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Holomorphically homogeneous Cauchy–Riemann (CR) real hypersurfaces M3 ⊂ C
2

were classified by Élie Cartan in 1932. In the next dimension, we complete the

classification of simply-transitive Levi non-degenerate hypersurfaces M5 ⊂ C
3 using

a novel Lie algebraic approach independent of any earlier classifications of abstract Lie

algebras. Central to our approach is a new coordinate-free formula for the fundamental

(complexified) quartic tensor. Our final result has a unique (Levi-indefinite) non-tubular

model, for which we demonstrate geometric relations to planar equi-affine geometry.

1 Introduction

In general Cauchy–Riemann (CR) dimension n � 1, the classification of locally homoge-

neous real hypersurfaces M2n+1 ⊂ C
n+1 (up to local biholomorphisms) is a vast, infinite

problem. In 1932, Élie Cartan [4, 5] settled the n = 1 case, and substantial efforts have

been made over the past 20 years to complete the n = 2 case, cf. [8, 11, 16–18]. Most

recently, the remaining “simply-transitive Levi-nondegenerate” part of the classification

was addressed in [1, 2, 14, 19] using normal form methods. The main goal of this article
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2 B. Doubrov et al.

is to unify and complete this final study through a novel approach. Our Theorem 1.1

presents the final classification, which thereby concludes the n = 2 case.

Local Lie groups are analytic, so homogeneous M2n+1 ⊂ C
n+1 may be assumed

from the outset to be real analytic (Cω). By Lie’s infinitesimalization principle [15], the

group Hol(M) of local biholomorphic transformations of C
n+1 stabilizing M is better

viewed as the real Lie algebra:

hol(M) :=
{
X =∑n+1

k=1 ak(z) ∂
∂zk

:
(
X + X

)∣∣
M is tangent to M

}
, (1.1)

where z = (z1, . . . , zn+1) are coordinates on C
n+1, with the ak(z) being holomorphic. As

Lie did [15], we will consider local Lie transformation (pseudo-)groups and mainly deal

with their Lie algebras of vector fields. Clearly, M is (locally) homogeneous if and only if

∀p ∈ M, the evaluation map hol(M) → TpM sending X �→ (X +X)|p is surjective. One calls

a homogeneous M simply-transitive if dim M = dim
R
hol(M) and multiply-transitive if

dim M < dimRhol(M).

Recall that M2n+1 ⊂ C
n+1 is tubular (or is a “tube”) if there is a biholomorphism

M ∼= Sn × iRn+1, where S ⊂ R
n+1 is a real hypersurface (its “base”). If S =

{F(x1, . . . , xn+1) = 0} ⊂ R
n+1 is a real hypersurface with dF 	= 0 on S, its associated

tube is MS = {F(Re z1, . . . , Re zn+1

) = 0} ⊂ C
n+1. A tube MS is Levi non-degenerate if and

only if its base S has non-degenerate Hessian, and the signatures of the Levi form and

Hessian agree. Clearly, i ∂z1
, . . . , i ∂zn+1

∈ hol(MS). Furthermore, any real affine symmetry

S = (Ak� x� +bk

)
∂xk

(summation assumed on 1 ≤ k, � ≤ n+1) of S has “complexification”

X = Scr = (
Ak� z� + bk

)
∂zk

in hol(MS). Thus, an affinely homogeneous base yields a

holomorphically homogeneous tube.

1.1 Main result

Restrict now considerations to Levi non-degenerate hypersurfaces M5 ⊂ C
3, that is,

n = 2. The multiply-transitive case was tackled in [17, 18], which completed the majority

of the classification, except the Levi-indefinite branch with dim hol(M) = 6. Recently,

the entire multiply-transitive classification was settled in [8]. The simply-transitive

case was addressed in [1, 2, 14, 19], where they employed normal form methods and

Mubarakzyanov’s classification of 5D Lie algebras. In this article, we independently

settle the entire simply-transitive classification using a novel Lie algebraic approach

that does not depend on earlier classifications of abstract Lie algebras. Our main

classification result is the following, where we use the notation zj = xj + iyj and

w = u + iv:
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Simply-transitive nondegenerate hypersurfaces 3

Theorem 1.1. Any simply-transitive Levi non-degenerate hypersurface M5 ⊂ C
3 is

locally biholomorphic to precisely one of the following.

(1) Either one hypersurface among the six families of tubular hypersurfaces listed in

Table 1, with corresponding five generators of hol(M).

(2) Or the single nontubular exceptional model:

Im(w) = ∣∣ Im(z2) − w Im(z1)
∣∣2, (1.2)

having indefinite Levi signature and the infinitesimal symmetries:

z1 ∂z1
− z2 ∂z2

− 2w ∂w, z1 ∂z2
+ ∂w, z2 ∂z1

− w2 ∂w, ∂z1
, ∂z2

, (1.3)

that is, the planar equi-affine Lie algebra saff(2,R) := sl(2,R) �R
2.

Table 1 All simply-transitive tubes M5 ⊂ C
3. Parameters α, β ∈ R and ε = ±1
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4 B. Doubrov et al.

We immediately recover that all simply-transitive Levi-definite M5 ⊂ C
3 are

tubular [14].

The classification of affinely homogeneous surfaces S ⊂ R
3 appears in [6, 9].

A tube MS on an affinely multiply-transitive base S is holomorphically multiply-

transitive, so for the Levi non-degenerate simply-transitive tube classification, we can

start from the Doubrov–Komrakov–Rabinovich (DKR) list [6]. (Family (6) in [6, Thm. 1]

contains a typo: it should also include α = 0, that is, the Cayley surface.) Then we

perform the following:

(i) Remove those surfaces yielding tubes already appearing in the multiply-

transitive classification [8]. (See our Table 2 and Remark 6.6 in §6.2.)

(ii) Restrict to affinely simply-transitive surfaces that have non-degenerate

Hessians. (This excludes all quadrics, cylinders, and the Cayley surface

u = x1x2 − x3
1

3 , cf. [6, Prop. in §3].)

The desired classification is a subset of the resulting candidate list, which

comprises the surfaces in the 2nd column of Table 1. The symmetries in the 3rd column

confirm that these all have dim hol(M) ≥ 5, but it is important to carefully identify

all exceptions for which this dimension jumps up. Theorem 1.1 asserts that no such

exceptions occur among the candidate list.

A comparison with the simply-transitive list in [19, Table 7] is in order. The

tubular classification there mostly matches ours but differs in the T3 and T4 cases in

our Table 1. For the former, α = 0 is incorrectly omitted; for the latter, the restriction

should be corrected to α 	= 0, −8
9 . Moreover, two nontubular models are listed:

(a) (v − x2y1)2 + y2
1y2

2 = y1, which is equivalent to (1.2)—see §5.3. We moreover

derive (1.2) in an elementary manner and elucidate some related planar equi-

affine geometry.

(b) v(1 + εx2y2) = y1y2 with ε = ±1, which is Levi degenerate at the origin and

Levi indefinite. We confirm that dim hol(M) = 5, with generators(
2i + ε z2

2

)
∂z1

+ 2z2 ∂w, ε w ∂z1
+ ∂z2

, z1 ∂z1
+ w ∂w, ∂z1

, ∂w. (1.4)

From the hypersurface equation, y2 = Im(z2) is locally unrestricted, but its

level sets are clearly preserved by all symmetries (1.4), so this model is not

homogeneous.

Recall that when there exists a nonzero holomorphic vector field X (not only

2 Re X) that is tangent to M2n+1 ⊂ C
n+1, one says that M is holomorphically degenerate
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Simply-transitive nondegenerate hypersurfaces 5

[20, 21]. After rectifying so that X = ∂zn+1
locally near any p ∈ M at which X

∣∣
p 	= 0,

one locally has M2n+1 ∼= M2n−1 × C for some real hypersurface M2n−1 ⊂ C
n. In

this case, given any holomorphic function f (z), we have f (z)∂zn+1
∈ hol(M), whence

dim hol(M) = ∞.

More broadly, Theorem 1.1 also terminates the problem of classifying all

holomorphically homogeneous CR real hypersurfaces M5 ⊂ C
3, as follows:

1. Holomorphically degenerate: either the Levi-f lat hyperplane R × C × C or

M3 × C for some homogeneous Levi non-degenerate hypersurface M3 ⊂ C
2,

classified by Cartan [4, 5]. These all have dim hol(M) = ∞.

2. Holomorphically non-degenerate: From [21], there are two possibilities:

(a) Constant Levi rank 1 and 2-nondegenerate: The classification was

completed by Fels–Kaup in [11]. All such models are tubular, with

dim hol(M) ≤ 10, which is sharp on the tube with base the future light

cone S = {x ∈ R
3 : x2

1 + x2
2 = x2

3, x3 > 0}.
(b) Levi non-degenerate: dim hol(M) ≤ 15, which is sharp on the f lat model

Im w = |z1|2 + ε|z2|2, where ε = ±1. The biholomorphism (z1, z2, w) �→
(z1, z2, i(2w − z2

1 − εz2
2)) maps this to the tube over u = x2

1 + εx2
2.

1.2 Classification approach and further results

Some recent classification approaches focus on effective use of normal forms. For

instance, in the simply-transitive, Levi-definite case [14], the authors realize 5D real

Lie algebras acting transitively on real hypersurfaces by holomorphic vector fields and

then find appropriate normal forms for such realizations. Their starting point is the

classification of abstract 5D real Lie algebras (Mubarakzyanov [23]), but they also use

an important discarding sieve: if hol(M) is 5D and contains a 3D abelian ideal, then M

is tubular over an affinely homogeneous base [14, Prop. 3.1]. In the end, no nontubular

models survive and they invoke the DKR classification [6] for tubular cases.

Remark 1.2. By our Theorem 1.1, we can a posteriori assert that [14, Prop. 3.1], valid

for a Lie algebra g of holomorphic vector fields acting locally simply transitively on

Levi-definite M5 ⊂ C
3, also holds in the Levi-indefinite case. However, their proof does

not carry over: it relies on [14, Prop. 2.3], which states that if X, Y, Z ∈ g commute and

are linearly independent over R at q ∈ M, then X, Y, Z are linearly independent over C

at q. This may fail in the indefinite setting, as the following counterexample shows.
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6 B. Doubrov et al.

Consider a hypersurface of Winkelmann type [8] given by Im(w + z1z2) = (z1)α(z1)α for

α ∈ C\{−1, 0, 1, 2}, which is tubular if and only if (2α−1)2

(α+1)(α−2)
∈ R. Then hol(M) contains

the abelian subalgebra

X1 = z1∂z2
, X2 = ∂z2

+ z1∂w, X3 = i∂z2
− iz1∂w, X4 = ∂w. (1.5)

Evaluating at a point where z1 	= 0, we see that {X1, X2, X3} are linearly independent over

R, but they are linearly dependent over C.

Our approach to the non-tubular, simply-transitive classification is substan-

tially different. Our approach circumvents the use of normal forms, is independent

of the Mubarakzyanov classification, and draws upon the known close geometric

relationship with so-called Legendrian contact (LC) structures that were similarly

effectively used in [7, 8]. (The Cartan-geometric approach [7] in the simply-transitive

setting would result in heavy case branching, so this will not be used.) To describe our

strategy, we need to recall some notions.

Any Levi non-degenerate hypersurface M2n+1 ⊂ C
n naturally inherits a CR

structure of codimension 1, that is, a contact distribution C = TM ∩ J(TM) ⊂ TM with

a complex structure J : C → C compatible with the natural (conformal) symplectic form

on C. The induced J on the complexification CC has ±i eigenspaces yielding isotropic,

integrable subdistributions. Almost CR structures (M; C, J) (for which integrability is

not required) have corresponding complexified analogues called LC structures (N; E, F).

This consists of a complex contact manifold (N2n+1, C) with the contact distribution C

split (instead of CC) into a pair of isotropic subdistributions E and F of equal dimension.

It is an integrable LC (ILC) structure if both E and F are integrable.

Concretely, if M2n+1 ⊂ C
n+1 has defining equation �(z, z) = 0, where � is real

analytic, then we define its complexification Mc ⊂ C
n+1 × C

n+1 by �(z, a) = 0. (We can

recover M as the fixed-point set of the anti-involution (z, a) �→ (a, z) restricted to Mc.)

The associated double fibration

(1.6)

defined by π1(z, a) = z and π2(z, a) = a for (z, a) ∈ Mc induces vertical (hence integrable)

subdistributions F = ker(dπ1) and E = ker(dπ2) on Mc. Levi non-degeneracy of M
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Simply-transitive nondegenerate hypersurfaces 7

implies that C = E ⊕ F is a contact distribution on Mc, and indeed (Mc; E, F) is an ILC

structure. Regarding a ∈ C
n+1 as parameters, we view Mc = {�(z, a) = 0} as describing

a parametrized family of hypersurfaces in C
n+1. These Segre varieties were introduced

by Segre [26, 27], further explored by Cartan [4] in the C
2 case, and extended more

generally—see for example, [8, 20, 21, 28, 29].

Locally solving �(z, a) = 0 for one variable among z = (z1, . . . , zn+1), say

w := zn+1, then differentiating once, we can locally resolve all parameters a in terms

of the 1-jet (zk, w, w� := ∂w
∂z�

) for 1 ≤ k, � ≤ n. Hence, we can differentiate one more

time, eliminate parameters a, and write 2nd partials as a complete 2nd-order partial

differential equation (PDE) system (considered up to local point transformations):

∂2w

∂zi∂zj
= fij(zk, w, w�). (1.7)

The Segre varieties are now interpreted as the space of solutions of (1.7). (See (2.1) for E

and F.)

The symmetry algebra of an LC structure consists of all vector fields respec-

tively preserving E and F under the Lie derivative. In terms of Mc = {�(z, a) = 0},
any symmetry is of the form X = ξk(z)∂zk

+ σ k(a)∂ak
. For example, given a tube MS =

{F(Re z) = 0}, its complexification Mc
S = {F( z+a

2 ) = 0} admits the (n + 1)-dimensional

abelian subalgebra a = 〈∂z1
− ∂a1

, . . . , ∂zn+1
− ∂an+1

〉 that is clearly transverse to E and F.

In the PDE picture, any symmetry of (1.7) is projectable over the (zk, w)-space, and these

are called point symmetries. For Levi non-degenerate M ⊂ C
n+1, the symmetry algebra

sym(Mc) of the associated ILC structure (Mc; E, F) is simply hol(M) ⊗
R
C, see [20, Cor.

6.36]. In particular,

dim
C

sym(Mc) = dim
R
hol(M). (1.8)

For our simply-transitive study, M or Mc will be (locally) real or complex Lie groups

respectively, and we encode data on their Lie algebras. Our focus will be on ASD-ILC

triples:

Definition 1.3. Let g be a 5D complex Lie algebra. An ILC triple (g; e, f) consists of a pair

of 2D subalgebras e, f of g with e ∩ f = 0 such that for C := e ⊕ f, the map η :
∧2 C → g/C

given by (x, y) �→ [x, y] mod C is non-degenerate. An ILC triple is
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8 B. Doubrov et al.

1. tubular if there exists a 3D subalgebra a ⊂ g with e ∩ a = f ∩ a = 0;

2. anti-self-dual (ASD) if there exists an anti-involution τ of g that swaps e and f.

In this case, call τ admissible. In the tubular case, τ is also required to

stabilize a above.

Given an ASD-ILC triple (g; e, f), the fixed-point set of an admissible anti-

involution τ determines the corresponding Lie algebraic CR data (and conversely).

Letting G be a (complex) Lie group with Lie algebra g, and E, F determined from e, f by

left translations in G, the ILC structure (G; E, F) certainly has ILC symmetry dimension,

denoted dim symILC(g; e, f), at least dim G = 5. It is important to recognize and discard

cases where it exceeds this. This occurs when there is an embedding (Definition 2.11)

into an ILC quadruple (g̃, k̃; ẽ, f̃) with dim(k̃) > 0. An important tool in this study is the

fundamental quartic tensor Q4, which we now present.

For any (integrable) CR or ILC structure, it is well known that there is a

fundamental tensor that obstructs local equivalence to the f lat model, which uniquely

realizes the maximal symmetry dimension. When n = 2, this tensor takes the form of

a binary quartic Q4, and symmetry upper bounds based on its root type are known—

see (2.18). In the CR setting, Q4 is typically computed from the 4th degree part of the

Chern–Moser normal form [10], while in the semi-integrable LC (SILC) setting [7] it was

computed in terms of a PDE realization (1.7). However, neither of these methods are

amenable to a Lie algebraic approach. In §2, we give a coordinate-free formula for Q4 for

general LC structures, which can be directly used on Lie algebraic data—in particular

on an ASD-ILC triple (g; e, f).

Our Lie algebraic study is organized in terms of 3D abelian ideals. In §3, we effi-

ciently classify all 5D complex Lie algebras without a 3D abelian ideal (Proposition 3.2).

The search for ASD-ILC triples supported on this small list of Lie algebras produces a

unique model on g = saff(2,C) := sl(2,C) �C
2, see Theorem 3.1.

In §4, we study ASD-ILC triples (g; e, f) with g containing a 3D abelian ideal a.

Theorem 4.1 shows that if dim symILC(g; e, f) = 5, then e ∩ a = f ∩ a = 0 and a = τ(a)

under any admissible anti-involution τ . These data allow us to a priori conclude

(Corollary 6.4) that all models in this branch are tubes on an affinely simply-transitive

base.

We then return to CR geometry. In §5, we construct the exceptional model (1.2),

highlight related planar equi-affine geometry, and find corresponding PDE realizations.

Finally in §6, we treat the tubes for any candidate base arising from the DKR

classification. Table 3 summarizes the root types for these tubes, which are deduced
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Simply-transitive nondegenerate hypersurfaces 9

from the quartics Q4 given in Table 3. From (2.18), when the root type is I or II, the

symmetry dimension upper bound is 5, and such models are automatically simply-

transitive. The root type D and N cases are more subtle, and simple-transitivity in these

remaining cases are confirmed using two methods: PDE point symmetries (§6.3) and

power series (§6.4).

Beyond our main result, let us emphasize two important results obtained in this

article:

• We give a simple geometric interpretation and coordinate-free formula for

the fundamental quartic tensor Q4 for general 5D LC structures.

• We conceptualize and give an effective method for computing symmetries of

rigid CR structures, which potentially can be generalized to a much larger

class of geometric structures.

2 Fundamental Tensor of 5D Legendrian Contact Structures

Motivated by the complexification Mc ⊂ C
n+1 × C

n+1 of a Levi non-degenerate

hypersurface M ⊂ C
n+1, we will exclusively study complex LC structures in this article

(but one can carry out analogous constructions for real LC structures). Recall that a

(complex) contact manifold (N2n+1, C) consists of a corank one distribution C with non-

degenerate skew-bilinear map η : �(
∧2 C) → �(TN/C) given by X ∧ Y �→ [X, Y] mod C.

Definition 2.1. A Legendrian contact (LC) structure (N; E, F) is a (complex) contact

manifold (N, C) equipped with a splitting C = E ⊕ F into maximally η-isotropic

(Legendrian) subdistributions E and F.

For an LC structure, [�(E), �(E)] ⊂ �(C) and [�(F), �(F)] ⊂ �(C), so composition

with the respective projections provided by the splitting gives two basic structure

tensors τE : �(
∧2 E) → �(F) and τF : �(

∧2 F) → �(E). These obstruct the Frobenius-

integrability of E and F, respectively. If one of these vanishes, then it is SILC, while if

both do, then it is integrable (ILC). In the SILC case [7] with τF ≡ 0, there exist local

coordinates (zk, w, wk) on N such that

E = 〈∂zi + wi∂w + fij∂wj
〉, F = 〈∂wi

〉, (2.1)

where fij = fji are functions of (zk, w, wk) and 1 ≤ i, j, k ≤ n. The SILC structure

is equivalently encoded by the complete 2nd-order PDE system (1.7) considered up to
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10 B. Doubrov et al.

local point transformations, that is, prolongations of transformations of (zk, w)-space.

Compatibility of (1.7) is equivalent to τE ≡ 0.

Beyond τE and τF , there is one additional fundamental tensor W that obstructs

local equivalence to the f lat model wij = 0. This curvature was computed for arbitrary

n ≥ 2 in the SILC case [7, Thm. 2.9]: with respect to an adapting framing, W
has components Wk�

ij = trfr
(

∂2fij
∂wk∂w�

)
, symmetric in the upper and lower indices

respectively, and where trfr indicates the completely trace-free part. When n = 2, this

specializes to a binary quartic tensor field. We now revisit the n = 2 case and derive a

coordinate-free formula for W for general LC structures.

2.1 Canonical lifting of a 5D LC structure

Over (N5, C), define the P
1-bundle Ñ

π→ N with fibre over x ∈ N defined as

Ñx := {(�E , �F) ∈ P(Ex) × P(Fx) : η(�E , �F) = 0}. (2.2)

Since rank(E) = rank(F) = 2 and η restricts to a perfect pairing E ⊗ F → TN/C, then

�E uniquely determines �F , that is, �F = F ∩ (�E)⊥η , and vice-versa. Hence, Ñ → N is

indeed a P
1-bundle. The 6-manifold Ñ is canonically equipped with three distributions

V ⊂ D ⊂ C̃:

1. rank 1: V = ker(π∗), that is, the vertical distribution for π ;

2. rank 3: D|̃x := (π∗)−1(�E ⊕ �F) for x̃ = (�E , �F);

3. rank 5: C̃ := (π∗)−1C.

Let us describe these in terms of adapted framings. Given any p ∈ N, there is

always some neighbourhood U ⊂ N on which we can find a local framing {e1, e2, f1, f2}
for C = E ⊕ F with E = 〈e1, e2〉, F = 〈f1, f2〉, and structure relations

[e1, e2] ≡ [e1, f2] ≡ [e2, f1] ≡ [f1, f2] ≡ 0, [e1, f1] ≡ [e2, f2] 	≡ 0 mod C. (2.3)

We refer to this as an LC-adapted framing. Any such framing induces a local trivializa-

tion φ : π−1(U) → U × P
1 of Ñ → N via

x̃ = (�E |x, �F |x) �→ (x, [s : t]), (2.4)
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Simply-transitive nondegenerate hypersurfaces 11

where [s : t] are homogeneous coordinates on P
1, and

�E = 〈se1 + te2〉, �F = 〈tf1 − sf2〉. (2.5)

The vector fields e1, e2, f1, f2 ∈ X(U) naturally induce vector fields on U × P
1 (having

trivial component on the P
1-factor) and on π−1(U) via the trivialization, and we abuse

notation to denote these vector fields on U × P
1 or π−1(U) also by e1, e2, f1, f2. To be

explicit, we will work in the local coordinate chart on P
1 on which s 	= 0, so we may as

well assume s = 1. Locally we have

V = 〈∂t〉, D = 〈e1 + te2, tf1 − f2, ∂t〉, C̃ = 〈e1, e2, f1, f2, ∂t〉. (2.6)

Using (2.3), we confirm that D has weak derived flag D−1 ⊂ D−2 = C̃ ⊂ D−3 = TÑ with

growth (rank(D−1), rank(D−2), rank(D−3)) = (3, 5, 6). Moreover, it is straightforward to

verify that (Ñ, D) gives an instance of the following:

Definition 2.2. A Borel geometry (R6, D) consists of a 6-manifold R equipped with a

rank 3 distribution D ⊂ TR with growth (3, 5, 6) weak derived flag D−1 := D ⊂ D−2 ⊂
D−3 = TR and whose symbol algebra m(x) := D(x)⊕(D−2(x)/D(x))⊕(TN/D−2(x)) at every

x ∈ R is isomorphic (as graded Lie algebras) to m = g−1⊕g−2⊕g−3 = {e1, e2, e3}⊕{e4, e5}⊕
{e6} satisfying the commutator relations

[e1, e2] = e4, [e2, e3] = e5, [e1, e5] = −e6, [e3, e4] = e6. (2.7)

Remark 2.3. Consider the Borel subalgebra in sl(4) consisting of upper triangular

trace-free matrices. There is an induced stratification on the complementary subalgebra

of strictly lower triangular matrices and the bracket relations match those for m above.

Lifting the LC structure and reinterpreting it as a Borel geometry is an instance of a

general construction for parabolic geometries referred to as lifting to a “correspondence

space” [3]. However, we will not need to use any of the broad theory developed there.

For any Borel geometry, let us observe that D inherits distinguished subdistri-

butions:

Proposition 2.4. Given any Borel geometry (R6, D), we canonically have

(a) a rank 2 subdistribution
√

D ⊂ D satisfying [
√

D,
√

D] ≡ 0 mod D;
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12 B. Doubrov et al.

(b) a line field V = {X ∈ �(D) : [X, �(D−2)] ⊂ �(D−2)}. This satisfies D = V ⊕ √
D.

(c) a decomposition
√

D = L1 ⊕ L2 (unique up to ordering) into null lines for a

canonical (non-degenerate) conformal symmetric bilinear form on
√

D.

Proof.

(a) The bracket
∧2

g−1 → g−2 coming from
∧2 D → D−2/D has one-dimensional

kernel 〈e1 ∧ e3〉. This corresponds to a (rank 2)
√

D ⊂ D satisfying [
√

D,
√

D] ≡
0 mod D.

(b) The bracket gives a surjective map g−1 × g−2 → g−3, so the induced map

g−1 → g∗−2 ⊗ g−3 has one-dimensional kernel 〈e2〉. Thus, there exists a

distinguished line field V ⊂ D satisfying [X, �(D−2)] ⊂ �(D−2) for any

X ∈ �(V). From (2.7), it is clear that V 	⊂ √
D.

(c) The Lie bracket induces the isomorphism V ⊗ √
D ∼= D−2/D and a map√

D ⊗ (D−2/D) → TR/D−2. Via the former, the latter induces a conformal

symmetric bilinear form on
√

D. In a framing corresponding to the basis

{e1, e3}, it is a multiple of
(

0 1
1 0

)
mod D−2. Letting L1, L2 ⊂ √

D be

complementary null line fields then establishes the claim. �

The decomposition D = V ⊕ √
D provides projections onto each factor. Conse-

quently, the following result is immediate:

Corollary 2.5. The map �(L1) × �(L2) → �(V) given by

(X, Y) �→ projV([X, Y]) (2.8)

is tensorial, so determines a vector bundle map � : L1 ⊗ L2 → V. (Because of the

possibility of swapping L1 and L2, � is canonical only up to a sign.) Geometrically, it

is the obstruction to Frobenius integrability of
√

D.

For an LC structure (N5; E, F), we refer to � as its fundamental tensor. We now

show that � specializes to the known quartic expression in the SILC case.

2.2 The fundamental quartic tensor

We now evaluate � in an LC-adapted framing.
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Simply-transitive nondegenerate hypersurfaces 13

Lemma 2.6. Let (N5; E, F) be an LC structure and {e1, e2, f1, f2} an LC-adapted framing

of C = E ⊕ F on N (i.e., satisfying (2.3)), and let {e1, e2, f1, f2} be its dual coframing.

Following §2.1, we induce vector fields on Ñ satisfying (2.6).

1. The line fields V, L1, L2 from Proposition 2.4 are respectively spanned by

∂t, �1 = e1 + te2 + A1∂t, �2 = tf1 − f2 + A2∂t, (2.9)

where, defining S := [e1 + te2, tf1 − f2], we have

A1 = −(f1 + tf2)(S), A2 = (e2 − te1)(S). (2.10)

2. Defining Q4 := −dt(�(�1, �2)) in terms of the fundamental tensor �, we have

Q4 = −�1(A2) + �2(A1) − e1(S)f1(S) − e2(S)f2(S), (2.11)

which is a polynomial in t of degree at most 4.

Proof. We already know V = 〈∂t〉, so write
√

D = 〈�1, �2〉 with �1, �2 as in (2.9). Write

[�1, �2] = S + A1f1 − A2e2 + (�1(A2) − �2(A1))∂t, (2.12)

where S ∈ �(C̃) by (2.3). Writing S = s1e1 + s2e2 + s3f1 + s4f2, we have

[�1, �2] ≡ (s2 − s1t − A2)e2 + (s3 + s4t + A1)f1

+ (�1(A2) − �2(A1) − s1A1 + s4A2

)
∂t mod

√
D.

(2.13)

Using part (a) of Proposition 2.4, we force [�1, �2] ≡ 0 mod D and obtain the relations

(2.10). This proves the 1st claim. To confirm part (c) of Proposition 2.4, we now

compute:

• V ⊗ √
D ∼= D−2/D: Observe [∂t, �1] ≡ e2, [∂t, �2] ≡ f1 mod D.

• √
D ⊗ D−2/D ∼= TÑ/D−2:

(
[�1, e2] [�1, f1]

[�2, e2] [�2, f1]

)
≡
(

0 [e1, f1]

[e2, f2] 0

)
mod C̃.

Composition yields a symmetric bilinear map
√

D ⊗ √
D → V∗ ⊗ TÑ/D−2 for which

Li := 〈�i〉 are null.

For the 2nd claim use (2.13). Note that −s1A1 + s4A2 = e1(S)f1(S) + e2(S)f2(S), so

we get (2.10). Since S is quadratic in t, then Ai are cubic in t and so a priori Q4 is quintic

in t. However, the order 5 term of Q4 agrees with that of −A1∂tA2 + A2∂tA1, which is

t3f2([e2, f1])(−3t2e1([e2, f1])) − t3e1([e2, f1])(−3t2f2([e2, f1])) = 0, so deg(Q4) ≤ 4. �
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14 B. Doubrov et al.

Remark 2.7. A local change of LC-adapted framing from (e1, e2, f1, f2) to (̂e1, ê2, f̂1, f̂2)

is determined by how (̂e1, ê2) differs from (e1, e2), that is, pointwise, by a GL(2)

transformation. This induces a fractional linear transformation t̂ = at+b
ct+d , from which

we can verify that Q̂4( t̂ ) = 1
(ct+d)4 Q4(t).

Let us now specialize to an SILC structure. Locally, this is given by the 2nd-order

PDE system

w11 = F, w12 = G, w22 = H, (2.14)

where F,G,H are functions of (z1, z2, w, w1, w2). More precisely, we have a contact 5-

manifold (N, C) with C = E ⊕ F = 〈e1, e2〉 ⊕ 〈f1, f2〉 given by the LC-adapted framing

{e1, e2, f1, f2}:
e1 = ∂z1 + w1∂w + F∂w1

+G∂w2
, f1 = ∂w1

,

e2 = ∂z2 + w2∂w +G∂w1
+ H∂w2

, f2 = ∂w2
.

(2.15)

Corollary 2.8. For the SILC (N5; E, F) given by (2.15), we have

Q4 = Fqq + 2t(Gqq − Fpq) + t2(Fpp − 4Gpq + Hqq) + 2t3(Gpp − Hpq) + t4Hpp, (2.16)

where (p, q) := (w1, w2). In the ILC case, Q4 is the complete obstruction to local

equivalence with the flat model wij = 0.

Proof. Using (2.15), we calculate S = [e1 + te2, tf1 − f2] =: s3f1 + s4f2, where

s3 = Fq + t(Gq − Fp) − t2Gp, s4 = Gq + t(Hq −Gp) − t2Hp. (2.17)

Hence, A1 = −s3 − s4t and A2 = 0 by (2.10), and also e1(S) = e2(S) = 0. Then (2.11) yields

Q4 = �2(A1) = (f2 − tf1)(s3 + s4t), which simplifies to (2.16) above.

Homogenizing Q4 and replacing t �→ −t, we recover the harmonic curvature

expression W derived in [7, (3.3)], which is the complete local obstruction to flatness for

5D ILC structures. �

A key advantage of (2.11) (see next section) is that it can be easily evaluated

on homogeneous structures in terms of Lie algebra data. A PDE realization as in

Corollary 2.8 is not needed.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnab147/6308676 by guest on 10 July 2021



Simply-transitive nondegenerate hypersurfaces 15

By Remark 2.7, the root type of Q4 is a discrete invariant of an LC structure. (We

should always view Q4 as a quartic: e.g., when the coefficient of t4 vanishes, we regard

∞ as being a root.) We denote this by N (quadruple root), D (two double roots), III (triple

root), II (one double root & two simple roots), I (four distinct roots), or O (identically

zero). Locally, only wij = 0 has constant type O everywhere.

2.3 Symmetries and homogeneous examples

For an LC structure (N; E, F), an automorphism [(infinitesimal) symmetry] is a diffeo-

morphism [vector field] of N preserving both E and F under pushforward [Lie derivative].

The symmetry dimension for LC structures (N2n+1; E, F) is at most (n + 2)2 − 1 and

this upper bound is (locally uniquely) realized by sl(n + 2) on the flat model wij = 0.

Focusing now on the 5D ILC case, 15 is the maximal symmetry dimension, and there is a

well-known symmetry gap to the next realizable symmetry dimension, which is 8. Finer

(sharp) upper bounds for structures with constant root type for Q4 are also known (see

[7, Thm.3.1]):

Root type O N D III II I

Max. sym. dim. 15 8 7 6 5 5
(2.18)

Let G be a Lie group and K a closed subgroup. Any G-invariant ILC structure

on N = G/K is completely encoded by the following algebraic data generalizing

Definition 1.3.

Definition 2.9. An ILC quadruple (g, k; e, f) consists of:

(i) g is a Lie algebra and k is a Lie subalgebra;

(ii) e and f are Lie subalgebras of g with e ∩ f = k (in particular, [k, e] ⊂ e and

[k, f] ⊂ f);

(iii) dim(e/k) = dim(f/k) = 1
2 (dim(g/k) − 1);

(iv) C := e/k⊕ f/k is a non-degenerate subspace of g/k, that is, the map η :
∧2 C →

g/C given by x ∧ y �→ [x, y] mod C is non-degenerate.

(v) (Effectivity) The induced action of k on C is non-trivial.

Although k is not usually an ideal in g (so there is no well-defined bracket on g/k coming

from g), the map η is well defined by (i)–(iii). When k = 0, we simply refer to (g, 0; e; f)

as an ILC triple (g; e, f). We will use the notation dim(symILC(g; e, f)) to denote the ILC

symmetry dimension of the unique left-invariant ILC structure on any Lie group G with

Lie algebra g determined by the data (g; e, f).
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16 B. Doubrov et al.

Given an ILC triple (g; e, f) with dim(g) = 5, let G be any Lie group with Lie

algebra g. Using an LC-adapted framing {e1, e2, f1, f2} consisting of left-invariant vector

fields on G, we see that A1 and A2 are polynomials in t with constant coefficients, and

(2.11) becomes

Q4 = −A1∂tA2 + A2∂tA1 − e1(S)f1(S) − e2(S)f2(S), (2.19)

where

S = [e1 + te2, tf1 − f2], A1 = −(f1 + tf2)(S), A2 = (e2 − te1)(S). (2.20)

We now consider some examples. Henceforth, {H, X, Y} will denote a standard

sl(2)-triple satisfying the commutator relations

[H, X] = 2X, [H, Y] = −2Y, [X, Y] = H. (2.21)

(When appropriate, we regard these as 2 × 2 matrices: H =
(

1 0

0 −1

)
, X =(

0 1

0 0

)
, Y =

(
0 0

1 0

)
.)

Example 2.10. Consider g = saff(2,C) := sl(2,C) � C
2 and basis {H, X, Y, v1, v2}. Aside

from the sl(2)-triple, the only other non-trivial brackets are

[H, v1] = v1, [H, v2] = −v2, [X, v2] = v1, [Y, v1] = v2. (2.22)

Define an ILC triple (g; e, f) via

e = 〈H + v1, X〉, f = 〈H − v2, Y〉, (2.23)

and an LC-adapted framing

e1 = X, e2 = H + v1 + X, f1 = 3Y, f2 = H − v2 − Y. (2.24)

We compute S = e1 + (2t + 1)e2 − t2f1 + t(3t + 2)f2, hence A1 = −t2 − 3t3 and A2 = 1 + t,

while Q4 = −4t(t + 1)(3t + 1), which has distinct roots {−1, −1
3 , 0, ∞}, so is of root type

I. From (2.18), we conclude that dim(symILC(g; e, f)) = 5.

If the homogeneous structure is not type II or I, then the symmetry dimension

may be higher than expected. Algebraically, this amounts to exhibiting:
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Simply-transitive nondegenerate hypersurfaces 17

Definition 2.11. An embedding of an ILC triple (g; e, f) into an ILC quadruple (ḡ, k̄; ē, f̄)

is a Lie algebra monomorphism ι : g → ḡ, such that

ι(g) ∩ k̄ = 0, ι(e) ⊂ ē, ι(f) ⊂ f̄. (2.25)

If g ⊂ ḡ is a subalgebra and ι is the natural inclusion, we say that (ḡ, k̄; ē, f̄) is an

augmentation of (g; e, f) by k̄. In particular, ḡ = g + k̄, ē = e + k̄, and f̄ = f + k̄.

Note that for an augmentation, only the additional brackets involving k̄ need to

be specified (and Jacobi identity for ḡ should be verified).

Example 2.12. Consider g = sl(2,C) × r2, where r2 is the unique 2D non-abelian Lie

algebra, and basis {H, X, Y, S, T}. Aside from the sl(2)-triple, the only other non-trivial

bracket is [S, T] = T. Let α 	= 0, β 	= 0, α 	= β, and define an ILC triple (g; e, f) via:

e = 〈H + αS + T, X〉, f = 〈H + βS + T, Y〉. (2.26)

Here is an LC-adapted framing:

e1 = 1

β − α
(H + αS + T), e2 = X, f1 = H + βS + T, f2 = Y. (2.27)

We compute S = −tβe1 − 2t2e2 + tα
β−α

f1 + 2
β−α

f2, hence A1 = t(α+2)
α−β

, A2 = t2(β − 2), and

Q4 = 2(αβ + β − α)

β − α
t2. (2.28)

Thus, the ILC structure is type O (hence, 15D symmetry) when αβ = α − β, and type D

otherwise (hence, at most 7D symmetry by (2.18)). In the latter case, we now show that

it is indeed 7D and is a realization of model D.7 from [7].

Let ḡ = sl(2,C)×sl(2,C)×C with basis {H1, X1, Y1, H2, X2, Y2, Z} consisting of sl(2)-

triples {Hi, Xi, Yi} and central element Z. Given λ ∈ C
×, define an ILC quadruple (ḡ, ē; f̄, k̄):

k̄ = 〈H1 − Z, λH2 − Z〉, ē = 〈X1, X2〉 + k̄, f̄ = 〈Y1, Y2〉 + k̄. (2.29)
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18 B. Doubrov et al.

For any t ∈ C, define a monomorphism ι : g → ḡ sending H �→ H1, X �→ X1,

Y �→ Y1, and

⎧⎨⎩S �→ − α+β
2(α−β)

H2 + β
α−β

X2 − α
α−β

Y2 + tZ,

T �→ + αβ
α−β

H2 − β2

α−β
X2 + α2

α−β
Y2,

(2.30)

which implies

ι(H + αS + T) = H1 − α
2 H2 + βX2 + αtZ, (2.31)

ι(H + βS + T) = H1 + β
2 H2 + αY2 + βtZ. (2.32)

Thus, ι(e) ⊂ ē and ι(f) ⊂ f̄ if and only if λ(αt + 1) = α
2 and λ(βt + 1) = −β

2 . Solving yields

t = −α+β
2αβ

and λ = αβ
β−α

∈ C\{0, −1}. (Recall αβ 	= α−β for non-flatness.) These parameters

uniquely define ι and provide an embedding from (g; e, f) into (ḡ, k̄; ē, f̄) for λ = αβ
β−α

. Thus,

dim(symILC(g; e, f)) is 15 when αβ = α − β and 7 otherwise.

3 Cases Without 3D Abelian Ideals

Given an ILC triple (g; e, f), an admissible anti-involution is an anti-automorphism

τ :g → g with τ2 = id that swaps e and f. In this section, we will prove the following

result:

Theorem 3.1. Let g be a 5D complex Lie algebra without 3D abelian ideals. There is a

unique (up to isomorphism) ASD-ILC triple (g; e, f) with dim(symILC(g; e, f)) = 5. Namely,

g ∼= saff(2,C) together with e and f given by (3.3), and such (g; e, f) has a unique admissible

anti-involution.

The proof begins by establishing (in Proposition 3.2) the classification of all 5D

complex g without 3D abelian ideals. For each g in this list, we investigate the ASD-ILC

triples (g; e, f) that it can support, but discard those with dim(symILC(g; e, f)) ≥ 6.

3.1 A key classification result

A feature of the proof of the following result is its independence of the known

Mubarakzyanov classification of 5D real Lie algebras [22].
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Simply-transitive nondegenerate hypersurfaces 19

Proposition 3.2. Any 5D complex Lie algebra g without 3D abelian ideals is isomorphic

to one of the following:

(NS1) sl(2,C) × C
2;

(NS2) sl(2,C) �C
2;

(NS3) sl(2,C) × r2, where r2 is a 2D non-abelian Lie algebra;

(SOL) the Lie algebra of upper-triangular matrices in sl(3,C).

Proof. Consider the following cases.

1. g is non-solvable. By the Levi decomposition, g ∼= sl(2,C) � rad(g), where

dim(rad(g)) = 2. If rad(g) is abelian, then we get either (NS1) or (NS2).

Otherwise, rad(g) ∼= r2 and sl(2,C) acts trivially on it (since Der(r2) is

solvable) and we get (NS3).

2. g is solvable, but not nilpotent. Let n be the nilradical (i.e., maximal nilpotent

ideal) of g, which coincides with the set of all nilpotent elements in g. If g has

center Z(g), then

4 ≥ dim n ≥ 1

2
(dim g + dimZ(g)), (3.1)

so dim n = 3 or 4. (See [23], [25, Thm. 5.2] for the 2nd inequality.) Consider

ρ : g �→ Der(n), u �→ ad u|n.

(a) dim(n) = 3: by assumption, n is non-abelian, so n ∼= n3, the 3D Heisenberg

Lie algebra. In a basis {P, Q, R} of n with only non-trivial bracket [P, Q] =
R, we have

Der(n3) =

⎛⎜⎜⎝
a11 a12 0

a21 a22 0

b1 b2 a11 + a22

⎞⎟⎟⎠ , ρ(n3) =

⎛⎜⎜⎝
0 0 0

0 0 0

b1 b2 0

⎞⎟⎟⎠ .

In particular, Der(n3)/ρ(n3) ∼= gl(2,C). By maximality of n, ρ(T) is not

nilpotent for any T 	∈ n. Let {S1, S2} be a basis of a complementary

subspace to n. Then [S1, S2] ⊂ [g, g] ⊂ n, and hence {ρ(S1), ρ(S2)} mod ρ(n3)

would form a basis of a commutative subalgebra in Der(n3)/ρ(n3) ∼=
gl(2,C) consisting of non-nilpotent elements (except for zero). But the

only such subalgebra is conjugate to the subalgebra of diagonal matrices

in gl(2,C). So, adjusting elements S1 and S2 by n3 if needed, we can

assume that ρ(S1) = diag(1, 0, 1) and ρ(S2) = diag(0, 1, 1).
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20 B. Doubrov et al.

Let [S1, S2] = u ∈ n3. Since ρ(u) = ρ([S1, S2]) = 0, we get that

u ∈ Z(n3) and, thus, u = αR for some α ∈ C. Replacing S1 by S1 + αR we

can normalize α to 0. Thus, g is isomorphic to (SOL) via the map:

P �→

⎛⎜⎜⎝
0 1 0

0 0 0

0 0 0

⎞⎟⎟⎠ , Q �→

⎛⎜⎜⎝
0 0 0

0 0 1

0 0 0

⎞⎟⎟⎠ , R �→

⎛⎜⎜⎝
0 0 1

0 0 0

0 0 0

⎞⎟⎟⎠ ,

S1 �→

⎛⎜⎜⎝
2
3 0 0

0 −1
3 0

0 0 −1
3

⎞⎟⎟⎠ , S2 �→

⎛⎜⎜⎝
1
3 0 0

0 1
3 0

0 0 −2
3

⎞⎟⎟⎠ . (3.2)

(b) dim(n) = 4: Let S ∈ g be any non-zero element not contained in n. The Lie

algebra n is isomorphic to one of the three possible nilpotent algebras in

dimension 4:

i. n = C
4. Then ρ(S) necessarily preserves a 3D subspace in n, which

will be an abelian ideal in g.

ii. n = n3 × C. It has a 2D center Z(n). The action of ρ(S) on n/Z(n)

preserves a 1D subspace, whose pre-image in n is an abelian ideal.

iii. n = n4 with a basis {P, Q1, Q2, Q3} and non-zero brackets [P, Q1] = Q2,

[P, Q2] = Q3. Then the 2nd element Z2(n) in the upper central series

of n is equal to 〈Q2, Q3〉. Its centralizer is equal to 〈Q1, Q2, Q3〉 and is

an abelian ideal in g.

3. g is nilpotent. Let a be a maximal abelian ideal of g. As in the previous case,

consider the representation:

ρ : g → gl(a), u �→ ad u|a.

Let us show that ker ρ = a. Indeed, otherwise the centralizer Zg(a) of a in

g is strictly greater than a. Since g is nilpotent, by Engel’s theorem we can

construct a sequence of ideals of g:

a ⊂ a1 ⊂ · · · ⊂ ar = Zg(a)

such that dim ai = dim a+ i for i = 1, . . . , r. But then a1 is also abelian, which

contradicts the maximality of a.

So, if dim a = n, then ρ(g) is a subalgebra in gl(a) consisting of
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Simply-transitive nondegenerate hypersurfaces 21

nilpotent elements. Then by Engel’s theorem we get dim g/a ≤ n(n − 1)/2

and dim g ≤ n(n + 1)/2. Thus, we see that n ≥ 3.

The cases n = 3 and n = 5 are ruled out by hypothesis. Finally, if

n = 4, then, as in the solvable case with n = C
4, we can find a 3D ideal

in a. �

3.2 NS1

For g = sl(2,C) × C
2, if (g; e, f) is an ILC triple, then the 2D center Z(g) = C

2 must have

non-trivial intersection with C = e ⊕ f. But this contradicts the non-degeneracy of C, so

no such ILC triples exist.

3.3 NS2

For g = saff(2,C) = sl(2,C) �C
2, we use notation introduced in Example 2.10.

Proposition 3.3. For g = saff(2,C), any ASD-ILC triple (g; e, f) is Aut(g)-equivalent to

e = 〈H + v1, X
〉
, f = 〈H − v2, Y

〉
. (3.3)

Proof. Observe that C
2 = rad(g), so it is preserved by any anti-involution. Assuming

e ∩ C
2 	= 0, then f ∩ C

2 	= 0 has the same dimension by the ASD property. In this case,

e∩ f = 0 implies C
2 ⊂ C = e⊕ f. But C2 ⊂ g is an ideal, so this contradicts non-degeneracy

of C. Thus, we can assume that e ∩ C
2 = f ∩ C

2 = 0.

Consider the quotient homomorphism π : g → g/C2 = sl(2,C). Since e and f are

both transverse to C
2, then π(e) and π(f) are both 2D subalgebras of sl(2,C) that are

distinct. (If π(e) = π(f), then C = e ⊕ f ⊂ f � C
2, hence C = f � C

2 since both have

dimension 4. But f ⊕ C
2 is a subalgebra, which contradicts non-degeneracy of C.)

Any 2D subalgebra of sl(2,C) coincides with the isotropy of some line in C
2.

Since SL(2,C) acts transitively on pairs of distinct lines in C
2, then we can assume up

to Aut(g) that π(e) ≡ 〈H, X〉 and π(f) ≡ 〈H, Y〉. Closure under the Lie bracket implies

e =
〈
H +

(
a1

b1

)
, X −

(
b1

0

)〉
, f =

〈
H +

(
a2

b2

)
, Y +

(
0

a2

)〉
, (3.4)

where we identify v1 =
(

1
0

)
and v2 =

(
0
1

)
. Note that Aut(g) contains the following:
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22 B. Doubrov et al.

(i) translations of C
2 induce (a1, b1, a2, b2) �→ (a1 + r, b1 + s, a2 + r, b2 + s) for

any r, s ∈ C. We use this to normalize a2 = b1 = 0.

(ii) the scaling (v1, v2, H, X, Y) �→ (λv1, μv2, H, λ
μ

X, μ
λ

Y) for any λ, μ ∈ C
×. This

induces the scaling (a1, b2) �→ (λa1, μb2).

(iii) the swap (v1, v2, H, X, Y) �→ (v2, v1, −H, Y, X) induces (a1, b2) �→ (−b2, −a1).

Since e ∩ f = 0, then (a1, b2) 	= (0, 0). Using (iii), we may assume that a1 	= 0, and then

normalize a1 = 1 using (ii).

• b2 	= 0: Using (ii), normalize to b2 = −1. Then (iii) determines both a residual

involution as well as an anti-involution.

• b2 = 0: e = 〈
H + v1, X

〉
and f = 〈H, Y〉. But clearly [X, · ] ≡ 0 mod C, which

contradicts non-degeneracy of C. �

From Example 2.10, we saw that (3.3) has root type I and dim(symILC(g; e, f)) = 5.

Proposition 3.4. For (g; e, f) as in Proposition 3.3, the unique admissible anti-

involution τ is

(H, X, Y, v1, v2) �→ (−H, Y, X, v2, v1). (3.5)

Proof. Since e and f are non-abelian, then τ must swap the lines [e, e] = 〈X〉 and

[f, f] = 〈Y〉. These act on the radical rad(g) = C
2 = 〈v1, v2〉 with images 〈v1〉 and 〈v2〉,

respectively. Since 0 	= τ(v1) = τ([X, v2]) = [τ(X), τ(v2)] and τ(X) ∈ 〈Y〉, we deduce that

τ must swap 〈v1〉 and 〈v2〉. Finally, τ must preserve 〈H〉, which is the intersection of the

normalizers of the above four lines 〈X〉, 〈Y〉, 〈v1〉, 〈v2〉. Since τ is admissible, it preserves

e and f, so (H, X, Y, v1, v2)
τ�→ (aH, bY, cX, −av2, −av1). Using (2.21) and (2.22), the anti-

involution property forces (a, b, c) = (−1, 1, 1). �

3.4 NS3

Let g = sl(2,C) × r2. The sl(2,C) factor is the 2nd derived algebra of g, while r2 =
rad(g), so both are preserved under any anti-involution. Fix a basis {H, X, Y, S, T} as

in Example 2.12. Observe that Aut(r2) consists of the transformations

(S, T) �→ (S + rT, λT), r ∈ C, λ ∈ C
×. (3.6)
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Simply-transitive nondegenerate hypersurfaces 23

Proposition 3.5. Let g = sl(2,C)×r2. Any ASD-ILC triple (g; e, f) has dim(symILC(g; e, f)) ≥
6.

Proof. Let π1 : g → sl(2,C) and π2 : g → r2 be the natural projections. As in the previous

case, we may assume that π1(e) = 〈H, X〉 and π1(f) = 〈H, Y〉. Thus,

e = 〈H + a1S + b1T, X + c1S + d1T
〉
, (3.7)

which is a subalgebra if and only if c1 = 0 and (a1 − 2)d1 = 0.

(i) d1 = 0: We have [e, e] ⊂ sl(2,C). By the ASD property, f satisfies [f, f] ⊂ sl(2,C).

Then

e = 〈H + a1S + b1T, X
〉
, f = 〈H + a2S + b2T, Y

〉
. (3.8)

Assume that a1 = 0. Then π2(e) ⊂ [r2, r2] = 〈T〉. Stability under any anti-

involution implies that a2 = 0. But then C = e ⊕ f contains [r2, r2] = 〈T〉,
which is an ideal in g. This contradicts non-degeneracy of C. Thus, a1 	= 0

and similarly a2 	= 0. Note that a1 	= a2 as otherwise we again would have

〈T〉 ⊂ C.

The transformations (3.6) induce (a1, b1, a2, b2) �→ (a1, b1λ +
a1r, a2, b2λ + a2r), which we use to normalize b1 = b2. If b1 = b2 = 0,

then C = e⊕ f = sl(2,C)+〈S〉, which is degenerate (moreover, a subalgebra in

g). So, we can assume that b1 = b2 	= 0 and rescale them to 1. This gives us

(2.26) with αβ 	= 0, α 	= β. In Example 2.12, we saw these are either type D or

O, with 7 or 15 symmetries, respectively.

(ii) d1 	= 0: Then a1 = 2 and arguing similarly we obtain

e = 〈H + 2S + b1T, X + d1T
〉
, f = 〈H − 2S + b2T, Y + d2T

〉
, (3.9)

where d2 	= 0. Now conjugation by diag(μ, 1
μ
) ∈ SL(2,C) induces (d1, d2) �→

(d1
μ2 , d2μ2), which, together with Aut(r2), allows us to normalize d1 = d2 = 1.

Using the remaining transformations S �→ S + rT in Aut(r2), we normalize

b1 = b2 and obtain

e = 〈H + 2S + αT, X + T〉 , f = 〈H − 2S + αT, Y + T〉 (α2 + 4 	= 0). (3.10)
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24 B. Doubrov et al.

The condition α2 + 4 	= 0 is equivalent to C = e ⊕ f being non-degenerate.

We now exhibit an embedding of (g; e, f) into some (ḡ, k̄; ē, f̄). Consider

ḡ = sl(2,C)× sl(2,C) with basis {H1, X1, Y1, H2, X2, Y2} consisting of two sl(2)-

triples. Given α 	= 0, define λ = − α

2
√

α2+4
∈ C\{0, ±1

2 } and an ILC quadruple

(ḡ, k̄; ē, f̄) [7, Model D.6-3] by

k̄ = 〈H1 − H2〉,
ē = 〈X1 + 2λ−1

2λ+1Y2, X2 + 2λ−1
2λ+1Y1〉 + k̄,

f̄ = 〈X1 + Y2, X2 + Y1〉 + k̄.

(3.11)

We confirm that the following is a monomorphism ι : g → ḡ with ι(e) ⊂ ē and

ι(f) ⊂ f̄:

H �→ α√
α2+4

(
− 2λ+1

2λ
X1 − H1 + 2λ−1

2λ
Y1

)
,

X �→ 1√
α2+4

(
− 2λ+1

2λ−1X1 − H1 + 2λ−1
2λ+1Y1

)
,

Y �→ 1√
α2+4

(−X1 − H1 + Y1),

S �→ −1
2 (X2 + Y2),

T �→ 1√
α2+4

(X2 + H2 − Y2).

(3.12)

Finally, when α = 0, we use the LC-adapted framing

e1 = X + T, e2 = H + 2S, f1 = H − 2S, f2 = Y + T (3.13)

to compute S = [e1 + te2, tf1 − f2] = −2te1 − 1
2e2 − 1

2 f1 +2tf2 and confirm that

Q4 = 0. �

3.5 SOL

Let g = b be the Lie algebra of upper-triangular matrices in sl(3,C). Consider the basis

{S1, S2, P, Q, R} from (3.2), which has non-trivial brackets

[S1, P] = P, [S1, R] = R, [S2, Q] = Q, [S2, R] = R, [P, Q] = R. (3.14)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnab147/6308676 by guest on 10 July 2021



Simply-transitive nondegenerate hypersurfaces 25

This has nilradical n3 = 〈P, Q, R〉, which agrees with the 1st derived algebra of g, so is

preserved under any anti-involution.

Proposition 3.6. Let g = b ⊂ sl(3,C). Any ASD-ILC triple (g; e, f) has dim(symILC(g; e, f)) =
15.

Proof. Consider two cases:

(i) e ∩ n3 = 0: Let us normalize e = 〈S1 + α1P + β1Q + γ1R, S2 + α2P + β2Q + γ2R〉
using exp(ad n3). Using exp(adt1P+t3R) and then exp(t2 adQ), we normalize

α1 = γ1 = β2 = 0. Since e is a subalgebra, then α2 = β1 = γ2 = 0, so e =
〈S1, S2〉. Since e is abelian and e ∩ n3 = 0, then (by ASD) f is abelian and

f ∩ n3 = 0, which yield

e = 〈S1, S2〉, f = 〈S1 + a1P + c1R, S2 + b2Q + c2R〉, (S.1)

where c2 := c1 − a1b2. Non-degeneracy of C = e ⊕ f is equivalent to c1c2 	= 0.

(ii) e ∩ n3 	= 0: Assuming e ⊂ n3, then f ⊂ n3 (by ASD), hence C = e ⊕ f ⊂
n3, which is a contradiction, so dim(e ∩ n3) = dim(f ∩ n3) = 1. Also,

e ∩ n3 	= 〈R〉 and f ∩ n3 	= 〈R〉, otherwise e or f would contain an ideal of g,

contradicting non-degeneracy of C. Note (S1, S2, P, Q, R) �→ (S2, S1, Q, P, −R)

is an automorphism, so swapping P, Q if necessary, we may assume that

e ∩ n3 = 〈P + a0Q + a1R〉. For the normalizer N (e ∩ n3):

e ⊂ N (e ∩ n3) =
⎧⎨⎩〈S1 + S2, P + a0Q, R〉, a0 	= 0;

〈S1, S2, P, R〉, a0 = 0.
(3.15)

Assume a0 	= 0. Then dim(N (e ∩ n3)) = 3 = dim(N (f ∩ n3)) by ASD, and

C ⊂ 〈S1 + S2〉 � n3, so C would be degenerate. Thus, a0 = 0.

Note that if f∩n3 = 〈P +b0Q+b1R〉, then b0 = 0 as above, while (3.15)

implies that C ⊂ 〈S1, S2, P, R〉, so C would be degenerate. Thus, e∩n3 = 〈P+αR〉
and f ∩ n3 = 〈Q + βR〉. Using exp(ad n3), we normalize α = β = 0. Then

e = 〈α11S1 + α12S2 + γ1R, P〉, f = 〈α21S1 + α22S2 + γ2R, Q〉. (3.16)

(a) e & f non-abelian: We may assume α11 = α22 = 1. Use exp(t adR) to

normalize γ1 = 0. Since γ2 	= 0 by non-degeneracy, we may normalize
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26 B. Doubrov et al.

γ2 = 1. Then

e = 〈S1 + αS2, P〉, f = 〈βS1 + S2 + R, Q〉. (S.2)

(b) e & f abelian: α11 = α22 = 0. Note α12α21 	= 0, otherwise n3 ⊂ C, and so C

would be degenerate. Using exp(t adR), we normalize γ2 = 0, so we may

assume

e = 〈S2 + γ R, P〉, f = 〈S1, Q〉. (S.3)

We confirm Q4 = 0 in all three cases using LC-adapted framings and (2.19):

e1 e2 f1 f2 S

(S.1) S2 S1
1
c1

(S1 + a1P) + R 1
c2

(S2 + b2Q) + R 1
c2

e1 − t2

c1
e2 + t2f1 − f2

(S.2) S1 + αS2 (1 + α)P βS1 + S2 + R Q −t2βe2 − αf2

(S.3) S2 + γ R P − 1
γ

S1 Q t2

γ
e2 − f2

�

These ILC structures are all flat. The proof of Theorem 3.1 is now complete.

4 Cases With a 3D Abelian Ideal

In this section, we prove the following, which will reduce (see §6) the remainder of our

study to tubes on an affinely homogeneous base (Corollary 6.4).

Theorem 4.1. Let g be a 5D complex Lie algebra with a 3D abelian ideal a, and

(g; e, f) an ASD-ILC triple with an admissible anti-involution τ . Suppose that we have

dim(symILC(g; e, f)) = 5. Then a = τ(a) with e ∩ a = f ∩ a = 0.

We split the proof according to a 	= τ(a) or a = τ(a). Finally, we show that a is

self-centralizing.

4.1 The a 	= τ(a) case

Proposition 4.2. Let g be a 5D complex Lie algebra with a 3D abelian ideal a, and (g; e, f)

an ASD-ILC triple with an admissible anti-involution τ . Suppose that a 	= τ(a). Then

(a) dim(a ∩ τ(a)) = 1 : we have dim(symILC(g; e, f)) = 15;

(b) dim(a ∩ τ(a)) = 2 : we have dim(symILC(g; e, f)) ≥ 6.
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Simply-transitive nondegenerate hypersurfaces 27

Proof. Since a and τ(a) are ideals in g, then so are n := a + τ(a) and a ∩ τ(a). Note that

[n, n] = [a, τ(a)] ⊂ a ∩ τ(a) ⊂ Z(n). (4.1)

(a) We have dim(n) = 5, so n = g. Since dim(a ∩ τ(a)) = 1 and C = e ⊕ f is non-

degenerate, then (4.1) implies 0 	= [g, g] = a ∩ τ(a) = 〈T〉 is transverse to C.

Since e is a subalgebra, then [e, e] ⊂ e ∩ [g, g] = e ∩ 〈T〉 = 0, so e is abelian

and similarly for f. Letting {e1, e2, f1, f2} be an LC-adapted framing, the only

non-trivial brackets (after rescaling T if necessary) are

[e1, f1] = T, [e2, f2] = T. (4.2)

Thus, g is isomorphic to the 5D Heisenberg Lie algebra. By (2.19), we find

that Q4 = 0, so we have the flat ILC structure with 15D symmetry.

(b) Given N1 ∈ a with N1 	∈ τ(a), define N2 := τ(N1) ∈ τ(a), so N2 	∈ a. Since

dim(C) = dim(n) = 4, then dim(C ∩ n) ≥ 3, so n must be non-abelian (by non-

degeneracy of C) with 0 	= N3 := [N1, N2]. By (4.1), N3 ∈ a ∩ τ(a), so extend it

to get a∩ τ(a) = 〈N3, N4〉. Note that n ∼= n3 ×C and Z(n) = a∩ τ(a). Since n and

Z(n) are τ -stable:

• dim(e ∩ n) = 1: Since dim(e) = 2 and dim(n) = 4, then dim(e ∩ n) ≥
1. If e ⊂ n, then f ⊂ n, so C ⊂ n, which is impossible by non-

degeneracy of C.

• e∩Z(n) = 0: if 0 	= e∩Z(n), then 0 	= f∩Z(n), so dim(C ∩Z(n)) ≥ 2

since e ∩ f = 0. Since dim(Z(n)) = 2, then Z(n) ⊂ C. Since Z(n) is

an ideal in g, then C cannot be non-degenerate.

Similarly, dim(f ∩ n) = 1 and f ∩ Z(n) = 0.

Summarizing, we have the following with N2 = τ(N1) and N3 =
[N1, N2]:

a = 〈N1, N3, N4〉, τ(a) = 〈N2, N3, N4〉, Z(n) = a ∩ τ(a) = 〈N3, N4〉. (4.3)

Moreover, dim(e ∩ n) = dim(f ∩ n) = 1, with e ∩ Z(n) = f ∩ Z(n) = 0.

Let us show that we can assume e ∩ a 	= 0, possibly choosing a

different 3D ideal a satisfying the above properties.
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28 B. Doubrov et al.

Since dim(e ∩ n) = 1, write e ∩ n = 〈Ñ1〉 and define ã = 〈Ñ1, N3, N4〉.
Since e ∩ Z(n) = 0, we have Ñ1 	∈ Z(n), so ã is a 3D abelian subalgebra,

which is clearly an ideal in n. Also, τ(ã) 	= ã since e ∩ f = 0. Let S ∈ e with

S 	∈ n, hence τ(S) 	∈ n since n is τ -stable, and g = 〈S〉 ⊕ n. Thus, e = 〈S, Ñ1〉 and

f = 〈S+v, Ñ2〉 for some v ∈ n and Ñ2 := τ(Ñ1) ∈ f∩n. (We may assume v has no

Ñ2 component, and redefining S �→ S + cÑ1, we may in addition assume that

v has no Ñ1-component, that is, v ∈ Z(n).) Since e is a subalgebra and n is an

ideal in g, then [S, Ñ1] ∈ e ∩ n = 〈Ñ1〉, so ã is an ideal in g with e ∩ ã 	= 0. Now

replacing a with ã, without loss of generality we can assume that e ∩ a 	= 0,

and

e = 〈S, N1〉, f = 〈S + v, N2〉, (4.4)

where {N1, N2, N3, N4} is a basis of n satisfying (4.3) and v ∈ Z(n).

Since e and f are subalgebras, and n is an ideal, then a1N1 = [S, N1]

and a2N2 = [S + v, N2] = [S, N2]. Thus,

[N1, N2] = N3,

[S, N1] = a1N1, [S, N2] = a2N2,

[S, N3] = (a1 + a2)N3, [S, N4] = a3N3 + a4N4 ∈ Z(n).

(4.5)

But now an augmentation of (g; e, f) by k̄ = 〈T〉 is given by

[T, N1] = N1, [T, N2] = −N2, [T, S] = [T, N3] = [T, N4] = 0. (4.6)

Thus, dim(symILC(g; e, f)) ≥ 6. �

4.2 The a = τ(a) case

Throughout this subsection, we suppose that e ∩ a 	= 0 and show that this leads to

dim(symILC(g; e, f)) ≥ 6. If e ⊂ a, then since a is τ -stable, we also have f ⊂ a, hence

C = e ⊕ f ⊂ a, which is a contradiction. Thus, we may assume dim(e ∩ a) = 1, and this

implies dim(f ∩ a) = 1. Let {X, Y, e1, e2, e3} be a basis of g such that

(i) a ∼= C
3 has basis {e1, e2, e3};

(ii) e ∩ a = 〈e1〉 and f ∩ a = 〈e3〉;
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Simply-transitive nondegenerate hypersurfaces 29

(iii) e ∩ a + [f, e ∩ a] = 〈e1, e2〉 and e ∩ a + [f, e ∩ a] = 〈e2, e3〉;
(iv) e = 〈X, e1〉 and f = 〈Y, e3〉.

Let us clarify (iii). Since C is non-degenerate and a is abelian, then 0 	= [Y, e1] mod C and

so dim(e∩ a+ [f, e∩ a]) = 2. Applying τ gives dim(f∩ a+ [e, f∩ a]) = 2. These 2D subspaces

of a must have 1D intersection, which we take to be 〈e2〉 	⊂ C.

Let A = adX |a and B = adY |a be represented in the basis {e1, e2, e3}, so:

[X, ei] = Ajiej, [Y, ei] = Bjiej. (4.7)

(We have i, j = 1, 2, 3 here and summation is implied over the repeated index j.) Note that

[X, e1] ∈ e ∩ a and [Y, e3] ∈ f ∩ a, while [X, e3] ∈ 〈e2, e3〉 and [Y, e1] ∈ 〈e1, e3〉 are non-trivial

modulo C. Rescaling X and Y, we may assume

A =

⎛⎜⎜⎝
a11 a12 0

0 a22 1

0 a32 a33

⎞⎟⎟⎠ , B =

⎛⎜⎜⎝
b11 b12 0

1 b22 0

0 b32 b33

⎞⎟⎟⎠ . (4.8)

We will exhibit augmentations of (g; e, f) by k̄=〈T〉, thereby showing dim(symILC(g; e, f))≥
6.

4.2.1 g/a is abelian

In this case [A, B] = 0 and this forces

A =

⎛⎜⎜⎝
a11 0 0

0 a11 1

0 0 a33

⎞⎟⎟⎠ , B =

⎛⎜⎜⎝
b11 0 0

1 b33 0

0 0 b33

⎞⎟⎟⎠ . (4.9)

Aside from (4.7), there is only the bracket [X, Y] = ciei. Define an augmentation of (g; e, f)

by k̄ = 〈T〉 (see Definition 2.11) with new (non-trivial) brackets

[T, X] = e1 − a33T, [T, Y] = e3 − b11T. (4.10)

4.2.2 g/a is not abelian

We have 0 	≡ [X, Y] ≡ αX + βY mod a. Requiring Y ≡ τ(X) mod a forces β = −α, so

necessarily α 	= 0. Rescaling X, we normalize α = 1, so [X, Y] ≡ X − Y mod a. Thus,
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[A, B] = A − B, and we get the following four cases:

A B

(i)

⎛⎜⎜⎝
a 0 0

0 a − 1 1

0 0 a

⎞⎟⎟⎠
⎛⎜⎜⎝

a 0 0

1 a − 1 0

0 0 a

⎞⎟⎟⎠
(ii)

⎛⎜⎜⎝
a + 2 2 0

0 a + 1 1

0 0 a

⎞⎟⎟⎠
⎛⎜⎜⎝

a 0 0

1 a + 1 0

0 2 a + 2

⎞⎟⎟⎠
(iii)

⎛⎜⎜⎝
a + 2 0 0

0 a + 1 1

0 0 a

⎞⎟⎟⎠
⎛⎜⎜⎝

a + 2 0 0

1 a 0

0 1 a + 1

⎞⎟⎟⎠
(iv)

⎛⎜⎜⎝
a + 1 1 0

0 a 1

0 0 a + 2

⎞⎟⎟⎠
⎛⎜⎜⎝

a 0 0

1 a + 1 0

0 0 a + 2

⎞⎟⎟⎠

(4.11)

Case (iii) (and similarly, (iv)) does not yield an ASD-ILC triple: the τ -invariant subspace

〈e2〉 is ad(e)-invariant, but not ad(f)-invariant. Thus, (iii) and (iv) may be discarded. For

both (i) and (ii), an augmentation of (g; e, f) by k̄ = 〈T〉 is given by

[T, X] = e1 − (a + 1)T, [T, Y] = e3 − (a + 1)T. (4.12)

5 The Non-Tubular CR Hypersurface With saff(2,R)-Symmetry

5.1 Non-tubular and Levi-indefinite

By Theorem 3.1, there is a unique ASD-ILC triple (g; e, f) on g = saff(2,C) =
〈H, X, Y, v1, v2〉, see (3.3). The fixed-point set of the unique admissible anti-involution τ

from (3.5) has R-basis

iH, X + Y, i(X − Y), v1 + v2, i(v1 − v2), (5.1)

and spans gR := saff(2,R) := sl(2,R) � R
2. It has 2D radical, so does not contain a 3D

abelian subalgebra. The associated CR structure is non-tubular. (See Definition 6.2.)

Recall that given a CR structure (M, C, J), the complexification CC splits into

complementary ±i-eigenspaces C1,0 and C0,1. Its Levi form L is the hermitian form given

by

L : (ξ , η) �→ [ξ , η] mod CC, ∀ξ , η ∈ �(C0,1).
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Simply-transitive nondegenerate hypersurfaces 31

For the CR structure arising from an ASD-ILC triple (g; e, f) and its fixed-point set under

an admissible anti-involution, we identify e and f with C1,0 and C0,1, respectively, so L
becomes

L : (ξ , η) �→ [ξ , τ(η)] mod e ⊕ f, ∀ξ , η ∈ f.

For g = saff(2,C) with (3.3) and (3.5), take the basis (f1, f2) = (H − v2, Y), so L has

components

(
L(f1,f1) L(f1,f2)
L(f2,f1) L(f2,f2)

)
=
(

[H−v2,−H−v1] [H−v2,X]
[Y,−H−v1] [Y,X]

)
=
(

v2−v1 2X+v1−2Y−v2 −H

)
≡ ( 2H −H

−H −H

)
mod e ⊕ f.

The coefficient matrix has negative determinant, so L has indefinite signature.

5.2 A simple derivation of the model

Take the standard action of g = saff(2,C) on C
2:

H = z1∂z1
− z2∂z2

, X = z1∂z2
, Y = z2∂z1

, v1 = ∂z1
, v2 = ∂z2

. (5.2)

Regarding (z1, z2)-space C
2 as the zeroth jet space J0(C,C) and using the standard

notion of prolongation from jet calculus [24, Thm. 4.16], we prolong (5.2) to the 1st

jet space J1(C,C), that is, (z1, z2, w := z′
2)-space. Furthermore, induce the joint action

on two copies of J1(C,C), that is, (z1, z2, w, a1, a2, c)-space. Using the same vector field

labels for their corresponding lifts, we obtain

H = z1∂z1
− z2∂z2

− 2w∂w + a1∂a1
− a2∂a2

− 2c∂c,

X = z1∂z2
+ ∂w + a1∂a2

+ ∂c,

Y = z2∂z1
− w2∂w + a2∂a1

− c2∂c,

v1 = ∂z1
+ ∂a1

,

v2 = ∂z2
+ ∂a2

.

(5.3)

This prolonged g-action admits the joint differential invariant (on w 	= c):

A := (z2 − a2 − w(z1 − a1))(z2 − a2 − c(z1 − a1))

2(w − c)
. (5.4)
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Consider the complex hypersurfaces A = λ, where λ ∈ C
×. Rescalings

(z1, z2, w, a1, a2, c) �→ (μz1, μz2, w, μa1, μa2, c) for μ ∈ C
× allow us to normalize λ to

i (or any nonzero constant). Now intersect this hypersurface with the fixed-point set

of the anti-involution (z1, z2, w, a1, a2, c)
τ�→ (a1, a2, c, z1, z2, w). This yields an saff(2,R)-

invariant CR hypersurface M5 ⊂ C
3:

w − w = − i
2 (z2 − z2 − w(z1 − z1))(z2 − z2 − w(z1 − z1)), (5.5)

which is the same as (1.2). Explicitly, hol(M) ∼= saff(2,R) is spanned (as a real Lie algebra)

by:

z1∂z1
− z2∂z2

− 2w∂w, z1∂z2
+ ∂w, z2∂z1

− w2∂w, ∂z1
, ∂z2

. (5.6)

(Namely, restrict (5.3) to the fixed-point set of τ and project to their holomorphic parts.)

5.3 An equivalence of models

On C
3, take coordinates (z1, z2, w) = (x1 + iy1, x2 + iy2, u+ iv). In this notation, our model

(5.5) becomes

Msaff : 0 = −v + v2y2
1 + (y2 − y1u)2. (5.7)

Under the global biholomorphism of C3 given by

(z̃1, z̃2, w̃) = (w, z1, −z2 + z1w), (5.8)

our model in (5.7) becomes (after dropping tildes):

MLob : 0 = −y1 + y2
1y2

2 + (v − x2y1

)2 , (5.9)

which was given in [19, Table 7]. The symmetry algebra of MLob was asserted to be 5D,

but the symmetry vector fields for MLob were not stated in that work. Pushing forward

our symmetries from (5.6) using (5.8), we arrive at the symmetries of MLob:

∂z1
, ∂w, ∂z2

+ z1∂w, 2z1∂z1
− z2∂z2

+ w∂w, z2
1∂z1

+ (w − z1z2)∂z2
+ wz1∂w. (5.10)
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Fig. 1. Geometric construction of the joint invariant A.

Remark 5.1. Using the Levi determinant, we find that our model Msaff has 4D Levi

degeneracy locus {y2 − uy1 = 0, v = 0}, while that for MLob is {y1 = 0, v = 0}. These loci

are mapped to each other under (5.8).

5.4 Related equi-affine geometry

Restricting to the real setting, we can uncover the geometric meaning of the invariant

(5.4). For (x, y, u, a, b, c) ∈ R
6 �loc J1(R,R) × J1(R,R), define

A = (y − b − u(x − a))(y − b − c(x − a))

2(u − c)
. (5.11)

We now give two lovely interpretations for A. These are phrased in terms of classical

geometric constructions for which invariance under the planar equi-affine group

SAff(2,R) := SL(2,R) � R
2 is manifest, since this group preserves areas and maps lines

to lines.

First, fixing (x, y, u, a, b, c) ∈ R
6, consider in R

2 the line L1 through the point

(x, y) with slope u, and the line L2 through (a, b) with slope c. If u 	= c, these lines

intersect at a unique point (s, t). Adjoining a 3rd line L3 passing through (distinct) points

(x, y) and (a, b) then determines a triangle, and it is a simple exercise to verify that |A|
is its area.

For the 2nd interpretation, let us first recall a classical construction. Fix p0 ∈ R
2

and a line L0 through p0. Given any line L through p0 that is transverse to L0, consider a

hyperbola H having asymptotes L0 and L. For any point p ∈ H, we can form the

• asymptotes-parallelogram with vertices p and p0 and sides parallel to L and

L0.
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Fig. 2. Asymptotes-parallelogram and a foliation by hyperbolas with constant area.

• tangent-asymptotes-triangle whose vertices are p0 and the intersection

points of tangent line to H at p with the asymptotes L and L0.

Two well-known facts from classical geometry about this construction are the follow-

ing:

• One of the diagonals of the asymptotes-parallelogram (the one not passing

through p and p0) is itself parallel to the tangent line to H at p.

• The area of the asymptotes-parallelogram, which we denote by Area(H),

is half that of the tangent-asymptotes-triangle. Moreover, these areas are

constant for any choice of p ∈ H.

This gives a natural equi-affinely invariant construction: fix A and fix (a, b, c) ∈
J1(R,R). The latter determines a point p0 := (a, b) ∈ R

2 and line L0 with slope c, and

we consider the family of all hyperbolas H having L0 as one asymptote and having

Area(H) = |A|. This gives a local foliation of (an open subset of) the plane, as the example

below illustrates. The collection of all such foliations is SAff(2,R)-invariant.

Example 5.2. Fix A. When (a, b, c) = (0, 0, 0), solving (5.4) for u = y′ gives the ordinary

differential equation y′ = y2

xy+2A . Rewrite this as 0 = dx
y − xy+2A

y3 dy = dx
y − x

y2 dy+ 2A
y3 , with

general solution x
y + A

y2 = μ ∈ R. Rearranging gives y(μy − x) = A, which are hyperbolas

Hμ with asymptotes y = 0 and y = x
μ

. A simple exercise shows that Area(Hμ) = |A|,
independent of μ.
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Simply-transitive nondegenerate hypersurfaces 35

5.5 Related PDE realization

Let us now describe the compatible, complete system of 2nd-order PDEs (§1.2) that

corresponds to the ASD-ILC structure (3.3) with symmetry g = saff(2,C). In other words,

we are looking for the equations whose complete solution w(z1, z2) is defined by (5.5).

By definition, this system of PDEs admits the 5D Lie algebra of point symmetries (5.6),

which coincides with the lift of g to J1(C,C) as defined in §5.2. We identify here J1(C,C)

with C
3 = J0(C2,C) equipped with coordinates (z1, z2, w) and then further prolong g to

J2(C2,C) to determine all g-invariant complete systems of 2nd order on w(z1, z2).

All such systems were computed in the PhD thesis by Hillgarter [12]. The g-action

lifted to J2(C2,C) admits the following three absolute invariants (see page 83 (ip13) and

§4.2.1 of [12]):

I1 = w2
1w22 + w2

2w11 − 2w1w2w12

(w1 + ww2)2 ,

I2 = w1w12 − w2w11 + w(w1w22 − w2w12)

(w1 + ww2)5/3 ,

I3 = w11 + w2w22 − 2w1w2 + 2w(w12 − w2
2)

(w1 + ww2)4/3 .

So, any system of 2nd-order PDEs admitting point symmetry g is (implicitly) given by

{I1 = α1, I2 = α2, I3 = α3}, (5.12)

where αi ∈ C. We now classify those that are compatible, that is, E from (2.1) is Frobenius

integrable.

Proposition 5.3. All compatible, complete 2nd-order PDE systems wij = fij(zk, w, w�),

1 ≤ i, j, k, � ≤ 2 that are invariant under (5.6) are equivalent to one of the following:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
I1 = i,

I2 = 3(4−1/3)e−iπ/3,

I3 = −3(41/3)e−iπ/6

⎧⎪⎪⎪⎨⎪⎪⎪⎩
w11 = w2

1
(w2w+w1)2/3 + 2w2

1w2
w2w+w1

,

w12 = w1w2
(w2w+w1)2/3 + 2w1w2

2
w2w+w1

,

w22 = w2
2

(w2w+w1)2/3 + 2w3
2

w2w+w1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
w11 = 2w2

1w2
w2w+w1

,

w12 = 2w1w2
2

w2w+w1
,

w22 = 2w3
2

w2w+w1

Type I Type II Type III

ASD not ASD not ASD

(5.13)
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For the type I and II systems above, (5.6) is the full point symmetry algebra, while

the type III system admits the additional point symmetry z1∂z1
+ z2∂z2

and full point

symmetry algebra aff(2,C).

Proof. Solving (5.12) for wij, we find that (5.12) is compatible if and only if 3α1α3 = 4α2
2

and 9α1 = α2α3. This admits the following solutions:

1. (α1, α2, α3) = (0, 0, α): If α = 0, we get the 3rd system. If α 	= 0, we normalize

it to α = 1 using the rescaling (z1, z2, w) �→ (λz1, λz2, w), which induces

(I1, I2, I3) �→ (λ−2I1, λ−4/3I2, λ−2/3I3). This gives the 2nd system.

2. (α1, α2, α3) = ( α3

108 , α2

12 , α): Evaluating I1, I2, I3 on the functions w(z1, z2) defined

by (5.4), we find that α = −3( 4
A )1/3. (As expected, this does not depend on the

parameters (a1, a2, c), but only on A.) Rescaling as above, we normalize A = i,

which gives the 1st system.

Applying (2.16), we identify the root types of Q4 as indicated. For the type I and II

cases, (2.18) confirms 5D symmetry, while there is the additional indicated symmetry

for the type III case. (From [7, Table 2], this is a realization of model III.6-2.) From

Proposition 3.3 and Example 2.10, an saff(2,C)-invariant ASD-ILC structure must be of

type I. �

The type I realization above is the desired PDE system with associated CR

hypersurface (5.5).

6 Simply-Transitive Tubular Hypersurfaces

6.1 From homogeneous tubes to algebraic data

Given a real affine hypersurface S ⊂ R
n+1, we discussed in §1 its associated tubular

CR hypersurface MS ⊂ C
n+1, and its complexification Mc

S ⊂ C
n+1 × C

n+1 is the

associated tubular ILC hypersurface. (We recover MS as the fixed-point set of the anti-

involution τ(z, a) = (a, z) restricted to Mc
S .) The symmetry algebra sym(Mc

S) is the

complex Lie algebra consisting of all holomorphic vector fields X = ξk(z)∂zk
+σ k(a)∂ak

∈
X(Cn+1) × X(Cn+1) that are everywhere tangent to Mc

S . The affine symmetry algebra

aff(S) consists of those affine vector fields S = (Ak�x� + bk)∂xk
, for Ak�, bk ∈ R, that are

everywhere tangent to S. Any S ∈ aff(S) induces symmetries Scr of MS and Slc of Mc
S as

indicated below. We respectively denote the induced real and complex Lie algebras by
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Simply-transitive nondegenerate hypersurfaces 37

aff(S)cr ⊂ hol(MS) and aff(S)lc ⊂ sym(Mc
S), and it is clear that aff(S)lc ∼= aff(S)cr ⊗

R
C ∼=

aff(S) ⊗
R
C.

Remark 6.1. Any complex affine hypersurface S ⊂ C
n+1 also induces a tubular ILC

hypersurface Mc
S ⊂ C

n+1 × C
n+1 via the same prescription above.

For Mc
S , note that a = 〈∂z1

−∂a1
, . . . , ∂zn+1

−∂an+1
〉 is an (n+1)-dimensional abelian

Lie algebra a ⊂ g := sym(Mc
S) that is transverse to E and F (as defined in §1.2), so we

are naturally led to the following algebraic data for any holomorphically homogeneous

tube:

Definition 6.2. A tubular CR realization for an ILC quadruple (g, k; e, f) in dimension

dim(g/k) = 2n + 1 is a pair (a, τ), where

(T.1) a ⊂ g is an (n + 1)-dimensional abelian subalgebra;

(T.2) e ∩ a = f ∩ a = 0;

(T.3) τ is an admissible anti-involution of (g, k; e, f) that preserves a.

Conversely, given such data as above, we integrate (g, k) to a (local) homogeneous

space N = G/K with G-invariant distributions E, F. Since C = E ⊕ F is non-degenerate,

then all symmetries of the ILC structure (N; E, F) are in 1-1 correspondence with their

projection by dπ1 or dπ2. (We refer to the double fibration (1.6).) This implies that the

direct product of π1 and π2 gives a local embedding N → N/E × N/F (with codomain

being locally C
n+1 × C

n+1). As a is abelian, we can identify it with C
n+1, with the anti-

involution τ acting on it as w �→ −w̄ (in the standard basis b on C
n+1). Let A ⊂ G be

the corresponding subgroup, which can also be locally identified with C
n+1 equipped

with the same anti-involution. Due to (T.1) and (T.2) the action of A on both N/E and

N/F is (locally) simply transitive. So, we can identify both N/E and N/F with some open
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subsets of C
n+1, on which we introduce local coordinates z and a relative to b and −b,

respectively. Hence, a = 〈∂zk
− ∂ak

〉.
Since τ swaps f and e, it extends to the direct product N/E×N/F as τ̃ (z, a) = (ā, z̄).

The embedding N ↪→ N/E × N/F ∼=loc C
n+1 × C

n+1 is given by a single complex analytic

equation �(z, a) = 0. Invariance of N under a forces N = {(z, a) : F((z + a)/2) = 0}.
Finally, taking the slice of Cn+1 ×C

n+1 defined as a fixed-point set of τ̃ , we arrive at the

tubular hypersurface MS = {z : F(Re z) = 0} ⊂ C
n+1, where F is now real valued. It is a

tube over the base S = {x : F(x) = 0} ⊂ R
n+1.

Lemma 6.3. n(a)/a ∼= aff(S) ⊗R C.

Proof. Clearly, span
C
{Slc : S ∈ aff(S)} ⊕ a ⊂ n(a). Conversely, if X = ξk(z)∂zk

+ σ k(a)∂ak

normalizes a = 〈∂z1
− ∂a1

, . . . , ∂zn+1
− ∂an+1

〉, then X = (Ak�z� + bk)∂zk
+ (Ak�a� + ck)∂ak

for some Ak�, bk, ck ∈ C. Adding (
ck−bk

2 )(∂zk
− ∂ak

) ∈ a, we may assume that bk = ck.

Since a is stable under dτ (where τ(z, a) = (ā, z̄)), then so is n(a). Since τ2 = id, we

can decompose n(a) into ±1 eigenspaces for dτ . Modulo a, the +1 eigenspace consists

of X = (Ak�z� + bk)∂zk
+ (Ak�a� + bk)∂ak

∈ n(a) with Ak�, bk ∈ R, hence X = Slc, where

S = (Ak�x� +bk)∂xk
∈ aff(S). The −1 eigenspace consists of similar vector fields, but with

Ak�, bk ∈ iR. Thus, n(a) ≡ spanC{Slc : S ∈ aff(S)} mod a, which implies the claim. �

Corollary 6.4. Let M5 ⊂ C
3 be a holomorphically simply-transitive, Levi non-

degenerate hypersurface with hol(M) containing a 3D abelian ideal. Then M is a tube

on an affinely simply-transitive base.

Proof. By (1.8), the induced ILC structure on Mc is simply-transitive, so can be encoded

by an ASD-ILC triple (g; e, f), where g = sym(Mc) = hol(M) ⊗R C is 5D and admits some

admissible anti-involution τ . By hypothesis, hol(M) contains a 3D abelian ideal, so there

exists a 3D abelian ideal a ⊂ g.

Applying Theorem 4.1, we get a = τ(a) and e ∩ a = f ∩ a = 0. Thus, (a, τ)

is a tubular CR realization for the ILC triple (g; e, f). Since a is an ideal in g, then

g/a = n(a)/a ∼= aff(S) ⊗
R
C for some base S as constructed above. As hol(M) is transitive

on M, we see that the projection hol(M) onto S is also transitive. Thus, S is affinely

simply-transitive. �

Given p ∈ C
n+1, there is a natural isomorphism of the Lie algebra of all (real or

complex) affine vector fields with aff(n + 1,C) := gl(n + 1,C) �C
n+1, via

(Ak�(z� − p�) + bk)∂zk
�→ (A, b), (6.1)
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Simply-transitive nondegenerate hypersurfaces 39

for which A is the linear part at p, and b is the translational part. Recall that

conjugation by P ∈ GL(n + 1,C) ⊂ Aff(n + 1,C) induces the action (A, b) �→ (PAP−1, Pb).

Finally, aff(n + 1,C) has a unique abelian ideal consisting of translations 〈∂xk
〉 ∼= C

n+1.

Proposition 6.5. Let S ⊂ R
n+1 be an affinely homogeneous hypersurface with non-

degenerate 2nd fundamental form. Then the tubular ILC hypersurface Mc
S ⊂ C

n+1×C
n+1

is homogeneous and encoded by an ILC quadruple (g, k; e, f), given for any p ∈ S by

e := aff(S) ⊗
R
C, g := e�C

n+1, f := {Y ∈ g : Y|p = 0}, k := e ∩ f. (6.2)

Proof. Since S is affinely homogeneous, then Mc
S is homogeneous, with sym(Mc

S)

containing

g = aff(S)lc ⊕ span
C
{∂z1

− ∂a1
, . . . , ∂zn+1

− ∂an+1
}, (6.3)

which is transitive on Mc
S . Given p ∈ S, we have (p, p) ∈ Mc

S and

e = {Y ∈ g : dπ2|(p,p)(Y) = 0}, f = {Y ∈ g : dπ1|(p,p)(Y) = 0}, k = e ∩ f, (6.4)

in terms of the double fibration (1.6). Explicitly, let X := (Ak�x� + bk)∂xk
∈ aff(S) and

TX,p := (Ak�p� + bk)(∂zk
− ∂ak

) ∈ sym(Mc
S), where p = (p1, . . . , pn+1) ∈ S. Consider

Xlc + TX,p = (Ak�(z� + p�) + 2bk)∂zk
+ Ak�(a� − p�)∂ak

, (6.5)

Xlc − TX,p = Ak�(z� − p�)∂zk
+ (Ak�(a� + p�) + 2bk)∂ak

. (6.6)

Clearly, e = spanC{Xlc + TX,p : X ∈ aff(S)}, while f = spanC{Xlc − TX,p : X ∈ aff(S)}.
Since C = E ⊕ F is non-degenerate, then all elements of sym(Mc) are in 1-

1 correspondence with their projection by either dπ1 or dπ2. Focusing on their dπ1

projections, it is clear that (dπ1(g), dπ1(f)) agree with (g, f) in (6.2). Letting D ∈ Aff(n +
1,C) be the dilation centered at p by a factor 1

2 , define (ḡ, k̄; ē, f̄) be the (isomorphic)

projection of (g, k; e, f) by dD ◦ dπ1. Let us view this in terms of (6.1). Letting v = Ap + b

and D = 1
2 id, (6.5) and (6.6) become

(A, 2v) �→ (DAD−1, 2Dv) = (A, v), (A, 0) �→ (DAD−1, 0) = (A, 0). (6.7)

Via (6.1), the former is (Ak�z� + bk)∂zk
. Thus, after dropping bars, (ḡ, k̄; ē, f̄) agrees with

(6.2). �
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Table 2 Affinely simply-transitive surfaces with holomorphically multiply-transitive associated

tubes. Parameters α ∈ R and ε = ±1

DKR label Non-degenerate real affine surface ILC classification [7]

(3) u = ln(x1) + α ln(x2) (α 	=0) D.7: α 	= 0, −1;

O.15: α = −1

(4) u = α arg(ix1 + x2) + ln(x2
1 + x2

2) D.7

u = arg(ix1 + x2) O.15

(7) u = x2
2 + εex1 O.15

(8) u = x2
2 + εxα

1 (α 	=0,1) D.6-2: α 	= 0, 1, 2;

O.15: α = 2

(9) u = x2
2 + ε ln(x1) D.7

(10) u = x2
2 + εx1 ln(x1) D.6-2

(11) u = x1x2 + ex1 N.6-2

(12) u = x1x2 + xα
1 N.6-1: α 	= 0, 1, 2, 3, 4;

N.8: α = 4;

O.15: α = 0, 1, 2, 3

(13) u = x1x2 + ln(x1) N.6-1

(14) u = x1x2 + x1 ln(x1) N.7-2

(15) u = x1x2 + x2
1 ln(x1) N.6-1

(17) x1u = x2
2 + εx1 ln(x1) D.6-1

Note that f ⊂ g is the isotropy subalgebra at p. Using (2.19) and Proposition 6.5,

the quartic Q4 can be efficiently computed for tubes Mc
S over affinely simply-transitive

S (see Table 3).

6.2 Tubes on affinely simply-transitive surfaces

We finally address the tubular simply-transitive Levi non-degenerate classification.

From our work above, these can all be described as tubes on an affinely simply-

transitive base. (Several holomorphically multiply-transitive tubes have base surface

that is affinely inhomogeneous [8,Tables 7 and 8].) We will use the DKR classification

[6] of affinely homogeneous surfaces in real affine 3-space and proceed with the initial

steps described in §1.1.
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From the DKR list, we begin by excluding those surfaces whose associated tube

already explicitly appears in the multiply-transitive classification [8]. In Table 2, these

known tubes are indicated with their ILC quartic types and symmetry dimensions,

keeping in mind (1.8). (The additional hyphenated suffix, e.g., D.6-1 and D.6-2, indicates

labelling of different families derived from [7].) Finally, we restrict to affinely simply-

transitive surfaces with non-degenerate Hessians. This excludes quadrics, cylinders,

and the Cayley surface u = x1x2 − x3
1

3 . (The last of these admits the affine symmetries

x1∂x1
+ 2x2∂x2

+ 3u∂u, ∂x1
+ x1∂x2

+ x2∂u, and ∂x2
+ x1∂u.)

Remark 6.6. Family (4) was originally stated in [6] as u = α arg(ix1 +x2)+β ln(x2
1 +x2

2).

Scaling u yields the two cases in Table 2, the 1st of which explicitly appears in [8]. The

tube M over u = arg(ix1 + x2) is mapped to the hyperquadric Im w̃ = |̃z1|2 − |̃z2|2 by

(̃z1, z̃2, w̃) =
(

1√
2

(
eiw − z1 − iz2

4

)
,

1√
2

(
eiw + z1 − iz2

4

)
, eiw

( iz1 − z2

2

))
. (6.8)

Thus, dim hol(M) = 15 and M is flat. The above was derived from [13, Thm.6.1(6) and

(6.69)].

Model (16) when α = 0 gives the quadric x1u = x2
2 + ε, with affine symmetries:

x1∂x1
− u∂u, 2x2∂x1

+ u∂x2
, and x1∂x2

+ 2x2∂u. Its associated tube admits so(1, 2) � R
3

symmetry.

All remaining surfaces are given in Table 1. (The enumerations (1), (2), (5), (6), (16),

and (18) from [6] have been re-enumerated as T1–T6 here.) Their affine symmetries S, T

are given in Table 3. The associated tubes M admit symmetries Scr, Tcr, i∂z1
, i∂z2

, i∂w ∈
hol(M), so dim hol(M) ≥ 5. In Table 3, we compute Q4 using (2.19) and Proposition 6.5 and

classify its root type. (For details, we refer to a Maple file in our arXiv submission.) By

(2.18), those of type I and II are confirmed to have dim hol(M) = 5, so only the type D and

N cases remain. We used two methods to computationally confirm that dim hol(M) = 5

for these remaining cases: (i) PDE point symmetries (§6.3), and (ii) power series (§6.4).

6.3 PDE point symmetries method

In view of (1.8), we may confirm dim hol(M) = 5 for the remaining type D and N

tubular cases (from Table 3) via their corresponding ILC structure (Table 4). In §1.2,

we described how to go from M to this ILC structure realized as a PDE. In this

realization, the ILC symmetries are the point symmetries of the PDE system [24].
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Simply-transitive nondegenerate hypersurfaces 43

There is excellent functionality in the DifferentialGeometry package in Maple for

computing symmetries—see below.

Example 6.7 (T3, α = 0). The surface u = x1 ln(x2) has tube M and complexification

Mc:

M : Re(w) = Re(z1) ln(Re(z2)), Mc :
w + c

2
= z1 + a1

2
ln
(

z2 + a2

2

)
.

For Mc, we solve for w and differentiate twice:

(w1, w2, w11, w12, w22) =
(

ln
(

z2 + a2

2

)
,

z1 + a1

z2 + a2
, 0,

1

z2 + a2
, − z1 + a1

(z2 + a2)2

)
. (6.9)

Eliminating the parameters (a1, a2, c) from (6.9), we arrive at the PDE system

given in Table 4. Using (2.1), we then confirm 5D symmetry via the following commands

in Maple:

restart: with(DifferentialGeometry): with(GroupActions):

DGsetup([z1,z2,w,w1,w2],N):

w11:=0: w12:=1/2*exp(-w1): w22:=-1/2*w2*exp(-w1):

E:=evalDG([D_z1+w1*D_w+w11*D_w1+w12*D_w2,D_z2+w2*D_w+w12*D_w1+w22*D_w2]):

F:=evalDG([D_w1,D_w2]):

sym:=InfinitesimalSymmetriesOfGeometricObjectFields([E,F],output="list");

nops(sym);

This similarly confirms the cases in Table 4 without parameters. For the remain-

ing cases with parameters, more care is needed since the above commands should

at most be assumed to treat parameters generically. To identify possible exceptional

values, we should step-by-step solve the symmetry determining equations. Although

we could set this up as infinitesimally preserving E and F as above, let us indicate

another standard method. Any point symmetry X is the prolongation Y(1) of a vector

field Y on (z1, z2, w)-space J0(C2,C), and we can further prolong to get a vector field

Y(2) on the 2nd jet-space J2(C2,C). A PDE system is a submanifold � ⊂ J2(C2,C), and
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44 B. Doubrov et al.

Table 4 PDE realizations of some tubular ILC structures

Label Real affine surface Complete 2nd-order PDE system

T1 u = 1
x1x2

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
w11 = e2π i/3w5/3

1 w−1/3
2

w12 = 1
2 e2π i/3w2/3

1 w2/3
2

w22 = e2π i/3w−1/3
1 w5/3

2

u = x1xβ
2 (β 	= 0, ±1)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
w11 = 0

w12 = β
2 w

β−1
β

1

w22 = β−1
2 w2w

− 1
β

1

T2 u = 1
x2

1+x2
2

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
w11 = 22/3(3w2

1−w2
2)

4(w2
1+w2

2)1/3

w12 = 22/3w1w2
(w2

1+w2
2)1/3

w22 = 22/3(3w2
2−w2

1)

4(w2
1+w2

2)1/3

u = exp(β arctan(
x2
x1

))

(β 	= 0)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
w11 = (

w2
1

2 − 1
β w1w2) exp(β arctan(

w1
w2

))

w12 = 1
2 ( 1

β (w2
1 − w2

2) + w1w2) exp(β arctan(
w1
w2

))

w22 = (
w2

2
2 + 1

β w1w2) exp(β arctan(
w1
w2

))

T3 u = x1 ln(x2)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
w11 = 0

w12 = 1
2 e−w1

w22 = −1
2 w2e−w1

T4
(u − x1x2 + x3

1
3 )2 = α(x2 − x2

1
2 )3

(α 	= 0, −8
9 )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

w11 = −3
√

α(9α+8)(w2
2+w1)

8
√

w2
2+2w1

− 9α+8
8 w2

w12 = 3
√

α(9α+8)w2

16
√

w2
2+2w1

+ 9α+8
16

w22 = − 3
√

α(9α+8)

16
√

w2
2+2w1

T5 x1u = x2
2 + εx4

1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

w11 = √
3ε

w2
2+2w1√

w2
2+4w1

w12 = −√
3ε

w2√
w2

2+4w1

w22 = 2
√

3ε 1√
w2

2+4w1
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Simply-transitive nondegenerate hypersurfaces 45

the symmetry condition is that Y(2)|� is everywhere tangent to �. The following code

efficiently sets this up in Maple for the T1 case u = x1xβ
2 for β 	= 0, ±1:

restart: with(DifferentialGeometry): with(JetCalculus):

DGsetup([z1,z2],[w],J,2):

X:=evalDG(xi1(z1,z2,w[])*D_z1+xi2(z1,z2,w[])*D_z2+eta(z1,z2,w[])*D_w[]):

X2:=Prolong(X,2):

rel:=[w[1,1]=0,w[1,2]=beta/2*w[1]^((beta-1)/beta),

w[2,2]=(beta-1)/2*w[2]*w[1]^(-1/beta)]:

eq:=eval(LieDerivative(X2,map(v->lhs(v)-rhs(v),rel)),rel):

The expression eq must vanish identically (for arbitrary w1, w2), and this gives a highly

overdetermined system of linear PDE on the three coefficient functions ξ1, ξ2, η of Y.

Keeping in mind β 	= 0, ±1, we solve these equations and confirm 5D symmetry. Similar

computations were carried out for the remaining parametric cases and the result was

the same. (For more details in the T1 and T4 cases, see the Maple files accompanying

the arXiv submission of this article.)

Family T2 can be alternatively handled. As remarked in [6], the family of

complex surfaces in C
3 given by u = xα

1xβ
2 is Aff(3,C)-equivalent to surfaces in the

u = (x2
1 + x2

2

)γ
exp

(
δ arctan

(
x2
x1

))
family. (Here, α, β, γ , δ ∈ C.) Indeed, from their affine

symmetry algebras, we deduce that they are Aff(3,C)-equivalent when

(α, β) =
(
γ + i

2δ, γ − i
2δ
)

. (6.10)

(One can also account for the “Redundancies” as in Table 1.) By Remark 6.1, these com-

plex surfaces yield tubular ILC structures and when (6.10) holds, they are necessarily

equivalent. (A nice exercise derives the root types for T2 from those of T1 using (6.10).)

But now the remaining D and N cases for T2 are equivalent to the D and N cases for T1,

which were already treated, and so we are done.
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6.4 Power series method

In this section, we outline a 2nd method for the algorithmic computation of the

infinitesimal symmetries of tubular CR hypersurfaces (or rather tubular ILC structures).

We express this in the language of elementary linear algebra.

6.4.1 Filtered linear equations

Let V be a filtered vector space, that is,

V =: Vμ0 ⊃ Vμ0+1 ⊃ Vμ0+2 ⊃ . . . ,
⋂
μ

Vμ = 0.

Let gr V := ⊕
μ Vμ/Vμ+1 be its associated graded vector space. Any subspace W ⊂ V

inherits a filtration from V, and note that dim gr W = dim W.

Let U be another filtered vector space and φ : V → U a filtration-homogeneous

linear map of degree k, that is, φ(Vμ) ⊂ Uμ+k for all μ ∈ Z. Denote by gr φ : gr V → gr U

the corresponding graded map (of degree k). In applications, we often know the map

gr φ and its kernel ker gr φ, and would like to use this information in order to determine

ker φ.

Lemma 6.8. gr ker φ ⊂ ker gr φ.

Proof. Let v ∈ ker φ. Let μ be the largest integer such that v ∈ Vμ. Then φ(v) ∈ Uμ+k

and (gr φ)(v + Vμ+1) = φ(v) + Uμ+k+1 = 0, and thus v + Vμ+k+1 ∈ ker gr φ. �

The inclusion in Lemma 6.8 can be strict, so dim ker gr φ is only an upper bound

for dim ker φ = dim gr ker φ.

6.4.2 Symmetry equations as filtered linear equations

Given a real hypersurface M ⊂ C
3, its complexification is a complex hypersurface Mc ⊂

C
3 × C

3 graphed as:

Mc : z = Q(x, y, a, b, c), (6.11)

with Q analytic, that is, expandable in a converging power series. (In this section, we

use the complex variables (x, y, z, a, b, c) instead of (z1, z2, w, a1, a2, c).) We may assume

0 ∈ Mc, that is, 0 = Q(0, 0, 0, 0, 0). We consider Mc up to the pseudogroup of local analytic
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transformations:

(x, y, z, a, b, c) �→ (
x′(x, y, z), y′(x, y, z), z′(x, y, z), a′(a, b, c), b′(a, b, c), c′(a, b, c)

)
. (6.12)

The Lie algebra sym(Mc) of infinitesimal symmetries consists of those vector fields

L = X(x, y, z) ∂x + Y(x, y, z) ∂y + Z(x, y, z) ∂z

+ A(a, b, c) ∂a + B(a, b, c) ∂b + C(a, b, c) ∂c

(6.13)

that are tangent to Mc. We will make the assumption that Mc is rigid:

z = − c + F(x, y, a, b), (6.14)

with 0 = F(0, 0, 0, 0). (Tubes form the subclass z = −c + F(x + y, a + b).) The rigidity

assumption is justified when Mc is homogeneous, whence there exists at least one L ∈
sym(Mc) with L(0) not tangent to the 4D contact distribution. After a straightening, one

can make L = ∂z − ∂c, and tangency to {z = Q} forces Q = −c + F as above.

Remark 6.9. Up to the transformations (6.12), we can assume that F does not contain

constant or linear terms in x, y, a, b. Specifying 2nd-order terms, we get

z = − c + �(x, y, a, b) + G(x, y, a, b), (6.15)

with quadratic term �(x, y, a, b) = e xa + f xb + g ya + h yb for e, f , g, h ∈ C satisfying

0 	= ∣∣ e f
g h

∣∣ by Levi non-degeneracy of the original hypersurface M ⊂ C
3, and G containing

higher order terms in x, y, a, b. Using linear transformations of (x, y) and (a, b), we can

assume that �(x, y, a, b) = xa + yb.

Now, express the tangency condition as

0 ≡ eqdefF(L) := L
(− z − c + F(x, y, a, b)

)∣∣∣
z=−c+F

≡ [X Fx + Y Fy − Z + A Fa + B Fb − C
]∣∣∣

z=−c+F
,

(6.16)
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which reads as the identical vanishing of the following power series in five variables

(x, y, a, b, c):

0 ≡ X
(
x, y, −c + F(x, y, a, b)

)
Fx(x, y, a, b)

+ Y
(
x, y, −c + F(x, y, a, b)

)
Fy(x, y, a, b) − Z

(
x, y, −c + F(x, y, a, b)

)
+ A(a, b, c) Fa(x, y, a, b) + B(a, b, c) Fb(x, y, a, b) − C(a, b, c).

(6.17)

Now φ(L) = eqdefF(L) defines a linear map φ : V → U from the Lie algebra V

of all analytic vector fields (6.13) to the space U of all analytic functions in (x, y, a, b, c).

Then we have

sym(Mc) = ker φ. (6.18)

Expanding φ(L) in a power series and evaluating the coefficients of this series degree

by degree, we can view the computation of ker φ as an (infinite) system of linear

equations on the coefficients of the power series expansion of L, where the coefficients

of these linear equations are formed by some algebraic expressions of the power series

coefficients of F.

We now endow V and U with filtrations. Assign weights (1, 1, 2, 1, 1, 2) to

(x, y, z, a, b, c), and (−1, −1, −2, −1, −1, −2) to (∂x, ∂y, ∂z, ∂a, ∂b, ∂c). Define Vμ ⊂ V and

Uμ ⊂ U as the weight ≥ μ subspaces. (Note that V = V−2, while U = U0.) Then φ is

filtration-homogeneous and restricts to φ : Vμ → Uμ+2, that is, it has degree +2.

The associated graded spaces gr V and gr U can be identified with polynomial

vector fields of the form (6.13) and polynomials in (x, y, a, b, c), respectively. An elemen-

tary computation shows that

gr φ = eqdef�, (6.19)

where the right hand side defines the equations for the infinitesimal symmetries of the

flat model {z = −c + �}, which is defined by a homogeneous equation of weight 2.

The symmetry algebra of the flat model is well known to be the 15D Lie algebra

of polynomial vector fields having dimensions (1, 4, 5, 4, 1) in degrees (−2, −1, 0, 1, 2),

respectively. From Lemma 6.8, we immediately recover the well-known fact that

dim sym(Mc) ≤ 15, and each symmetry L is uniquely determined by its terms of weight

≤ 2.
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Our aim is to use knowledge of kereqdef� to effectively compute ker φ. Fixing an

integer parameter ν, define the following finite-dimensional quotient vector spaces:

V(ν) = V mod Vν+1, U(ν) = U mod Uν+1,

which inherit filtrations from V and U. Now φ induces a filtration-homogeneous map

of degree +2:

φ(ν) : V(ν) −→ U(ν + 2)

[L] �−→ [eqdefF(L)],
(6.20)

where brackets denote the respective equivalence classes. Then ker φ(ν) approximates

sym(Mc) = ker(φ) modulo terms of weight ≥ ν + 1. For increasing ν, we have that

dim ker φ(ν) is a decreasing sequence of integers stabilizing at dim sym(Mc).

Remark 6.10. For the tubes in Table 1, this sequence stabilizes already for ν = 4.

6.4.3 Symmetry computation

Fix ν, and for ease of exposition in this subsection, set φ := φ(ν), V := V(ν), U := U(ν+2).

The following is an effective algorithm for computing ker φ based on the knowledge of

gr φ:

1. Find ker gr φ ⊂ gr V;

2. Choose a subspace
◦
V ⊂ V with gr V = gr

◦
V ⊕ ker gr φ. (This means that gr φ is

injective on gr
◦
V. By Lemma 6.8, φ is also injective on

◦
V.)

3. Compute gr(φ(
◦
V)) = (gr φ)(gr

◦
V). Choose a subspace

◦
U ⊂ U with gr U =

(gr φ)(gr
◦
V) ⊕ gr

◦
U, so that the induced maps

◦
V → U/

◦
U and gr

◦
V → gr U/ gr

◦
U

are isomorphisms. Thus

gr V
gr φ

−−−−−−−−−−→ gr U

= =

gr
◦
V

gr φ|
gr

◦
V

−−−−−−−−−−→ (gr φ)(gr
◦
V)

⊕ ⊕
gr ker φ ⊂ ker gr φ gr

◦
U

V
φ

−−−−−−−−−−→ U

⊂ ↓
◦
V

◦
φ

−−−−−−−−−−→∼=
U/

◦
U

(6.21)

4. Consider the map
◦
φ : V → U/

◦
U. By what precedes, ker

◦
φ has the same

dimension as ker gr
◦
φ, is complementary to

◦
V and contains ker φ.
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5. Finally, consider the map φ : ker
◦
φ → ◦

U and compute its kernel.

The key computational advantage of this approach is that the 1st four steps

do not involve any parameter dependency introduced by G in (6.15). This allows one to

reduce the parametric analysis for dim sym(Mc) to the last step in the above algorithm.

Let us describe this in more detail.

Choose bases (consisting of homogeneous elements) of gr V = gr
◦
V ⊕ ker gr φ and

gr U = (gr φ)(gr
◦
V) ⊕ gr

◦
U adapted to the given decompositions. Then extend these bases

to V and U in a manner compatible with the choices of subspace
◦
V ⊂ V and

◦
U ⊂ U. In

these bases,

gr φ =
(

A 0

0 0

)
, φ =

(
B11 B12

B21 B22

)
. (6.22)

Here, A and B11 are non-degenerate and correspond to the isomorphisms gr
◦
V →

gr U/ gr
◦

U and
◦
V → U/

◦
U, respectively. Moreover, gr B11 = A by construction, so it does

not depend on the function G in the defining equation (6.15) for Mc. This means that

computation of the kernel
◦
φ : V → U/

◦
U does not introduce any dependency on the

parameters that may appear in G. Thus, the dependency of dim ker φ on G appears only

on step (5), which significantly reduces the computational complexity.

By a careful choice of the subspaces
◦
V and

◦
U, we reduce computation of ker φ(ν)

for ν = 2, 3, and 4 to systems of 5, 25, and 75 linear equations, respectively, on

dim ker gr φ(ν) = 15 variables. (For sample details in the T4 case, see the Maple files

supplementing the arXiv submission of this article.) We note that the direct analysis

of the corank of the map φ(4) : V(4) → U(6) without applying the techniques of

filtered linear equations would result in dealing with dim U(6) = 130 linear equations

in dim V(4) = 80 variables.

6.5 Conclusion

As described in §6.3 and §6.4, we used two different methods to confirm the following:

Proposition 6.11. Any tubular hypersurface M5 ⊂ C
3 from Table 1 has dim hol(M) = 5.

Finally, we address whether there is any redundancy in our (tubular) list. The

following slightly weakens the “uniqueness” hypothesis from [14, Prop. 4.1]. (The proof

is the same.)
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Proposition 6.12. Let M1, M2 ⊂ C
n+1 be two tubular hypersurfaces over affinely

homogeneous bases S1,S2 ⊂ R
n+1. Suppose that M1 and M2 are holomorphically simply-

transitive and that 〈i∂z1
, . . . , i∂zn+1

〉 is a characteristic (n + 1)-dimensional abelian ideal

in hol(M1) and hol(M2). Then M1 and M2 are locally biholomorphically equivalent if and

only if their bases are locally affinely equivalent.

Recall that an ideal in a Lie algebra is characteristic if it is preserved by

all automorphisms of the Lie algebra. We confirm the characteristic property via

corresponding ILC data (g; e, f) and (a, τ):

• T1,T2,T3,T6: a is the derived algebra of g.

• T4,T5: a is the centralizer of the (2D) 2nd derived algebra of g.

This implies that a ⊂ g is characteristic, so the corresponding abelian ideal in hol(M)

is characteristic, and hence Proposition 6.12 applies. From the DKR classification [6],

there is no affine equivalence between S1 and S2 lying in different families among T1–

T6. For S1 and S2 in the same family, we can assess affine equivalence by asking if aff(S1)

and aff(S2) are conjugate in aff(3,R). We leave this as a straightforward exercise for the

reader. This gives rise to the “Redundancy” conditions in Table 1, for example, in T1,

(α, β) ∼ ( 1
α

, −β
α
) is induced from the swap (x1, x2, u) �→ (u, x2, x1).

The proof of Theorem 1.1 is now complete.
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