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S U M M A R Y
Elongate inclusions immersed in a viscous fluid generally rotate at a rate that is different from
the local angular velocity of the flow. Often, a net alignment of the inclusions develops, and
the resulting shape preferred orientation of the particle ensemble can then be used as a strain
marker that allows reconstruction of the fluid’s velocity field. Much of the previous work on
the dynamics of flow-induced particle rotations has focused on spatially homogeneous flows
with large-scale tectonic deformations as the main application. Recently, the theory has been
extended to spatially varying flows, such as magma with embedded crystals moving through
a volcanic plumbing system. Additionally, an evolution equation has been introduced for
the probability density function of crystal orientations. Here, we apply this new theory to a
number of simple, 2-D flow geometries commonly encountered in magmatic intrusions, such
as flow from a dyke into a reservoir or from a reservoir into a dyke, flow inside an inflating
or deflating reservoir, flow in a dyke with a sharp bend, and thermal convection in a magma
chamber. The main purpose is to provide a guide for interpreting field observations and for
setting up more complex flow models with embedded crystals. As a general rule, we find
that a larger aspect ratio of the embedded crystals causes a more coherent alignment of the
crystals, while it has only a minor effect on the geometry of the alignment pattern. Due to
various perturbations in the crystal rotation equations that are expected in natural systems,
we show that the time-periodic behaviour found in idealized systems is probably short-lived
in nature, and the crystal alignment is well described by the time-averaged solution. We also
confirm some earlier findings. For example, near channel walls, fluid flow often follows the
bounding surface and the resulting simple shear flow causes preferred crystal orientations that
are approximately parallel to the boundary. Where pure shear deformation dominates, there is
a tendency for crystals to orient themselves in the direction of the greatest tensile strain rate.
Where flow impinges on a boundary, for example in an inflating magma chamber or as part of
a thermal convection pattern, the stretching component of pure shear aligns with the boundary,
and the crystals orient themselves in that direction. In the field, this local pattern may be
difficult to distinguish from a boundary-parallel simple shear flow. Pure shear also dominates
along the walls of a deflating magma chamber and in places where the flow turns away from
the reservoir walls, but in these locations, the preferred crystal orientation is perpendicular to
the wall. Overall, we find that our calculated patterns of crystal orientations agree well with
results from analogue experiments where similar geometries are available.

Key words: Numerical modelling; Probability distributions; Physics of magma and magma
bodies.
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1 I N T RO D U C T I O N

The dynamics of magmatic intrusions and of volcanic eruptions
are ultimately controlled by the geometry of the volcanic plumbing
system and by the magma flow patterns and flow regimes within the
various channels and reservoirs. Remote sensing techniques such
as measurement of surface deformations or seismicity can provide
information on active volcanic systems, but the resulting picture of
the intrusion is typically non-unique and at low spatial resolution,
and it generally provides little detail of the channel geometry and
the flow pattern (Yun et al. 2006; Montgomery-Brown et al. 2010;
Pallister et al. 2010; Nobile et al. 2012). An alternative approach
for understanding magma dynamics is to analyse solidified and
exposed magmatic systems. In addition to direct observation of the
geometry of the intrusion, the solidified magma often contains one
or several flow indicators such as magmatic banding and foliation,
and frequently also a net alignment of elongate inclusions such as
phenocrysts or enclaves (Clemens 2003; Pons et al. 2006; Vernon
& Paterson 2006).

A number of tools are available for measuring shape preferred
orientation (SPO). One approach is to identify the orientation of
individual elongate inclusions such as crystals or enclaves, which
can be done by imaging techniques such as microscopy (Launeau &
Robin 1996; Launeau & Cruden 1998) or X-ray microcomputer to-
mography (micro-xCT, Cnudde et al. 2011; Zucali et al. 2014; Petri
et al. 2020). Whereas direct imaging techniques are restricted to
2-D cross sections, tomographic analysis allows determination of
the inclusion shape and orientation in three dimensions. The micro-
xCT method is to some extent limited by the attenuation contrast
between minerals, which depends mainly on the density contrast
between the minerals that constitute the rock. Minerals with den-
sity similar to their surroundings are thus difficult to image. In
addition, the micro-xCT analysis is both computationally and la-
bor intensive, which in its present state limits its application to
relatively small volumes of investigated material. An alternative
approach is based on measurement of anisotropy of magnetic sus-
ceptibility (AMS) of rock samples, which provides a statistical es-
timate of crystal alignment (Tarling & Hrouda 1993; Borradaile
& Jackson 2004). Magnetic susceptibility is a symmetric second-
rank tensor which can be represented as an ellipsoid in 3-D space.
AMS is in some cases directly linked with SPO, as in foliated and
lineated metamorphic rocks with the magnetic signal dominated
by the paramagnetic fraction (Khan 1962; Silva et al. 2001, and
references therein), although the details on how to interpret their
relationship remains a challenge (Knight & Walker 1988; Geof-
froy et al. 2002). The main advantages of the AMS method are
its high measurement sensitivity and its ability to process large
quantities of data in relatively short time. As a result, AMS is rou-
tinely used to determine flow directions in magmatic systems (Henry
1997; Tauxe et al. 1998; Silva et al. 2004; Cañón-Tapia & Chávez-
Alvarez 2004; Cañón-Tapia 2004; Palmer et al. 2007; Silva et al.
2010, 2014; Eriksson et al. 2011). Special care must be taken when
comparing AMS with SPO, especially when the magnetic signal is
dominated by the ferrimagnetic fraction, as in mafic dykes (Silva
et al. 2014). In this case, ferrimagnetic and paramagnetic SPOs are
not coaxial, and the angular difference between the ferrimagnetic
and paramagnetic fabrics can be high. Given the increasing avail-
ability of SPO data, and in particular of spatially extensive AMS
data and the high potential of xCT microtomography to directly
infer the crystal orientation, it is timely to improve our analyti-
cal abilities of linking the SPO observations with the magma flow
field.

To date, most analyses of crystal orientations have been largely
inferential. Observations of crystal orientation distributions in so-
lidified dykes show that elongate particles are usually oriented sub-
parallel to the dyke walls, and the magma flow direction is assumed
to be approximately aligned with the long particle axis (Smith 2002;
Paterson 2009; Chistyakova & Latypov 2010; Yamato et al. 2011).
The alignment of crystals and magnetic fabric in laccoliths, on
the other hand, is believed to be caused by magma flowing ra-
dially outward from the centre of the main body of the laccolith
(Pons et al. 2006; Mattsson et al. 2018). For a sill with finger-
like lobes, Horsman et al. (2005) estimate the direction of magma
flow from observations of magnetic lineation and crystal alignment.
They show that the fabric is mostly subparallel to the bounding sur-
faces of the flow, and infer that the flow is largely parallel to the
lineations.

Systematic interpretation of the observed fabric of inclusion ori-
entations is only possible if a rigorous model is available that al-
lows prediction of inclusion orientations based on the details of
the surrounding flow. Analogue simulations using a viscous fluid
with embedded elongate particles provide one such model. Závada
et al. (2009, 2015) use analogue modelling coupled with AMS
analysis of magnetite tracers to show that the preferred crystal
orientation is generally aligned with the direction of the greatest
tensile principal strain near the centre of a spreading flow. How-
ever, near the boundaries of a lava dome as well as along the
walls of its feeder conduit, the fabric is mostly aligned parallel
to the boundaries. Trebbin et al. (2013) use analogue modelling
with immersed polymer micelles to follow the particle orientation
associated with the flow field in a pipe system with a local con-
striction. They find that the micelles are aligned parallel to the
flow direction in the first part of the pipe, and retain this orienta-
tion during the transition and throughout the narrow portion of the
pipe. As the flow passes the expanding portion of the pipe, how-
ever, the micelles get reoriented and align perpendicular to the flow
direction.

Numerical modelling of crystal rotations in viscous flows pro-
vides an alternative to analogue models. The fundamental advan-
tages of analytical or numerical models is that results are given
in quantitative form, and that model parameters, such as viscos-
ity, and their functional dependence on the different flow variables
can be selected freely, while analogue models are contingent on
the availability of suitable materials. The analytical solution for the
rotation of an isolated ellipsoidal particle in a viscous flow (Jef-
fery 1922) forms the basis for most calculations. Numerous studies
have utilized this solution to calculate the evolution of the orien-
tation of individual crystals in homogeneous flows (i.e. flows with
spatially constant strain rate, Freeman 1985; Passchier 1987; Ježek
et al. 1994; Marques et al. 2005; Jiang 2007, 2012; Marques et al.
2014). It has been shown that the solution for an isolated ellipsoid
is approximately valid also for suspensions of multiple particles,
provided that the interparticle spacing corresponds to at least 1–
2 particle lengths (Ildefonse et al. 1992a,b). Probability density
functions (PDF) of crystal orientations can then be computed for
certain crystal geometries based on the finite strain ellipsoid (March
1932; Willis 1977), or, for more general crystal shapes, by explic-
itly evaluating the rotations of a large ensemble of crystals (March
1932; Reed & Tryggvason 1974; Willis 1977; Ježek et al. 1996;
Yamato et al. 2011). Bazargan et al. (2019) introduced an evolution
equation for the PDF of crystal orientations based on the velocity
field of the fluid flow which allows the PDF to be computed for any
crystal shape for which the individual rotation behaviour is known
(either analytically or numerically).
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In Earth sciences, the analysis of particle rotations in viscous
fluids has been limited to homogeneous flows. This restriction
poses little problem for applications to tectonically deformed re-
gions where strain rates tend to be constant over large distances
and over long timescales. However, other flows, such as magma
transport in subsurface channels, exhibit much greater variability
in space and time, and an analysis in terms of homogeneous defor-
mations is overly restrictive. In other branches of fluid mechanics,
the theory of inclusion rotations has been applied successfully to
systems with variable flows (Szeri 1993; Fries et al. 2017). This
approach is valid provided that the length scale over which the
fluid velocity varies is greater than the crystal dimensions (Jeffery
1922; Ildefonse et al. 1992b; Mandal et al. 2003; Kumar Samanta
et al. 2003). The large-scale flow is then found by solution of the
Navier–Stokes equation for the fluid without inclusions, and the
PDF of crystal orientations is evaluated simultaneously by coupling
the evolution equation (Bazargan et al. 2019) with the velocity so-
lution. In the present study, we use this technique for a number of
relatively simple, 2-D fluid systems, each of which is representative
of a flow pattern that may be considered typical of magmatic intru-
sions. Despite their simple geometry, the flow fields are sufficiently
complex to require numerical solution. The computed PDFs are
4-D (two spatial dimensions, one orientation angle and time). The
general theory of computing the PDF is also valid for 3-D flows and
ellipsoidal inclusions with three distinct axis lengths, but the result-
ing 7-D problem (three spatial dimensions, three orientation angles,
and time) is computationally expensive and is left for future studies.

The purpose of the present study is to explore the type of align-
ment patterns that result from different 2-D flow geometries, and to
compare these results with analog models in order to test our the-
ory and numerical method. A number of simplifying assumptions
were made in order to minimize the number of free parameters. The
magma viscosity is taken to be constant. The geometry of the magma
plumbing system is either fixed or explicitly prescribed so that host
rock deformations do not need to be modelled. The suspended crys-
tals are elliptical and have identical aspect ratios. Clearly, nature is
generally more complex. However, for model validation, our simple
models are most appropriate because analog models are generally
based on similar assumptions. For more detailed case studies, the
problem to be solved is typically the inverse of our models; that
is, the crystal alignment pattern is observed, and an appropriate
flow field has to be found which produces this pattern. Our simple
models can function as a starting point for such case studies.

2 M E T H O D S

For most of our models, the geometry of the magma plumbing sys-
tem is constant in time. For the two models with changing geometry
(inflating and deflating magma reservoir), the deformation of the
magma-host rock interface is prescribed. Hence, the host rock is
not modelled explicitly in our study.

In all models, the viscosity is taken to be constant. This choice was
made in order to avoid complications due to magma composition,
due to the mathematical formulation of the temperature-viscosity
function, and due to the magma flow rate which would affect the
cooling rate. Thermal buoyancy is neglected in all models except for
the thermally convecting magma reservoir, and with the exception
of this one model, the temperature field is not computed.

For the magma flow, we assume that the viscosity is sufficiently
large (i.e. low Reynolds number) so that inertial effects are negligi-
ble. The dynamics are then governed by the Navier–Stokes equation

in the limit of Stokes flow (Batchelor 2000),

− ∇ p + ∇ · (
μ∇v

) + ρg = 0, (1)

where p is the pressure in the magma, μ is the magma viscosity,
v is the velocity vector, ρ is the density and g is the accelera-
tion due to gravity. The flows examined in the present study are
2-D, hence the gradient operator in Cartesian coordinates is given
by ∇ = x̂ ∂/∂x + ŷ ∂/∂y. All flow systems are assumed to be in-
compressible, and thus the continuity equation becomes (Batchelor
2000)

∇ · v = 0. (2)

In the example of thermal convection, the flow is driven by density
differences due to temperature, which are described by the last term
on the left-hand side of (1). For all other flows, density is assumed
constant so that the buoyancy term has no dynamic effect. For the
thermal convection calculations, we use the Boussinesq approxi-
mation (Batchelor 2000) which allows us to use the incompressible
form of the continuity eq. (2) together with the energy equation,

∂T

∂t
+ v · ∇T = κ∇2T . (3)

Here T is temperature and κ is the thermal diffusivity, which is
assumed to be constant. For the convection computations, density
is taken to be linearly dependent on temperature, that is

ρ(T ) = ρ
[
1 − α(T − T)

]
, (4)

where ρ is the density at the reference temperature T = T, and α is
the volumetric thermal expansion coefficient.

Rotations are calculated for 2-D elliptical crystals with motions
and spin limited to the plane of the fluid flow. Rather than determin-
ing the rotational evolution for individual crystals, we compute the
PDF orientations based on the theory developed by Bazargan et al.
(2019),

∂ P

∂t
+ v · ∇P = −P

∂θ̇

∂θ
− θ̇

∂ P

∂θ
. (5)

Here P is the value of the PDF, which at every point in space and
time is a function of the crystal orientation θ , which in turn is the
angle between the x-axis and the crystal’s semi-major axis. The
crystal rotation rate θ̇ is calculated using the framework of Jeffery
(1922), which for a 2-D elliptical crystal in a fixed reference frame
can be written as

θ̇ = wxy − (ε̇1 − ε̇2)

2

(a2 − b2)

(a2 + b2)
sin

(
2θ − 2θp

)
, (6)

where wxy = 1
2 (∂v/∂x − ∂u/∂y) is the local value of the fluid’s

angular velocity, ε̇1 and ε̇2 are the local principal strain rates of
the flow (ordered such that ε̇1 ≥ ε̇2), θ p is the angle between the
x-axis and the direction of ε̇1 and a and b are the semi-major and
semi-minor axes of the crystal, respectively. The value of wxy locally
describes the component of solid body rotation of the flow, while
the values of ε̇1 and ε̇2 together describe the deformation due to
pure shear.

The coupled system of the fluid mechanical equations together
with the evolution equation for the PDF field P is solved using the fi-
nite element method on an Eulerian grid. The solution is computed
using the finite element package Comsol Multiphysics (Comsol
Multiphysics R© 2017). We show results for four different flow ge-
ometries: (i) flow from a channel into a reservoir, (ii) an inflating
circular magma chamber, (iii) flow through a dyke with a sharp
bend and (iv) thermal convection in a rectangular domain. Except
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for the convection system, the flow directions can be reversed so
that we can use the same model geometries to compute the effects of
a flow from a reservoir into a channel, and of flow inside a deflating
magma chamber. As the crystal rotation patterns depend not only
on the local values of the solid body rotation and the pure shear
but also on the advection of the crystals in the flow, the effect of
a reversal of the flow direction on the crystal rotation behaviour is
not trivial.

For all models of this study, the flow field is 2-D. For most com-
putations, we use an unstructured mesh with triangular elements in
x–y-space, while for the convection model (in a rectangular box),
we use a regular mesh of quadrilateral elements. The PDF of crystal
orientations is computed at the same locations as the flow veloc-
ities. However, as the PDF describes the probability density as a
function of crystal orientation θ , the PDF is a 3-D field. While the
geometries and the mesh resolution vary from model to model, the
θ -dimension of all dimensions is a constant range. We thus use
a regular mesh spacing in the θ -direction, with 20 elements for
most models (resolution of 0.157 radians), except for the convec-
tion model with 32 elements (resolution of 0.0982 radians). We use
linear elements for the calculations of the PDF function P and for
temperature in the convection models, but in the fluid flow calcula-
tions, we use a combination of quadratic integration for the velocity
field coupled with linear integration for pressure. Due to rotational
symmetry of the crystals over half of a revolution, crystal orienta-
tions only need to be computed in the θ -range of [0, π ]. Rotations
beyond these limits are handled by periodic boundary conditions
in θ . We have tested the models with twice the resolution both in
physical (x and y) space, and for the PDF also in θ -space. We found
only negligible sensitivity to doubling the resolution, and therefore
conclude that the chosen resolution is sufficient for the given flow
fields.

In a previous study (Bazargan et al. 2019), PDFs of crystal ori-
entations were calculated for a number of flows with analytical
solutions for the flow field. There is one significant difference in
the two techniques used. In the previous study, the velocity field
was integrated to yield the positions x(t) and y(t) along the paths
of a number of selected fluid parcels. The time rates of solid body
rotation and of pure shear deformation were then computed analyti-
cally along the path. Most importantly, the Lagrangian approach of
following fluid parcels avoids the explicit calculation of the advec-
tion terms in (5). In this study, we use the more standard approach
in fluid mechanics which computes all quantities on a fixed, Eule-
rian grid. The advection terms in (5) are then retained. The semi-
analytical solutions from Bazargan et al. (2019) for Couette flow,
for plane Poiseuille flow, and for corner flow can then be used as a
benchmark for testing the fully numerical results. When the numer-
ical solution converges properly (i.e. the time steps are sufficiently
small such that the fluid covers less than about one quarter of an el-
ement length per time increment, thus ensuring that no oscillations
develop in the advected field), we find that the solutions are essen-
tially identical. We thus conclude that the fully numerical solution is
satisfactory.

2.1 Transition between channel and reservoir

Magma flow from a planar channel (i.e. a dyke) into a larger reser-
voir such as a magma chamber or a laccolith is a common feature in
volcanic plumbing systems. Similarly, magma frequently withdraws
from a reservoir via a planar dyke. We set up a suitable geometry
with imposed inflows and outflows to study these phenomena in

terms of the rotational behaviour of suspended crystals. For both
the inflow and the outflow model, the geometries are equal with a
rectangular reservoir that is 50 by 10 m in size, and which at the
centre of one of the 10 m-bounding walls is connected to a channel
that is 5 m long and 1 m in thickness. The channel is long enough so
that, after passage, the flow is fully developed (i.e. Poiseuille flow),
and the crystal orientations have reached their long-term behaviour
which is not steady, but rather a periodic, oscillatory state (Bazargan
et al. 2019). The reservoir has an outflow (or inflow) at the side op-
posite the channel which exactly balances the flow rate specified for
the channel. The long reservoir dimension of 50 m is sufficient to
make sure that, in the vicinity of the dyke-reservoir transition, there
are no flow perturbations due to the distal boundary. At the con-
nection between reservoir and channel, we tested transitions with
sharp corners and with rounded corners. We found only minimal
differences, and here we show the results for the rounded corners
(the domain geometry is not shown separately, but can be seen in
the plots of the results). The flow velocity at the end of the channel
is set to an arbitrary constant value of 10 m s–1, which, due to the
incompressibility condition of the fluid, must be balanced by a cor-
responding velocity of 1 m s–1 at the opposite end of the reservoir.
The absolute values of the model size and magma velocities are
irrelevant, as the models can be scaled using any other length and
velocity scales. The only significant choice in our models is the ratio
of the inlet size to the size of the reservoir, which sets the relative
lengths as well as the relative velocities. Since the inertial terms are
neglected in the Navier–Stokes eq. (1), high velocities do not lead
to turbulence or other inertial effects, and the solution is not af-
fected by different choices of density or viscosity. Furthermore, the
development of the crystal orientation fabric depends on the total
strain, but not on how fast this strain develops, thus the PDF pattern
depends only on the flow pattern, but not on the length or viscosity
scales. The PDF is set to a uniform distribution (a constant value
of 1/π ) as initial condition, and is maintained at the same value at
the respective inlet throughout the model run. For computation of
the viscous flow and for the PDF, the spatial (i.e. x–y) domain is
discretized using 6548 triangular elements, giving an approximate
element size of 0.3 m. Given the quadratic discretization of the ve-
locity solution, the resolution corresponds to seven nodes across the
channel, which is adequate to image the Poiseuille flow conditions.
The model is run for a total time of ttotal = 400 s.

2.2 Inflating or deflating magma reservoir

The formation and evolution of magma reservoirs is complex and
probably involves a number of different mechanisms. In dynamic
models, the volumetric growth is often modelled assuming a purely
elastic response of the surrounding host rock (Gudmundsson 2012),
even though the resulting stresses may surpass the failure strength
of the host rock. Fracturing of the wall rock may lead to local
concentration of strains, or, if broadly distributed and pervasive,
may produce deformations of the reservoir walls that are similar
to those of the elastic model. Given the frequent use of the elastic
models as well as their simplicity, we take a similar approach here,
albeit without explicit reference to the host rock rheology. In our
model of an inflating reservoir, a circular chamber (i.e. cylindrical in
3-D) is inflated at a constant rate of volume increase from an initial
radius of 1 m to a final radius of 2 m. The volumetric inflation is
balanced by a stress-free inlet that spans a constant 0.28 radians of
the wall of the circular chamber. The imposed uniform extension
of the chamber walls is approximately what would be expected if
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magma were injected into a chamber placed in an infinite space of
elastic material. Since the model domain changes as a function of
time, we use an arbitrary Lagrangian–Eulerian framework (ALE,
Comsol Multiphysics R© 2017). At the boundaries, the mesh fol-
lows the magma, and the approach may locally be described as
Lagrangian. Elsewhere, however, the mesh stretches broadly to fol-
low the boundaries while at the same time maintaining an even
distribution of element sizes with elements of approximately equi-
lateral shape. The mesh thus deforms, but is independent of the
local fluid displacements. The x–y domain is discretized using a
total of 4400 triangular elements, giving a spatial resolution of
about 4 × 10−2 m. The initial condition for the PDF of crystal
orientations is a uniform distribution with a value of P = 1/π . The
same uniform distribution is maintained at the inlet throughout the
model run.

2.3 Flow inside a channel with a sharp bend

Owing to their formation by fracture mechanical processes, dykes
and sills often follow crooked paths with sharp kinks and sudden
changes in direction. Occasionally, one also finds field examples of
dykes entering sills in a T-shaped junction (Galland et al. 2018).
We set up three different dyke geometries with imposed in- and
outflow conditions to test their effect on the preferred orientation
of suspended particles. The first two models comprise a dyke with
constant thickness and with an abrupt change in direction of α =
45◦ and α = 90◦, respectively. The corners of the bend are not
rounded but sharp. In the third model, magma flows from a vertical
dyke via a T-shaped junction into a horizontal sill. We chose the
channel thicknesses such that the average velocities are the same
everywhere, that is, the vertical dyke has twice the thickness of the
horizontal sill. As in the example of the kinked dyke, the transition
in the channel geometry is sharp, that is the radius of curvature at
the joint is zero. For all models, channel thickness is set to a constant
value of 2 m throughout (1 m for the horizontal sill in the T-shaped
junction), and the flow velocity at the inlet is set to a constant value
of 1 m s–1. The initial condition for the PDF as well as the condition
at the inlet is a uniform distribution with value P = 1/π . The flow
plane is discretized using 1814 triangular elements (10 280 elements
for the dyke-to-sill transition), giving a spatial resolution of about
0.2 m. The model is run for a total time of ttotal = 200 s.

2.4 Thermal convection in magma reservoir

The existence and vigor of thermal convection are governed by the
Rayleigh number, which is a measure of the strength of the driving
forces (i.e. buoyancy) relative to the viscous drag force which coun-
teracts convective motions (Turcotte & Schubert 2014). Convection
in initially uniformly hot magma reservoirs develops by cooling
of magma against the roof of the reservoir (Marsh 1989), and the
increasing thickness of the boundary layer increases the system’s
Rayleigh number. Convection in a magma reservoir thus starts from
the top, but rapidly spreads throughout the entire domain. Based on
thermo-mechanical modelling, convection is expected to occur for
most magma types (even those with relatively high viscosity) for
magma bodies with heights of 10–100s of metres. Thermal convec-
tion is thus expected to be a common feature of magmatic systems,
and it is therefore important to be able to interpret the observed
crystal orientations accordingly.

In our model, we focus on a simple convective system in a rectan-
gular box with constant high temperature maintained at the bottom

Table 1. Fluid and thermal properties of the material for
the convection model, with μ the viscosity, ρo the refer-
ence density, α the volumetric expansion coefficient, k the
thermal conductivity, cp the specific heat at constant pres-
sure and 	T the temperature difference between the base
and the top of the reservoir.

Parameters Values Units

μ 1 × 107 Pa.s
ρ0 2800 kg m−3

α 3 × 10−5 1 K−1

k 2.25 W m−1 K−1

Cp 750 m2 s−2 K−1

	T 400 ◦K

surface, and constant low temperature maintained at the top sur-
face. The evidence of convection that can potentially be observed
in nature in terms of crystal fabric must generally represent the last
increments of flow before convection ceases. The Rayleigh number
at this time is near the critical limit. Whether the flow is caused by
cooling of the magmatic body or by heating from below, the con-
vective style is characterized by broad features and relatively stable
convection cells. We run our convection system with a Rayleigh
number of Ra = 1400, which results in stable cells with low ve-
locity and broad boundary layers and up- and downwellings. The
appropriate Rayleigh number for bottom-heated convection is given
by Ra = (gρcpα 	T D3)/(kμ), where cp is the specific heat, α is the
volumetric expansion coefficient, 	T is the temperature difference
between the base and the top of the convective layer, and D is the
thickness of the layer. The model is run for a duration that allows
several convective overturns. Crystal orientation patterns are ob-
served to get essentially completely overprinted over such strains,
so a posteriori it is found that there is no need to run the model for
longer time periods.

The model domain is a rectangular box with a width of 200 m and
a height of 50 m, and hence with an aspect ratio of width/height = 4.
At all boundaries, the normal and tangential fluid velocities are set
to zero. Temperature at the top and bottom boundaries is set to
constant values (the absolute value of T is not important as it is only
the value of the Rayleigh number that determines the convective
pattern), and the side boundaries are thermally insulated. As there
is no fluid flow across the boundaries, the normal flux of the PDF
of crystal orientations is zero there, that is cn̂ · ∇P = 0, where n̂ is
the unit normal to the boundary. The fluid and thermal properties
of the material are descibed in Table 1. The initial condition for
the PDF is a uniform value of P = 1/π everywhere. The spatial
domain (i.e. x–y) is discretized using 10 251 quadrilateral elements
for computation of the viscous flow and 400 quadrilateral elements
for the PDF field.

2.5 Vorticity number

The vorticity number is defined as the ratio of the solid-body rotation
rate to the pure shear stretching rate (Truesdell 1953; Bazargan et al.
2019), or

Wk =
√

2
(
ε̇2

1 + ε̇2
2 + ε̇2

3

)1/2
, (7)

where 
 is the magnitude of the angular velocity vector. It is straight-
forward from the rotation dynamics of a single crystal to see that
a crystal will progressively align with the principal axis that corre-
sponds to the greatest strain rate, ε̇1. For a large number of crystals
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immersed in a flow with uniform orientation of the pure shear field,
the corresponding PDF of crystal orientations tends towards a Dirac
delta function. The solid body rotation generally works against the
alignment caused by pure shear because the flow vorticity tends to
rotate the existing crystal fabric out of the orientation of the pure
shear field. Overall, one may thus expect that the evolution of the
strength of the crystal orientation fabric in some way depends on
the vorticity number, although the dynamics are more complicated
because the crystals are advected through a pure shear field that
generally changes direction along their path.

2.6 Degree of orientation

The strength of the fabric of crystal orientations may be quantified
using a measure termed the degree of orientation (Fisher 1995;
Bazargan et al. 2019),

R = π

[(∫ π

0
P cos(2θ ) dθ

)2

+
(∫ π

0
P sin(2θ ) dθ

)2
]1/2

. (8)

The degree of orientation R is zero for a uniform distribution, and
it has a maximum value of R = 1 when the PDF is an appropriately
normalized Dirac delta function. Coherent pure shear deformation
over a prolonged time interval is probably rarely attained in natural
flows, and hence the degree of orientation R usually remains well
below unity. For a simple shear flow, the vorticity number is Wk

= 1 (Bazargan et al. 2019), and the degree of orientation depends
on the crystal shape and aspect ratio. For a 2-D elliptical particle
with aspect ratio a/b = 2, the steady-state PDF in a Couette flow
(which is also equal to the time-averaged PDF over the oscillatory
behaviour seen in most simple-shear PDF solutions) yields a degree
of orientation of R = 0.3 (Bazargan et al. 2019). Poiseuille flow
is pressure-driven flow through a plane channel of constant thick-
ness (Turcotte & Schubert 2014). Throughout a Poiseuille flow,
the vorticity number is Wk = 1, which is the same as for simple
shear. Moreover, the orientation of the principal axis corresponding
to ε̇1 is 45◦ relative to the flow direction in both flows. Averaged
over a sufficiently large region, the PDF of crystal orientations in
a Poiseuille flow thus results in the same degree of orientation
as in the Couette flow, namely R = 0.3 for a crystal aspect ra-
tio of two. Simple shear and Poiseuille flows comprise the most
commonly observed flow types in nature and in analogue experi-
ments. The theoretically predicted value of R for these flows thus
provides a useful scale for comparing the numerical results with
observations.

3 R E S U LT S

3.1 Periodic versus non-periodic behaviour of the crystal
orientation PDF

It is well known that elliptical crystals embedded in a Couette flow
lead to a time-periodic solution of the orientation PDF if the crys-
tals are initially in a perfectly random state (March 1932; Willis
1977; Bazargan et al. 2019). If this type of behaviour is a gen-
eral characteristic of elongate crystals in viscous flows, then the
instantaneous crystal orientations are merely a snapshot of an ever-
evolving PDF field. On the other hand, it has been shown that the
exact same Couette flow also allows for steady rotational behaviour
given by a constant orientation PDF, provided that the initial PDF
is not uniform, but a particular function that represents an interme-
diate state of crystal alignment (Bazargan et al. 2019, eq. 23). In

this case, the instantaneous PDF field is representative of the entire
solution throughout time. For the presentation of the results, it is
therefore important to know from the onset whether the PDF field
is time-variable (e.g. periodic) or whether it tends towards a steady
state.

At any point in time, a given fluid parcel must either have been
advected into the model domain via an inlet in the boundary (i.e.
‘new fluid’), or else the fluid parcel must have originated in the
model domain at beginning of the model run (‘old fluid’). Most of
our models are steady flows with a fixed geometry which are driven
by inflows and outflows. In these models, all fluid is eventually
replaced by new fluid (with the exception of points where the fluid
velocity is zero). Under these conditions, all fluid parcels passing
through a given location in the model domain will have experienced
the same flow and the same total integrated strain at the moment at
which they occupy that particular location. In other words, the PDF
field (which is a function of the integrated strain history) is also in
steady state, and hence there is no periodicity in time.

In a numerical model (which can only be run for a finite length
of time), steady-state conditions with new fluid at all locations
are never attained at or near fixed boundaries or stagnation points
where the fluid velocity is zero. For a planar Poiseuille flow, it
has been shown previously (Bazargan et al. 2019) that the total
strain integrated from the point where the fluid enters via an inlet
increases from the centre towards the channel boundaries where the
strain reaches infinity. The time-periodic behaviour of the crystal
rotations then manifests itself in alternating bands of alignment
and disorder, and these bands become infinitesimaly thin near the
channel boundaries. When averaged over a fluid area (or volume
in 3-D), these bands exhibit a net degree of orientation that is
identical to the time-averaged steady-state solution for the Couette
flow.

In some flows, some or all of the fluid at all times is old fluid
(e.g. a deflating magma reservoir). For such flows, the initial crys-
tal orientation PDF is of fundamental importance in determining
whether the PDF is periodic in time. The most reasonable initial
condition is a perfectly random state given by a uniform PDF of
crystal orientations. The PDF at any given location may then vary,
perhaps periodically, as a function time. Nonetheless, the PDF at
any moment in time is uniquely determined by the total strain, and
hence by the specified boundary configuration.

Whereas models of crystal rotations based on Jeffery’s (1922)
solution typically have crystals with identical shape and identical
aspect ratio, natural systems tend to be characterized by imperfect
crystals of slightly differing shapes and aspect ratios. Furthermore,
even in a dilute suspension of crystals, there will be occasional
interactions between neighbouring crystals which lead to perturba-
tions from Jeffery’s solution. Here we provide a brief analysis of a
system with a range of crystal aspect ratios in order to get an esti-
mate of the effect on the orientation PDF and its time-periodicity.
We choose a Couette flow geometry with crystal inclusions given
by two different ranges of aspect ratios. For the first model, we use
aspect ratios ranging from 2.5 to 3.5, while for the second model,
we use a range of 2.0–4.0. Both ranges are thus centred about an
aspect ratio of 3.0. As our model only calculates PDFs for a single
aspect ratio, we run the model a large number of times (n = 1000;
greater values of n result in negligible differences in the results),
each time for a slightly different aspect ratio. In the end, we add and
normalize all resulting PDFs thus assuming that the aspect ratios
for the two models are uniformly distributed over the given range.
In Fig. 1, the results in terms of the degree of orientation R are
compared to the reference case with a single aspect ratio a/b =
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Figure 1. Evolution of the degree of orientation R (see eq. 8) in a Couette flow for different assumptions of crystal aspect ratio a/b. The reference case with
crystals of identical aspect ratio of a/b = 3 illustrates the periodic behaviour of the PDF based on Jeffery’s 1922 solution. The other two evolution curves are
computed for uniformly distributed ranges of aspect ratios (see text for details). For distributed aspect ratios, the oscillatory behaviour is damped. The damping
is greater for a broader range in aspect ratios. A full rotation of an individual crystal corresponds to two peaks of the evolution curve. For the two models
with distributed aspect ratios, the periodic behaviour essentially vanishes after 4–5 crystal rotations, and the final degree of orientation of R ≈ 1.57 is closely
approximated by the time-integrated value calculated from eq. (23) in Bazargan et al. (2019).

3.0. Whereas the reference case is periodic for all time, the models
with variable aspect ratios show a rapid decrease in the oscillation
amplitude. After two crystal rotations (corresponding to four peaks
in the reference curve), the amplitude of R has decreased by a factor
of 5 for the narrower range of aspect ratios, and by a factor of about
8 for the broader range. In both cases, the value of R tends towards
an asymptotic value close to the value of R = 1.57 computed from
eq. 23 in Bazargan et al. (2019). In nature, time-periodic behaviour
of crystal rotations may thus be much less pronounced than pre-
dicted from the direct use of Jeffery’s equations for a single crystal
aspect ratio.

3.2 General remarks about the 2-D PDF results

For all models, we compute crystal orientation PDFs for elliptical
crystals with a constant aspect ratio of a/b = 2. Natural crystals
often have a significantly higher aspect ratio, but we choose a rela-
tively low value in order to generate conservative estimates for our
results.

Throughout, we assume that the fluid has a constant viscosity.
In magmatic systems, this is generally not the case, as the melt it-
self is governed by a temperature-dependent viscosity, and also the
melt-crystal suspension has an effective viscosity which depends
on crystal concentration and hence on temperature as well as com-
position (Giordano et al. 2008; Costa et al. 2009). The choice of
using constant viscosity was made to keep the models simple, and
to avoid a proliferation of results for different flow velocities and
different temperature–viscosity functions. Geologically, our results

may be interpreted as magmatic systems which developed rapidly
(in comparison with the thermal diffusion timescale), and which
ceased to flow because of a drop in the driving pressure, rather than
progressive solidification of the magma.

For all flows, we show the velocity field because it is ultimately
the source of all aspects of the crystal rotation dynamics, that is,
the solid-body rotation rate, the pure shear stretching rate, and the
advective velocity. Additionally, we show the vorticity number to-
gether with the direction of the stretching rate ε̇1 at each location
because one may expect that the quantities have significant predic-
tive power for the crystal PDFs. Lastly, we show maps of the most
likely crystal orientation (i.e. the peak of the PDF) together with
the degree of orientation as a summary of the complete 3D PDF
field.

3.3 Flow exiting or entering a planar channel

For flow from a narrow planar channel into a significantly wider
channel, the flow pattern near the outflow is similar to an outflow
into an infinite reservoir. The velocity field is shown in Fig. 2(a).
At the inlet into the channel, the velocity is specified as a constant
value of vx = 10 m s–1. Over a distance of approximately one chan-
nel width, friction against the channel walls causes a Poiseuille flow
to develop with a maximum velocity of vx = 15 m s–1 at its centre
(cf. Turcotte & Schubert 2014). Near the transition from channel to
reservoir, the velocity in the channel gradually decreases because
of the increase in channel width due to the rounded corners of the
transition. Within the reservoir, the flow spreads out approximately
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Figure 2. Results for the models of the transition between channel and reservoir. Left-hand panels are for flow exiting from the channel into the reservoir,
right-hand panels are for the reverse flow. (a) and (d) Velocity magnitude (shading) and direction (arrows) of the fluid flow. (b) and (e) Vorticity number
(shading) and orientation of ε̇1 (tick marks). (c) and (f) Degree of orientation of the PDF (shading) and most likely orientation (peak of PDF) of particles with
aspect ratio a/b = 2 (tick marks). In the conduit-to-reservoir model, particles mostly align perpendicular to the flow direction, while in the reservoir-to-conduit
model, particles align in the direction of flow.

radially from the centre of the outflow, and the magnitude of the
velocity decreases accordingly with approximately 1/D2, where D
is the distance from the channel exit. At large distances from the
channel exit, the geometry of the reservoir affects the velocity field.
Far downstream from the narrow inlet, the larger reservoir effec-
tively acts as a much larger channel, and a parabolic velocity profile
typical of a Poiseuille flow develops over a distance of about one
channel width (i.e. about 10 m).

The pattern of pure-shear stretching (orientation of the tick marks
in Fig. 2b) clearly shows the 45◦-alignment of the ε̇1-axis in the in-
let channel, which is characteristic of Poiseuille flow. At the centre
of the channel, the strain rates are zero, and the observed erratic
orientations of ε̇1 there are due to numerical noise. At the channel
exit, as the flow spreads out radially, the fluid contracts in the di-
rection of the flow, and hence (by conservation of mass) extends
in the perpendicular direction. The vorticity number is near unity
throughout much of the domain, with small regions of elevated Wk

near the corners of the reservoir and at the stress-free outflow from
the modelled domain.

The resulting crystal orientations, summarized in Fig. 2(c), show
rather complex behaviour. In the Poiseuille flow of the inlet channel,
the crystals rapidly orient themselves parallel to the flow direction.
The detailed behaviour is much more complex than what the spatial
resolution allows the model to show. As illustrated in a previous
analysis of a Poiseuille flow with a uniform PDF at the inlet, the
crystal orientations develop into bands of spatially constant PDF
which are nearly parallel to the flow (Bazargan et al. 2019). The
width of the bands decreases towards the edge of the channel, with
infinitesimally narrow bands at the channel walls. As the uniform
PDF at the inlet and as initial condition does not lead to a sta-
tionary solution, the bands continually evolve. The time-averaged
behaviour is a preferred crystal orientation that is exactly parallel
to the flow, and a degree of orientation of R ≈ 0.3. This aver-
aged behaviour is well captured by the model. Past the channel
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exit, the flow regime changes. As a result, the crystals have to re-
align, and because of this, there is a significant decrease in R along
the flow axis.Beyond a distance of about two widths of the nar-
row channel (i.e. about 2 m) downstream of the exit, strong crystal
alignment develops due to the flow-perpendicular pure stretching.
The peak of the PDF of orientations in this regime is perpendicular
to the flow direction, and a very high degree of orientation devel-
ops with values approaching R = 0.8. Near the reservoir walls, the
flow is parallel to the boundary, and within the frictional bound-
ary layer, the flow is well approximated by a Couette flow. In this
region, the preferred crystal orientation is thus approximately par-
allel to the wall. The degree of orientation tends to be lower than
in the centre of the flow, with values around R ≈ 0.3, but with
significant variation due to advection of the previously developed
pattern.

We inverted the flow direction of the model by changing the
outflow to an inflow with constant normal velocity, and at the same
time changing the inflow to a stress-free outflow. The model then
simulates the flow around the entrance into a planar channel. Due
to our choice of boundary conditions, the velocities near the in-
and outflow boundaries are not exactly equal to the inverse of the
velocities of the previous model. At the centre of the model domain,
however, these differences vanish, and the velocity field is effictively
equal in magnitude and opposite in direction compared to that of
the channel exit (Fig. 2d). Since the flow field is incompressible, the
condition ε̇1 = −ε̇2 holds everywhere, and hence the principal strain
rates of the channel entrance model are obtained by exchanging ε̇1

and ε̇2 (Fig. 2e). The degree of crystal orientation is significantly
lower throughout most of the model domain compared with the
model of the channel exit (Fig. 2f). The reason for this is mostly
the advection direction. In the channel entrance model, unaligned
crystals enter from the left-hand side of the domain. The strain rates
are low throughout the central part of the broad channel, and hence
the crystals travel a long distance before any orientation fabric can
develop. Near the channel walls, the flow is largely characterized
by simple shear, a conclusion supported by the fact that the degree
of orientation increases to R ≈ 0.3, and then stagnates around that
value. As the fluid is drawn in a radial direction into the entrance
of the narrow channel, two lobes of high R develop, oriented about
45◦ relative to the axis of the channel. The maximum value of
R ≈ 0.8 occurs just past the entrance into the narrow channel.
Beyond this point, a Poiseuille flow develops with flow-parallel
crystal orientations and R = 0.3.

3.4 Inflating and deflating reservoirs

In the model of the inflating magma reservoir, the velocities are
approximately radially outward from the inflow, and the velocity
magnitude decreases away from the inlet at the base (Fig. 3a). Since
the boundary of the reservoir expands in time, the normal fluid
velocity at this boundary is not equal to zero in absolute terms (al-
though it is zero relative to the moving boundary). The vorticity
number is close to zero along the vertical axis of the reservoir, and
approaches unity near the reservoir walls in the lower half of the do-
main (Fig. 3b). The flow field is dominated by pure shear stretching
parallel to the reservoir walls, and contraction in the perpendicular
direction. However, the flow inlet perturbs the flow pattern in the
lower half of the reservoir, causing the stretching axis ε̇1 there to
be inclined by about 45◦ relative to the walls. High values of solid
body rotation are limited to the immediate vicinity of the entrance
of the reservoir. With relatively low solid body rotation rates and

high pure shear rates, strong preferred crystal fabrics develop par-
allel to the walls at the edges of the reservoir, and perpendicular
to the flow direction near the centre. The maximum value of R oc-
curs in the top third of the reservoir along the flow axis, with a
value of R ≈ 0.9. Interestingly, the degree of orientation is lower
along the boundaries, with R ≈ 0.4 − 0.5. This effect can be ex-
plained by a simple thought experiment. If the chamber inflation
were accommodated by uniform (e.g. elastic) stretching of the ma-
terial inside, then all parts of the reservoir would experience the
same strains and hence the same crystal rotations. For the incom-
pressible fluid of our experiment, the strain rates along the reservoir
edges are the same as for the uniform stretching case (i.e. the to-
tal strain along the edge is dictated by the boundary condition).
Fluid closer to the centre experiences the same pure shear strain
as part of the chamber inflation, but due to the incompressibility
condition, this part of the fluid simultaneously has to move closer
to the chamber wall. This radial motion causes additional stretch-
ing parallel to the wall, and compression perpendicular to it. As a
result, the fluid that starts out close to the centre of the reservoir
and then moves outward develops the strongest degree of crytal
orientation. Near the inlet, the flow along the walls is dominated by
simple shear flow, and the degree of orientation remains close to
0.3–0.4.

The deflating reservoir is characterized by velocities in the di-
rection opposite those of the inflation model (Fig. 3d), and the
corresponding orientations of ε̇1 are perpendicular (Fig. 3e). As a
result, the preferred crystal orientations are more or less aligned
with the flow direction (Fig. 3f). The degree of orientation along the
top half of the boundary is similar to that of the inflation model, thus
lending support to the thought experiment about uniform stretching
in a circular reservoir. The degree of orientation increases along the
flow paths because this material has experienced additional stretch-
ing in the direction of the flow due to the motion from a larger radius
towards a smaller radius within the reservoir. The highest degree
of orientation of R ≈ 0.8 is attained just before the fluid exits the
reservoir.

3.5 Magma flow in channels with sharp bends

In the straight parts of a planar channel, the flow is observed to be
a typical Poiseuille flow (Turcotte & Schubert 2014) with parabolic
velocity profile. Near a bend, the flow pattern is perturbed over a
distance of approximately one channel width up- and downstream
from the centre of the bend. This observation holds for the 45◦ and
for the 90◦ bend as well as for the T-shaped junction. Because of the
similarity of the results of the two kinked channels, we show only
the results for the 45◦ bend (Fig. 4). The velocity pattern through
the bend itself is similar to the Poiseuille flow, but the location of
maximum velocity is shifted towards the inside corner as the flow
follows a smoother, curved path relative to the sharp turn of the
conduit. Both the velocity field (Fig. 4a) and the vorticity number
(Fig. 4b) show that the flow pattern is symmetric about the axis
of the bend. This symmetry is broken in the PDF field (Fig. 4c)
because of the effect of advection of the crystal orientations. This
asymmetry is clearly seen in the intensity pattern of the crystal
orientations, which exhibits a maximum with a magnitude of about
P = 0.5 located downstream and towards the outer edge of the bend.
The dominant orientation of the crystals, however, is essentially
unaffected by the bend, and more importantly, no asymmetry about
the axis of the bend can be discerned (see tickmarks in Fig. 4c).
This means that it is probably impossible to determine the magma
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Figure 3. Results for the models of inflation and deflation of a magma reservoir. Fluid enters or exits the model domain via an inlet or outlet located at the
bottom of the reservoir. (a) and (d) Velocity magnitude (shading) and direction (arrows) of the fluid flow. (b) and (e) Vorticity number (shading) and orientation
of ε̇1 (tick marks). (c) and (f) Degree of orientation of the PDF (shading) and most likely orientation (peak of PDF) of particles with aspect ratio a/b = 2 (tick
marks). In the inflation model, particles mostly align perpendicular to the flow, while in the deflation model, particles align with the flow.

flow direction in a dyke from observations of crystal orientations
near a bend or kink in the dyke.

The flow from a vertical dyke via a T-junction into a horizontal
sill is similar to the flow in a kinked dyke in that high-velocity
zones are channeled towards the inside of the turn, whereas flow in
the outside curve (i.e. in centre of the dyke-sill transition) displays
very low velocities (Fig. 5a). The vorticity number is high within
the high-velocity zones at the edge of the junction, while it is low
(near zero) in the stagnation zone at the centre of the junction
(Fig. 5b). The crystal orientations (Fig. 5c) are mostly aligned with
the flow direction, except in the stagnation zone in the upper part
of the junction. In the stagnation zone, the solid body rotation rate
of the fluid is nearly zero (i.e. zero vorticity number), and hence
the crystals align with the ε̇1-axis, which is horizontal. The degree
of orientation is near unity (i.e. perfect alignment with the PDF

approaching a Dirac delta function) in a small region at the top of
the junction.

3.6 Thermal convection in magma reservoir

Due to the low Rayleigh number of the flow (Ra = 1400), a stable
convection pattern develops with two upwellings and two down-
wellings (Fig. 6a). The strain rate field is dominated by the source
zones of the up- and downwellings where ε̇1 is vertical, and by
the boundary regions with impinging up- and downwellings, where
ε̇1 is horizontal and thus parallel to the boundary (Fig. 6b). Along
the boundaries, the flow between the up- and downwellings is es-
sentially a Couette flow, with Wk ≈ 1, and with ε̇1 oriented at 45◦

relative to the boundary. High values of the vorticity number of
around Wk = 10 are found in small zones to the left and to the right

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/226/1/709/6206830 by U

niversity library of Trom
so user on 13 August 2021



Crystal rotation in magmatic flows 719

-1
Ve

lo
ci

ty
 m

ag
ni

tu
de

 (m
.s

)
 V

or
tic

ity
 n

um
be

r
D

eg
re

e 
of

 o
rie

nt
at

io
n

(a)

(b)

(c)

Figure 4. Flow of magma through a planar channel with a sharp 45◦-bend.
(a) Velocity magnitude (shading) and direction (arrows). (b) Vorticity num-
ber (shading) and orientation of ε̇1 (tick marks). (c) Degree of orientation of
PDF (shading) and most likely orientation (peak of PDF) of particles with
aspect ratio a/b = 2 (tick marks). The flow is symmetric about the centre
of the bend. The resulting pattern of most likely crystal orientations is also
approximately symmetric, while the degree of orientation has a maximum
downstream from the bend. With present analysis techniques of field data,
it is probably not possible to determine the flow direction from field obser-
vations of a kinked dyke. For a sharp 90◦-bend, the results are qualitatively
the same and are therefore not shown here.

of the centre of the convection cells. Due to horizontal heat con-
duction, the convection cells are not perfectly symmetric about the
horizontal axis of the domain. As the cell spins around its centre, it
stretches more towards the horizontally convergent portions of the
up- and downwellings than it does towards the horizontally diver-
gent ends. This asymmetry of the convection cells causes the peaks
of the vorticity number field to be shifted relative to the horizontal
centre line. At the base of the up- and downwellings, the vorticity
number is low, and is identically equal to zero at the stagnation
point.

The field of crystal orientations can be described in terms of three
different zones. Starting at the base of the up- and downwellings,
a vertical PDF pattern develops that increases in strength until the
flow has passed the mid-elevation of the domain. Beyond this point,
the degree of orientation decreases again. The width of the verti-
cally oriented zone increases along the flow direction. Away from the
base of the vertical flows, a second type of zone can be distinguished
along the reservoir walls. The PDF along the boundaries is charac-
terized by horizontal crystal orientations. The degree of orientation
decreases in the flow direction from R ≈ 0.7 near the impinging
plume to R ≈ 0.3 just before the flow enters the next plume. The
centres of the convection cells comprise the third regime of crystal
orientations. Here, the orientations are generally subhorizontal, and
aligned at about 45◦ relative to the local orientation of the ε̇1-axis.
The degree of orientation in the middle of the convection cells is
low, with typical values of R ≈ 0.1 − 0.2, but with irregular zones
of higher values up to R ≈ 0.5. The observed preferred crystal ori-
entations are observed to be constant in time. The centres of the
convection cells thus do not merely spin about their centre, as such
a rotation would lead to secular changes in the orientation field.
Rather, the flow continuously stretches and deforms because of the
quadrilateral shape of the cells and because of their aspect ratio,
which is different from unity. At the transition between convection
cells and boundary layer, as well as at the transition between convec-
tion cell interior and plumes, there is a narrow belt of low degree of
orientation (R ≈ 0 − 0.1) and with fairly random dominant crystal
orientations.

Since the convective flow is in steady state with spatially fixed
up- and downwellings, it is impossible from the results shown to
estimate how rapidly features are created or destroyed in the crys-
tal orientation PDF. However, for a correct interpretation of the
magma dynamics, it may be critical to know whether the observed
PDF represents an instantaneous snapshot of the flow conditions,
or instead is the result of a time-integration of flow conditions that
persisted for a long duration. In order to shed light on this question,
we ran the same convection model with a checkerboard pattern in
x–y-space for the initial condition of the crystal orientation PDF.
The size of each checkerboard square is 10 m by 10 m. Alternating
squares are given preferred crystal orientations of 0 and π with a
width of two elements for the PDF peak in θ . Properly normalized,
the PDF is thus set to a constant value of 5.093 over a θ -range of
0.196 radians. The results (Fig. 7) show that the convective flow
largely destroys a given pattern of the crystal orientation PDF over
a timescale that corresponds to the time taken by a fluid parcel
located in a focused up- or downwelling to traverse the height
of the convective domain. Given the flow pattern, this timescale
corresponds to approximately 20 per cent of a complete convec-
tive overturn. After a time of around 10 per cent of a convective
overturn, the original pattern is strongly distorted, and the peak val-
ues of the PDF have decreased from their original values of P =
5.093 to around P ≈ 2 − 3 near the boundaries and to P ≈ 0 − 2
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Figure 5. Magma flow from a vertical dyke into a horizontal sill. (a) Velocity magnitude (shading) and direction (arrows). (b) Vorticity number (shading) and
orientation of ε̇1 (tick marks). (c) Degree of orientation of PDF (shading) and most likely orientation (peak of PDF) of particles with aspect ratio a/b = 2
(tick marks). Most of the domain is governed by plane Poiseuille flow with corresponding flow-parallel crystal orientations. Within the transition, the crystals
rapidly take an orientation parallel to the horizontal sill. The orientation change inside the junction is due to pure shear deformation similar to the outflow from
a channel into a reservoir. At the top centre of the junction, there is a stagnation point where the velocity approaches zero and the degree of crystal orientation
approaches unity (i.e. a Dirac delta function in the PDF).

at the centre of the flow. After a time of 20 per cent of a convective
overturn, the original checkerboard pattern is so strongly distorted
that it can no longer be discerned. However, the PDF has not been
homogenized completely, and remnants of the original pattern still

persist with PDF peaks of magnitude P ≈ 2. Destruction of the
original pattern and formation of the new, steady-state pattern is es-
sentially complete after a time corresponding to one to two complete
overturns.
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Figure 6. Results for thermal convection with Rayleigh number of 1400. (a) Velocity magnitude (shading) and direction (arrows) of the fluid flow. (b) Vorticity
number (shading) and orientation of ε̇1 (tick marks). (c) Degree of orientation of the PDF (shading) and most likely orientation (peak of PDF) of particles with
aspect ratio a/b = 2 (tick marks).

3.7 Effect of crystal aspect ratio

Throughout our results, we assumed a constant crystal aspect ratio of
a/b = 2.0. In this section, we show results for different aspect ratios
with values a/b = 4.0 and a/b = 8.0. We limit our discussion to the
results for the flow geometry of the channel-to-reservoir transition
because this model locally incorporates different flow regimes such
as plane Poiseuille flow in the inlet channel and divergent flow
within the transition. The most striking difference between identical
models with different crystal aspect ratios is that the range of the
degree of orientation is greater for larger aspect ratios. Whereas the
minimum degree of orientation at the centre of the transition remains
relatively constant with values near zero, the maximum degree of
orientation is about R = 0.7 for a crystal aspect ratio of a/b = 2.0
(Fig. 2c), and it is about R = 0.93 for a/b = 4.0 and about R =
0.97 for a/b = 8.0 (Figs 8a and b). The shape of the contours of the
degree of orientation is similar for the three different crystal aspect

ratios, but they are not identical. Perhaps most notably, for greater
aspect ratios, the maximum of the degree of orientation R is shifted
further upstream. The reason for this is that more elongate crystals
rotate more rapidly when they are approximately perpendicular to
the local alignment direction, while they rotate more slowly when
they are close to local alignment (Jeffery 1922; Bazargan et al.
2019). Taken together, these rotation effects cause elongate crystals
to reach local alignment more rapidly. Since the flow and thus the
advection velocity are the same for all models, maximum alignment
in a locally coherent flow is reached further upstream for more
elongate crystals.

The general conclusions of this section also hold for the other
flow geometries. The crystal alignment patterns shown for an aspect
ratio of a/b = 2.0 are thus geometrically similar to the patterns for
other aspect ratios, but the degree of orientation is greater for greater
aspect ratios.
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Figure 7. Values of the PDF of crystal orientations as a function of x and y for a slice in orientation-space taken at θ = 0. (a) The original checkerboard pattern
(t = 0) shows alternating squares of strong alignment (P = 5.093) and no alignment (P = 0) about the value of θ = 0. In other words, the squares with high
values of P have approximately horizontal crystal orientations, while the squares with low values of P have approximately vertical crystal orientations. (b)
After a time of t = 2 × 104 s (ca. 0.7 per cent of a convective overturn), the pattern is largely unchanged, but the magnitude of the peaks has decreased in the
high-velocity zones of the up- and downwellings. (c) At time t = 2.6 × 105 s (ca. 9.5 per cent of an overturn), the pattern has largely been destroyed in the
high-velocity zones, while a distorted pattern is still discernible along the horizontal boundaries and at the centre of the convection cells. (d) After a time of
t = 5.5 × 105 s (ca. 20 per cent of an overturn), the details of the pattern have disappeared entirely, but some variability remains in the PDF field as a result of
the initial conditions.

4 D I S C U S S I O N

4.1 Comparison with analog models and with field
observations

The model results of this study show how a number of relatively sim-
ple, 2-D flows lead to a great variety of crystal orientation patterns
with variable strength of the orientation fabric. Analog models pro-
vide a set of rigorous tests for our modelling approach because their
velocity fields are generally well constrained. Overall, we find good
agreement between our theoretical calculations and the observed
alignment fabric in analog experiments.

For example, Trebbin et al. (2013) analysed the alignment of de-
formable polymeric micelles in laminar flow of water from a wide
channel into a narrower section and back into a wider channel. The
aspect ratio (i.e. length to diameter) of the micelles is around 100,
which is much greater than the aspect ratio of 2 which we used
in our experiments, and their transition between the two channel
widths is significantly longer than in our model. Nonetheless, the
overall alignment pattern of their micelles corresponds very closely
to our models of flow from a channel into a reservoir and vice versa
(Fig. 2). The similarities are most striking in the channel expansion,
where the alignment of inclusions changes from flow-parallel to
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Figure 8. Model results for the transition from channel to reservoir illus-
trating the effect of varying crystal aspect ratio. Degree of orientation R of
the PDF (shading) and most likely orientation (peak of PDF) for particles
with aspect ratio (a) a/b = 4 and (b) a/b = 8. Results for the same flow
model with crystal aspect ratio a/b = 2 are shown in Fig. 2(c). The crystal
alignment patterns are geometrically similar but not identical. The degree of
orientation is greater for higher aspect ratios. We find that these qualitative
results also hold for other model geometries (not shown).

flow-perpendicular. The alignment intensity is greatest at the centre
of the channel after the flow has passed the expansion, whereas
the flow near the walls is everywhere dominated by simple shear
flow and a corresponding intermediate degree of orientation. At
the inflow to the channel contraction, the degree of orientation in
their experiment shows a very weak minimum in approximately the
same position where our model predicts a relatively strong mini-
mum. As their channel transition (from wide to narrow) extends
over a distance greater than 10 times the thickness of the narrow
section, the flow in the contraction probably remains closer to a
Poiseuille flow throughout, and the patterns observed in our nu-
merical experiments are expressed with much lower intensity. The
fundamental principle that describes the crystal alignment in in-
and outflows from a reservoir has also been described by Paterson
et al. (1998). They introduce the terminology of ‘convergent flow’
for the transition from reservoir to channel, and ‘divergent flow’
for the transition from channel to reservoir. Based on a conceptual
analysis of the flow, they qualitatively predict the alignment pattern
displayed by our analytical results. A similar divergent flow pattern
is encountered in models of magma entering a lava dome, using
plaster of Paris (with a non-linear rheology) as an analog for the
magma (Závada et al. 2009). Also in these models, elongate inclu-
sions orient themselves perpendicular to the flow direction where
the flow spreads out radially. For this type of flow condition, there
is strong agreement between the analog models and our numerical
results.

A flow with a large component of expansion against receding and
stretching reservoir walls analogous to our model of an inflating
magma chamber was studied in a model of diapiric ascent of plaster

with embedded magnetite crystals into a host of fine-grained sand
(Kratinová et al. 2006). Within the plume head, where the similarity
between the two flows is greatest, the crystals are aligned with the
walls of the intrusion. The degree of orientation in the diapir head
is relatively large. Qualitatively, we find good agreement between
our model and the observed crystal alignment in the diapir head.
In the lower parts of the diapir, both the deformations and the
crystal alignment indicate Poiseuille-type flow near the base and
flow divergence near the centre of the diapir. In a different setup,
Buisson & Merle (2002) studied the intrusion of silicone putty
into a pre-existing dome of the same material. The flow does not
contain any inclusions, but instead the strain ellipses are directly
visualized by means of an initial pattern consisting of a regular
grid and circles which is printed in carbon onto one of the lateral
sides of the dome. Since the orientation of the strain ellipsoid is
identical with the direction of the peak of the orientation PDF
for needle-like inclusions (March 1932), the experiment effectively
provides the alignment pattern of inclusions with very high aspect
ratio. With the flow approximately radially outward from the inflow,
the strain ellipses are generally parallel to the outer boundaries of
the dome. The deformation of the ellipses is greatest just outside the
zone of newly intruded material. Both the alignment pattern and the
degree of orientation are thus in good agreement with our numerical
results.

Direct evidence of convection in a magma reservoir based on
crystal orientations is scarce. One possible example is the study of
the La Gloria pluton by Payacán et al. (2014) and by Gutiérrez et al.
(2013). They construct a convection pattern on an exposed cross
section of the pluton based on a number of observations of mag-
netic and magmatic fabrics. Our results lead to a slightly different
interpretation of the flow field because a boundary-perpendicular
crystal orientation appears to be a strong indication of the base of an
up- or downwelling (Fig. 6c). Given the relatively small number of
observation points in the study by Payacán et al. (2014), it is difficult
to construct the complete convection pattern. The process is made
more complicated by the third dimension, which is not accessible
in the observed pluton, but which may have important effects on
the flow pattern and the crystal rotations. Given the size of the plu-
ton, dynamic considerations (i.e. estimates of the Rayleigh number)
indicate that thermal convection is likely to have occurred in this
magma body. With more data points, it may be possible to show
unequivocally that the pattern of magnetic lineations was caused by
convection.

4.2 Determining the flow field from observations of
crystal orientations

Given the velocity field and its evolution in time, it is relatively
straightforward to understand conceptually how the flow field causes
the observed PDF field of crystal orientations. The inverse of this
process is what is generally desired in field observations, but this
approach is more difficult because the knowledge of the local crys-
tal orientations does not allow a direct determination of the flow
geometry or the flow direction. For example, net crystal alignment
along a flow boundary often indicates boundary-parallel shear flow,
as in Couette flow, in Poiseuille flow, and in the models of this study
which simulate a transition between a narrow channel and a reser-
voir. However, boundary-parallel crystal alignment is also observed
in the model of the inflating reservoir, and in the thermal convec-
tion model. In these two models, boundary-parallel alignment is
due to pure shear deformation with negligible solid body rotation.
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Boundary-parallel fabric may thus indicate either simple shear flow
along the boundary, or boundary-parallel pure shear stretching. Typ-
ically, the degree of orientation is greater for flows with pure shear
because these flows are free from solid-body rotation. A more de-
tailed analysis shows that the boundary-parallel fabric in simple
shear flows is due to an orientation of the ε̇1-axis that is inclined
by 45◦ relative to the boundary coupled with a solid-body rota-
tion (Bazargan et al. 2019), whereas the zone of an impinging up-
or downwelling is characterized by boundary parallel stretching,
with the ε̇1-axis aligned with the wall. From the local picture of
crystal orientations alone, it is impossible to distinguish these two
regimes. Additional complications in interpreting observations of
crystal orientations are due to advection of the PDF field. Except
in the simplest of cases, it therefore seems likely that an accurate
interpretation of a given field of crystal orientations requires com-
putation of a forward model of the (assumed) complete flow field,
coupled with the computations of the crystal rotations.

A fundamental issue that arises regards the uniqueness of the
solution. It is clear that the forward model, for given initial and
boundary conditions, always yields a unique solution for the crystal
orientation field. But does a given crystal orientation field allow
the unique determination of the fluid’s velocity field? The answer
is no, as it is straightforward to construct an example of two flow
fields which result in the same crystal orientation field. Consider
two uniform flow fields that extend to infinity. One field deforms
in simple shear, the other in pure shear. For inclusions of infinite
aspect ratio, we know (without having to resort to calculations)
that the PDF of crystal orientations is uniquely determined by the
strain ellipsoid (March 1932). Since both flow fields are described
by spatially constant strain ellipsoids, it is always possible to find
a pure strain field that corresponds to a given simple strain field
(e.g. Jaeger et al. 2009). It seems likely that many more examples
of non-uniqueness in the flow field can be found, especially when
time-varying fields are taken into account. It is presently not known
in practice whether the non-uniqueness of the solution places any
significant limitations on the reconstruction of the velocity field
based on observations of crystal orientations.

An additional potential difficulty in interpreting palaeo-flow di-
rections from observations of crystal alignment arises because not
all instances of crystal alignment are necessarily caused by dif-
ferential rotation in shear flows. Crystal settling and compaction
of cumulates may lead to fabrics that are indistinguishable from
those caused by flow of magma (Holness et al. 2017). Similarly,
SPO may form due to crystallization at the interface between mafic
and felsic magma mushes (Pistone et al. 2015). At low melt con-
centrations, dislocation creep accompanied by recrystallization can
form both SPO and CPO (crystallographic preferred orientation),
thereby destroying some or all of the crystal alignment that was
previously produced in the low-crystal concentration flow regime
(Nicolas 1992). Detailed field observations may in the future be able
to distinguish between the different types of SPO, but at present,
no clear discriminating features have been identified (Holness et al.
2017).

4.3 Beyond Jeffery’s solution for dilute suspensions

An important observation of crystal orientations in dykes is that the
alignment is typically not perfectly parallel to the dyke walls. In-
stead, the dominant crystal orientation often is some 5–30◦ towards
the centre of the dyke relative to the flow direction (Blanchard et al.
1979; Knight & Walker 1988; Arbaret et al. 1996). This pattern is

sometimes described as an imbrication pattern or tiling (Den Tex
1969; Arbaret et al. 1996). The effect is greatest near the dyke
walls and vanishes towards the centre (Knight & Walker 1988).
Furthermore, the angular deviation from the dyke walls appears
to be greater for thicker dykes than for thinner dykes (Knight &
Walker 1988), although the intensity of the effect is often greater
for thinner dykes (Geoffroy et al. 2002). Where observed, the im-
brication pattern can be used to determine the palaeo-flow direction
of magma in dykes (Knight & Walker 1988; Geoffroy et al. 2002).
However, this imbrication pattern is not predicted by Jeffery’s 1922
solution for an isolated ellipsoid embedded in a viscous flow. A bet-
ter understanding of the origin of the imbrication pattern is clearly
desirable in order to have greater confidence in our present theory,
or to amend the theory to fit these observations.

The behaviour of the crystal orientation PDF for Jeffery’s solution
in simple shear flow has been described by Bazargan et al. (2019).
Whereas the individual crystals rotate continuously, but most slowly
when aligned with the direction of shear, the PDF, if initialized as
a random distribution of crystal orientations, oscillates between
random and ordered states (Ježek et al. 1994; Marques & Coelho
2003). At the same time, the peak of the distribution migrates in the
direction of the solid body rotation of the flow. The greatest degree of
orientation is obtained when θ = 0, that is, when the crystals mostly
align with the direction of shear. An observed imbrication pattern is
thus not necessarily an indication that Jeffery’s theory is violated.
However, as shown earlier, for strains corresponding to a few crystal
rotations, small perturbations due to random variations in the flow
conditions lead to a homogenization of the crystal orientations and
hence a decrease in the intensity of the cyclic behaviour of the PDF.
Consistent observations of imbrication patterns in dykes are thus
strong evidence that the crystal rotations are described by dynamics
that are, at least to some degree, different from Jeffery’s theory for
rigid ellipsoids.

Given the above considerations of the PDF evolution, one can
conclude that the shape of the crystals does not have an effect on
the location of the peak of the crystal orientation PDF because the
rotation rate θ̇ (θ ) remains symmetric about θ = 0 (Willis 1977;
Bazargan et al. 2019). The same argument holds true for non-linear
rheologies (Bazargan et al. 2019). The velocity profile in dykes is
described by Poiseuille flow (or so-called plug flow for power-law
rheologies), but at any given, fixed position, the flow is locally iden-
tical with simple shear flow (Bazargan et al. 2019). The observed
imbrication pattern in dykes is thus not a result of Poiseuille flow
conditions in a dyke combined with Jeffery’s solution. Furthermore,
the observed imbrication patterns are typically fairly broad, indicat-
ing that the zone over which the velocity varies is significantly
wider than the crystal size. We therefore do not believe that there is
any strong shear localization which causes the crystal rotations to
deviate from Jeffery’s theory.

The most likely cause for departures from Jeffery’s theory is a
high volume concentration of crystals (e.g. Ildefonse et al. 1992b;
Manga 1998). Jeffery’s theory is exact for isolated crystals, and it is
a good approximation for crystal concentrations corresponding to
an intracrystal spacing of about one to two crystal lengths (Ildefonse
et al. 1992b). For higher crystal concentrations, other theories are
required which take into account the interactions between crystals
caused by the local flow perturbations due to the crystal rotations.
Significant advances have been made in the study of suspensions
of long, cylindrical fibres. Three separate regimes have been identi-
fied: the dilute regime described by Jeffery’s theory; the semidilute
regime in the range (D/L)2 < φ < (D/L), where φ is the volume
fraction of fibres, and D and L are the diameter and the length of
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the fibres, respectively; and the concentrated regime (Dinh & Arm-
strong 1984; Doi & Edwards 1988; Petrie 1999). The concentrated
regime has received relatively little attention because the concen-
trations are so high that the fibres have to line up in parallel in order
to allow significant fluid motion (Petrie 1999). If the same funda-
mentals apply to crystals with relatively low aspect ratio (with an
equivalent value of D/L of around 0.2 or greater), then the bound-
ary between semi-dilute and concentrated regimes is significantly
lower than the critical value of crystal concentrations in magmas
beyond which the effective viscosity of the suspension abruptly in-
creases and flow effectively ceases (Petford 2003). The concentrated
regime is thus probably the most appropriate for magma flows just
before solidification, but an unknown proportion of the final crystal
alignment pattern may have formed in the semidilute regime that
prevailed when the magma was somewhat hotter.

A common characteristic of the various theories of inclusion
rotations in the semi-dilute regime is that rotations are not com-
puted for individual inclusions, but instead the statistical effect of
large numbers of particle–particle interactions is taken into account
(Batchelor 1971; Dinh & Armstrong 1984; Shaqfeh & Fredrickson
1990; Petrie 1999). For example, the interactions may on average
manifest themselves as diffusion of the orientation PDF in the an-
gular directions, with possible anisotropy in the diffusion constant
(Rahnama et al. 1995; Manga 1998). We briefly tested this con-
cept with our model, but in a 2-D setting, there exists only one
possible rotation direction, thus precluding anisotropy. For constant
diffusion in the θ -direction, the time-averaged peak of the PDF for
simple shear flow remains in the flow direction. The observed im-
brication pattern may require more complex theories, or perhaps
the rotational behaviour of the crystals is inherently 3-D (i.e. the
present 2-D analysis may be overly simplified). These concepts need
to be tested further for magmatic systems using either experimen-
tal methods such as those of Arbaret et al. (2019), or numerical
methods which solve explicitly for the combination of regional and
crystal-induced flow (Yamato et al. 2011).

As a final note, we tested our model against the experimental
results of Arbaret et al. (2019). For a final strain of γ = 2.0, they
find a peak angle of θp = 2◦ relative to the flow direction for
isolated grains and θ = 18◦ for clustered grains. The overall fabric
strength is characterized by an axial ratio of R = 1.479. For the
same conditions, using 1000 distinct PDF functions in order to
approximate a lognormal distribution of crystal aspect ratios (with
μ = 0.5 and σ = 0.85), we find a peak angle of θ p = 20◦ and a
fabric strength corresponding to R ≈ 5.6. While the correspondence
between the model and the experimental data is relatively poor, the
results illustrate that the experimental observations are well within
the range of what is predicted by Jeffery’s solution (although the
observed differences between isolated and clustered grains indicate
that Jeffery’s theory is violated). It would be of fundamental interest
to see whether the observed imbrication pattern persists at very large
strains when the cyclic behaviour caused by the initial conditions
has ceased (due to the continuous distribution of crystal aspect
ratios) and the flow is thus more similar to that in a typical dyke.

5 C O N C LU S I O N S

We present numerical results for the magma velocity field and for the
PDF of crystal orientations in common subvolcanic flow geometries.

(i) In channels such as dykes governed by Poiseuille flow, elon-
gate crystals align with the flow direction. Where the channels
abruptly change direction, the crystal orientations generally follow

the channel geometry, but the pattern is smoothed out symmetri-
cally over a distance of about one channel width from the axis of
the bend. The degree of orientation displays some asymmetry about
the axis of the bend, but it is not clear whether this effect is suf-
ficiently strong to allow determination of the flow direction from
field observations.

(ii) For magma exiting a dyke and entering a larger reservoir,
we find that, away from the walls, elongate crystals preferentially
align in the local direction of ε̇1, which is perpendicular to the flow
direction at the dyke–reservoir transition. For the reverse flow of
magma entering a dyke, both ε̇1 and the crystals align with the
direction of the flow. This observation is in good agreement with
results from analogue models.

(iii) In an inflating magma reservoir with uniform stretching of
the bounding walls, crystals become aligned parallel to the walls
throughout the domain except for the immediate vicinity of the
inflow into the reservoir. For the reverse model of a deflating reser-
voir, the corresponding crystal orientations are radial and hence
perpendicular to the walls.

(iv) Thermal convection causes crystal alignment parallel to the
walls where the flow due to convection cells impinges on the bound-
ary, and where flow is parallel to the boundaries. Crystal alignment
is normal to the walls where the flow turns away from the boundary.

(v) In general, we find that identical flow regimes but with crystal
inclusions of different aspect ratio lead to similar crystal alignment
patterns. The overall degree of orientation is greater for crystals with
higher aspect ratio. This result is fortuitous, as it means that a natural
system with a range of crystal aspect ratios can be approximated by
a model with a single aspect ratio, such as the mean of the aspect
ratio distribution.

(vi) Our method solves the forward problem of finding preferred
crystal orientations from the velocity field, and hence from the basic
underlying dynamics. For typical applications, it is the inverse prob-
lem that needs to be solved, which consists of inferring the flow and
its dynamics from observations of crystal orientations. An inherent
difficulty of the inverse problem is non-uniqueness when isolated
subdomains are considered. For example, boundary-parallel ori-
entations may indicate boundary-parallel shear flow, or they may
indicate pure shear flow impinging on the wall. For such cases, it
is necessary to find a globally consistent flow field. On the other
hand, crystal orientations normal to the boundary are probably good
indicators of thermal convection, because the competing candidate,
namely a local contraction of the boundary such as in a deflating
reservoir, is physically unlikely to occur.
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