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Abstract 20 

Several attempts at reconstructing geological settings and palaeoclimatic changes of the 21 

siliciclastic deposits of the Dahomey Basin, SW Nigeria, using relative age dating and 22 

correlation methods, have resulted in serious discrepancies on the ages. Therefore, a 23 

chronology framework established by an absolute age dating method is requisite to constrain 24 

the geological interpretation. This research focuses on quartz optically stimulated 25 

luminescence (OSL) dating of the upper siliciclastic sediments to help bridge the lacuna that 26 

arose from previous relative geologic dating. Ten sub-surface sediment samples were 27 

collected from the eastern part of the basin, and quartz OSL dating using single-aliquot 28 

regenerative-dose protocol was conducted for all the samples. The OSL signals appear well 29 

bleached prior to deposition and the OSL ages are reliable and robust. Through the 30 

application of OSL, the age framework of the uppermost part of sediments in the study area 31 
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was established. The OSL dating results revealed that these depositional periods fall within 32 

the Holocene and are concentrated during two groups: 3.52 ka–1.55 ka, and 0.64 ka–0.05 ka. 33 

The samples with ages of 3.52 ka–1.55 ka distribute in the belt-like inland zone 34 

approximately parallel to the coastline. This deposition episode appears to be caused by the 35 

decrease in relative sea level during late Holocene. Thus, this study sheds light on the 36 

understanding past coast dynamics in the region. 37 

 Keywords: Luminescence dating; Quaternary; Holocene; Dahomey Basin; Nigeria 38 

 1. Introduction 39 

Various research work has been conducted within the Dahomey Basin due to their geologic 40 

peculiarity and economic importance (Adegoke, 1980). Exploration of bitumen, limestone, 41 

glass sands and phosphates (Nton et al., 2006) has been undertaken with discovery of crude 42 

oil in 1908 (Billman, 1982). This has sprung up great geological interest for further research 43 

in the basin for hydrocarbon potential (Elueze and Nton, 2004). The knowledge of age of the 44 

deposits will provide crucial information for future exploration of these natural resources and 45 

understanding the evolution of coastal environment in the Dahomey Basin.  46 

Previous researches had postulated ages for the sediments in the Dahomey Basin through the 47 

application of series of relative age dating approaches, including age correlation of the basin 48 

(Jones and Hockey, 1964; Reyment, 1965), dating of available pollen (Agagu, 1985) and 49 

paleontological approach (Adegoke, 1969; Olabode and Mohammed, 2016). This has resulted 50 

in serious age discrepancies ranging from Maastrichtian to Quaternary ages (Olabode et al., 51 

2016). Hence, there is an urgent need to adopt absolute age dating method to resolve and 52 

bridge the lacuna arising from the various age differences of the siliciclastic deposits. 53 

Optically simulated luminescence (OSL) is one of the most intensively and veritably used 54 

numerical dating techniques to determine the age of Late Quaternary sub-surface sediments 55 

(Murray and Wintle, 2000, 2003; Wintle and Murray, 2006; Chen et al., 2015; Zhang et al., 56 

2018). OSL dating techniques (Duller, 2004; Olley et al., 1998, 1999) work well not only on 57 

sediments where grains have adequate exposure to sunlight at the time of deposition (Rhodes, 58 

2007), but also on samples which were poorly bleached prior to sedimentation (Zhao et al., 59 

2015, 2017). It is applied by estimating the impact of radiation on the crystalline structure of 60 

quartz mineral mostly presented in all sedimentary environments isolated from light (Wintle, 61 

1997, 2008; Murray and Wintle, 2000, 2003). The OSL signal observed from quartz revealed 62 
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several exponentials relative to different levels of traps (Bailey et al., 1997) and successful 63 

OSL dating is dependent on a fast signal component (Murray and Wintle 2000). This research 64 

aims to determine the age of the uppermost alluvial deposits in the eastern Dahomey Basin to 65 

help bridge the long touted age disparities of the formation in previous research (Jones and 66 

Hockey, 1964; Agagu, 1985; Omatsola and Adegoke, 1981). 67 

2. Geologic and tectonic settings of the Dahomey Basin 68 

The Dahomey Basin, also called Benin Embayment, is located on the shore of West Africa 69 

(Whiteman, 1982), with coordinate of latitude 610'N to 625' N and longitude 430' E to 70 

450' E respectively (Fig. 1). It is a rift or marginal pull-apart basin (Whiteman, 1982) or 71 

marginal sag basin (Kingston et al., 1983), part of the West African pre-cratonic basins 72 

(Mpanda, 1997) which was initiated during the early Cretaceous separation of the South 73 

American and African plates, and opening of the South Atlantic Ocean (Adegoke, 1980; 74 

Omatsola and Adegoke, 1981). The Dahomey Basin is a combination of inland, coastal, 75 

offshore settings that stretches from southeastern Ghana through Togo and the Republic of 76 

Benin to southwestern trending along the east-west direction in Nigeria, with Cretaceous 77 

strata along the  shore estimated to be about 200 m thick (Okosun, 1990; Olabode and 78 

Mohammed, 2016). The geologic, stratigraphic, sedimentological and organic geochemical 79 

studies of different parts of the alluvial deposits in the Dahomey Basin have been reported 80 

(e.g., Idowu et al, 1993; Adekeye, 2004; Adekeye et al., 2006; Nton et al., 2006; Ikhane et al., 81 

2014).  82 

The study area is located in eastern part of the Dahomey Basin, in the area or vicinity of Ilaje 83 

community in coastal environment of Ondo state (Fig. 1). The coastal vegetation along the 84 

beach is dominate mangrove (Awosika and Folorunsho, 2010) with some coconut trees, 85 

palms, sedges and climbers. The study area is a barrier lagoon coastal complex (Woodroffe 86 

and Horton, 2005; Awosika and Folorunsho, 2010), stretching from around Agerige 87 

community where the coastline starts a southward variation. It consists of beach ridges 88 

adjoined with a foreshore of more than 50 m above the sea level similar to that of modern 89 

coast. The beach crest elevation generally ranges from 3 to 4 m above mean water level. 90 

Relief ranges from sea level along the coast backed by a wide expanse of tidal flat with the 91 

coastal plain relief rising gently from 2 m to about 50 m above mean sea level. This barrier 92 

lagoon bar experiences tides, current waves and predominantly of long shore currents 93 

generated by south-westerly breaking waves at various degrees. Though the tidal range is 94 
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relatively small, the effects of tides on the general morphology of the coastline are very 95 

significant.  96 

The alluvial sediments here were previously inferred a Pleistocene or Holocene age by 97 

relative dating (Omatsola and Adegoke,1981; Agagu,1985). The alluvial plain is 98 

lithologically indistinguishable from typical coastal plain sands strata. The high-level terraces 99 

are rarely exposed, although few sections were seen around Ofada and Moloki on the Ogun 100 

River bank.  The sediments are made up of medium to slightly fine grained, well sorted to 101 

moderately well sorted sands. Quaternary sediments mainly consist of recent alluvium 102 

(Agagu, 1985), underlain by siltstone/ mudstone described by Omatsola and Adegoke (1981). 103 

3. Materials and methods 104 

3.1 Materials 105 

 In this study, 10 representative samples were collected from the study area in the eastern 106 

Dahomey Basin (Fig. 1). The samples are from sub-surface and unconsolidated in nature. 107 

Texturally, the samples are fine to coarse grained sand with an average 85.0% of the samples 108 

being medium grained sand. The colour ranges from white to light greyish and brownish red, 109 

an indication of high impurities. During sampling, surface sediments were removed, then the 110 

stainless-steel tube with 30 cm long and 5 cm diameter was hammered to allow the sample 111 

fill the tube. The tube was sealed at both ends using aluminum foil and wrapped with the 112 

black nylon to prevent it from sunlight reflection. Then each of the samples was properly 113 

preserved in a sealed opaque container and clearly labelled for laboratory analysis. 114 

3.2 OSL dating method 115 

The single-aliquot regenerative dose (SAR) protocol was widely adopted to determine the 116 

equivalent dose (De) of quartz samples (Murray and Wintle, 2000; Roberts and Duller, 2004; 117 

Lai and Wintle, 2006; Rodnight, et al., 2006; Wang et al., 2006; Roberts, 2007; Lai, 2010; 118 

Chen et al., 2012). This can then be calculated from the ratio of the natural and regenerated 119 

luminescence signals (Murray and Wintle, 2003; Yang et al., 2014). Both natural and 120 

regenerative signals (Buylaert et al., 2008; Kang et al., 2013) are normalized with a 121 

successive test dose which are used to monitor and correct for a potential sensitivity change. 122 

This radiation (α, β and γ) from the radionuclides in the mineral and its natural environment 123 

determined by either gamma spectrometry, neutron activation analysis, or alpha counting 124 

(Aitken, 1985; Guérin et al., 2012) can be converted into alpha, beta and gamma dose rate 125 

using conversion factors (Stokes et al., 2001; Chen et al., 2012). 126 
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3.2.1 Sample pretreatment  127 

Preparation of the samples and OSL experiments were conducted under a subdued red light in 128 

the luminescence dating laboratory, Key Laboratory of Tourism and Resources Environment 129 

in Universities of Shandong, Taishan University, Taian City, China. The two outer ends of 130 

each sample in the steel tube were removed for water content and dose rate analysis, while 131 

the remaining sediment was pretreated for luminescence measurement. 132 

The remaining samples in the middle part of the tube were pretreated following the routine 133 

procedures, including treatment with  10% HCl and 10% H2O2  to remove carbonate and 134 

organic matter, respectively. After wet sieving, grains in the range of 150250 µm were 135 

extracted. The coarse fraction was  then cleaned with 10% HF for 20 minutes to remove 136 

coatings and the outer alpha irradiated layer, and rinsed in 10% HCl  to remove any 137 

precipitated fluorides. Subsequently, the remaining grains were separated by heavy liquid to 138 

extract quartz grains (2.62 < ρ < 2.75 g/cm
-3

). The purity of quartz was checked by IR 139 

depletion ratio method (Duller, 2003) and 110 C TL peak (Jain et al., 2004). The quartz 140 

grains of each sample were mounted as small (2mm diameter) aliquots on a stainless-steel 141 

discs, and twelve discs were measured for each sample.  142 

3.2.2 Dose rate determination 143 

Determination of the sediment dose rate involves assessment of concentrations of U, Th and 144 

K in the sample, water content and cosmic ray dose contribution. The environmental dose 145 

rate was determined by the U, Th and K concentrations, measured by neutron activation 146 

analysis (NAA) method in the Chinese Atomic Energy Institute. The U, Th and K 147 

concentrations were converted to dose rates (Aitken, 1998). The total environmental dose 148 

rate, including the contribution from cosmic radiation, was calculated according to Adamiec 149 

and Aitken (1998). The cosmic ray dose contribution was estimated as a function of 150 

longitude, latitude, altitude and depth (Prescott and Hutton, 1994). The in situ water content 151 

was measured by weighing the sample before and after drying (mass of moisture/dry mass), 152 

and was assigned an absolute uncertainty of ±5%.  153 

3.2.3 Equivalent doses determination 154 

De were estimated using the improved SAR protocol (Murray and Wintle, 2000, 2003; Wintle 155 

and Murray, 2006; Rittenour 2008).  Its determination includes irradiation, preheating and 156 

stimulating procedures. The procedures were conducted using an automated Risø TL/OSL 157 

DA-20 reader equipped with blue LEDs (470 nm, ~80 mW cm
-2

) and infrared LEDs (875 nm, 158 
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~135 mW cm
-2

) (Bøtter-Jensen et al., 1994; Stokes, 1999). The irradiation procedure adopted 159 

a 
90

Sr/
90

Y beta source which was fitted on the reader with a dose rate of ~0.10 Gy/s to quartz 160 

grains in stainless steel discs.  The preheating was set at 160 C for 20 s, based on the preheat 161 

plateau and thermal transfer tests. The optical stimulation was conducted using blue light-162 

emitting diodes (LEDs) for 40 s at 125 C. This was detected using a 9235QA 163 

photomultiplier tube through a 7.5 mm thick U-340 filter. The OSL signals for the De 164 

determination were derived from the first 0.64 s stimulation minus a background of the 165 

following 0.64 s of stimulation. 166 

Preheat plateau test was carried out on samples MHN R2 and ARR R4 to show the variation 167 

in dose with different preheats. The aliquots were bleached under blue light for 100 s at room 168 

temperature, with an intervening gap of 1000 s, a set of four aliquots were later measured at 169 

preheat temperatures from 160 to 260 C, with a step of 20 C. The results of the preheat 170 

plateau tests (Fig. 2c) showed that the Des obtained by the SAR protocol are insensitive to 171 

preheat temperature in range between 160 C and 260 C. For both samples (MHN R2 and 172 

ARR R4), all the recycling ratios are close to 1, while the recuperation values are less than 173 

3%, especially at 160 C.  174 

Young quartz samples may be affected by thermal transfer (Wintle and Murray, 2006). The 175 

thermal transfer test as a function of preheat temperature was conducted for sample ARR R4 176 

(Fig. 2d).  The unheated aliquots were bleached twice under the blue light for 100 s at room 177 

temperature with an intervening pause of 10 ks to allow charge optically transferred into the 178 

110 C TL peak to decay. For sample ARR R4, four aliquots were determined at each preheat 179 

temperature between 160 C and 260 C (in increments of 20 C). As shown in Fig. 2d, there 180 

was no significant thermal transfer from 160 C to 200 C. Based on the preheat plateau and 181 

thermal transfer tests, a preheat temperature of 160 C was selected for the quartz De 182 

measurements.  183 

The suitability of the procedure for De determination with the selected settings was checked 184 

with a dose recovery test (Murray and Wintle, 2003). Nine natural aliquots of the sample 185 

ARR R4 were stimulated twice by blue-light stimulation at 125 C for 40 s. A laboratory dose 186 

1.12 Gy was then administered, close to their expected natural Des. The average dose 187 

recovery ratio is 1.01 ± 0.01, which shows the selected SAR protocol is suitable for De 188 

determination. 189 
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4. Results 190 

4.1 Quartz luminescence characteristics 191 

The dose response curve and natural OSL decay curve (insert) of the representative samples 192 

are shown in Fig. 2a and 2b. The decay curve of the samples resembles that of the calibration 193 

quartz sample. The blue-light stimulated OSL signals decreased very quickly, which indicates 194 

the OSL signals were fast-component dominated and that the sample was appropriate for OSL 195 

dating (Jain et al., 2003).  The regeneration dose of 0 Gy was used to measure recuperation, 196 

which was calculated by comparing the sensitivity corrected OSL signal of the zero dose to 197 

the sensitivity-corrected natural signal. Recuperation was in all cases <3% for all samples. 198 

The recycling ratio, the consistency between the first regenerative dose and the repeated dose, 199 

suggested that the sensitivity changes during analysis were adequately corrected. The 200 

recuperation and recycling ratio show the reliability of the SAR protocol. 201 

The preheat plateau tests indicated that the Des obtained by the SAR protocol are independent 202 

of preheat temperature (Fig. 2c). The thermal transfer test shows the variations in De were 203 

negligible from 160 C to 200 C, suggesting suitable preheating temperature range (Fig. 2d). 204 

The De values are relatively low, and the majority of the De values fall in narrow range 205 

between 0.04 and 1.40 Gy. The Abanico plot of De distributions (Dietze and Kreutzer, 2019) 206 

of two representative samples (MHN R2 and ODE R10) diplay normal and narrow 207 

distributions (Fig. 2e and 2f), indicating that the quartz particles were well bleached prior to 208 

burial and the optical bleaching of the siliciclastic sediment in this study area was effective. 209 

The study sediments may have experienced transportation mechanisms possibly from the 210 

tidal current in the adjacent Atlantic Ocean, coupled with flood and erosion from the adjoined 211 

basement complexes. Therefore, all the De for OSL ages calculation were acquired using the 212 

average of twelve discs of each sample. The OSL dating results are summarized in Table 1.  213 

4.2 OSL age of the sediments 214 

The results of OSL age dating, including the dose rates, equivalent doses and ages are listed 215 

in Table 1. The OSL ages are also displayed in the map (Fig. 3). The concentration of the 216 

radioactive elements in the siliciclastic sediments are 0.36–10.1 ug/g (Th), 0.17–1.98 ug/g 217 

(U) and 0.011–0.469% (K) with mean values of 2.275 ppm for Th, 0.49 ppm for U and 0.135 218 

% for K, respectively. The water content ranged from 1 to 20 %. The time-averaged water 219 

content available in the sediment throughout its burial is an important, but a difficult 220 

parameter to assess (Cordier, 2010). Estimated value of the moisture content in these study 221 
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sediments may not be well indicative of the entire period of burial, but may reflect the 222 

relative contribution to the effective dose rate. The dose rates range from 1.54±0.066 Gy ka
−1

 223 

to 0.22±0.041 Gy ka
−1

, which are typical for coastal sediments (Kunz et al., 2010), and the De 224 

values, from 1.4±0.03 to 0.04±0.01 Gy. These yield OSL ages of the siliciclastic sediments 225 

ranging from 3.52±0.34 ka to 0.05±0.01 ka. The two oldest samples OKG R3 and MHN R2 226 

have OSL ages of 3.52±0.34 ka and 3.01±0.39 ka, respectively. 227 

The OSL ages show that the deposits are of late Holocene. It was observed that the deposits 228 

are thicker in northern part of the study area. The extent of sampling depth was constraint 229 

with shallow groundwater table and showed no spatial trend (Fig. 3). However, the spatial 230 

changes in age of the samples appear two belt-like distributions, with the exception of young 231 

age (1.55±0.15 ka and 0.33±0.08, respectively) at the ORR and ZER barriers in the northeast 232 

part of the study area. The inland belt has ages ranging from 3.01±0.39 ka to 1.55±0.15 ka, 233 

while the coast belt has ages ranging from 0.64±0.06 ka to  0.05±0.01 ka. These two belts 234 

approximately parallel to the coastline (Fig. 3). The ages of samples in this area yield a rate 235 

of coastal progradation approximately 20 km in 3.5 ka, i.e. 5.7 km/ka.  236 

5. Discussion 237 

Ages of the study samples range from 3.52 ka to 0.05 ka. The result of OSL dating are 238 

reliable as evidenced by the good dose recovery and a signal dominated by a fast component. 239 

The very young age for the sediments is in contrast with some previous researches (Omatsola 240 

and Adegoke, 1980; Billman, 1982), in which they used relative age dating techniques to 241 

adopt a Tertiary age for the sediments. The Tertiary sediment could have experienced 242 

reworked processes, transportation and re-deposited in the late Holocene. The variations in 243 

ages of these samples might be an indication of various depositional episodes during the 244 

Holocene epoch. 245 

The thickness of the investigated siliciclastic sediments varies from 0.4 m to about 0.8 246 

meters, while the deeper sediments could not be sampled in this study due to shallow 247 

groundwater table in the region. The spatial changes in age of the samples appear two belt-248 

like distributions, with the exception of young age of the two samples in the hinterland (Fig. 249 

3). Geomorphologically, the belts parallel to the barrier bars along coastlines. It is highly 250 

possible that the sediments with age of 0.64 ka–0.05 ka in the belt close to the coastline have 251 

disturbed by modern tide activities. Therefore, we mainly focus on the belt with age range of 252 

3.52 ka–1.55 ka. 253 
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The deposition episode of 3.52 ka–1.55 ka could have resulted from one or combination of 254 

two factors which include: 1) decrease in relative sea level; and 2) increase in flood activity. 255 

Decrease in relative sea level is at least partly responsible for this deposition episode. 256 

Decrease in relative sea level could be caused by basin uplift and/or decrease in sea level.  257 

The knowledge of the tectonic movements in the region during the Holocene has been lacked. 258 

Olabode (2015) analyzed tectonic evolution in the Dahomey Basin since Cretaceous, based 259 

on data of one dimensional backstripping analysis on three offshore wells, and concluded that 260 

the basin has been experienced accelerated tectonic subsidence during Quaternary period. 261 

This may provide information of tectonic background for understanding the Holocene 262 

sedimentation, but is contrary to the deposition episode in the interval 3.52 ka–1.55 ka that 263 

suggests basin uplift. 264 

Decrease in sea level may also contribute to the formation of sediment in this older hinterland 265 

belt. However, it is generally accepted that global sea level has been increasing in the 266 

Holocene, and there is a progressive decrease in rise rate from 6.7 ka to recent time, within 267 

which main rise occurred in the interval 6.7–4.2 ka (Lambeck et al., 2014). Many physical 268 

processes, such as crustal rebound, continental levering, ocean syphoning, etc., produce 269 

distinctive spatial and temporal patterns in relative sea level during late Holocene (Barnett et 270 

al., 2019). It is still an open question what specific mechanism that drive relative sea level in 271 

the study region. 272 

Increase in flood activity that brings materials for the sediment may be another factor, 273 

although the supply of reworked Tertiary sediments can not be precluded. The rivers (Ofara, 274 

Oluwa, Talita and Alape Rivers) drains across the study area. Salzmann and Hoelzmann, 275 

based on pollen and geochemical analysis, showed in southern Benin of Gulf of Guinea, an 276 

episode of wetting climatic conditions occurred between 3.3 ka and 1.1 ka. This is timely 277 

consistent with age of sediments in the range of 3.52 ka–1.55 ka. It is possible that increased 278 

river flooding during the wet period had brought more sediments deposited in the hinterland 279 

of the study area, in addition to the reworked older sedimentary rocks.  280 

Presently, it is difficult to determine which factors are responsible for the deposition episode 281 

during the period of 3.52 ka–1.55 ka. Understanding of previous coastal fluctuations is 282 

crucial to envisage the present dynamics of the coasts within the framework of long-term 283 

fluctuations (Masselink and Gehrels, 2014). Depositional changes in the coasts occur relative 284 

to many factors which includes: sea level fluctuation, basin uplift, flood and sediment supply, 285 

climate and human activity. Past changes associated with variations in these factors may 286 
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inform our understanding of future changes in the coast area. Further investigations with 287 

large spatiotemporal coverage in the region are needed in future to better understand the past 288 

dynamics of the coasts in the region. 289 

6. Conclusion 290 

This study presents the first OSL dating of the coastal sediments, with large spatial coverage 291 

in the eastern Dahomey Basin. The OSL results revealed that the ages of the surficial 292 

sediments in the eastern basin range from 3.5 ka to 0.05 ka, indicating that the deposits are 293 

very young Quaternary deposits, specifically of Holocene Epoch. The young ages contradict 294 

the assertion of some previous researcher (Billman, 1982) who adopt a Tertiary age for the 295 

sediments using relative age dating techniques. The age of the sediments varies spatially from 296 

the northeast to southwest of the study area, indicating the sediments are result of the 297 

regressive depositional episodes that occurred in the study area. The decrease in relative sea 298 

level and/or in river flooding during the wet climatic conditions may be responsible for the 299 

elder deposition episode of 3.5-1.5 ka in the region. Therefore, this study provides first 300 

chronological constraints on evolution of the coast area and the linkage with relative sea level 301 

changes (linked with both the sea level and tectonics) during the late Holocene. 302 
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 476 

Figure Captions 477 

Figure 1. Maps of the study area (Modified after NGSA, 1969).with locations of the OSL 478 

samples.  479 

Figure 2. Quartz luminescence characteristics of the representative samples. (a) and (b) Dose 480 

response curves of the typical samples OKG R3 and AGG R8, respectively. Inset shows 481 

the natural decay curves. (c) De values versus preheat plateau tests for two typical 482 

samples of MHA R2 and ARR R4. (d) Thermal transfer test of the typical sample ARR 483 

R4. (e) and (f) The Abanico plot of De distributions of two typical samples MHN R2 and 484 

ODE R10, respectively. 485 

Figure 3. Map of study area showing the OSL ages.  The zone outlined by yellow line 486 

indicate the first episode of sedimentation in mostly of barrier bar, and the zone outlined 487 

by blue line indicate littoral zone. 488 

 489 

List of Table 490 

Table 1.  Summary of sample location, the burial depth, radionuclide concentrations, 491 

calculated dose rate, quartz De values and luminescence ages.  492 
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Sample 

code 

Latitude 

(°N) 

Longitude 

(°E) 

Altitude 

(m) 

Depth 

(m) 

Grain size 

(µm) 

Water content 

(%) 

U 

(µg/g) 

Th 

(µg/g) 

K 

(%) 

De 

(Gy) 

Dose rate 

(Gy/ka) 

Age 

(ka) 

ATJ R1 6.31 4.75 6.00 0.80 150–200 4.0 0.32 1.61 0.054 0.93±0.03 0.39±0.035 2.40±0.23 

MHN R2 6.20 4.78 3.20 0.50 150–200 3.0 0.17 1.25 0.011 1.17±0.02 0.39±0.049 3.01±0.39 

OKG R3 6.38 4.76 7.60 0.60 200–250 14.0 0.35 1.55 0.011 1.40±0.03 0.40±0.037 3.52±0.34 

ARR R4 6.34 4.49 1.46 0.45 200–250 6.0 1.98 10.70 0.216 0.08±0.01 1.54±0.066 0.05±0.01 

AKD R5 6.26 4.77 1.97 0.60 150–200 14.0 0.58 1.19 0.090 1.08±0.02 0.49±0.036 2.21±0.17 

ORR R6 6.38 4.74 8.50 0.60 150–200 1.0 0.29 2.01 0.024 0.76±0.03 0.49±0.043 1.55±0.15 

ZER R7 6.38 4.78 9.40 0.80 150–200 18.0 0.21 0.49 0.011 0.07±0.01 0.22±0.041 0.33±0.08 

AGG R8 6.31 4.63 10.40 0.40 150–200 8.0 0.34 0.36 0.175 1.00±0.03 0.50±0.044 2.02±0.19 

UGB R9 6.15 4.79 27.20 0.45 200–250 12.0 0.24 1.91 0.469 0.04±0.01 0.79±0.039 0.05±0.01 

ODE R10 6.29 4.62 8.50 0.50 150–200 20.0 0.42 1.50 0.299 0.39±0.03 0.61±0.034 0.64±0.06 
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