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Abstract. Near-surface remote sensing techniques are essential monitoring tools to provide spatial and tempo-
ral resolutions beyond the capabilities of orbital methods. This high level of detail is especially helpful to monitor
specific plant communities and to accurately time the phenological stages of vegetation – which satellites can
miss by days or weeks in frequently clouded areas such as the Arctic. In this paper, we describe a measure-
ment network that is distributed across varying plant communities in the high Arctic valley of Adventdalen on
the Svalbard archipelago with the aim of monitoring vegetation phenology. The network consists of 10 racks
equipped with sensors that measure NDVI (normalized difference vegetation index), soil temperature, and mois-
ture as well as time-lapse RGB cameras (i.e. phenocams). Three additional time-lapse cameras are placed on
nearby mountains to provide an overview of the valley. We derived the vegetation index GCC (green chromatic
channel) from these RGB photos, which has similar applications as NDVI but at a fraction of the cost of NDVI
imaging sensors. To create a robust time series for GCC, each set of photos was adjusted for unwanted move-
ment of the camera with a stabilizing algorithm that enhances the spatial precision of these measurements. This
code is available at https://doi.org/10.5281/zenodo.4554937 (Parmentier, 2021) and can be applied to time series
obtained with other time-lapse cameras. This paper presents an overview of the data collection and processing
and an overview of the dataset that is available at https://doi.org/10.21343/kbpq-xb91 (Nilsen et al., 2021). In
addition, we provide some examples of how these data can be used to monitor different vegetation communities
in the landscape.

1 Introduction

Remote sensing techniques from orbital and suborbital plat-
forms have vastly improved our understanding of the world’s
biomes, especially in hard-to-reach regions such as the Arc-
tic. Satellite data indicate that the Arctic has been greening
since the 1990s, which has been attributed to an expansion
of shrubs in response to temperature increases (Martin et al.,
2017). In recent years, reports indicate that this greening has

been slowing or reducing in some regions, which is possibly
connected to plant damage caused by extreme winter events
(Phoenix and Bjerke, 2016). Some of the observed changes
in greenness may be connected to earlier snowmelt that ex-
tends the snow-free season. However, changes in snowmelt
timing may also lead to earlier vascular plant senescence (Se-
menchuk et al., 2016) and changes in vegetation composition
(Cooper et al., 2019). Such ground observations need to be
taken into consideration when interpreting data from satel-
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lites since it remains challenging to detect changes in plant
productivity and shifts in the timing of phenological stages
from space (Myers-Smith et al., 2020). Near-ground obser-
vations remain essential to fill spatial and temporal gaps and
to correctly connect remotely sensed vegetation indices to ac-
tual changes in ecosystem functioning and composition (see
e.g. Anderson et al., 2016; Westergaard-Nielsen et al., 2017).

Orbital and near-surface observation platforms have vary-
ing strengths and weaknesses. Satellites provide much
needed information across the whole of the Arctic, and for
long time periods, but they have imperfect temporal cov-
erage. Commonly used vegetation indices such as NDVI
(normalized difference vegetation index) are calculated with
spectral bands in the visible and near-infrared regions of the
electromagnetic spectrum, which is why clear-sky conditions
are necessary to collect useful data. The Arctic is one of the
cloudiest parts of the planet, and this means that – per loca-
tion – only a few data points may be retrieved during summer,
and the peak growing season can be missed by days or even
weeks. This is particularly an issue for high Arctic Svalbard
(Karlsen et al., 2018), and it prohibits a precise timing of
phenological stages, such as green-up and senescence, while
complicating the analysis of interannual changes and long-
term trends.

Besides large gaps in temporal data, another common is-
sue with remote sensing products is the coarse spatial reso-
lution. The longest available NDVI time series, the GIMMS
3g dataset with data going as far back as 1981 (Pinzon and
Tucker, 2014), has a resolution of 8× 8 km, composed of
an upscaling from the original 1× 1 km data collected with
the AVHRR (Advanced Very-High-Resolution Radiometer)
sensor. The MODIS (Moderate-resolution Imaging Spectro-
radiometer), Landsat, and Sentinel-2 products have higher
resolutions, ranging from thousands to hundreds of square
metres, but this level of detail is still not high enough for
most arctic landscapes. Arctic ecosystems are highly hetero-
geneous, particularly in the presence of permafrost, and veg-
etation composition can vary strongly at the decimetre scale
(Davidson et al., 2016). Worldview-2, one of the latest ad-
ditions to the DigitalGlobe constellation of satellites, does
reach a horizontal resolution of ∼ 30 cm, but revisit times
are extremely low, and only one high-quality image or less
may be obtained per summer (Bartsch et al., 2016). High-
resolution imagery at a frequency on par with coarser satel-
lite products has only recently become available, through
Planet’s Skysat constellation of satellites, but persistent cloud
cover remains an obstacle to regular surface monitoring.
Satellites are excellent platforms to monitor vegetation con-
sistently over decennia and integrated over large areas, but
for the monitoring of specific plant communities at both high
spatial and high temporal resolutions, near-surface observa-
tions remain superior.

For example, unmanned aerial vehicles (UAVs) equipped
with imaging sensors can be used to map vegetation at a field
site in high detail – with a spatial resolution of centimetres.

Still, they can only be flown under favourable weather con-
ditions and require manual operation, which restricts their
use to – often short – field campaigns. It can therefore be
advantageous to fix imaging sensors to a mast or another
stationary structure. In that case, equipment can operate au-
tonomously and continuously, does not suffer from data loss
due to cloudiness, and can be pointed to specific areas with
known species composition. While the footprint of such a
set-up is relatively small, it delivers information at both high
spatial and high temporal detail. Time series measured with
near-surface sensors can deliver valuable data that comple-
ment and help interpret the large-scale perspective of satellite
platforms.

To increase the value of monitoring at the small scale, it
is important to cover as many vegetation types as possible
within a study area to be able to upscale to a larger, regional
context. Unfortunately, high-resolution imaging sensors ca-
pable of measuring NDVI can be costly, and the acquisition
of dozens of sensors may not be possible within a typical re-
search budget. However, recent studies have shown that it is
possible to calculate vegetation indices with similar applica-
tions as NDVI, such as GCC (green chromatic coordinate or
green chromatic channel), from photos taken with ordinary
RGB cameras, commonly known as a phenocam (Anderson
et al., 2016; Gillespie et al., 1987; Sonnentag et al., 2012;
Westergaard-Nielsen et al., 2017). This makes it possible to
deploy a large number of cameras for the fraction of the bud-
get needed to acquire specialized NDVI imaging sensors. A
major added benefit of photographs, compared to bulk NDVI
measurements, is the capability to track specific plant com-
munities by specifying a region of interest (ROI). Moreover,
this method can be used to infer changes in carbon exchange
rates (Graham et al., 2006; Wingate et al., 2015) and to dif-
ferentiate between plant species (Nagai et al., 2011).

In this paper, we describe a multi-year dataset (2015–
2018) of RGB photographs from the high Arctic valley of
Adventdalen on Svalbard. Throughout this valley, racks were
installed with off-the-shelf RGB time-lapse cameras. For
comparison, these racks were complemented with measure-
ments of NDVI, soil temperature and moisture, and ther-
mal infrared (TIR). In addition to these near-surface set-ups,
landscape cameras were installed on top of nearby mountains
to provide an overview of the valley and to calculate green-
ness indices at a landscape scale. This paper specifies how
the data were collected and processed and briefly discusses
how these cameras can be used as both a supplement and
replacement for satellite data. This dataset will be updated
in the future with data from following years (2020 onwards)
according to the protocol laid out in this paper.
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2 Methods

2.1 Site description

The camera racks were installed across the valley of Advent-
dalen on the Svalbard archipelago (78.17◦ N, 16.07◦ E), as
listed in Table 1. The Adventdalen valley is nearly 30 km
long and roughly 3 to 4 km wide, the central part of which is
dominated by the braided river Adventelva, where vegetation
is virtually absent. Up the sides of the valley, slopes become
steeper, and vegetation is sparse and scattered due to ero-
sional slope processes. Most vegetation is found in between
the river and the steep sides of the valley, on raised terraces
that consist of fluvial and aeolian silt (Gilbert et al., 2018),
and along shallow stream beds of tributaries to the Adven-
telva that originate from surrounding valleys. The monitor-
ing experiment focuses on these well-vegetated parts of the
valley, which are large and flat enough to be adequately cap-
tured by satellites with a resolution of hundreds of metres or
less (i.e. MODIS and higher-resolution products). The set-up
used during the summer of 2018 is depicted in Fig. 1.

The vegetation composition in the valley is dominated by
three dwarf shrub species (Salix polaris, Cassiope tetragona,
and Dryas octopetala), herbs, sedges, rushes, and grasses
(such as Eriophorum scheuchzeri, Luzula confusa, Alopecu-
rus ovatus, Dupontia fisheri, and Poa spp.). Bryophytes and
lichens are common throughout the area. The species dis-
tribution differs with surface wetness, which is mostly gov-
erned by the microtopography. Raised areas, e.g. on the rims
of ice wedges, are generally well drained and favourable to
dwarf shrubs, while depressions are typically wet and dom-
inated by sedges and mosses. A detailed vegetation descrip-
tion for each measurement location is provided in Table 2.

The vegetation types at our measurement locations are rel-
atively common to Svalbard but also the rest of the Arctic.
In Table 2 we show that our plots cover 6 (out of 11) vegeta-
tion classes defined for Svalbard (Johansen et al., 2012) and
correspond to three classes of the Circumpolar Arctic Vegeta-
tion Map (Walker et al., 2005; Raynolds et al., 2019). These
are sedge/grass, moss wetland vegetation (W1), graminoid,
prostrate dwarf shrub, forb tundra vegetation (G2), and pros-
trate/hemiprostrate dwarf shrub tundra (P2). Furthermore,
our plots show strong similarities to two more vegetation
classes: rush/grass, forb, cryptogam tundra (G1) and pros-
trate dwarf shrub, herb tundra (P1). Combined, these vege-
tation classes cover nearly a quarter of the unglaciated parts
of the Arctic, mostly in Greenland and the Canadian Arctic
Archipelago but also the northernmost parts of Alaska and
Russia. This underscores the relevance of these data to stud-
ies of arctic change. In addition, the techniques presented
here are applicable to any short stature vegetation type – in-
cluding grasslands, heaths, croplands, and wetlands across
the world.

2.2 Instrumentation

2.2.1 Near-surface racks

The racks on which the instrumentation was installed con-
sisted of sturdy metal poles about 2 m high with two arms
extending at the top, oriented at a 90◦ angle to each other
(Fig. 2a). Part of the installation was previously described in
Anderson et al. (2016), i.e. the configuration used in 2015. In
that year, five racks were in use on which GardenWatchCam
time-lapse cameras (Model GWC001, Brinno Inc., Taiwan)
were installed. These ordinary cameras have a resolution of
1.3 megapixels (MP), and RGB-derived indices showed a
good correlation with bulk NDVI measurements (Anderson
et al., 2016). The cameras took photos at a 4 h interval and
were aimed straight down (i.e. in a nadir orientation).

In 2016, the set-up was extended to a total of 10 racks.
On the new racks, numbers 6 to 10, a WingScapes Time-
lapseCam (WCT-00122, Ebsco Industries, China) was used.
This camera, with a resolution of 8 MP, was installed in the
same nadir orientation and took photos every 6 h (midnight,
06:00, noon, and 18:00 CEST). Because of the higher reso-
lution and better durability, all racks were reconfigured with
the WingScapes camera in 2018, and the GardenWatchCam
was discontinued – with the exception of rack 1. Both camera
types were used at their highest-image-quality setting, with
default settings that do not include automatic white balanc-
ing since this has been pointed out as essential to achieve a
consistent sensor response (Richardson, 2019). The precise
use of the specific type of RGB camera for each year is listed
in Table 3.

In addition to the RGB cameras, the racks were equipped
with Decagon SRS-NDVI sensors (Decagon Devices, WA,
USA), which measure spectral reflectance at 630 and 800 nm.
The NDVI sensors were placed in a recommended off-nadir
position of 18◦, at a height of 2 m, and covered a circu-
lar area of ground approximately 1.3 m in diameter. Hemi-
spheric sensors measured incoming radiation at the same
wavelengths to calculate reflectance, and these were placed
on racks 2, 6, and 10. These measurements were used for
nearby racks without a hemispheric sensor since incoming
radiation does not vary as much spatially as surface re-
flectance does.

The racks were also equipped with soil moisture and tem-
perature sensors installed at a depth of 10 cm (5TM, Decagon
Devices, WA, USA) and a thermal infrared radiometer (SI-
400 series, Apogee Devices, UT, USA) that was installed
next to the NDVI sensor, pointing in the same off-nadir direc-
tion. All data from the Decagon sensors were recorded at 4 h
intervals on an Em50 logger (Decagon Devices, WA, USA).
Table 3 lists, for each rack, which sensors were installed in a
particular year.

Most racks were kept in the same location from year to
year, but some needed to be relocated. Rack 5 was moved in
2016 to a wet meadow to include a moister vegetation type
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Table 1. Location of the camera racks from 2015 to 2018. Two racks were relocated to a different vegetation type (rack 5 in 2016 and rack 8
in 2017). In 2017 and 2018, adjustments were made to the base of the racks, and many were moved a few metres within the same vegetation
type. A change in the shading indicates that the rack was moved.

Figure 1. Locations of the instrumentation in the valley of Adventdalen during the 2018 field season (white dots). The racks are labelled
with their respective number, while the landscape cameras are labelled according to the nearby mountain peaks. The yellow arrows show the
direction in which the landscape cameras are pointed, while the triangles indicate their approximate viewing angle. The background image
is a composite of several orthographic photographs taken by the Norwegian Polar Institute in July 2009.

in the data coverage. Rack 8 was moved in 2017 to a location
close to an eddy covariance tower (see Pirk et al., 2017), to
be able to compare the measurements to ecosystem carbon
fluxes. In 2017, all racks received a new base to forego the
need for guywire. To ease installation of this upgrade, some
racks were moved a few metres but kept in the same vege-
tation type. Minor adjustments were made to the position of
some racks in 2018 (see also Tables 1 and 2).

2.2.2 Landscape cameras

To connect the detailed coverage of the racks to the larger
scale, a few landscape cameras were placed on nearby
mountains (see Fig. 1), initially only on a mountain called
Breinosa, close to racks 1 to 5, but later also on two addi-
tional mountains, Bolternosa (pointing to rack 8) and Lind-
holmhøgda (pointing to rack 6). The camera on Breinosa was
operational in all years and at Bolternosa in 2017 and 2018.
The camera at Lindholmhøgda was installed in both 2016

Earth Syst. Sci. Data, 13, 3593–3606, 2021 https://doi.org/10.5194/essd-13-3593-2021



F.-J. W. Parmentier et al.: A distributed time-lapse camera network to track vegetation phenology 3597

Table 2. Vegetation composition at each rack from 2015 to 2018. Apart from racks 5 and 8, which were moved to different vegetation types,
all racks were kept within the same general area with similar vegetation composition. The vegetation classes are according to those defined
by the Cirumpolar Arctic Vegetation Map (CAVM; Walker et al., 2005) and the Svalbard Vegetation Map (SVM; Johansen et al., 2012).

Rack Year Vegetation description CAVM SVM

1 2015–2018 Moist moss tundra with Alopecurus ovatus, Bistorta vivipara, and Salix polaris. Depres-
sions with Equisetum arvense, patches of Saxifraga hirculus, and scattered Dupontia fisheri
and Eriophorum scheuchzeri. Vegetation cover of 100 %.

G2 12

2 2015–2018 Cassiope tetragona–Dryas octopetala heath in a mosaic pattern. Vegetation cover of 80 %–
100 % with regular, small solifluction polygons. Other species present: Salix polaris, Luzula
confusa, Cerastium arcticum, Oxyria digyna, and Carex rupestris.

P2 14

3 2015–2018 Mosaic of Dryas octopetala, Luzula confusa, Poa pratensis alpigena, Alopecurus ovatus,
and other graminoids. Lots of Salix polaris and Bistorta vivipara on moist to wet moss
tundra dominated by silty sand. Small landscape feature dominated by soil frost polygon
with little vegetation in the centre.

G2 12

4 2015–2018 Dryas octopetala–Salix polaris vegetation on lower part of a gently sloping alluvial fan.
Substrate dominated by sandy gravel and stone. Partly exposed with some dominance of
lichen. Scattered Luzula confusa, Bistorta vivipara, Stellaria longipes, and Silene uralensis
spp. arctica. Vegetation cover of 70 %–90 %.

P2 13

5 2015 Cassiope tetragona–Dryas octopetala heath. Composition very similar to rack 2. P2 14
2016–2018 Wetland dominated by the grass Dupontia fisheri and mosses. Fresh water running through

the vegetation. Lots of Salix polaris and Bistorta vivipara. Scattered Ranunculus spitsber-
gense and Eriophorum scheuchzeri. Vegetation cover of 100 % with a dense bryophyte layer.

W1 11

6 2016–2018 Grass-dominated sandy sediment plain. Festuca rubra, Poa pratensis alpigena, and
Alopecurus ovatus. Thin organic layer, with lots of Salix polaris in between the grasses.
Vegetation cover of 80 %–100 %.

G2 16

7 2016–2018 Wetland vegetation on flat silty and sandy substrate, dominated by large polygon soil pat-
terns. Puccinellia phryganodes, Dupontia fisheri, and Eriophorum scheuchzeri in the inte-
rior part of polygons. Ranunculus pygmaeus and bryophytes like Scorpidium cossonii and
Scorpidium revolvens dominate the wettest part in polygon cracks.

W1 10, 11

8 2016 Luzula confusa–Salix polaris-dominated vegetation on a gentle slope with cryoturbation
and some bare soil. Sandy gravel with pebbles and stones. Vegetation in typical mosaic.
Tufts with Dryas octopetala scattered on tussocks and Cassiope tetragona in small de-
pressions. Lots of Luzula confusa, Salix polaris, Bistorta vivipara, and scattered Stellaria
longipes. Some depressions dominated by Equisetum arvense.

G2 16

2017–2018 Graminoid-dominated vegetation on silty and sandy plain characterized by large-scale poly-
gon cryoturbation. The terrain is gently sloping towards the Adventdalen river. Domi-
nant vascular plants are Dupontia fisheri and scattered Eriophorum scheuchzeri. Vegetation
cover generally 100 %.

W1 11

9 2016–2018 Heath dominated by Luzula confusa. Other species present are Salix polaris, Poa pratensis
alpigena, Carex arcticum, and bryophytes like Sanionia uncinata and Tomentypnum nitens.
Some cryoturbation and silty soil. Vegetation cover of 70 %–100 %.

G2 16

10 2016–2018 Typical Cassiope tetragona heath on a north-east-facing hillslope. Lots of Salix polaris and
scattered Dryas octopetala and Stellaria longipes. Regularly distributed Luzula confusa
and patches with Saxifraga hirculus and Festuca rubra. Dominating moss, between mats of
Cassiope tetragona, is Sanionia uncinata. Vegetation cover of 90 %–100 %.

P2 14

and 2018, but no data were collected in 2018 due to equip-
ment malfunction.

In 2015, a multispectral camera was used on Breinosa
(agricultural digital camera, TetraCam Inc., CA, USA) which
has a resolution of 3.2 MP (2048×1536 pixels). In this cam-

era, the blue channel had been replaced with a near-infrared
band (sensitive up to 920 nm), which makes it possible to
calculate NDVI. Photos were taken at 11:00, 12:00, 13:00,
and 14:00 CEST. For better comparison with the near-surface
racks and because of their higher resolution, this camera was
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Figure 2. Overview photographs of (a) rack 8 mounted with a WingScapes camera (on the left arm) and Decagon NDVI sensors, both
incoming and reflected (on the right arm), and (b) a WingScapes camera on top of Breinosa overlooking the area with racks 1 to 5. The
picture of the rack was taken in mid-October 2017, and the overview photo of the mountain camera was taken in mid-September 2016. In
both photographs, the vegetation had senesced, hence the brown colour.

Table 3. Equipment installed at each rack from 2015 to 2018 (GW: GardenWatchCam; WS: WingScapes). Rack 1 switched from a Garden-
WatchCam to a WingScapes during the 2017 field season, which is why both are indicated. Soil moisture was not recorded in 2016 due to
equipment failure.

Camera type NDVI sensor TIR sensor Soil temperature and
moisture sensor

Rack 2015 2016 2017 2018 2015 2016 2017 2018 2015 2016 2017 2018 2015 2016 2017 2018

1 GW GW GW, WS GW x x x x x x x x x
2 GW GW GW WS x x x x x x x x x x
3 GW GW GW WS x x x x x x x
4 GW GW WS WS x x x x x x x x
5 GW GW GW WS x x x x x x x x x
6 WS WS WS x x x x x
7 WS WS WS x x x x x
8 WS WS WS x x x x x
9 WS WS WS x x x x x
10 WS WS WS x x x x x x

replaced in 2016 with the same WingScapes camera used
on the racks. The landscape camera on Lindholmhøgda was
also a WingScapes. In 2017, this type of camera was placed
on both Breinosa and Bolternosa. Photos were taken each
day at 06:00, noon, and 18:00 CEST. In 2018, these cameras
were upgraded to CuddeBack E2 time lapse cameras (Cudde-
Back Digital, WI, USA). These cameras have a resolution of
20 MP, which strongly improved the ability to resolve small-
scale spatial variations in vegetation composition. No auto-
matic white balancing was used on any of these cameras.

2.3 Data processing

2.3.1 Pre-processing and stabilization

After data collection, the photos were manually checked to
ensure that they were of high quality. Photos were filtered out
because of, for example, snow on the ground, water droplets
on the lens, or darkness when polar day ended in late sum-
mer. In a few instances, photos were removed if the contrast
was too high due to bright sunlight. This was mostly nec-
essary at low sun angles, when shading can be problematic.
For the landscape cameras, the high contrast was also an is-
sue when there were scattered clouds or when the mountains
cast long shadows. For these photos, images with snow on the
ground were retained to show how snowmelt differs across
the landscape. The filtering mostly led to short gaps, typi-
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Figure 3. Example of a stabilized photo for rack 6, taken on 19 July
2018 at noon CEST. Slight movements by the thawing of the topsoil
turned this camera a few angles out of its original position, which
was corrected for by the stabilization algorithm through a rotation
of the photo. The bright rectangle indicates the mask for which the
greenness index was calculated, which excludes parts of the photo
where the rack itself is visible as well as areas where shadows were
cast by the rack (darkened regions). The ground surface defined by
these masks has been verified to be visible in all photos.

cally no more than 1 or 2 d. This was acceptable considering
the slow change in the vegetation indices.

After this initial screening, the photos needed to be cor-
rected for unwanted movement of the camera to ensure as
much as possible that each pixel in the photo corresponded
to the same area on the ground. This correction was neces-
sary for the first 2 years in particular, when the racks were
held upright with guywire. This guywire was prone to slack-
ening, allowing the racks to move. This led to a shift over
time in the surface area observed by the cameras. This issue
became particularly problematic in 2016, when the guywire
of several racks was completely loosened by reindeer, and the
installations rotated away from their initial position. In some
cases, the cameras were no longer in a nadir orientation.

Due to these problems, the racks were modified in 2017
and placed on a permanent base without the need for guy-
wire. While this made the racks very stable, some minor
displacement was still possible from ground movement re-
lated to freeze and thaw processes or slight movement in the
orientation of the camera. Similarly, the landscape cameras
on top of the mountains were firmly placed on tripods, but
some movement, e.g. due to the wind, led to minor shifts in
the photos. To compensate for these unwanted movements,
a stabilization algorithm was applied to all photos from all
cameras in all years. An example of such a corrected photo
is shown in Fig. 3.

The algorithm, written in Python, makes use of OpenCV
(Open Source Computer Vision Library), an open-source
computer vision and machine learning software library
(Bradski, 2000). OpenCV includes modules for feature track-
ing and image alignment that can be used to adjust for any
yaw, pitch, and roll movements and lateral shifts of the cam-
eras and the racks. To find the movement between two suc-
cessive photos, they were first converted to grayscale, and
the histogram of both photos was equalized. This minimizes
differences between photos due to varying light conditions.
Also, a mask was applied to ignore features of the installation
itself, such as the rack and guywire.

Once two successive photos were treated this way, a Har-
ris corner detector algorithm was applied to identify fea-
tures that could be tracked between both photos (Harris and
Stephens, 1988). This could be, for example, a small stone,
a crack in the soil, or a twig. After the corners of these fea-
tures were identified in both photos, the optical flow between
the two was calculated with the method described by Lucas
and Kanade (1981). The optical flow was used to calculate
an affine transformation between the two photos. This kind
of transformation is used to rotate an image within three di-
mensions while preserving straight lines and surfaces. Once
the affine transformation was applied, the next photo was im-
ported, and the procedure was repeated.

For the mountain cameras, a slightly different method was
used. The feature identification and optical flow calculation
that was used for the racks was not applicable since the algo-
rithm would try to correct the pitch between photos (i.e. the
angle between the valley floor and the camera). However, due
to the large distance to the mountain and a sturdy installation
on a tripod, this angle was fairly constant. Typically, photos
would differ in alignment by a few pixels only, and small lat-
eral adjustments along the x and y axes were sufficient to
align the photos. Therefore, an algorithm was applied that
originally was developed to compose high-dynamic-range
(HDR) photos (Ward, 2012) but is excellently suited for our
purposes since it returns a lateral shift in pixels along the
x and y axes of a photo, and it is insensitive to changing
light conditions. In one or two cases, as determined by a vi-
sual check, a rotation needed to be manually specified (deter-
mined through trial and error) because of slight rolling of the
camera. From these x–y shifts and rotation angles, an affine
transformation was composed and applied to the mountain
photographs.

While the algorithms automated the alignment of the pho-
tos, they still needed a thorough check afterwards. Since the
affine transforms were applied cumulatively, small mistakes
in the alignment could add up to an incorrect result by the end
of the summer. Automatic alignment was difficult in plots
that lacked strong features to track between photos, e.g. with
a lot of moss and grasses, as well as in situations where dif-
fering lighting conditions cast shadows that were incorrectly
identified as movement. Sunny days were problematic in par-
ticular, but a layer of rime in the morning or a wet soil after
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rain could also lead to large differences between photos that
prevented an automatic adjustment.

To resolve this problem, either these photos were filtered,
or it was indicated in the script that an affine transform was
not necessary at those instances. In some cases, for example
the racks that had become loose in 2016, the affine transform
had to be manually specified. This was necessary when the
racks had been fixed upright during a field visit, and the shift
between photos became too large for the algorithm to pro-
cess.

Despite the need for the trial and error afterwards, the
automatization made it possible to align all plots relatively
quickly, and spatial differences between the first and last
photo were typically no larger than a couple of centimetres
on the ground, and often less. This made it possible to track
individual plants throughout the growing season, but for the
purpose of this paper we use greenness indices determined
over as large an area as possible.

The quality check on the data from the NDVI sensor was
limited to the removal of spikes in the data. Outliers were de-
termined by analysing the reflectance for the 630 and 800 nm
bands separately. Data points that were 2 standard devia-
tions removed from the mean, determined across the whole
season, were considered outliers and removed. Also, NDVI
values were removed if they were negative (typically due to
snow cover) or if it was known that snow was present on the
ground. Soil and surface temperatures did not show signifi-
cant outliers, while soil moisture data were only retained for
those dates where the soil was unfrozen.

2.3.2 Calculation of greenness indices

Previous analysis of the data collected in 2015 showed a high
correlation between NDVI and several greenness indices de-
rived from the RGB cameras, i.e. GCC, 2G_RBi, and green–
red vegetation index (GRVI) (Anderson et al., 2016). We de-
termined whether these greenness indices differed between
camera types (GardenWatchCam and WingScapes) by oper-
ating these cameras in parallel on rack 1 for a few weeks in
2017. This showed that GRVI differed quite strongly, while
GCC was highly consistent between camera types (Fig. 4).
Since this index also showed lower variance and correlated
best with NDVI, when considering all plots, we use GCC
throughout this paper. GCC is an index that shows the inten-
sity of the green channel in a photo relative to the sum of the
intensities of all channels:

GCC=
Gi,j

Ri,j +Gi,j +Bi,j

. (1)

Ri,j , Gi,j , and Bi,j are the intensities of the red, green, and
blue channel at row i and column j of a photograph. GCC
was calculated for each pixel in the photograph for as large
an area as possible, which was specified with a mask. An
example of such a mask is shown in Fig. 3. These masks are
not necessarily of the same size and shape in all plots. All

masks used to get this data are included in the public data
archive for use in further studies. The values obtained from
each photo were averaged to find a value for the whole plot.

For the cameras on top of the mountain, the calculation of
GCC was the same, and masks could be used to define ar-
eas of interest in which species composition is similar. This
is useful, for example, to track vegetation communities at a
larger scale and to identify diverging patterns in the land-
scape. For racks that were placed in an area with rather uni-
form vegetation, the mountain cameras also open up oppor-
tunities to compare patterns directly with the photos taken at
the racks.

3 Dataset overview

Figure 5 shows time series of NDVI and GCC measured at
the racks from 2015 to 2018. The patterns of NDVI and GCC
show strong similarities, where the timing of the strongest
increase and decrease in NDVI corresponds to the strongest
change in GCC. At most racks and in most years, the tim-
ing of the peak in NDVI and GCC also corresponds well.
The figure also shows that the use of lower-resolution Gar-
denWatchCams on racks 1 to 5, from 2015 to 2017, typically
led to more scatter in GCC than in the set-ups that used the
higher-resolution WingScapes camera, but the overall tem-
poral pattern was very similar. The GardenWatchCam was
phased out in 2018 for racks 2 to 5, which is why the scatter
in GCC became lower in that year.

In 2017, data collection continued into September and Oc-
tober, a period in which the days are rapidly shortening on
Svalbard, and the solar angle is low throughout the day. The
low amount of incoming sunlight increases shading, which is
reflected in a larger scatter for both NDVI and GCC. Inter-
estingly, many plots show a hump in NDVI during this time.
An early frost period following day 250 (see Fig. 6) sup-
pressed NDVI values, rebounding when temperatures rose
slightly in the days after. By this time in mid-September,
however, vascular plants have already senesced. It became
apparent that the slight increase in NDVI may be linked to
the changes in air temperature in combination with contin-
ued activity by mosses since they still appeared green in the
photos. Nonetheless, a low solar angle leads to a worsening
signal-to-noise ratio (Stow et al., 2004), which is why these
late-season patterns should be interpreted with care.

While considering spatial and temporal differences, it ap-
pears that the relationship between GCC and NDVI is rather
consistent from year to year when the same plot is consid-
ered. The possible exceptions are plot 2 and 4, which con-
tained a large fraction of bare ground. When the RGB camera
and NDVI sensor are not pointing at the exact same area in
such heterogeneous landscapes, the amount of bare ground
and vegetation in their field of view will diverge, causing
a relative difference in magnitude between the two indices.
Moreover, when comparing one plot to another, the relative
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Figure 4. Comparison of the GardenWatchCam and WingScapes cameras for three different vegetation indices (GRVI, 2G_RBi, and GCC)
during a 2-week period in August 2017. The root mean square error (RMSE) between the two cameras is shown in each subplot.

magnitude of GCC and NDVI is quite dissimilar. This in-
consistent spatial relationship between NDVI and GCC is
possibly related to different responses in the infrared, which
would affect NDVI but not GCC. This may be caused by
differences in soil composition, soil moisture, or vegetation
composition. Therefore, it is possible that spatial patterns of
GCC and NDVI are quite different, despite the fact that their
temporal patterns match very well. This suggests that GCC
is a useful tool to acquire a more accurate determination of
the timing of phenological stages (Brown et al., 2016), but
the spatial discrimination of vegetation types and/or biomass
based on either GCC or NDVI data may deliver divergent
results.

Figure 6 shows the ancillary data collected at the racks
since 2016, namely surface temperature, soil temperature,
and soil moisture. Not all racks were equipped with these
sensors. Surface temperature has only been measured at
racks 1 to 5 during the project period and, for one sea-
son only, at rack 10 in 2016. Unfortunately, the sensors for
soil temperature and moisture malfunctioned at most sites in
2016. Racks 6 to 9 had no additional sensors before 2017.

These data show that surface temperature was slightly
higher than soil temperature (as expected) and that there was
a strong variation in soil moisture among the sites, while
for most of them there was little variation during the sea-
son itself. One of the few exceptions to that rule was rack
7 in 2018. This rack was placed in a wet vegetation type
that had standing water from snowmelt, and this can lead to
high soil moisture values at the start of the growing season
(Mörsdorf et al., 2019). This early-season peak was not cap-
tured in the year before, probably because of a late instal-
lation of the sensor. In 2018, there was also a peak around
day 250, which coincided with rainfall that collected in the
area, and some standing water was visible in the automated
photographs taken at the rack. Interestingly, this peak in soil
moisture did not appear to affect NDVI and GCC to a large
degree (See Fig. 5). While a small uptick in NDVI is visible,
GCC hardly changed at all.

Finally, Fig. 7 shows an example of how the mountain
cameras can be used to determine landscape-wide changes
in GCC by selecting different regions of interest (ROIs). The
area on the left (outlined in blue) is a dry exposed area with
active cryoturbation, leading to patterned ground. As a con-
sequence, vegetation cover is lower than in the rest of the
area, and this is reflected as a lower value for GCC. Mean-
while, the area outlined in orange is a wet area with produc-
tive vegetation, located along a streambed. From the photo-
graph, it is already clear that this area is much greener, and
this leads to a higher value for GCC.

These are just two examples of how GCC can be used to
track vegetation differences in the landscape. In principle, re-
gions of interest can be drawn otherwise, depending on the
purpose. For example, areas that correspond to a pixel from
MODIS or Sentinel-2 can be identified to compare directly
with satellite data, which helps to set these data in a regional
context (see e.g. Hufkens et al., 2012). It must be noted that
to scale up from the plot to the landscape scale and beyond,
it is necessary to have a vegetation map to know the dif-
fering proportions of each vegetation type. Vegetation types
that exhibit similar seasonal patterns in GCC can be grouped
through k-means clustering, random forest algorithms, and
other machine learning tools. This may form the basis for a
detailed vegetation map and can be used to track long-term
changes in vegetation composition.

While such applications have potential, care needs to be
taken when using these indices. The landscape camera takes
photos at a low viewing angle, which may lead to differ-
ent values for GCC than if these photos were taken straight
down. Indeed, Fig. 7c shows rather high values for GCC –
partly due to the productive vegetation – which are higher
than at any of the racks. The low viewing angle may obscure
bare ground and give a greener appearance to the picture than
if viewed directly from above. Also, the use of different cam-
eras (CuddeBack vs. WingScapes) may affect GCC differ-
ently.

Another issue arises from the differences in the spatial pat-
terns between NDVI and GCC, which may make it challeng-
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Figure 5. Time series of daily medians of NDVI (black) and GCC (orange) for all racks (labelled in the top left corner of each subplot).
Correlations between NDVI and GCC are also indicated. See Table 3 for details on the type of RGB camera used.
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Figure 6. Time series of daily averages of surface temperature (green), derived from a TIR sensor, and in-situ-measured soil temperature
(orange) and volumetric water content (VWC; in blue) at a depth of 10 cm. The dotted line indicates 0 ◦C. In 2016, the soil moisture sensors
and some of the soil temperature sensors malfunctioned and are not plotted. Racks 6 to 9 had no additional sensors during 2016 and are not
shown. The numbers in the top left corners of the subplots indicate the racks on which these sensors were installed.

ing to compare vegetation maps that are based on either in-
dex. Since NDVI relies not just on the visible part of the elec-
tromagnetic spectrum but also the near-infrared, it would be
expected that differences in the amplitude of these signals
arise when responses in the visible and near-infrared bands
diverge. However, the main purpose of this dataset is to as-
sess the timing and pattern of phenological stages which are

derived from the direction of change in either NDVI or GCC
rather than the absolute magnitude of these indices. Figure 5
shows that the pattern of green-up, peak growing season, and
senescence compares quite well, as found previously by oth-
ers (e.g. Richardson et al., 2018; Sonnentag et al., 2012), and
we expect that the application of NDVI and GCC to assess
phenological timing will be relatively similar across the land-
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Figure 7. Examples of RGB indices derived from different regions
of interest (ROIs) during the 2018 growing season. The blue encir-
cled area (a) has a low vegetation cover and a relatively high amount
of bare ground, which leads to low values of GCC (b). The or-
ange outline encircles dense vegetation growing along a streambed,
which leads to higher values for GCC and a more pronounced sea-
sonal pattern (c). The background photograph in (a) was taken on
19 July 2018 (200th day of the year).

scape. Therefore, we consider the two vegetation indices to
be complementary. While NDVI responds to increased over-
all growth of vegetation (reflected near-infrared light and ab-
sorption of red light), GCC responds to the changing level of
green pigments in the vegetation.

4 Data availability

The data presented in this paper are publicly avail-
able through the online repository of the Arctic Data
Centre of the Norwegian Meteorological Institute at
https://doi.org/10.21343/kbpq-xb91 (Nilsen et al., 2021) un-
der a CC-BY-SA license. The data collected at each rack,
as shown in Figs. 5 and 6, are stored in individual NetCDF
files that include metadata such as the coordinates, date and
time of collection, and the instrumentation. The time-lapse
photos collected at each rack and from the three landscape
cameras are available at the same location – adjusted for
rotational and lateral movements – as JPEG images. These
images are accompanied by a text file containing all rel-
evant metadata. The masks used to calculate the time se-
ries of GCC (shown in Fig. 5) are included for the racks
but not for the landscape cameras since regions of interest
may differ from user to user, and therefore these were not
specified in advance. The photos from the landscape cam-

eras are also available as JPEG images, corrected for lat-
eral movements. The Python scripts used to align the pho-
tos are hosted on GitHub and can be downloaded from
https://doi.org/10.5281/zenodo.4554937 (Parmentier, 2021)
under a standard MIT software license.

5 Conclusions

This paper shows how ordinary RGB cameras can be used to
identify temporal and spatial patterns in vegetation phenol-
ogy through both detailed information at the plot level and
a broad overview at the landscape scale and beyond the ca-
pabilities of current satellite products. Similar set-ups with
phenocams remain scarce in the Arctic, where logistical chal-
lenges due to the absence of a reliable power supply and the
remoteness of field sites make the continuous operation of
field equipment challenging. Our set-up resolves this issue
by being not only low-cost but also low-maintenance. We
further show how unwanted movement by cameras can auto-
matically be compensated for with a stabilization algorithm
to achieve consistent imagery and high precision.

The dataset presented here covers the full growing sea-
son, with minimal gaps, while satellites may only capture a
few data points during the same time period due to persis-
tent arctic cloud cover. GCC also compares well to NDVI
at the plot level and shows a similar temporal pattern. Still,
there are considerable differences in the magnitude of GCC
among plots, and its magnitude compared to NDVI equally
differs. Care needs to be taken before RGB-derived indices
are used to upscale to a larger area, which is why a compar-
ison to vegetation maps, high-resolution satellite data, and
drone imagery should be included in such analyses.

Despite these caveats, the examples presented here show
that the ability to collect images at a high temporal resolution
and at a low cost while retrieving scientifically meaningful
vegetation indices from specific areas are major advantages
of the use of ordinary RGB cameras (see also Richardson,
2019; Sonnentag et al., 2012). When applied at both the plot
level and at the landscape level, as in this study, this relatively
low-cost technique has a strong capacity to inform us in de-
tail about changes in vegetation productivity, phenology, and
composition beyond the current capabilities of remote sens-
ing platforms.
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