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Abstract
With the advance of cloud computing and centralization of data, a new effort
goes entirely in the other direction and aims for decentralization of data
through local-first software. Collaborative applications created this way need
strong undo and redo support to handle the inevitable mistakes that take place
in a collaborative setting.

Local-first software can be effectively built using Conflict-Free Replicated Data
Types (CRDTs), where all the application data is stored locally at the user.

This paper presents the design and implementation of a new approach for
undoing and redoing operations in a modern open-source operation-based
CRDT. The current approach is severely limited and can only undo local
operations. Our approach allows for generic and selective undo and redo
for consistently replicated registers.
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1
Introduction
While cloud computing continues to centralize our data in the cloud, where
our data will be wholly-owned and controlled by other companies, local-first
software takes a different path and stores all user data locally at the user’s
computer. Updates to the user’s data modify the local data first before sharing
its data with the application or peers in a network. Storing the data locally at
the user gives the user complete control and ownership of his data.

When operating with local-first software and there is a need for shared data
between users, there is also a need for consistency. There are several ways of
achieving this, with the most prominent being Operational Transform (OT) and
Conflict-Free Replicated Datatypes (CRDT). OP has long been commonly used
for solving consistency; however, as OP can be very complicated to implement
correctly, there has been an increased usage of CRDTs.

CRDTs are often used for collaborative applications, for example, for creating
collaborative editing programs. With many users editing the same data struc-
ture, there will often be conflicts and mistakes where users will want to undo
and redo their edits.

Automerge is a JSON-CRDT which means that it has a similar structure as that
of a JSON document, while it also possesses CRDT capabilities which allow it
to be shared among users. As we will see in chapter 3, Automerge has limited
undo and redo capabilities. In this paper, we design and implement generic
undo and redo for the register implementation of Automerge.
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2
Technical Background
This section explains the background information on CRDTs, the different
types of CRDTs, and current work on generic undo on CRDTs. First, we will
explain what a join semilattice is, which is the background for state-based
CRDTs.

2.1 Join Semilattice

We first provide the definitions for what a poset is and what a least upper bound
is, and then we can define a join semilattice [1] using those definitions.
Definition 2.1.1. A partially ordered set is a set X with a binary relation ≤ where
the following conditions hold for all a, b and c in X
1. 0 ≤ 0 X is reflexive.
2. if a ≤ b and b ≤ a, then a = b X is antisymmetric.
3. if a ≤ b and b ≤ c, then a ≤ c X is transitive.
Definition 2.1.2. The least upper bound of b and c is an element where 0 ≥ 1

and 0 ≥ 2, and there is no other element a’ where 0′ ≤ 0 and 0′ ≥ 1 and 0′ ≥ 2.
Definition 2.1.3. A join of two elements in a partially ordered set is their least
upper bound.
Definition 2.1.4. Join semilattice is a partially ordered set where all pairs of
elements have a least upper bound.

Adding to this definition, we define a monotonic join semilattice.
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4 chapter 2 technical background

Definition 2.1.5. A monotonic join semilattice is a join semilattice where merging
two states in the semilattice computes the least upper bound of the two states.
Also, all updates applied to a state are inflationary, meaning that a state always
monotonically increases when it applies new updates.

2.2 Strong Eventual Consistency

Strong Eventual Consistency (SEC) [2] ensures that two nodes that have
received the same updates also have the same state. As its name suggests, SEC
is a more substantial property than eventual consistency, and it is a crucial
property of CRDTs. We start by defining eventual consistency.
Definition 2.2.1. A distributed system of replicated data that satisfies the follow-
ing three properties is eventually consistent.
Eventual delivery: If an update is delivered to one replica, it is eventually deliv-
ered to all replicas.
Convergence: Replicas that have received the same updates will eventually con-
verge to the same state.
Termination All method executions terminate

Strong Eventual Consistency adds a stronger convergence constraint to eventual
consistency.
Definition 2.2.2. A system has strong eventual consistency if it is eventually
consistent, and replicas that have received the same updates have an equivalent
state. This property is called strong convergence.

From these definitions, we can see that SEC ensures that all replicas with
the same updates also have the same state. EC does not guarantee this since
two replicas with the same updates might need to communicate between
themselves to arrive at the same state after some time. That is, EC may need
coordination to resolve conflicts.

2.3 CRDTs

CRDTs are data structures that are replicated across multiple nodes. Each
replica is updated locally, and at specific points, the replicas communicate their
changes to other replicas. When a node receives updates from other nodes, it
merges the new changes into its local data structure. No consensus algorithm
is needed when communicating new changes. All CRDTs have strong eventual
consistency as defined above, ensuring that replicas have an equivalent state
when they have received the same updates.
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2.3.1 State-based CRDTs

A state-based CRDT is a monotonic join-semilattice, as defined earlier. This
property also ensures that it is strongly eventually consistent [2]. When a replica
in a state-based CRDT communicates its updates with another replica, it sends
its entire state to the other replica. The other replica will then receive the
other state and merge it with its own. The merge function is both commutative,
associative, and idempotent. These properties ensure that updates do not need
to arrive in any particular order, and they can arrive multiple times. Replicas
will then have an equivalent state as long as they have received the same
updates in any order.

One of the downsides of state-based CRDTs is sending the entire state to other
replicas when communicating their updates. In many data structures, the state
can be of significant size, meaning that they will often send a large amount of
data. For this reason, state-based CRDTs are more often used in file systems
and databases, where updates are infrequent and where updates often change
large parts of the data structure. When updates are frequent and small

2.3.2 Delta State-based CRDTs

Delta state-based CRDTs are similar to state-based CRDTs; however, they
recognize the main problem with state-based CRDTs: they have to send their
entire state to other replicas when they want to communicate updates. Delta
state-based CRDTs improve on state-based CRDTs in that replicas only send
the join-irreducible state that the other replica has not seen yet. We define the
join-irreducible state and the join decomposition of a state below.
Definition 2.3.1. Join irreducible state is a state that cannot be the join of any
other states except for itself. In other words, we can regard join-irreducible states
as primitive states.
Definition 2.3.2. The join decomposition of a state is the set of join-irreducible
states that compose the state when composed together. [3]

When two replicas in a delta state-based CRDT wish to communicate their
updates, they will compute the join decomposition of their state and figure out
the smallest set of join-irreducible states that they can send to each other. They
will then communicate only the join-irreducible states that the other node is
missing.
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2.3.3 Operation-based CRDTs

Operation-based CRDTs change their state through operations that specify a
change to the state. When replicas communicate their latest changes to other
replicas, they only communicate the latest operations that they have received.
Comparable to delta state-based CRDTs, this gives them the advantage that
they do not have to send the entire state when communicating.

A critical difference between operation-based CRDTs and the two other ap-
proaches discussed above is that operation-based CRDTs require causal delivery
of messages. This difference means that operation-based CRDTs need a causal
broadcast channel or a deterministic way to determine the order of concurrent
messages.

2.3.4 Similarities Between Different Type of CRDTs

State-based, delta state-based and operation-based CRDTs are considerably
similar and can emulate each other. We can see that an operation-based CRDT
can have operations that send join-irreducible states, in which case we would
have an operation-based CRDT that emulates a delta state-based CRDT. We
could also create an operation that contains the entire state and merges it, in
which case we would have emulated a state-based CRDT. Paper [2] shows that
op-based and state-based are equivalent with respect to supporting SEC.

This insight is helpful since it allows us to translate solutions for one type of
CRDT to another type of CRDT.

2.4 Undo

Undo and subsequently redo are two important functionalities in collaborative
systems. Users will often make mistakes that they will want to undo, and they
will also want to undo the mistakes of the other users with whom they are
collaborating. A common problem regarding undo in collaborative environ-
ments is whether a user should undo other users edits, called global undo, or if
they should only undo their own, called local undo[4]. It is more common for
systems to offer local undo as it is easier to implement and can be considered
more intuitive for some systems.

Another common consideration that is important to make in a collaborative
system is whether one can only undo the latest edits or if one should be able
to undo any edit. The ability to undo any previous edit is called selective
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undo.

2.5 Undo-length

One way of implementing undo and redo on delta state-based CRDTs is by
using undo-lengths as first described by Weihai [5]. The undo-length is an
integer that is zero for normal changes, and we increment it each time we
undo/redo that change. For example, if we add a = 10 to a register CRDT,
then that change has an undo-length of 0. When we undo that change, then
the undo-length is incremented to 1, and then to 2 when we redo that change
again. We show an example in figure 2.1

Figure 2.1: Example of undo-state CRDT

Undo-length is a part of the undo-state CRDT that can be augmented with
any other delta state-based CRDT to provide generic undo support. The undo-
state CRDT works by registering join-irreducible states and mapping them
to their undo-length. We can merge two undo-states by merging the maps
of join-irreducible states to their undo-length and then choosing the highest
undo-length if the join-irreducible state exists in both maps.

From the map of join-irreducible states to undo-lengths, we can build the entire
state of the CRDT by joining the join-irreducible states where the undo-length
is an even number. If it has an even number, then the state has either not been
undone or undone and then redone again. If the undo-length is odd, then the
join-irreducible state is currently undone, and we should not use it to build the
entire state.





3
Automerge
Automerge [6] is an open-source operation-based CRDT that is implemented
in JavaScript. It presents a similar interface as a JSON document that can
be shared and collaborated on between users. We start by explaining some
common terminology used when discussing Automerge.

3.1 Terminology

Node is an independent process that runs Automerge. A distributed system
can consist of many nodes on different physical computers that collaborate
with Automerge. However, we can also run several nodes on a single computer
that all collaborate on Automerge.

Actor Id is the unique identification of a node in Automerge.

Object Id is the unique identification of an object in Automerge. Ordinary
objects in Automerge are maps, lists, tables, and text. Objects will often contain
other objects.

Sequence number is a number that identifies a change performed at a specific
node. The sequence number starts at 1 for the first change, 2 for the second,
and increments for each change.

9
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Vector clock is a map of actor id to its sequence number. All nodes keep track
of the latest sequence number they have received from each node, and they
keep track of it in a vector clock.

Dependencies is a list of changes from different nodes on which a single
change depends. Nodes store these dependencies as a vector clock.

Operation An operation is a single modification on an Automerge object. For
example, it can be to create an object or set a property on an object.

Change A call to Automerge.change can make multiple modifications to an
Automerge document, where it can change several objects. These modifications
are all recorded as multiple operations that are stored in a single change. A
change applies multiple operations atomically.

3.2 Interface

In this section, we show an overview of the interface of Automerge in order to
understand how we can use it.

Function Description
init Creates an initial empty document.
from Initializes a document from a JavaScript object.
change Makes a change to the document through a callback function.
undo Undoes the last local operation on the document.
redo Redoes a previously undone operation on the document.
load Loads a document from JSON format.
save Allows saving a document by returning it in JSON format.
merge Merges changes from another node.
getChanges Gets changes from an updated document compared to an older version.
getHistory Gets all changes from a document since the beginning.
applyChanges Applies a list of changes to the document.

Table 3.1: Automerge Interface

Nodes collaborating with Automerge will start by creating their empty local
document using Automerge.init, and then they will start making changes
to the document using Automerge.change. They can then get a list of the
changes they have made using Automerge.getChanges, then they send those
changes to other nodes that can merge them using Automerge.applyChanges.
We will see more examples of this process in this chapter.
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3.3 Using Automerge

In this section, we will show some examples of how to use Automerge so that
the reader gets an understanding of how Automerge works.

3.3.1 Map Object

We will start with the map object, which is similar to a standard JavaScript
object. That is a dictionary with a text key to any object type as a value. We
show an example below.

1 doc1 = Automerge.from(
2 { country: "Norway", knownFor: "oil & gas" }
3 );
4 doc1 = Automerge.change(doc1, doc => {
5 doc.knownFor = "fjords"
6 });
7 // doc1 = { country: "Norway", knownFor: "fjords" }

Listing 3.1: Use of map object

In the listing 3.1, we can see that we initialize the document with a JavaScript
object using the Automerge.from function, and then we update the knownFor
property using the Automerge.change function.

3.3.2 Merging Changes

A process running Automerge will collaborate with other processes, and they
need to merge their changes eventually. A node can share its latest changes
with another node by sending them across the network to another node. The
other node can then apply the changes with the Automerge.applyChanges
function. We show an example below where we continue from listing 3.1 and
send the changes to another node.

1 changes = Automerge.getHistory(doc1);
2 network.broadcast(JSON.stringify(changes));
3

4 // On the other node
5 doc2 = Automerge.init();
6 changes = JSON.parse(network.receive());
7 doc2 = Automerge.applyChanges(doc2, changes);

Listing 3.2: Sending changes across network
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In listing 3.2, we first get all the changes from the first node before we send
those changes over to the second node. The receiving node gets the changes
and applies them to an empty document using Automerge.applyChanges.
The two nodes are then up to date with each other. If the second node had also
made some changes, we would send them to the first node similarly.

If we have two documents in the same process, which is typical for testing, then
it is simpler to merge changes using the Automerge.merge function, which we
will use in most examples. In listing 3.3 below, we show how we can merge
the changes of one document to the other, achieving the same as in listing
3.2.

1 doc2 = Automerge.init();
2 doc2 = Automerge.merge(doc2, doc1);

Listing 3.3: Merging two documents in same process

In listing 3.3 above, we merge the changes from doc1 into doc2. We assume
doc1 has already made some changes similar to listing 3.1.

3.4 Other Types of Objects

In addition to the map object, which we will explore more in this thesis,
Automerge provides several other types of objects that we will show in this
section. Among these objects is the counter object for numbers that several
nodes can increment. The counter object adds concurrent increments by several
nodes, while if we used a JavaScript number in an object, then Automerge
would choose only one of the concurrent increments.

For handling text, Automerge provides the text object which will merge con-
current changes to a collaborative text document. Automerge also provides
the table object for handling tables similar to those found in databases that
support referencing other tables and joining them together.

We show an example of the counter and text object below.

1 doc1 = Automerge.from({
2 counter: new Automerge.Counter(),
3 text: new Automerge.Text()
4 });
5 doc2 = Automerge.merge(Automerge.init(), doc1);
6 doc1 = Automerge.change(doc1, doc => {
7 doc.counter.increment()
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8 doc.text.insertAt(0, 'foo')
9 });

10 doc2 = Automerge.change(doc2, doc => {
11 doc.counter.increment()
12 doc.text.insertAt(0, 'bar')
13 });
14 doc1 = Automerge.merge(doc1, doc2);
15 // doc1 could now be either
16 // { counter: 2, text = 'foobar' } or
17 // { counter: 2, text = 'barfoo' }

Listing 3.4: Counter and text object

Listing 3.4 shows two documents that increment a counter and add text at
the same index in a text object. The counter increments get added, and the
text gets merged when we merge the two documents. Note that since both
documents insert text at the same index, Automerge will choose priority based
on ActorId, which makes sure that all nodes that merge text will receive the
same result.

3.5 Undo And Redo

Automerge supports undo and redo on local operations. A node can only undo
the operations that it has created itself, and it cannot undo operations that
originate from other nodes. In addition, it can only undo the last operation
in the history. In order to support this, Automerge has an undoStack. Every
time a node performs a local operation, it pushes the inverse operation onto
the undoStack. Automerge also has a corresponding redoStack, where every
time a node undoes an operation, it also pushes the inverse of that operation
to the redoStack. Each stack has a stack pointer that keeps track of which
operations have currently been undone and redone.

This implementation is limited in that it can only undo and redo the last
local operation on a node. It also requires two stacks that both grow large
when the number of operations made is substantial. In the most recent release
of Automerge, the undo/redo feature is disabled, citing that "It was a bit of
a hack" and that they hope to bring a better implementation in the future
[7]. In the next chapter, we will show our solution to a better undo/redo
implementation.
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3.6 Architecture

The Automerge architecture consists of two main parts, the frontend, and the
backend. Despite the naming, both parts of the architecture will run in the
same process. However, it is possible to split the frontend and the backend
apart and run them on different servers; this requires minor changes to the
source code. Splitting the frontend and backend can be helpful in order to
run the frontend and backend on different threads, such as offloading the UI
thread. Note that Automerge does not provide any network functionality for
communicating between nodes. The user will have to convert changes to JSON
and send that to other nodes using the network functionality that they have
available.

3.6.1 Frontend

Automerge presents the frontend as a JavaScript object to the user, which the
user can modify with the Automerge.change function. This object also has
several hidden properties created using JavaScript symbols [8, p. 41]. When
the user creates a change locally, the frontend will detect the modifications
made to the frontend object, and it will then create operations from these
modifications and put them into a change sent to the backend. If a node
receives a change from another node, the frontend will receive a patch from
the backend instead of creating it.

3.6.2 Backend

The backend consists of an operation set [9] which is essentially a list of
changes called the history, along with a queue. The operation set also contains
other properties for keeping track of which dependencies the node has to on
changes from other nodes.

A node handles changes from other nodes in the backend. The backend adds
the changes to its queue, where they remain until the node applies the de-
pendencies of the change. When all dependencies are satisfied, the change
is applied and added to the history list. Then the backend sends a patch of
the change to the frontend. When a node creates local changes, they are first
created in the frontend, and then it sends a change request to the backend,
where it applies the change to the backend.
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Selective Undo and Redo of
a Register

This chapter explains the abstract algorithm we use for selective undo and
redo of a register using DAG ordering on operations. We do not discuss undo
and redo on operations that edit different registers, as we show in the next
chapter that this case is trivial. Instead, we only focus on changes to the same
register.

4.1 Requirements

The current system for undo and redo in Automerge can only undo and
redo the latest local change. Our system needs to undo and redo both local
changes and changes from other nodes, and we should be able to undo/redo all
previous changes known to our node. We list all the requirements for the system
below and note that our examples only use a single value for our registers for
simplicity. The result is still the same as values with different keys are primarily
independent.

Our system needs concurrent updates between nodes and structural equality
between them. We also need selective undo/redo, which means that undo and
redo will be parameterized by the operation to be undone or redone. In figure

15
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4.1, we can see that structural equality on operations means that two nodes can
apply the same update for the same key, communicate that update, and when
a node undoes that update, then the key is deleted. Without structural equality,
node A would have two operations setting the value to 10, and undoing one of
them would leave the other remaining.

Figure 4.1: Structural Equality

Our system also needs a default resolution mechanism when two nodes make
different concurrent changes.

Figure 4.2: Conflict Resolution

In figure 4.2 we can see that both nodes resolve to the same value after commu-
nicating with each other. They do this with a deterministic resolution method.
In Automerge, this resolution method consists of comparing the actorIds of
the two nodes and giving priority to the node with the highest id. Figure 4.2
also shows that new updates should be prioritized over an undo/redo of an
older update. We also expect every undo to reveal the most recent update,
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which we have not undone yet.

4.2 Undo-lengths

The undo-length for a normal operation is always zero, and it is then incre-
mented by one whenever an operation is undone or redone. We can only undo
an operation with an undo-length that is an even number, and we can only
redo an operation if the undo-length is an odd number.

4.3 DAG ordering on Operations

Two operations from different nodes can be either concurrent or casually
dependent on one another. If they are concurrent, we use a deterministic
way of checking the priority of each operation that all nodes can calculate
independently. This ordering allows us to create a partial order on normal
operations, which we can visualize as a DAG that moves from the newest
operation to the oldest. We show an example DAG below from figure 4.2. It
shows the state of node A at the end. We show undo operations as inverse
operations.

Figure 4.3: DAG ordering on operations

In figure 4.3 we can see the structure of the DAG. Concurrent operations share
the same box, and we can think of the arrows between operations as signifying
the "previous" operation. It tells us which operation we should make current
in case we undo/redo the current operation. The current operation in figure
4.3 is the one on the bottom. Structurally, it is equal to the operation that it
reinstated when it undid the previous operation. Note that when we apply
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deterministic conflict resolution to the concurrent operations, the DAG becomes
a total order, which is essential to realize since the ordering needs to be total
and deterministic.

When we undo an operation, we can use the DAG to access the previous
operation to restore it. We restore the operation by creating another instance
of it, adding an edge to the original operation.



5
Implementation
This chapter will explain the changes we have made to Automerge in order
to support generic undo. We have chosen to focus on register changes in Au-
tomerge when implementing generic undo, which means we can set properties,
update them, and delete them. Thus, we will not discuss undo on list, text,
table, and counter objects. However, the method we use may apply to those
objects as well. We would need to create inverse operations for all operations
that those objects bring along.

We start by looking at some changes to the interface of Automerge before we
discuss our solution using DAG ordering on Automerge changes.

5.1 Structural Equality on Changes

One main difference between the delta state-based CRDT used in previous
implementations of undo-lengths [5] and that of Automerge is that changes
that are equal in the structure are considered equal in delta state-based CRDTs
even if they originate at different nodes. Automerge does not use structural
equality; instead, it identifies a change by its sequence number and the actor
id from the node from which it originates.

Structural equality on operations is essential when implementing generic undo
through undo-lengths, as when two nodes undo the same change, the two

19
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undo operations have to be considered equal. It is for this reason that we
implement structural equality on operations for Automerge. The change we
made to Automerge is that when a node receives a change from another node,
it will first check if it already has a structurally equal change to the change it
receives. If it has such a change, then the node does not apply the incoming
change.

With structural equality, we also add a new property to the Automerge backend.
We call this property changes and it is a map from the hash of a change to
the change itself. This is useful when implementing the DAG that we explain
later.

5.2 Selective Undo

As we have mentioned in the undo section of the technical background chapter,
there are two main ways of undoing edits. A common way is to allow the user
to undo the latest edit and only redo the latest undo if the last edit was an
undo. Automerge uses this approach; however, the undo-state CRDT [5] is a
delta state-based CRDT that allows for selective undo.

Selective undo means that we can undo any edit, even if that edit is not the lat-
est. With selective undo,we also have a selective redo,which is that we can redo
any previously undone edit. To achieve selective undo, we have changed the
undo and redo interface of Automerge, to instead use Automerge.undoChange
and Automerge.redoChange. We show basic usage of this new interface be-
low.

1 doc = Automerge.change(Automerge.init(), doc => { 'a': 10 });
2 changes = Automerge.getHistory(doc);
3 doc = Automerge.undoChange(doc, changes[0]);
4 changes = Automerge.getHistory(doc);
5 doc = Automerge.undoChange(doc, changes[1]);

Listing 5.1: Selective undo/redo interface

In listing 5.1, we first set a property ’a’ to the value 10 on an empty document.
Then we get all the changes in the history of our document, which is just one
in this case. We send this first change into Automerge.undoChange, to undo
it, and then we proceed to redo the undo change afterward, thus restoring the
property ’a’.
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5.3 DAG Ordering on Changes

As mentioned earlier, we will focus on register changes when nodes set proper-
ties on Automerge.Map objects. First, we consider the case where two nodes
change different properties on the same map object, and they do not overwrite
any properties. Changes on different nodes are the simplest case.

When nodes in Automerge change different properties on the same object, we
can undo those changes by applying the inverse change, which is to delete
the property. When we recognize that we have this scenario, we compute the
inverse change from the change that we are undoing, and then we increment
the undo-length from the change we are undoing.

The more complex scenario arises when nodes overwrite the value of the same
property. That is, they overwrite a register value. When we undo a change that
overwrites a register value, we must restore the previous value of the register.
In order to restore the previous value, we must find out what that value is. To
achieve that, we add a link to the previous value when we overwrite it. A link,
in this case, is a hash of a change. We can use this hash to retrieve the change
from the changes map, which we explained in section 5.1.

When changes that overwrite the same property are non-concurrent, this
process is simple, as we can recognize that we overwrite a register value, then
hash the previous change and add the hash as a link.

When concurrent changes overwrite the same property, there are two cases.
The first case is when the local change is determined to be the first change
based on the Automerge priority. In this case,we can apply the incoming remote
change and add a link from the remote change to the local change.

In the other case where the local change is determined to be logically second to
the remote change, we have to add a link from the local change to the remote
change, and we must transfer any link that the local change might have over
to the remote change.

5.4 Undo-lengths

We have discussed undo-length in the technical background. We set an undo-
length on each Automerge change. It starts at zero, and Automerge increments
the undo-length each time an operation is undone or redone. We use undo-
length to prioritize between undo/redo changes of the equivalent original
change, where the change with the highest undo-length has the highest priority.
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If a node receives a change from another node with a lower undo-length than
it currently has, then that change is ignored. In the other case, when the undo-
length is higher, then the incoming change is applied and prioritized over the
local change.

5.5 Undo and Redo Examples

In this section we show a detailed example of using the new selective undo/redo
system, and how it uses DAG ordering and undo-lengths. For the following
example, we assume that doc2 will have priority over doc1, which means, that
doc1.a will be equal to 20 after the first merge.

1 doc1 = Automerge.from({'a': 10});
2 doc2 = Automerge.from({'a': 10});
3

4 doc1 = Automerge.change(doc1, doc => doc.a = 5);
5 doc2 = Automerge.change(doc2, doc => doc.a = 20);
6 doc1 = Automerge.merge(doc1, doc2);
7

8 changes = Automerge.history(doc1);
9 doc1 = Automerge.undoChange(doc1, changes[2]);

10

11 changes = Automerge.history(doc1);
12 doc1 = Automerge.redoChange(doc1, changes[3]);

Listing 5.2: Example of undo and redo

Figure 5.1 shows how the DAG is constructed in the history of doc1 at end
of listing 5.2. From the example, we can see that undo and redo operations
are applied as normal operations and contain all the necessary information as
would a normal operation. However, they also have an undo-length showing
how long their undo/redo chain is.



5.5 undo and redo examples 23

Figure 5.1: DAG in history of doc1





6
Discussion and Future
Work

Automerge currently has limited undo and redo support. We have even seen that
undo and redo support has been completely removed since its author deemed
it unsatisfactory. In this thesis, we have designed a new way of implementing
generic undo and redo for Automerge. There are still improvements to be made,
which we discuss in the next section.

6.1 Future work

For this thesis, we have focused on allowing for generic undo on register oper-
ations in Automerge. However, Automerge has several data types in addition
to registers.

6.1.1 Supporting Other Object Types

We have seen in chapter 3 that Automerge supports lists, counters, tables,
and text. Even though we have only added support for register changes in
Automerge, we believe that it is possible to support all other object types in
Automerge using the same approach.

25
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6.1.2 Conflict Resolution

We have seen that Automerge resolves conflict resolution by comparing which
document has the highest actor-id. An improvement could be to let the user
control the conflict resolution through an API, either manually or through
a different algorithm. Greater control would allow the user to make better
applications where conflicts are better suited to the application, decreasing the
usage of undo and redo.



7
Conclusion
In this thesis, we have designed and implemented generic undo and redo
support for Automerge, allowing users to undo any operation and not only
local operations. In addition, we support selective undo and redo. There is
still room for extending this work to support all data types in Automerge
fully.
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Appendix
For this thesis, my supervisor Weihai and I published a paper which has been
accepted to the journal CDVE2021. The paper explains our algorithm for generic
undo on registers. We show the paper below.
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in Collaborative Applications
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Abstract. A collaborative application supporting eventual consistency may tem-
porarily violate global invariant. Users may make mistakes. Undo and redo are a
generic tool to restore global invariant and correct mistakes. A replicated register
allows a collaborative application to concurrently read and write at different sites.
Currently, there is very little undo and redo support of eventually consistent repli-
cated registers. We present an approach to undo and redo support for eventually
consistent replicated registers. We also present a work-in-progress implementa-
tion in a popular open-source library for collaborative applications.

Keywords: Data replication, optimistic concurrency control, eventual consistency,
undo, redo

1 Introduction

Most collaborative applications replicate data at different sites and apply optimistic
concurrency control that supports eventual consistency [12]. A system with eventual
consistency may temporarily violate some global invariant, such as overbooking of
resources. For applications such as online shopping and collaborative editing, human
users introduce additional mistakes. Undo and redo are a generic tool to restore global
invariant and correct human mistakes.

Register is one of the simplest and most fundamental data types. An application
writes a value to a register and later read the value that it has written. For example, the
font type of a document’s title could be a register. An eventually consistent replicated
register, or EC register for short, allows different sites to independently reads and writes
their local register instances. The values of the instances converge when the sites have
applied the same set of write updates to their local instances.

Undo and redo in collaborative applications are generally well understood and sup-
ported for immutable data elements that an application can insert into or delete from a
composite data collection, such as a set or a document [2, 7, 11, 13, 15]. Undo and redo
support for EC registers, however, has not been very well understood and supported.

In this paper, we first discuss the issues and requirements of undo and redo support
for EC registers. We then present an approach to supporting undo and redo for EC
registers. The approach is based on the causality of the write updates and their undo
and redo updates. We also present a work-in-progress implementation of the approach
in a popular open-source library for collaborative applications.



2 Technical issues

There exist two types of EC registers. LWW (last-write wins) register [5,8] is the mostly
used EC register. Each write update of the register is associated with a timestamp (or
priority in general). For two concurrent updates to the register, the one with the greatest
timestamp value wins. The resolution to the conflict is thus lossy. The concurrent update
that loses the competition gets lost.

Multi-value register [1, 9] makes lossless resolution among concurrent updates at
the cost of application complexity. All concurrent updates are preserved and presented
to the application. It is up to the application to decide a new value based on the multiple
presented values.

When the updates to a register are sequential or serializable, such as in a single-
user editor or an ACID (atomicity, consistency, isolation and durability) database, the
system can maintain the history of the updates as a linear sequence of values. If the
system knows the current position in the sequence, it performs an undo or redo by
simply setting the register with the appropriate previous or next value in the sequence.

Under concurrent write updates, the update history is no longer linear. Unless we
restrict what can be undone, for instance, by only allowing the undo or redo of the
updates that were originated locally, finding a unique previous or next value is no longer
trivial.

In addition to the normal write updates, undo and redo updates can also be per-
formed concurrently at different sites. Neither do these undo and redo updates follow a
linear order.

Essentially, we must address two issues. First, what is the current undo-redo status
of the register? Second, given the current undo-redo status, what should be the appro-
priate value after the undo or redo?

Researchers count the number of undos and redos to figure out the current undo-redo
status of an update [11,13,15]. We use undo length [15] for this purpose. For immutable
values that are inserted into or deleted from a data collection, it is sometimes sufficient
to perform an undo or redo when we are able to figure out the current undo-redo status.
For EC registers, there has not been a solution for the second issue yet.

3 Requirements

An eventually consistent system must allow a site to independently perform updates to
a register. The updates should include not only normal write updates but also undo and
redo of any previously performed update.

When the sites are connected, they must be able to merge concurrent remote updates
without any coordination. For example, they must be able to independently resolve
conflicting updates without collecting votes from a quorum of sites.

The state of the register instances at different sites must be convergent. That is,
when the sites have applied the same set of updates, regardless of the order in which the
updates are applied, the instances must report the same register value.

The behavior of the register should be the same as a sequential system when the
updates are sequential. As a special case, when we only make undo and redo on locally
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Fig. 1. A scenario of concurrent register updates

originated updates, the behavior should be the same as existing systems that only allow
undo and redo of local-only updates.

The system should combine the benefits of current best practice, i.e. LWW and
multi-value registers. On the one hand, the system should be able to resolves conflict
among concurrent updates, with existing commonly applied conventions, such as LWW.
On the other hand, while the system resolves conflict on behalf of the application or
user, the application or user should still be able to make an explicit choice.

We illustrate the requirements with an example scenario. In Fig. 1, there are two
instances of the same register at sites A and B. The instances have the same initial value
0.5. The sites independently write a new value with write updates w1 and w2. Suppose
the priority (such as a timestamp value) of w2 is greater than the priority of w1. When
receiving the update from the remote site, each site independently resolves the conflict
and the update w2 wins. The register instances at both sites have the same value 2.0.

Now, suppose the application at the two sites do not agree with the automatic res-
olution that the system has made, they can independently make an explicit resolution
by undoing the update of w2 with w−1A

2 and w−1B
2 . The new value of the register now

becomes 1.0.
Of course, the system must allow any undone update to be redone. If the application

at site A regrets the undo and redoes w2 with w−2A
2 , the register at the site is restored back

to value 2.0. Moreover, the redo w−2A
2 wins over the concurrent undo w−1B

2 (even though
w−1B

2 arrives at site A after w−2A
2 has finished), because w−1B

2 has the same intention as
w−1A

2 and site A had already seen the intention of w−1A
2 when it performed w−2A

2 . In
other words, we say that site A has now figured out that the current undo-redo status of
w2 is “redone”, or the update of w2 is “effective”.

Now, site B performs a new write update w3. It is critical that the sites can indepen-
dently resolve the conflict between the new update w3 and the concurrent undo and redo



updates w−1A
2 , w−1B

2 and w−2A
2 . It makes sense that the latest update w3 wins over the

previous update w2, including its undo and redo updates w−1A
2 , w−1B

2 and w−2A
2 . Hence

the new value of the register becomes 3.0.
If site A now undoes w3 with w−1A

3 , the system restores the register with update w2,
which is currently redone. So the final value of the register becomes 2.0.

Note that if w2 had been originated at site A, the behavior of the register would have
been the same as a system that only allows undo and redo of locally originated updates.

4 Ordering normal, undo and redo updates

To resolve the conflicts of concurrent write updates and their undo and redo updates,
the sites must be able to decide an order among them. In this section, we first consider
the order of normal write updates and then take undo and redo into account.

4.1 Normal write updates

Two write updates are either concurrent or one of them is causally dependent on the
other. For two write updates w and w′, we write w||w′ if they are concurrent and w→w′

if w and w′ apply to the same register and w happens before w′ (or w′ causally depends
on w).

The causality of updates on a register forms a partial order. We can draw a DAG
(directed acyclic graph) where the vertices are the write updates on a register, and there
is an edge from update w to update w′ if w→ w′ and there does not exists an update
w′′ on the same register such that w→ w′′ and w′′ → w′. That is, there is a direct (or
immediate) causal dependency from w to w′.

Given a DAG of write updates on a register, we call an update w a head update in
the DAG if there is no update w′ in the DAG such that w→w′. Clearly the head updates
of the current DAG determine the current value of the register. The head updates are
concurrent with each other and are originated from different sites.

A LWW register uses a priority to resolve the conflicts among the head updates,
whereas a multi-value register present all head updates to the application which then
makes a new update based on the presented updates. We propose that the system uses
LWW to resolve the conflict, but an application can still explicitly choose a different
concurrent update by undoing the current winning update.

4.2 Undo and redo updates

A commonly accepted semantic (or effect [10]) of an undo is that undoing an update w
on a register has the same effect on the register where the update w has never occurred.
This semantic should apply to concurrent undos of the same write update. When a
write update w is undone, the causality of the still-effective updates that was established
before the undo remains the same.

The redo of a write update w may have two alternative semantics. The first alterna-
tive is that w has never occurred (due to the undo) and a complete new update is applied.
The second alternative is that the undo of w has never occurred and the effect of w is



restored. We found the second alternative more natural and therefore choose that alter-
native. The effect of restoring w is that we have restored the DAG that was established
before the undo of w.

Based on the discussion so far, we propose the following way to determine the order
among the updates. We first build the DAG according to the causality of the updates.
Undoing an update does not change the DAG. Instead, we mark the vertex for that
undone update as ineffective. When the update is redone, we mark the vertex back to
effective. The current value of the register is determined by the effective head updates.

A site usually only undoes the last effective update, since it does not make sense for
an application to undo an update that is not currently in effect. The reader should not
confuse this with selective undo [10, 13, 14] where an application can undo or redo any
update in the history which contains the updates on all data objects (including different
registers).

5 Undo lengths

Now that we are able to maintain the order among the updates on a register, the remain-
ing task is to figure out whether a particular write update is effective at present. Here
we adopt undo length [15] to figure out the current undo-redo status of a write update.

Notice that in Fig. 1, we used w−1A
2 and w−2A

2 to denote the undo and redo of update
w2 that site A performed. In general, we can use wls to denote an undo or redo of update
w that site s performs. Here the l in wls (where l > 0) is called the undo length of w.
wls is an undo of w if l is an odd number. Otherwise, it is a redo. In other words, the
undo-redo status of a write update is only dependent on its current undo length (i.e. it
is independent of which sites that have performed the undo or redo updates).

6 High-level algorithms

For an EC register, a site maintains a set G of write updates. An update w is a 6-tuple
〈o,k, p, l,v,D〉, where o is the unique identifier of w, k is the vector clock [3] value, p
is the priority, l is the undo length, v is the register value and D is the set of the write
updates which w immediately depends on. For a write update w, we use kw, pw etc. to
denote the k and p elements of w.

The set G represents the DAG of updates described in Section 4.1. Unlike tradi-
tional graph data structures, the links of the DAG are maintained backward, through the
immediate causal dependencies (starting from the head updates). For a set G of write
updates, we also maintain HG ⊆ G, the head updates of G.

Initially, the set G is empty.

w← 〈newId(), readClock(G),getPriority(),0,v,HG〉
G← G∪{w}
HG←{w}
return w

Algorithm 1: Local update write(v)



When writing a new value v to the register (Algorithm 1), we generate a globally
unique identifier, a new vector clock value and a priority for the new write update w.
For any write update w′ in G, the new vector clock value kw > kw′ . Furthermore, for
any write update w′′ that is currently not in G, kw 6> kw′′ . The new update w depends
immediately on the head updates in HG. The initial undo length of w is 0. We insert w
into G. The new head of G consists only of this new write update w.

w← G.find(o)
if w∧ even(lw) then

lw← lw +1
return 〈o, lw〉

Algorithm 2: Local undo undo(o)

We can only undo an effective update. An update is effective when its undo length
is an even number. To undo an effective update, we simply increment its undo length
with 1 (Algorithm 2).

w← G.find(o)
if w∧odd(lw) then

lw← lw +1
return 〈o, lw〉

Algorithm 3: Local redo redo(o)

Similarly, we can only redo an ineffective update, whose undo length is an odd
number. To redo the update, we simply increment its undo length with 1 (Algorithm 3).

A site broadcasts the representation of local updates returned by Algorithms 1, 2
and 3 to remote sites.

A site merges an incoming remote update only when the update is causally ready,
i.e. when the site has applied all the updates which the incoming update depends on.

G← G∪{w}
H ′←{w′ ∈ HG|kw′ < kw}
HG← (HG \H ′)∪{w}

Algorithm 4: Merge update w

To merge a new write update w (Algorithm 4), we insert w into G. Since update w
may have already seen some of the head updates of this site, we remove from HG the
updates that w has seen (with clock values less than kw), and then add w as a new head
update.

w← G.find(o)
lw←max(lw, l)

Algorithm 5: Merge undo or redo 〈o, l〉
To merge an undo or redo update (Algorithm 5), we update the undo length of the

write update. The new undo length is the greater one of the incoming undo length l and
the undo length lw that has been locally recorded.



H← HG
while H 6= /0 do

He←{w ∈ H|even(lw)}
if He 6= /0 then

return resolve(He)
DH ←

⋃
w∈H Dw

DDH ←{w ∈ DH |∃w′ ∈ DH : kw < kw′}
H← DH \DDH

return UNDEFINED
Algorithm 6: Query current value read()

To get the current value of the register (Algorithm 6), we must obtain the head
updates of the current effective sub-graph of G. We do this in a loop that starts with the
head updates of G. In the loop, H is the set of updates that are the current candidates
of effective head updates. We first get the effective updates He ⊆ H, the updates whose
undo lengths are even numbers. If He is not empty, we get the register value with the
resolve function which resolves the conflicts among the effective updates in He using
the priorities of the updates. That is, the resolve function returns value vw of update w
in He such that for all w′ in He, pw ≥ pw′ .

If none of the current head updates in H is effective, we try to obtains a set of new
head updates from the sub-DAG (G\H). To get the new head updates, we first get DH ,
the set of updates that the updates in H depend immediately on. We then eliminate the
updates in DH that some other updates in DH depends on.

We iterate over the sets of head updates of the sub-graphs until we get an ef-
fective write update. If no write update in G is effective, the query returns a special
UNDEFINED value.

7 A work-in-progress implementation

In Section 6 we presented the algorithms for EC registers at a rather high and abstract
level. In this section, we report our work-in-progress implementation in Automerge1,
a popular open source library for collaborative applications. Briefly, Automerge is a
Javascript library of a JSON CRDT [6]. A CRDT (conflict-free replicated data type) [9]
is a data abstraction specifically designed for data replicated at different sites. The sites
can independently query and update the local CRDT instances. A CRDT guarantees
that when all sites have applied the same set of updates, the states of the instances at
these sites converge.

A JSON2 document is a tree of nodes. A branching (or intermediate) node is either
a key-value map (also known as an “object” or “name-value pairs”) or a sequential list.
In a map, a key is, at any given time, associated with a value. A key in a map is basically
a register. In what follows, we will restrict our discussions on the setting (i.e. writing)
and fetching (i.e. reading) the value of a given key.

At present, Automerge only allows a site to undo and redo the latest updates that are
originated locally at the site. To achieve this, a site maintains an undo stack and a redo

1 https://github.com/automerge/automerge
2 https://www.json.org/json-en.html
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stack. When the site performs a local update, it generates a reverse update and pushes
it to the undo stack. To perform an undo, it pops and performs an update from the undo
stack, and also pushes the corresponding original update into the redo stack.

In our current implementation, we have removed the undo and redo stacks from
Automerge. Fig. 2 shows the revised software structure of a site. Instead of using the
undo and redo stacks, we now maintain the information necessary for undo and redo in
the history of updates.

A site consists of a front end and a back end (Fig. 2). A collaborative application
updates and queries the JSON document in the front end. The update operations include
linking a new node to the JSON tree (including linking a new key to a key-value map),
setting a new value to a key in a map, inserting a data element into a list and deleting an
element from the list.

The JSON CRDT is stored in the back end. When the front end has performed a
local update, it inserts an update for the CRDT in the queue. The queue also contains
the remote updates the site has received.

The back end performs the updates in the queue that are causally ready. After it has
performed a remote update, it generates an update (called a patch) for the front end.
Basically, we can regard the front-end document as the cache of the query result on the
latest back-end CRDT state.

The back end also maintains a history of updates that it has performed. One purpose
of the history is for the site to synchronize its local updates with remote sites. Now, we
also use the history for the purpose of undo and redo.

The representation of an Automerge update (an update object) for the JSON CRDT
contains some meta data, including the unique identifier of the site (known as actor-id)
that originally performed the update, the sequence number of the update at the original
site, the updates that this update immediately depends on, the unique identifier of the
data element, etc. An update is uniquely identified with the (actor-id, sequence number)
pair. Automerge uses actor-ids as priorities to resolve conflicts between concurrent write
updates.



1. Site A after w−2A
2

w1 w2 w−1A
2 w−2A

2

head

2. Site A after w−1B
2

w1 w2 w−1A
2 w−2A

2

head

w−1B
2

3. Site A final w1 w2 w−1A
2 w−2A

2 w−1B
2

w3 w−1A
3

head

4. Site B final w2 w1 w−1B
2

w3 w−1A
2 w−2A

2 w−1A
3

head

Fig. 3. Histories of updates

In order to implement the high-level algorithms presented in Section 6, we aug-
mented the update objects with additional meta data. More specifically, an update object
in the history contains now an additional link to a previous update object as well as the
undo length of the update. The update objects of a register are now linked sequentially
in a total order that respects both the partial order of the DAG (Section 4.1) and the pri-
orities of the concurrent updates. In other words, the links now encode different types of
relations between updates, namely, the immediate causal dependencies, priority order,
and undo and redo updates. A site only maintains the links locally and does not include
them when it sends update objects to remote sites.

Fig. 3 shows the update histories at the two sites for the scenario illustrated in Fig. 1.
When the back end has performed an update, it appends an update object to the end of
the history. If the register happens to be updated in causal order or in the order in which
the conflicts are resolved (Fig. 3-1), we link the new update object to the last update
object of the register in the history. If a new remote update loses the competition with
a concurrent update (Fig. 3-2), we re-arrange the links so that the linked list respects
the order for conflict resolution. Fig. 3-3 and Fig. 3-4 show the final histories at sites A
and B.

To perform a remote update, we first check if the register exists using the identifier
of the updated data element. If it does not exist, we simply perform the update, append
the update object to the end of the history and mark this object as the head update. If the
register exists, we append the update object to the history and scan the history backward
until we find the head update of the register. We re-arrange the links and set the new
head update using the meta data in the update objects. Then, we start from the new head
update and follow the links until we reach an effective update. We generate a patch
according to that effective update and send patch to the front end. While traversing
through the links, when we have visited an ineffective update, we skip over all the



objects of that update. For example, in Fig. 3-3, when we have visited w−1A
3 , we skip w3

and visit w−2A
2 , which is effective. So we generate a patch that writes the register with

value 2.0. Notice that because w−1A
2 and w−1B

2 have the same effectiveness, their order
in the sequential list does not play any role. Therefore the final histories at sites A and B
are in fact equivalent.

In summary, the update history maintains two different orders. The physical order
in the history allows the different sites to synchronize with each when they get con-
nected. The linked list of the update objects of the same register allows the sites to
independently determine the current value of the register.

8 Related work

Supporting undo and redo for concurrent updates has been an active research topic,
both in the area of collaborative editing [10,11,13,14] and CRDTs for general-purpose
collaborative applications [15]. At present, there is no general support for undo and redo
of concurrent updates on eventually consistent replicated registers.

The authors of [15] presented an approach to generic undo support for CRDTs.
In [15], an update is represented with a join-irreducible state of the (state-based) CRDT
where the states form a join-semilattice [4]. Defining appropriate join-irreducible states
for replicated registers is non-trivial. For example, LWW registers [5, 8] use timestamp
values as the order of the join-semilattice, but timestamp values may not sufficiently
capture the causality of the updates. For multi-value registers [1, 9], it is not clear what
a previous value should be when we apply an undo to a write update. We address the is-
sues by combining different orders on the updates: the causal order of the normal write
updates (similar to multi-value register), the priority order of concurrent write updates
(similar to LWW register), and the order of undo and redo updates of a particular write
update (via undo length [15]). We then presented the high-level algorithms for main-
taining and using these different orders. Finally, we presented an implementation that
combined these different orders into a single total order.

9 Conclusion

We have first discussed the issues and requirements of undo and redo support for even-
tually consistent replicated registers, and then presented a new approach. The new ap-
proach is based on the causality of the write updates and their undo and redo updates.
The approach addresses the issues and meets the requirements, and it embodies the
existing best practice of replicated registers. When the system automatically resolves
conflicts among concurrent updates, the new approach falls back to LWW registers.
The application using this approach is able to explicitly resolve conflicts through undo
and redo, surpassing the capability of multi-value registers. When undo and redo are
restricted to locally originated updates, the approach behaves the same as existing sys-
tems with such restriction. However, this new approach is not just an ensemble of the
current best practice. It allows an application to undo and redo any update, which no
existing system supports.
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