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An ideal of polynomials is symmetric if it is closed under permu-
tations of variables. We relate general symmetric ideals to the so 
called Specht ideals generated by all Specht polynomials of a given 
shape. We show a connection between the leading monomials of 
polynomials in the ideal and the Specht polynomials contained 
in the ideal. This provides applications in several contexts. Most 
notably, this connection gives information about the solutions of 
the corresponding set of equations. From another perspective, it 
restricts the isotypic decomposition of the ideal viewed as a repre-
sentation of the symmetric group.
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1. Introduction

Let Sn denote the symmetric group on n-elements, and let K be a field. Then Sn acts naturally on 
an n-dimensional space Kn by permuting coordinates. This linear action then gives rise to an action 
on the corresponding polynomial ring by permuting coordinates. In this article we consider ideals 
I ⊂K[X1, . . . Xn] which are stable under this action. The study of such ideals appears quite naturally 
in different contexts (see for example Steidel (2013); Faugère and Svartz (2012); Krone (2016); Busé 
and Karasoulou (2016)).

Our interest in such ideals stems from algorithmic purposes: the symmetry on a set of equations 
often can be used to simplify its resolution. In this flavour, a fundamental result by Timofte (see 
Timofte (2003); Riener (2012)) yields that every symmetric variety defined by polynomials of degree 
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d is non-empty over R if and only if it contains a real point with at most d distinct coordinates. Here 
we aim at generalising this aspect of Timofte’s result in various ways. We are able to show that -
under the assumption that the number of variables is sufficiently large - the variety corresponding 
to the symmetric ideal will not contain any point with strictly more than d distinct coordinates. 
Moreover, our result yields that the set of possible configurations of these d distinct coordinates can 
be further restricted by the shape of the monomials of highest degree amongst the generators of I , 
see Section 5.1. The arguments put forward to establish this result are purely algebraic and work with 
no requirements on K. In fact, this result will follow from a study of Specht polynomials contained in 
symmetric ideals. More precisely, we assign a partition of n to these monomials and we relate these 
partitions to specific Specht polynomials which belong to the ideal, see Section 4.

In characteristic 0, this property also has an application to the structure of the decomposition 
of I in terms of Sn-representations. The action of Sn on I turns I and K[X1, . . . , Xn]/I into K[Sn]
modules. Over a field of characteristic zero these modules can be decomposed into irreducible K[Sn]
modules, which are usually called Specht modules and we show in Section 5.2 that the possible 
Specht modules appearing in this decomposition are also very restricted (see Basu and Riener (2020)
for a result in a similar spirit in the real setting). One application of such a decomposition concerns 
sums of squares representations of positive symmetric polynomials modulo symmetric ideals. The 
understanding of the irreducible representations in I gives a control on the complexity of sums of 
squares decomposition in this setup, see Section 5.3.

This article is structured as follows. Section 2 collects necessary standard notations and definitions. 
Then, Section 3 focuses on varieties defined by Specht polynomials and their properties. This is used 
in Section 4 to describe the Specht polynomials contained in symmetric ideals. Finally, Section 5 is 
devoted to applications.

2. Preliminary notations and definitions

2.1. Partitions and Young tableaux

For any natural number n, one can consider its partitions:

Definition 1. Let n ∈ N . A partition λ of n, (denoted λ � n) is a sequence λ = (λ1, · · · , λl) of positive 
natural numbers ordered such that λ1 � λ2 � · · · � λl � 0 with the property λ1 + . . . + λl = n. The 
length of λ is

len(λ) = max{i : λi �= 0}.

We will allow ourselves to identify partitions that only differ by 0 terms.

Definition 2. For a given partition λ, its dual partition λ⊥ is defined by(
λ⊥)

i
= ∣∣{ j, λ j � i}∣∣ .

Partitions are very well known and are closely related to Young tableaux (see e.g. Sagan (2013)).

Definition 3. Given λ � n, a Young tableau T of shape λ � n, or a λ-tableau consists of len(λ) rows, 
with λi entries in the i-th row. Each entry is an element in {1, . . . , n}, and each of these numbers 
occurs exactly once. Furthermore we write sh(T ) = λ.

Definition 4. Let n ∈N . Let λ = (λ1, · · · , λl) � n and μ = (μ1, · · · , μm) � n be two partitions. We say 
that λ dominates μ if

i∑
j=1

λ j �
i∑

j=1

μ j holds for all 1 � i � min{len(λ), len(μ)}.
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We will write λ �μ in this case.

Equipped with the dominance order, the set of all partitions of a given n ∈N is a partially ordered 
set. We will further use λ �� ν to denote the case in which λ does not dominate ν . Note that the 
order is only partial and hence this does not entail that ν dominates λ, since they also might be not 
comparable. Furthermore, note that 

(
λ⊥)

1 = len(λ), 
(
λ⊥)⊥ = λ, and

λ �μ ⇔ μ⊥ � λ⊥.

2.2. Orbit types and partitions

The action of Sn on Kn naturally decomposes the space into orbits.

Definition 5. For every x ∈Kn , the associated stabilizer subgroup Stab(x) ⊆ Sn is of the form

Stab(x) 	 S�1 × S�2 × · · · × S�k

with �1 � �2 � . . . � �k . We hence define the orbit type of x to be

�(x) := (�1, �2, · · · , �k).

Then, for a given λ � n we can define

Hλ := {
x ∈Kn : �(x) = λ

}
.

Remark 1. Note that we have

Kn = ·
⋃
λ�n

Hλ.

2.3. Polynomials, varieties, and symmetric ideals

Let K be a field, and consider the polynomial ring in n variables K[X1, · · · , Xn]. For any 
P ∈K[X1, · · · , Xn], we denote by Mon(P ) the set of monomials appearing in P , and by Ph its ho-
mogenous component of degree h.

Given a monomial

m =
n∏

j=1

X
k j

j ,

its support is

Supp(m) = { j, k j �= 0}
and its weight wt(m) is the cardinality of its support. By taking the union over all the monomials in 
Mon(P ), we generalize these notions to P to define Supp(P ) and wt(P ).

To every ideal in K[X1, . . . , Xn] one can associate a variety:

Definition 6. Let I be an ideal in K[X1, . . . , Xn]. The variety V (I) associated with I is the subset of 
Kn made by the common zeros of all the polynomials in I , namely

V (I) = {x ∈Kn, P (x) = 0 for every P ∈ I}.

The action of Sn on Kn induces an action on K[X1, . . . , Xn] by permuting the variables. We denote 
by σ P the image of a polynomial P under the action of a permutation σ .
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Definition 7. An ideal I ⊂ K[X1, . . . , Xn] is called a symmetric ideal if for every P in I and for every 
σ ∈ Sn , σ P belongs to I .

Note that if I is a symmetric ideal, then the variety V (I) is closed under the action of Sn on the 
coordinates.

2.4. Specht polynomials

The so-called Specht polynomials will play a central role in our proofs. Those polynomials were 
originally designed by Specht (1935) to construct the different irreducible representations of Sn .

Definition 8. Let n ∈N .

(1) For a set S = {i1, . . . , ir} ⊂ {1, . . . , n}, we define the Vandermonde determinant �(S) of the variables 
Xi , for i ∈ S:

�(S) :=
∏

1� j<k�r

(Xi j − Xik ).

(2) Let λ � n and T be a λ-tableau. Then the Specht polynomial associated with T is the polynomial

spT :=
∏

c

�(T ·,c),

where c runs through the columns of T , and T ·,c denotes the entries in the cth column. We will 
say that spT is a Specht polynomial of shape λ.

Example 1. The Specht polynomial associated with the Young tableau

4 2 6 1
8 7 5
3

is

(X4 − X8)(X4 − X3)(X8 − X3)(X2 − X7)(X6 − X5).

3. Zeros of Specht polynomials

Throughout the paper, we will be interested in the ideal generated by all the Specht polynomials 
of a given shape, as well as in the corresponding variety.

Definition 9. Let K be a field, n be an integer, and μ � n.

• The μ-Specht ideal, denoted by Isp
μ , is the ideal of K[X1, . . . , Xn] generated by all the Specht 

polynomials of shape μ.
• We denote by Vμ the set of common zeros of all Specht polynomials of shape μ, that is

Vμ := V (Isp
μ ) =

⋂
sh(T )=μ

V (spT ).

We aim at describing more precisely those varieties. Particular cases of these varieties have been 
studied for example in Yanagawa (2019); Watanabe and Yanagawa (2019); Fröberg and Shapiro (2016). 
Let us start with a few remarks. Let T be a Young tableau, of shape μ � n. A point x = (x1, . . . , xn)
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is a zero of spT if and only if there exists a column of T containing two indexes i �= j such that 
xi = x j . Following this easy observation, we get a characterization of Vμ that will be useful later: a 
point x ∈Kn does not belong to Vμ if and only if one can fill in a Young tableau of shape μ with the 
coordinates of x in such a way that in every column, all the values are distinct.

This remark already implies some properties about varieties associated with Specht ideals, that 
will be useful in the following:

Proposition 1. Let x be a point in Kn, and �(x) its orbit type. Then:

i) The point x is not in the variety V�(x),
ii) If μ is a partition of n such that x /∈ Vμ , then �(x) �μ.

Proof. Let λ = �(x) = (λ1, . . . , λr), and let u1, . . . , ur be the distinct coordinates of x, where for each 
1 � i � r, ui appears λi times.

Let us first prove i). Let T be any Young tableau of shape λ such that the indexes in the ith row 
are the indexes j such that x j = ui . Then spT (x) �= 0, and hence x is outside Vλ .

Now let us prove ii). Suppose x not in Vμ . This means that there exists a Young tableau U of shape 
μ such that spU (x) �= 0. Thus we can fill U with u1, . . . , ur in such a way that for every 1 � i � r, 
ui appears at most once per column, and we may assume without loss of generality that in every 
column, if u j is below ui , then i < j. As a consequence, for every 1 � k � r, the ui for i � k are 
contained in the first k rows of T . This means that

λ1 + . . . + λk �μ1 + . . . + μk,

which implies λ �μ. �
Now we want to prove that Vλ contains exactly the Vμ such that μ � λ. This is a consequence of 

the corresponding inclusion of ideals:

Theorem 1. Let λ and μ be two partitions of n. Then the following assertions are equivalent:

i) The partition μ dominates λ, i.e. λ �μ,
ii) The ideal Isp

μ contains Isp
λ , i.e. Isp

λ ⊂ Isp
μ ,

iii) The variety Vλ contains Vμ , i.e. Vμ ⊂ Vλ .

Remark 2. Note that the inclusion of ideals was not a priori equivalent to the inclusion of varieties, 
since it is not known whether Specht ideals are radical, see Yanagawa (2019).

Proof. We start by proving i) implies ii). Let λ = (λ1, . . . , λt), and μ such that λ � μ. We only need 
to consider the particular case where μ is of the form

μ = (λ1, . . . , λi−1, λi + 1, λi+1, . . . , λ j−1, λ j − 1, λ j+1, . . . , λt),

where λi−1 > λi and λ j > λ j+1, in order to ensure that μ is a partition. Indeed, it is known that we 
can go from λ to any μ � λ by a finite number of such steps, see e.g. (Brylawski, 1973, Prop. 2.3).

Let T be a Young tableau of shape λ. We need to show that spT belongs to the ideal generated 
by all the polynomials spU where U runs through all the Young tableaux of shape μ. If U is a Young 
tableau of shape μ, then its columns have the same number of elements than T , except for two of 
them. Let U1 and U2 be these columns, and let T1 and T2 be the corresponding columns in T . If 
a = |T1| and b = |T2|, then |U1| = a − 1, |U2| = b + 1 and a − b � 2. By restricting our attention to 
these two columns, it is enough to prove, up to permutation, that the polynomial

P = �({1, . . . ,a})�({a + 1, . . . ,a + b})
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is in the ideal I of K[X1, . . . , Xa+b] generated by all the polynomials of the form

�(S1)�(S2), with |S1| = a − 1, |S2| = b + 1, and S1 ∪ S2 = {1, . . . ,a + b}.
Consider the polynomial

Q = �({2, . . . ,a})�({1,a + 1, . . . ,a + b})Xa−b−1
1 ,

and the polynomial

R =
a∑

i=1

ε((1, i))(1, i)Q ,

where ε denotes the signature. By construction, R is in the ideal I . We need to prove that for any 
pair 1 � α < β � a and a + 1 � α < β � a + b, the polynomial (Xα − Xβ) divides R , equivalently R
vanishes whenever Xβ = Xα . In other words, we want to show

Rα,β = R(X1 . . . , Xβ−1, Xα, Xβ+1, . . . , Xn) = 0

for every pair 1 � α < β � a and a + 1 � α < β � a + b.
The latter case is obvious by definition of Q and R . Suppose 1 � α < β � a. Then for every i �= α, β

we have ((1, i)Q )α,β = 0, so that

Rα,β = ε((1,α))((1,α)Q )α,β + ε((1, β))((1, β)Q )α,β .

Now, we have to distinguish two cases, namely α = 1 and α �= 1. In the first case, we have

R1,β = Q 1,β − ((1, β)Q )1,β = 0

while in the second case, the signatures are both negative, but the polynomials differ from each 
other by interchanging the variables X1 and Xα in places α and β , and by definition of Q , these 
polynomials are opposite of each other, that is,

Rα,β = 0.

This implies that P = �({1, . . . , a})�({a + 1, . . . , a + b}) divides R . Since the degree of R satisfies

deg(R) � deg(Q ) = (a − 1)(a − 2)

2
+ (b + 1)b

2
+ a − b − 1

= a(a − 1)

2
+ b(b − 1)

2
= deg(P ),

it implies that

R = c P

with c ∈ K, and we need to check that c is not zero. The degree of Q in the variable X1 is 
b + a − b − 1 = a − 1 while its degree in the variable Xi for 2 � i � a is a −2. Thus, the degree of R in 
the variable X1 is exactly a − 1 and the corresponding coefficient is �({2, . . . , a})�({a + 1, . . . , a + b}), 
which is also the coefficient of Xa−b

1 in P . Hence R = P .
Since ii) obviously implies iii), we only have to prove that iii) implies i). Assume then that 

Vμ ⊂ Vλ . Consider x with orbit type �(x) = λ. Then, according to i) of Proposition 1, x /∈ Vλ . Then by 
assumption, x /∈ Vμ , and ii) of Proposition 1 yields λ �μ. �

Finally, as a consequence of the previous results, we get a characterization of Vμ in terms of orbit 
types:
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Corollary 1. The set of common zeros of Specht polynomials associated with Young tableaux of given shape μ
can be characterised as

Vμ =
⎛
⎝ ⋃

λ�μ

Hλ

⎞
⎠

c

=
⋃
ν�μ

Hν

Proof. We want to show V c
μ = ⋃

λ�μ Hλ . The direct inclusion is nothing but ii) in Proposition 1. 
Conversely, let x ∈ Hλ , with λ � μ. According to i) in Proposition 1, x is outside Vλ . Since λ � μ, it 
follows from Theorem 1 that Vμ ⊂ Vλ , so that x ∈ V c

μ . �
4. Specht polynomials in symmetric ideals

In this section we show that if a symmetric ideal contains polynomials with sparse leading com-
ponent, then this ideal will contain many Specht polynomials. Let us be more precise: First, to every 
monomial we associate a partition:

Definition 10. Let m be a monomial of weight l and degree d in K[X1, . . . , Xn]. The partial degrees of 
m induce a partition of d of length l, say (λ1, . . . , λl).

If moreover we assume that l + d � n, we can define a partition μ(m) of n by

μ(m) = (λ1 + 1, λ2 + 1, . . . , λl + 1,1, . . . ,1︸ ︷︷ ︸
n−d−l

).

Example 2. Let n = 12, and

m = X2 X4
4 X2

5 .

Then

μ(m) = (5,3,2,1,1).

Then we will show:

Theorem 2. Let I ⊂ K[X1, . . . , Xn] be a symmetric ideal. Assume that there exists P ∈ I of degree d, such 
that d + wt(Pd) � n. Then, for every monomial m ∈ Mon(Pd), the ideal I contains every spT for which 
sh(T ) �μ(m)⊥ . In other words:

Isp
λ ⊂ I

for every λ �μ(m)⊥ .

According to Theorem 1, it is enough to prove that I contains the Specht polynomials of shape 
μ(m)⊥ . Hence we only need to prove:

Proposition 2. Let I ⊂ K[X1, . . . , Xn] be a symmetric ideal. Assume that there exists P ∈ I of degree d, 
such that d + wt(Pd) � n. Then, for every monomial m ∈ Mon(Pd), the ideal I contains every spT for which 
sh(T ) = μ(m)⊥ . In other words Isp

μ(m)⊥ ⊂ I .

In the following proof, we will assume that the characteristic of K is zero. This allows for more 
conceptual proof. This assumption on the characteristic ensures that the factorials in the end of the 
proof do not vanish. We provide a general proof in the Appendix.
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Proof. Let K be a field of characteristic 0. Since the ideal I is symmetric, we may assume that

m = Xk1
1 Xk2

2 · · · Xkl
l ,

and that Supp(Pd) = {1, . . . , wt(Pd)}. Its associated partition is

μ := μ(m) = (k1 + 1,k2 + 1, . . . ,kl + 1,1, . . . ,1︸ ︷︷ ︸
n−d−l

).

The statement says that the ideal I contains any Specht polynomial of the form

�1�2 · · ·�l,

where the �i are Vandermonde polynomials in disjoint sets of variables, each of size ki + 1 = μi . 
Thanks to its symmetry, it is enough to show that I contains one such polynomial.

Our strategy consists in using Xki
i to build a Vandermonde polynomial involving Xi and ki variables 

that do not appear in Pd . Our assumption on Pd guarantees that there are enough free variables to 
do so.

More precisely, we can take I1, . . . , Il , disjoint subsets of {1, . . . , n} such that for any 1 � i � l, 
there are ki elements in Ii , and none of them appears in Pd . Let, for 1 � i � l,

J i = {i} ∪ Ii .

We will show that there exist polynomials Rσ ∈K[X1, . . . , Xn], for σ ∈ Sn such that:

�( J1) · · ·�( Jl) =
∑
σ∈Sn

Rσ σ P .

Here, applying the strategy used to prove Theorem 1 we give explicit polynomials Rσ when the 
characteristic of K is 0. In the general case, we can give a recursive construction of these polynomials; 
we postpone this construction to Appendix A. Consider the polynomials

Q = �(I1) · · ·�(Il)P

and

R =
∑

σ∈S J1 ×···×S Jl

ε(σ )σ Q ,

where S J1 × · · · × S Jl is seen as a subgroup of Sn . By construction, for every ρ ∈ S J1 × · · · × S Jl ,

ρR = ε(ρ)R

so that �( J1) · · ·�( Jl) divides R . Furthermore, since

deg(Q ) = d +
l∑

i=1

ki(ki − 1)

2

=
l∑

i=1

ki(ki − 1)

2
+ ki

=
l∑

i=1

ki(ki + 1)

2

= deg(�( J1) · · ·�( Jl)),

we get
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R = c�( J1) · · ·�( Jl)

with c ∈ K. In order to check that c is not 0, we look at the coefficient of R corresponding with 
m = Xk1

1 · · · Xkl
l , seen as an element of (K[Xl+1, . . . , Xn])[X1, . . . , Xl].

In Q , this coefficient is �(I1) · · ·�(Il). If, for 1 � i � l, the permutation σ ∈ S J1 × · · · × S Jl does 
not let i invariant, the assumption on Pd ensures that the coefficient of m in σ Q will be 0. Therefore, 
the coefficient of R corresponding with m is∑

σ∈S I1 ×···×S Il

ε(σ )σ�(I1) · · ·�(Il) = k1! · · ·kl!�(I1) · · ·�(Il)

and hence R = k1! · · ·kl!�( J1) · · ·�( Jl). �
5. Applications

5.1. Computing points in symmetric varieties

Let n be an integer and I be a symmetric ideal in K[X1, . . . , Xn]. What can we say about the 
variety V (I)? For instance, can we algorithmically decide if V (I) is empty in an efficient manner 
making use of the structure of I?

Over any real closed field R the so-called half-degree principle Timofte (2003) can be used to 
simplify the algorithmical task of root finding. This statement says (Riener, 2012, Corollary 1.3):

Theorem 3. Let K be a real closed field, and let P be a symmetric polynomial in K[X1, . . . , Xn] of degree d, 
and let k = max(2, � d

2 �). Then there exists x ∈Kn such that P (x) = 0 if and only if there exists y ∈Kn with 
at most k distinct coordinates such that P (y) = 0.

This implies the following result on symmetric ideals:

Corollary 2. Let K be a real closed field, and let I be a symmetric ideal of K[X1, . . . , Xn], generated by 
P1, . . . , Pl. Let d = max(deg(P1), . . . , deg(Pl)). Then V (I) is non empty if and only if it contains a point 
x ∈Kn with at most d distinct coordinates.

Proof. Over a real closed field the variety V (I) is exactly the variety defined by

Q =
l∑

i=1

∑
σ∈Sn

σ(Pi)
2

and we can apply Theorem 3. �
The algorithmic implications of this result are the following. Take μ � n of length d. For every 

polynomial P ∈K[X1, . . . , Xn] we consider

Pμ := P (Z1, . . . , Z1︸ ︷︷ ︸
μ1

, Z2, . . . , Z2︸ ︷︷ ︸
μ2

, . . . , Zd, . . . , Zd︸ ︷︷ ︸
μd

)

and denote by Iμ ⊂K[Z1, . . . , Zd] the resulting ideal in d variables. Moreover consider the topological 
closure Hμ of Hμ and the map

�μ : V (Iμ) −→ (V (I) ∩ Hμ)/Sn

which associates to a point x = (x1, . . . , xd) ∈ V (Iμ) the Sn-orbit of the point

x = (x1, . . . , x1︸ ︷︷ ︸
μ

, x2, . . . , x2︸ ︷︷ ︸
μ

, . . . , xd, . . . , xd︸ ︷︷ ︸
μ

).
1 2 d
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This map is clearly surjective, and from the natural decomposition

V (I) =
⋃
μ�n

(V (I) ∩ Hμ) =
⋃
ν�n

(V (I) ∩ Hν)

we thus get

V (I)/Sn =
⋃
ν�n

�ν(V (Iν)).

Then Corollary 2 says precisely that V (I) is empty if and only if V (Iμ) is empty for every partition 
μ of n with len(μ) � d. Since the number of d-partitions of n is bounded by (n + 1)d the original 
problem in n variables reduces to a polynomial number of problems in d variables.

Our results yield a stronger version of this principle, under additional assumption on the support 
of the polynomials: On the one hand our results are valid for any field, and on the other hand, not 
only our varieties contain points with few distinct coordinates, but they contain only points with few 
distinct coordinates. More precisely, Theorem 2 gives, in this context:

Theorem 4. Let I ⊂ K[X1, . . . Xn] be a symmetric ideal. Assume that there exists P ∈ I of degree d such that 
wt(Pd) + d � n and let m ∈ Mon(Pd). Then

V (I) ∩ Hλ = ∅ for all λ �μ(m)⊥.

In other words,

V (I)/Sn =
⋃

ν�μ(m)⊥
�ν(V (Iν)).

Proof. According to Proposition 2, the variety V (I) is contained in the variety Vμ⊥ associated with 
the Specht ideal Isp

μ⊥ . Corollary 1 then yields

V (I) ⊂
⋃

λ�μ(m)⊥
Hλ.

Since Kn is the disjoint union of the subsets Hλ , it follows that for all λ with λ � μ(m)⊥ , 
V (I) ∩ Hλ = ∅. Furthermore, we can write

V (I) =
⋃

λ�μ(m)⊥
(V (I) ∩ Hλ).

Thus, to prove the second part of the statement, it is enough to prove that⋃
λ�μ(m)⊥

(V (I) ∩ Hλ) =
⋃

ν�μ(m)⊥
(V (I) ∩ Hν).

One inclusion is trivial, we focus on the other one. Assume that x ∈ Hν . Then naturally, ν � �(x). So 
if ν �μ(m)⊥ , we also have �(x) �μ(m)⊥ . �

Hence, if one is able to compute the points in the variety V (Iν), one gets all the points of V (I). 
Also note that the length of the partitions ν is at most d, this comes from the following observation:

Proposition 3. Let n be an integer, and m be a monomial of degree d, with d + wt(m) � n. Then for every 
partition λ of n such that len(λ) > d,

μ(m)⊥ � λ.
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Proof. The proof consists in two steps. First we prove that

μ(m)⊥ � (n − d,1, . . . ,1︸ ︷︷ ︸
d

).

Indeed, if m = Xk1
1 · · · Xkl

l ,

μ(m) = (k1 + 1,k2 + 1, . . . ,kl + 1,1, . . . ,1︸ ︷︷ ︸
n−d−l

)

has length n − d, so that

μ(m)⊥ = (n − d, . . .) � (n − d,1, . . . ,1︸ ︷︷ ︸
d

).

Second, if len(λ) > d, then

(n − d,1, . . . ,1︸ ︷︷ ︸
d

) � λ.

Indeed, if not, there exists j such that

j∑
i=1

λi > (n − d) + ( j − 1).

In this case, since len(λ) � d + 1,

n =
len(λ)∑

i=1

λi �
j∑

i=1

λi + len(λ) − j

> n − d + j − 1 + len(λ) − j

> n. �
Remark 3. The proposition above shows that we can always ensure that every point of the variety 
V (I) has at most d distinct coordinates. If the monomial m is Xd

1 then μ(m)⊥ = (n − d, 1, . . . , 1) and 
this is the only case where we need to consider all d-partitions of n.

Already for the monomial m = Xd−1
1 X2, we have μ(m) = (d, 2, 1, . . . , 1), and μ(m)⊥ =

(n − d, 2, 1, . . . , 1). Then for every 2 � k � (n − d − 2)/2, the partition (n − d − (k − 2), k, 1, . . . , 1)

has length d and is dominated by μ(m)⊥: they are among the partitions that we do not need to 
consider.

The most favourable case will be m = X1 X2 · · · Xd , where μ(m)⊥ = (n − d, d). In this case, the only 
partitions λ = (λ1, . . . , λt) that are not dominated by μ(m)⊥ are the ones with λ1 > n − d.

Therefore, a fine analysis on the actual monomials of highest degree in the generators of I allows 
to reduce the number of partitions that need to be considered, which can be seen as a stronger 
version of the degree principle.

One further natural consequence is that our variety is contained in a finite union of d-dimensional 
subspaces, hence:

Corollary 3. Let I ⊂K[X1, . . . , Xn] be a symmetric ideal. Assume that there exists P ∈ I of degree d, such that 
d + wt(Pd) � n. Then the dimension of the variety V (I) is at most d.

In a more general setup, Nagel and Römer Nagel and Römer (2017) study sequences of symmetric 
ideals. They show in particular that the dimension of the ideals they study is a linear function in n. 
In our more restricted framework, we thus obtain a stabilization of the dimension of such sequences.
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5.2. Isotypic components of symmetric ideals

The action of the symmetric group Sn on K[X1, . . . , Xn] is linear, giving the polynomial ring the 
structure of a K[Sn]-module. If we assume that the characteristic of K is 0, then every K[Sn]-module 
can be decomposed as a direct sum of irreducible submodules. It is well known (see e.g. Sagan (2013)) 
that the irreducible K[Sn]-modules are in correspondence with the partitions of n. These modules are 
called Specht modules, denoted by Sλ . It follows that every K[Sn]-module U can be uniquely written 
as

U 	
⊕
λ�n

Uλ,

where for every partition λ of n, Uλ is a direct sum of irreducible submodules isomorphic to Sλ . The 
submodule Uλ is called the λ-isotypic component of U .

Now let I ⊂K[X1, . . . , Xn] be a symmetric ideal. It is also a K[Sn]-module, and we have, for every 
partition λ of n,

Iλ = K[X1, . . . , Xn]λ ∩ I.

Let λ be a partition of n, then the linear subspace Wλ of K[X1, . . . , Xn] generated by all the 
Specht polynomials of shape λ is an irreducible submodule of K[X1, . . . , Xn]λ isomorphic to Sλ . For 
any other irreducible submodule W̃λ in K[X1, . . . , Xn]λ , we have an isomorphism ϕ between Wλ and 
W̃λ . Let T be a Young tableau of shape λ. Since ϕ respects the action of Sn , for any τ transposition 
of two elements in a same column of T ,

τϕ(spT ) = −ϕ(spT ),

so that ϕ(spT ) has to be divisible by spT . It follows that K[X1, . . . , Xn]λ is included in the Specht 
ideal Isp

λ , and therefore Theorem 2 gives:

Theorem 5. Let K be a field of characteristic 0 and I ⊂ K[X1, . . . , Xn] be a symmetric ideal. Assume that 
there exists P ∈ I of degree d, such that d + wt(Pd) � n. Then for every m ∈ Mon(Pd), for every λ � μ(m)⊥ , 
the ideal I contains the isotypic component K[X1, . . . , Xn]λ . In other words

Iλ = K[X1, . . . , Xn]λ,
or equivalently

(K[X1, . . . , Xn]/I)λ = {0}.

Given polynomials P1, . . . , Pl ∈ K[X1, . . . , Xn0 ], they naturally induce a symmetric ideal in 
K[X1, . . . , Xn] for any n � n0. We get an increasing sequence of symmetric ideals (I)n�n0 , and one can 
study stabilization properties in terms of representations (see for instance Sam and Snowden (2015); 
Church et al. (2015)).

We remark that when n is large enough, the condition on the support of the leading component 
of P is automatically fulfilled and we can immediately deduce:

Theorem 6. Let K be of characteristic 0 and n0 be an integer. Given Q 1, . . . , Q l in K[X1, . . . , Xn0 ], consider 
for any n � n0 the ideal

In = 〈σ(Q i),σ ∈ Sn,1 � i � l〉.
Then if n is large enough, for every 1 � i � l, every monomial m of Q i of maximal degree, and any λ partition 
of n such that λ �μ(m)⊥ ,

(K[X1, . . . , Xn]/In)λ = {0}.
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5.3. Symmetric sums of squares on symmetric varieties

As a final application we consider sums of squares of real polynomials. Let P ∈ K[X1, . . . , Xn]. 
Then P is called a sum of squares, if there exist polynomials P1, . . . , Pk with

P = P 2
1 + . . . + P 2

k .

Sums of squares are the cornerstone in the so called moment approach to polynomial optimization 
Lasserre (2001): in general, it can be decided by semidefinite programming if a given polynomial 
affords a decomposition as a sum of squares. The case of symmetric sums of squares has received 
some interest by different authors Blekherman and Riener (2021); Goel et al. (2016); Raymond et al. 
(2018); Riener et al. (2013); Kurpisz et al. (2016).

In Blekherman and Riener (2021), Blekherman and the second author described how to character-
ize symmetric sums of squares through representation theory. More precisely, they use the theory of 
higher Specht polynomials Terasoma and Higher (1993) to construct, for every λ � n, a square matrix 
polynomial Q λ of size sλ = dim(Sλ), whose entries are symmetric polynomials. Furthermore, these 
entries are products and sums of elements in R[X1, . . . , Xn]λ . So even though they are symmetric, 
they belong to the ideal generated by the Specht polynomials of shape λ. These matrices can be used 
to show that every symmetric polynomial P that is a sum of squares can be written in the form

P =
∑
λ�n

Tr(Pλ · Q λ),

where each Pλ ∈R[X1, . . . , Xn]sλ×sλ is a sum of symmetric squares matrix polynomial, i.e.

Pλ = Lt L

for some matrix L whose entries are symmetric polynomials.
Since the λ-Specht ideal contains all the coefficients of Q λ we can apply Theorem 5 to obtain the 

following result on representations of a symmetric polynomial modulo a symmetric ideal.

Theorem 7. Let P ∈ R[X1, . . . , Xn]Sn be a symmetric sum of squares polynomial and I be a symmetric ideal 
in R[X1, . . . , Xn]. Further, we assume that there exists F ∈ I of degree d, such that d + wt(Fd) � n. Then P
can be written as

P =
∑

ν�μ(m)⊥
Tr(Pλ · Q λ) mod I,

where again each Pλ = Lt L for some matrix polynomial L whose entries are symmetric polynomials.

A case of special interest is the case when I is the gradient ideal Igrad(P ) of a given polynomial P
of even degree 2d. Nie et al. (2006) showed that a polynomial that is positive on its gradient variety 
V (Igrad) can always be written as a sum of squares modulo its gradient ideal. When P is a symmetric 
polynomial our results can be applied to reduce the problem size.

It is worth remarking that perturbations can be used to transfer a polynomial into the situation of 
finitely many critical points in a symmetric way: For example, Hanzon and Jibetean (2003), as well as 
Jibetean and Laurent (2005) considered the following perturbation of a polynomial:

Pε := ε · (X2d+2
1 + . . . + X2d+2

n ) + P .

Since the perturbation term is positive definite and of higher degree, the perturbed polynomial Pε has 
a global minimum and the minimal value converges to the infimum of P with ε → 0. Moreover, if P
in fact has global minimizers, each connected component of the set of global minimizers of P contains 
a point which is limit of a branch of local minimizers of Pε (see Jibetean and Laurent (2005)). Fur-
thermore, observe that the quotient Igrad(Pε) is generated by the polynomials 2(d + 1)εX2d+1

i + ∂ P
∂ X , 
i
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for 1 � i � n and thus the quotient R[X1, . . . , Xn]/Igrad(Pε) is a finite dimensional vector space. This 
structure of the symmetric gradient ideal gives us further restrictions on both the number and the 
sizes of the matrices in Theorem 7. Indeed, it follows that only irreducible representations correspond-
ing to partitions with at most 2d + 1 rows can appear. For a fixed d, the number of these partitions is 
polynomial in n and it follows from (Basu and Riener, 2020, Theorem 2.5) that the sizes of the above 
matrices are polynomial as well. In order to use Theorem 7 practically to decide if a polynomial is a 
sum of squares of polynomials, one uses semi-definite programming. The complexity of such a pro-
gram is mainly determined by the size of the matrices used to define it. Therefore, our discussion 
above can in fact be used to design efficient semi-definite programs, of a size which depends only 
polynomially on n, to check if Pε � 0 for a given ε > 0.

6. Concluding comments and open questions

This paper provides properties of the ideals generated by all the Specht polynomials associated 
with Young tableaux of a given shape. In particular, one of our main results shows how the inclusion
of these ideals relates to the comparison of the associated partitions in the dominance order. The 
algebraic geometric aspects of these ideals are of special interest. It will be further research to see 
how the results presented here could be useful, for example to compute Gröbner bases of Specht 
ideals, or to decide the radicalness of Specht ideals, conjectured in Yanagawa (2019).

A second main result, Theorem 2, emphasizes the connection between ideals invariant under the 
action of the symmetric group and Specht ideals. This leads to several algorithmic applications, such 
as computing points in the corresponding varieties, or certifying the non-negativity of symmetric 
polynomials. An analogue study would be of interest in a more general setup, in particular for other 
groups affording combinatorial descriptions similar to Specht polynomials.
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Appendix A. Proof of Proposition 2 in general characteristic

Recall that we want to show that there exist polynomials Rσ ∈ K[X1, . . . , Xn], for σ ∈ Sn such 
that:

�( J1) · · ·�( Jl) =
∑
σ∈Sn

Rσ σ P .

In order to avoid an overload of notation we rename the variables in the following way:

Zi,s for 1 � i � len(μ) and 1 � s �μi,

where we identify Zi,1 with Xi for 1 � i � len(μ). In this way whenever s > 1 then Zi,s does not 
appear in Pd . In this setting, the monomial m is written as

m = Zk1
1,1 Zk2

2,1 · · · Zkl .
l,1
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We will show the existence of polynomials Rσ , only involving the variables Zi,s for 1 � i � l, such that

�( J1) · · ·�( Jl) =
l∏

i=1

∏
1�s<t�μi

(Zi,s − Zi,t) =
∑

σ∈Sμ

Rσ σ P ,

where

Sμ = Sμ1 × Sμ2 × · · · × Sμl × S1 × · · · × S1︸ ︷︷ ︸
n−d−l

and each factor acts on the corresponding subset of variables, namely:

σ Zi,s = Zi,σi(s).

Let us show this by induction on the degree d of P . If d = 0, there is nothing to prove.
Now assume d > 1. Up to a rescaling, we may assume that

P = m + S,

where S is a polynomial of degree at most d such that m /∈ Mon(S) and Sd does not contain any 
variable Zi,s with s > 1.

Let τ be the transposition exchanging Zl,1 and Zl,μl . Then

P − τ P = (Zl,1 − Zl,μl )Q

where Q is a polynomial of degree d − 1. Because Zl,μl does not appear in Sd , we can write

Q = m′ + S ′

with m′ =
(∏l−1

i=1 Zki
i,1

)
Zkl−1

l,1 and S ′ is a polynomial of degree at most d − 1. Since the only new 
variable appearing in Q d is Zl,μl , we have

d − 1 + wt(Q d) � d + wt(Pd) � n,

in such a way that we can apply the induction hypothesis on Q . This provides polynomials R ′
ρ , only 

involving the variables Zi,s for 1 � i � l, except Zl,μl , such that⎛
⎝l−1∏

i=1

∏
1�s<t�μi

(Zi,s − Zi,t)

⎞
⎠ ∏

1�s<t�μl−1

(Zl,s − Zl,t) =
∑
ρ∈S ′

R ′
ρρQ ,

where

S ′ = Sμ1 × Sμ2 × · · · × (
Sμl−1 × S1

) × S1 × · · · × S1︸ ︷︷ ︸
n−d−l

can be seen as a subgroup of Sμ .

Since any ρ ∈ S ′ leaves the product 
∏μl−1

s=1 (Zl,s − Zl,μl ) unchanged, we have

l∏
i=1

∏
1�s<t�μi

(Zi,s − Zi,t) =
μl−1∏
s=1

(Zl,s − Zl,μl )
∑
ρ∈S ′

R ′
ρρQ

=
∑
ρ∈S ′

R ′
ρρ

⎛
⎝

⎛
⎝μl−1∏

s=1

(Zl,s − Zl,μl )

⎞
⎠ Q

⎞
⎠

=
∑
ρ∈S ′

R ′
ρ

μl−1∏
s=2

(Zl,ρl(s) − Zl,μl )ρ (P − τ P ) .

Because ρτ ∈ Sμ , we can rewrite this expression as 
∑

σ∈S Rσ σ P with the desired properties.

μ
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