem A.11] and taking
into account Lemma 4, it then follows that there exists a subsequence of (uΔx,i , FΔx,i ),
for which the FΔx converge in C

([0, T ], L1(R)
)
. Furthermore, denoting the limit by

F , we even have pointwise almost everywhere convergence of a further subsequence
to F .

Last but not least, we have a look at the connection between ux and F . Denote by
(ũΔx , F̃Δx ) the very last subsequence of (uΔx , FΔx ), then we have that

∫ b

a
u2

x (t, x) dx ≤ lim inf
Δx→0

∫ b

a
ũ2

Δx,x (t, x) dx

≤ lim inf
Δx→0

(
F̃Δx (t, b) − F̃Δx (t, a)

)
.

Since, we can find two sequences a j ↓ a and b j ↑ b such that limΔx→0 FΔx (t, a j ) =
F(t, a j ) and limΔx→0 FΔx (t, b j ) = F(t, b j ), we end up with

∫ b

a
u2

x (t, x) dx = lim
j→∞

∫ b j

a j

u2
x (t, x) dx

≤ lim
j→∞ lim inf

Δx→0

∫ b j

a j

ũ2
Δx,x (t, x) dx

≤ lim
j→∞ lim

Δx→0

(
F̃Δx (t, b j ) − F̃Δx (t, a j )

)

= lim
j→∞

(
F(t, b j ) − F(t, a j )

)

= F(t, b−) − F(t, a+).


�

We still need to prove that the limit of the convergent subsequence is a conservative
weak solution in the sense of Definition 5.

Theorem 2 The limit (u, F) from Theorem 1 is a conservative solution in the sense of
Definition 5.

Proof It remains to show that the integrals (2.8) and (2.9) hold. We compute the
integrals for (uΔx , FΔx ) as follows
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∫ ∞

0

∫
R

φt (t, x)uΔx (t, x)+φx (t, x)
1

2
u2

Δx (t, x)+φ(t, x)

(
1

2
FΔx (t, x)− 1

4
F∞

)
dxdt

=
∑
n∈N0

∫ Δt

0

∫
R

φt (t
n + τ, x)uΔx (t

n + τ, x)

+ φx (t
n + τ, x)

1

2
u2

Δx (t
n + τ, x)

+ φ(tn + τ, x)

(
1

2
FΔx (t

n + τ, x) − 1

4
F∞

)
dxdτ

=
∑
n∈N0

∫ Δt

0

∫
R

φt (t
n + τ, x)

(
uΔx (t

n + τ, x) − ũn(τ, x)
)

+ φx (t
n + τ, x)

1

2

(
u2

Δx (t
n + τ, x) − ũ2

n(τ, x)
)

+ φ(tn + τ, x)

(
1

2
FΔx (t

n + τ, x) − 1

2
F̃n(τ, x)

)
dxdτ

+
∑
n∈N0

∫ Δt

0

∫
R

φt (t
n + τ, x)ũn(τ, x) + φx (t

n + τ, x)
1

2
ũ2

n(τ, x)

+ φ(tn + τ, x)

(
1

2
F̃n(τ, x) − 1

4
F∞

)
dxdτ

=
∑
n∈N0

In +
∑
n∈N0

IIn .

Here (ũn(τ, x), F̃n(τ, x)) denotes the conservative solution given by (2.1) and (2.2)
with initial data (uΔx (tn, x), FΔx (tn, x)). Since the conservative solution is a weak
solution we get

IIn =
∫ Δt

0

∫
R

φt (t
n + τ, x)ũn(τ, x)

+ φx (t
n + τ, x)

1

2
ũ2

n(τ, x) + φ(tn + τ, x)

(
1

2
F̃n(τ, x) − 1

4
F∞

)
dxdτ

=
∫
R

ũn(Δt, x)φ(tn+1, x) dx −
∫
R

uΔx (t
n, x)φ(tn, x) dx .

Recalling that uΔx (tn + τ) = PΔx ũn(τ ) yields

∑
n∈N0

IIn =
∑
n∈N0

( ∫
R

ũn(Δt, x)φ(tn+1, x) dx −
∫
R

uΔx (t
n, x)φ(tn, x) dx

)

= −
∫
R

u0Δxφ0(x) dx
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+
∞∑

n=1

∫
R

(
ũn−1(Δt, x) − PΔx ũn−1(Δt, x)

)
φ(tn, x) dx

= −
∫
R

u0Δxφ0(x) dx + O(
√

Δx)

where we applied Proposition 1 in the last step as follows

∣∣∣∣
∞∑

n=1

∫
R

(
ũn−1(Δt, x) − PΔx ũn−1(Δt, x)

)
φ(tn, x) dx

∣∣∣∣

≤
∞∑

n=1

∥∥ũn−1(Δt, ·) − PΔx ũn−1(Δt, ·)∥∥2‖φ(tn, ·)‖2

≤
∞∑

n=1

‖φ(tn, ·)‖2
√

F∞Δx

≤
∞∑

n=1

‖φ(tn, ·)‖22F∞Δt
√

Δx

≤ 2 sup
t≥0

‖φ(t, ·)‖2Tφ F∞
√

Δx .

Here Tφ = inf{t ≥ 0 | ‖φ(s, ·)‖2 + ‖φt (s, ·)‖2 = 0 for all s ≥ t}. Note that Tφ is
finite since φ has compact support.

We now turn our attention to the first sum. Recall that uΔx (tn + τ) = PΔx ũn(τ ),
FΔx (tn + τ) = PΔx F̃n(τ ), and keep Proposition 1 and Lemma 1 in mind. Direct
calculations then yield

|In| =
∣∣∣∣
∫ Δt

0

∫
R

φt (t
n + τ, x)

(
uΔx (t

n + τ, x) − ũn(τ, x)
)

+ φx (t
n + τ, x)

1

2

(
u2

Δx (t
n + τ, x) − ũ2

n(τ, x)
)

+ φ(tn + τ, x)

(
1

2
FΔx (t

n + τ, x) − 1

2
F̃n(τ, x)

)
dxdτ

∣∣∣∣
≤ sup

τ∈[0,Δt]
(‖φt (t

n + τ, ·)‖1 + ‖φx (t
n + τ, ·)‖1‖ũn(τ, ·)‖∞

)

× ‖uΔx (t
n + τ, ·) − ũn(τ, ·)‖∞Δt

+ sup
τ∈[0,Δt]

‖φ(tn + τ)‖∞
1

2

∥∥FΔt (t
n + τ, ·) − F̃(τ, ·)∥∥1Δt

≤ sup
τ∈[0,Δt]

((‖φt (t
n + τ, ·)‖1 + ‖φx (t

n + τ, ·)‖1
)(‖u0(·)‖∞ + 1

4
F∞(tn + τ)

))

×√
F∞

√
ΔxΔt

+ sup
τ∈[0,Δt]

‖φ(tn + τ)‖∞
1

2
F∞ΔxΔt .
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Since φ has compact support we end up with

∑
n∈N0

In = O(
√

Δx).

In particular, we have

∫ ∞

0

∫
R

φt (t, x)uΔx (t, x) + φx (t, x)
1

2
uΔx (t, x)2

+ φ(t, x)

(
1

2
FΔx (t, x) − 1

4
F∞

)
dxdt +

∫
R

u0Δxφ0(x) dx = O(
√

Δx).

By letting Δx → 0, we end up with (2.8) as the subsequence of (uΔx , FΔx ), con-
structed in Theorem 1, converges to (u, F) uniformly in [0, T ] × R for uΔx and in
C
([0, T ], L1(R)

)
for FΔx .

In a similar fashion we demonstrate that the second integral equation (2.9) must be
satisfied as Δx → 0 as well. We have

∫ ∞

0

∫
R

φt (t, x) + uΔx (t, x)φx (t, x) dμΔx (t)dt

=
∫ ∞

0

∫
R

(
φt (t, x) + uΔx (t, x)φx (t, x)

)
FΔx,x (t, x) dxdt

=
∑
n∈N0

∫ Δt

0

∫
R

(
φt (t

n + τ, x) + uΔx (t
n + τ, x)φx (t

n + τ, x)
)

×
(

FΔx,x (t
n + τ, x) − F̃n,x (τ, x)

)
dxdτ

+
∑
n∈N0

∫ Δt

0

∫
R

(
uΔx (t

n + τ, x) − ũn(τ, x)
)
φx (t

n + τ, x)F̃n,x (τ, x) dxdτ

+
∑
n∈N0

∫ Δt

0

∫
R

(
φt (t

n + τ, x) + ũn(τ, x)φx (t
n + τ, x)

)
F̃n,x (τ, x) dxdτ

=
∑
n∈N0

In +
∑
n∈N0

IIn +
∑
n∈N0

IIIn .

Since conservative solutions are weak solutions we get

IIIn =
∫ Δt

0

∫
R

(
φt (t

n + τ, x) + ũn(τ, x)φx (t
n + τ, x)

)
F̃n,x (τ, x) dxdτ

=
∫
R

φ(tn+1, x)F̃n,x (Δt, x) dx −
∫
R

φ(tn, x)FΔx,x (t
n, x) dx .
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Summation over n then yields

∑
n∈N0

∫
R

φ(tn+1, x)F̃n,x (Δt, x) − φ(tn, x)FΔx,x (t
n, x) dx

= −
∫
R

φ0(x)F0Δx,x (x) dx +
∞∑

n=1

∫
R

(
F̃n−1,x (Δt, x) − FΔx,x (t

n, x)
)

φ(tn, x) dx .

From the estimates in Proposition 1 we get

∞∑
n=1

∣∣∣
∫
R

(
F̃n−1,x (Δt, x) − FΔx,x (t

n, x)
)
φ(tn, x) dx

∣∣∣

=
∞∑

n=1

∣∣∣
∫
R

(
F̃n−1(Δt, x) − PΔx F̃n−1(Δt, x)

)
φx (t

n, x) dx
∣∣∣

≤ Tφ

Δt
sup
n≥0

∥∥F̃n−1(Δt, ·) − PΔx F̃n−1(Δt, ·)∥∥1‖φx (t
n, ·)‖∞

≤ F∞ sup
t≥0

‖φx (t, ·)‖∞Δx
Tφ

Δt

≤ 2
√

F∞F∞ sup
t≥0

‖φx (t, ·)‖∞Tφ

√
Δx,

and hence

∑
n∈N0

IIIn = −
∫
R

φ0(x)F0Δx,x (x) dx + O(
√

Δx).

The second term can be estimated as follows

∣∣∣∣
∑
n∈N0

IIn

∣∣∣∣

=
∣∣∣∣∣∣
∑

n∈N0

∫ Δt

0

∫
R

(
uΔx (t

n + τ, x) − ũn(τ, x)
)
φx (t

n + τ, x)F̃n,x (τ, x) dxdτ

∣∣∣∣∣∣
≤
∑
n∈N0

∫ Δt

0

∫
R

∣∣φx (t
n + τ, x)

∣∣F̃n,x (t
n + τ, x) dx‖uΔx (t

n + τ, ·) − ũn(τ, ·)‖∞dτ

≤ √
F∞F∞ sup

t≥0
‖φx (t, ·)‖x Tφ

√
Δx .

It remains to prove that the first term tends to zero as Δx → 0. We compute
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∣∣∣∣
∑

n∈N0

In

∣∣∣∣ =
∣∣∣∣
∑

n∈N0

∫ Δt

0

∫
R

(
φt (t

n + τ, x) + uΔx (t
n + τ, x)φx (t

n + τ, x)
)

×
(

FΔx,x (t
n + τ, x) − F̃n,x (τ, x)

)
dxdτ

∣∣∣∣
=
∣∣∣∣
∑

n∈N0

∫ Δt

0

∫
R

(
φt x (t

n + τ, x) + (
uΔx (t

n + τ, x)φx (t
n + τ, x)

)
x

)

×
(

FΔx (t
n + τ, x) − F̃n(τ, x)

)
dxdτ

∣∣∣∣
≤ Tφ sup

t≥0
‖φt x (t, ·)‖∞F∞Δx

+ Tφ sup
0≤t≤Tφ

‖uΔx (t, ·)‖∞‖φxx (t, ·)‖∞Δx F∞

+ Tφ sup
0≤t≤Tφ

‖uΔx,x (t, ·)‖2‖φx (t, ·)‖∞F∞
√

Δx

= O(
√

Δx).

Finally, we end up with

∫ ∞

0

∫
R

φt (t, x) + uΔx (t, x)φx (t, x) dμΔx (t)dt +
∫
R

φ0(x)F0Δx,x (x) dx = O(
√

Δx).

(2.10)

Since for every t wehave that FΔx (t, ·) → F(t, ·) almost everywhere, the convergence
of (2.10) to (2.9) as Δx → 0 follows from the proof of Proposition 7.19 in [8] and the
fact that uΔx → u in C([0, T ] × R). 
�

A satisfactory uniqueness theory for conservative weak solutions of the Hunter–
Saxton equation would have ensured that all limits in Theorem 1 are equal, and thus
that the sequence as a whole converges. Unfortunately, uniqueness of conservative
solutions is unknown at the present time. On the other hand it is known that if the
initial data (u0, F0) is Lipschitz continuous, also the solution (u(t, ·), F(t, ·)) will be
Lipschitz continuous for all t ∈ [0,− 2

min(u0,x )
), at least. In particular, as Examples 1

and 3 indicate, when wave breaking occurs u(t, ·) may be Hölder, but not Lipschitz
continuous and F may even be discontinuous.

In the next theorem, we consider the special case of weak conservative solutions
(u, F) such that (u(t, ·), F(t, ·)) are Lipschitz continuous for all t ∈ [0, T ].
Theorem 3 Let (u, F) ∈ [W 1,∞([0, T ]×R)]2 be a conservative solution in the sense
of Definition 5. Then the conservative solution is unique and there exists a constant
C > 0, dependent on T , F∞, and supt∈[0,T ]

(‖ux (t, ·)‖∞ + ‖Fx (t, ·)‖∞
)
, such that

sup
t∈[0,T ]

(‖(uΔx − u)(t, ·)‖∞ + ‖(FΔx − F)(t, ·)‖∞
) ≤ C

(√
Δx + Δx

)
. (2.11)
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Proof For any conservative solution (u, F) ∈ [W 1,∞([0, T ] × R)]2 with initial data
(u0, F0), the characteristic equation

d

dt
x(t) = u(t, x(t)), x(0) = x0,

is uniquely solvable. Furthermore, the classical method of characteristics implies that
the solution is unique and given by

u(t, x(t)) = u0(x0) + 1

2
(F0(x0) − 1

2
F∞)t,

F(t, x(t)) = F0(x0).

Introduce (ũ0, F̃0)(t) = TtPΔx (u0, F0) and recall that x j (t) denotes the characteristic
starting at the grid point x j , then

(ũ0(t, x j (t)), F̃0(t, x j (t))) = (u(t, x j (t)), F(t, x j (t))) for all j ∈ N.

Moreover, for all t ∈ [0, T ],

‖ũ0
x (t, ·)‖∞ ≤ ‖ux (t, ·)‖∞ and ‖F̃0

x (t, ·)‖∞ ≤ ‖Fx (t, ·)‖∞.

For n ≥ 1, define (ũn, F̃n) by

(ũn, F̃n)(t) =
{

T(t−tn)PΔx (ũn−1, F̃n−1)(tn), t ≥ tn,

(ũn−1, F̃n−1)(t), t < tn .

Then, following the same lines, one has

‖ũn
x (t, ·)‖∞ ≤ ‖ũn−1

x (t, ·)‖∞ ≤ ‖ux (t, ·)‖∞

and
‖F̃n

x (t, ·)‖∞ ≤ ‖F̃n−1
x (t, ·)‖∞ ≤ ‖Fx (t, ·)‖∞.

Since (uΔx (t, ·), FΔx (t, ·)) = PΔx (ũn(t, ·), F̃n(t, ·)) for all t ≤ tn , we end up with

sup
t∈[0,T ]

(‖uΔx,x (t, ·)‖∞ + ‖FΔx,x (t, ·)‖∞
) ≤ sup

t∈[0,T ]
(‖ux (t, ·)‖∞ + ‖Fx (t, ·)‖∞

)
.

It is left to show (2.11). We start by comparing (u, F) with (ũ0, F̃0). To that end
let (t, x) ∈ [0, T ] × R such that x j (t) ≤ x ≤ x j+1(t). Then there exists x0 and x̃0 in
[x j , x j+1] such that

u(t, x) = u0(x0) + 1

2

(
F0(x0) − 1

2
F∞

)
t,

F(t, x) = F0(x0),
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and

ũ0(t, x) = ũ0(0, x̃0) + 1

2

(
F̃0(0, x̃0) − 1

2
F∞

)
t

F̃0(t, x) = F̃0(0, x̃0).

Using (ũ0(0, x), F̃0(0, x)) = PΔx (u0(x), F0(x)), we have,

|u(t, x) − ũ0(t, x)| ≤ |u0(x0) − ũ0(0, x0)| + |ũ0(0, x0) − ũ0(0, x̃0)|
+ 1

2
t
(
|F0(x0) − F̃0(0, x0)| + |F̃0(0, x0) − F̃0(0, x̃0)|

)

≤ 2

(
‖u0,x‖∞ + 1

2
t‖F0,x‖∞

)
Δx,

and

|F(t, x) − F̃0(t, x)| ≤ |F0(x0) − F0(0, x0)| + |F̃0(0, x0) − F̃0(0, x̃0)|
≤ 2‖F0,x‖∞Δx .

Combining the last two inequalities, we have

sup
t∈[0,T ]

(‖u(t, ·) − ũ0(t, ·)‖∞ + ‖F(t, ·) − F̃0(t, ·)‖∞
) ≤ 2L(1 + 1

2
t)Δx,

where L = supt∈[0,T ]
(‖ux (t, ·)‖∞ + ‖Fx (t, ·)‖∞

)
. Moreover, we have by the same

argument for t ≥ tn that

‖ũn(t, ·) − ũn−1(t, ·)‖∞ + ‖F̃n(t, ·) − F̃n−1(t, ·)‖∞

≤ 2(‖ũn−1
x (tn, ·)‖∞ + ‖F̃n−1

x (tn, ·)‖∞)(1 + 1

2
(t − tn))Δx

≤ 2L(1 + 1

2
(t − tn))Δx .

Since (uΔx (t, ·), FΔx (t, ·)) = PΔx (ũn(t, ·), F̃n(t, ·)) for all t ≤ tn , we have for all
tn ≤ t ≤ tn+1 that

‖u(t, ·) − uΔx (t, ·)‖∞ + ‖F(t, ·) − FΔx (t, ·)‖∞
≤ ‖u(t, ·) − ũ0(t, ·)‖∞ + ‖F(t, ·) − F̃0(t, ·)‖∞

+
n∑

l=1

(
‖ũl(t, ·) − ũl−1(t, ·)‖∞ + ‖F̃l(t, ·) − F̃l−1(t, ·)‖∞

)

+ ‖ũn(t, ·) − uΔx (t, ·)‖∞ + ‖F̃n(t, ·) − FΔx (t, ·)‖∞
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≤ 2L(1 + 1

2
t)Δx +

n∑
l=1

2L(1 + 1

2
(t − t l))Δx + 2LΔx

≤ C(
√

Δx + Δx),

where we have used (2.4). 
�

3 Numerical examples

In this section we perform two experiments to see whether the scheme in Definition 3
converges to the desired conservative solution. We compare the numerical solutions
with known, exact solutions in two cases, namely a peakon and a cusp. These two
have been selected since the exact solutions represent two distinct challenges for
the numerical solver. The peakon solution experiences wave breaking at t = 2 and
all energy is concentrated in a single point. Thus F becomes discontinuous while u
becomes a constant function. The cusp solution, on the other hand, experiences wave
breaking at each time t with t ∈ [0, 3], but only an infinitesimal amount of energy
concentrates at any given time.

In our examples we assume that the initial data u0 is constant outside some finite
interval [a, b]. By (2.2) and Lemma 1, we then obtain that at each time t , both u(t, ·)
and uΔx (t, ·) will be constant outside some finite interval [a(t), b(t)]. Thus for any
T > 0, by choosing the computational domain accordingly, we can ensure that u(t, ·)
and uΔx (t, ·) are constant outside the computational domain for all t ∈ [0, T ]. We
look at the peakon example first.

Example 2 (Peakon solution) We have initial data

u0(x) =

⎧⎪⎨
⎪⎩
1, x < 0,

1 − x, 0 ≤ x ≤ 1,

0, 1 < x,

F0(x) =

⎧⎪⎨
⎪⎩
0, x < 0,

x, 0 ≤ x ≤ 1,

1, 1 < x,

with the exact solution

u(t, x) =

⎧⎪⎪⎨
⎪⎪⎩

1 − 1
4 t, x < t − 1

8 t2,

− 1
1− 1

2 t

(
x − t + 1

8 t2
)+ 1 − 1

4 t, t − 1
8 t2 ≤ x ≤ 1 + 1

8 t2 < x,

1
4 t, 1 + 1

8 t2 < x,

F(t, x) =

⎧⎪⎪⎨
⎪⎪⎩

0, x < t − 1
8 t2,

1
(1− 1

2 t)2

(
x − t + 1

8 t2
)
, t − 1

8 t2 ≤ x ≤ 1 + 1
8 t2,

1, 1 + 1
8 t2 < x .
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Fig. 2 The functions uΔx (left) and FΔx (right) in the case of peakon initial data, plotted at t = 0, t = 2,
and t = 4. Here Δx = 1

4 and Δt = 1
4
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Fig. 3 The L∞-error of the numerical solution uΔx plotted against the spatial grid size Δx (left), and the
L1-error of the numerical solution FΔx plotted against the spatial grid size Δx (right)

In Fig. 2 the numerical solution (uΔx , FΔx ) is computed and compared with the exact
solution at t = 0, t = 2, and t = 4. Figure 3 shows the error, when compared to the
exact solution, and we see that the method captures the wave breaking phenomena in
this example.

Example 3 (Cusp solution) We have initial data

u0(x) =

⎧⎪⎨
⎪⎩
1, x < −1,

|x | 23 , −1 ≤ x ≤ 1,

1, 1 < x,

F0(x) =

⎧⎪⎪⎨
⎪⎪⎩

0, x < −1,
4
3

(
x

1
3 + 1

)
, −1 ≤ x ≤ 1,

8
3 , 1 < x,
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Fig. 4 The functions uΔx (left) and FΔx , (right) in the case of cusp initial data, plotted at t = 0, t = 1.93,
and t = 4. Here Δx = 1/4 and Δt ≈ 0.148. Note the slight discrepancy between the numerical solution
and the exact solution in the variable F already at t = 0 due to the projection operator being applied to the
numerical initial data
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Fig. 5 The L∞-error of the numerical solution uΔx plotted against the spatial grid size Δx (left) and the
L1-error of the numerical solution FΔx plotted against the spatial grid size Δx (right)

with the exact solution

u(t, x) =

⎧⎪⎪⎨
⎪⎪⎩

1 − 2
3 t, x < −1 + t − 1

3 t2,(
x + ( t

3

)3) 2
3 − t2

9 , −1 + t − 1
3 t2 ≤ x ≤ 1 + t + 1

3 t2,

1 + 2
3 t, 1 + t + 1

3 t2 < x,

F(t, x) =

⎧⎪⎪⎨
⎪⎪⎩

0, x < −1 + t − 1
3 t2,

4
3

(
x + ( t

3

)3) 1
3 + 4

3

(
1 − t

3

)
, −1 + t − 1

3 t2 ≤ x ≤ 1 + t + 1
3 t2,

8
3 , 1 + t + 1

3 t2 < x .

123



470 K. Grunert et al.

In Fig. 4 the numerical solution (uΔx , FΔx ) is computed and compared with the exact
solution at t = 0, t = 2, and t = 4. Figure 5 shows the error when compared to the
exact solution.

From Figs. 3 and 5, we see that the best we can hope for in terms of convergence
rates in L∞ for u and L1 for F in the general case is O(√Δx

)
. As uniqueness of

conservative solutions is still an open problem, proving any form of convergence rate
of the numerical method seems to be extremely challenging.

Remark 8 Clearly we cannot expect a better convergence order than one half in the
L∞-norm for u, since there exists u0 in D such that ‖u0 − u0Δx‖∞ = √

F∞
√

Δx ,
see Proposition 1.
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