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Abstract
The interaction of the solar wind and the Earth magnetosphere cause auroras.
The energetic electrically charged particles, mostly electrons, accelerate along the
Earth magnetic field lines into the upper atmosphere, where they collide with gas
atoms, causing them to emit light. Some planets also have auroral emission in their
characteristic environment. The Jovian magnetosphere is the largest magnetosphere
of the solar system and its system is different from the Earth. The auroras on Jupiter
can be studied with high sensitivity and resolution by the Hubble Space Telescope
(HST) Ultraviolet (UV) and far-ultraviolet Space Telescope Imaging Spectrograph
(STIS) and Advanced Camera for Surveys (ACS) instruments. I present the planetary
auroral imaging techniques, geometrical transformation and subtraction the airglow
model, which can be used as a pre-processing to the image before further process by
the VOronoi Image SEgmentation (VOISE) algorithm [6]. VOISE is a dynamic and
self-organising algorithm which creates a partition of an image pixel into Voronoi
diagram (VD) regions according to prescribed homogeneity criteria. The Jovian
auroral image was selected from the APIS database [8]. Using a planetary model [7],
the geometric transformation was performed to get the polar projection, build the
airglow model and subtract it from the original to make a clear auroral representation
in the two dimensional image.





Acknowledgements
I am grateful to Professor. Patrick Guio for helpful discussions and the Planetary
model section is based on his note. I couldn’t do this thesis work without his
help.





Contents
Abstract i

Acknowledgements iii

List of Figures vii

1 Introduction 1
1.1 Objective of this project . . . . . . . . . . . . . . . . . . . . 1
1.2 Jovian aurora and magnetosphere . . . . . . . . . . . . . . . 2

1.2.1 Earth’s magnetosphere and aurora . . . . . . . . . . 2
1.2.2 Jovian magnetosphere . . . . . . . . . . . . . . . . . 5

1.3 Coordinate and latitude system . . . . . . . . . . . . . . . . 6

2 Planetary auroral imaging 7
2.1 APIS database (Auroral Planetary Imaging and Spectroscopy

service) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Determination of the center of the planet . . . . . . . . . . . 8
2.3 Right ascension and declination . . . . . . . . . . . . . . . . 9
2.4 Geometric transformation . . . . . . . . . . . . . . . . . . . 10

2.4.1 Orthographic projection . . . . . . . . . . . . . . . . 10
2.4.2 Rotation of the image . . . . . . . . . . . . . . . . . . 11
2.4.3 Polar projection . . . . . . . . . . . . . . . . . . . . . 13

2.5 Airglow model and subtract it from the image . . . . . . . . 15
2.5.1 Cosine illumination model . . . . . . . . . . . . . . . 15
2.5.2 Minnaert model . . . . . . . . . . . . . . . . . . . . . 17
2.5.3 Li model . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Result and discussion 23
3.1 Result of airglow models . . . . . . . . . . . . . . . . . . . . 23
3.2 Discussion and conclusion . . . . . . . . . . . . . . . . . . . 26

4 Appendix 1: Planetary model from Professor Patrick Guio’s note 27
4.1 Planetary model . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Limb projection . . . . . . . . . . . . . . . . . . . . . . . . . 29

v



vi contents

4.3 Terminator projection . . . . . . . . . . . . . . . . . . . . . . 33
4.4 Cusp points and terminator determinant . . . . . . . . . . . 36
4.5 Find visible and hidden terminator . . . . . . . . . . . . . . 39

5 Appendix 2: Voronoi diagram and VOISE algorithm 41
5.1 Voronoi diagram . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 Delaunay triangulation . . . . . . . . . . . . . . . . . . . . . 42
5.3 VOISE algorithm . . . . . . . . . . . . . . . . . . . . . . . . 43
5.4 Initialization phase . . . . . . . . . . . . . . . . . . . . . . . 44
5.5 Dividing phase . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.6 Merging phase . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.7 Regularization phase . . . . . . . . . . . . . . . . . . . . . . 47

6 Appendix 3: Minnaert model Matlab code 49

7 Appendix 4: Li model Matlab code 53



List of Figures
1.1 Schematic illustration of the Earth’s magnetosphere. The Earth’s

magnetic field lines are shown as modified by the interac-
tion with the solar wind. The solar wind, whose flow speed
exceeds the speeds at which perturbations of the field and
the plasma flow directions can propagate in the plasma, is
incident from the left. The pressure exerted by the Earth’s
magnetic field excludes the solar wind. The boundary of the
magnetospheric cavity is called the magnetopause, its nose
distance (black arrow) being '< Sunward (upstream) of the
magnetopause. The bow shock shows the incident flow, and
the perturbed solar wind plasma between the bow shock and
the magnetopause is called the magnetosheath. Antisunward
(downstream) of the Earth, the magnetic field lines stretch
out to form the magnetotail. In the northen portion of the
magnetotail, field lines point generally sunward, while in the
southern portion, the orientation reverses. These regions are
referred to as the northern and southern lobes, and they are
separated by a sheet of electrical current flowing generally
dawn to dusk across the near-equatorial mangetotail in the
plasmasheet. Low-energy plasma diffusing up from the iono-
sphere is found close to Earth in the region called plasmas-
phere whose boundary is the plasmapause. The dots show the
entry of magnetosheath plasma that originated in the solar
wind into the magnetosphere, particularly in the polar cusp
regions. Inset is a diagram showing the three-dimensional
structure of the Van Allen belts of energetic particles that
are trapped in the magnetic field and drift around the Earth.
Source: The New Solar System (eds. Kelly Seatty et al.), CUP/Sky
Publishing. Credit: Steve Bartlett; Inset: Don Davis..[15] . . . 4

vii



viii l ist of f igures

1.2 (Left) Illustration of the System III coordinate system. The z-
axis is defined by the spin axis of Jupiter. The x-axis is defined
by 0° latitude on the System III longitude _� � � = 0° which
is the prime meridian of Jupiter. The y-axis completes the
orthogonal left-handed system. Latiutude V defined from the
equator. (Right) Illustration of the planetocentric (Φ′) and
planetographic (Φ) latitudes. . . . . . . . . . . . . . . . . . . 6

2.1 The image of Jupiter taken by HST 2007-02-20 (Dataset:
j9rlb0fxq_drz). This is the raw data which has no extensions
and less information than the processed one. The scale of the
image is in pixel. . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 The image of celestial sphere and right ascension and decli-
nation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 A vertical perspective from infinity with parallel rays. This
is the sketch of the orthographic projection. The planetary
model which has (G,~, I)-coordinate system is projected into
the tangent plane (GB, ~B)-coordinate. Orthographic image is
the same image we see in the picture of the planet. The origin
of the (GB, ~B)-coordinate is always at the center of the ellipse
(limb) of the planet. The center point is corresponding to the
sub-Earth point of the planet to the Earth observer. . . . . . 10

2.4 Rotation of the planetary image. The planetary model grid is
rotated with the angle of (U − U�() ) where U is the position
angle between celestial north (direction normal to the eclip-
tic) and the axis of the Jupiter. U�() which is the orientation
angle between celestial north and the + 3 axis of HST camera. 11

2.5 The rotated image of Jupiter with grid lines (Dataset: j9rlb0fxq_drz).
This is the same image of Fig 2.1 but plotted with the plane-
tary model grids and lines of limb and terminator generated
by the algorithm of Appendix 1. The center of the planet is
checked with SPICE tool kit and IMCCE query service. Then
the center point is chosen manually corrected one. The scale
of the image is transformed pixel to arcsec. . . . . . . . . . . 12

2.6 Sketch of transformation of two dimensional planetary image
into polar projection. . . . . . . . . . . . . . . . . . . . . . . 13

2.7 The image of Jupiter in polar projection (Dataset: j9rlb0fxq_drz)
with the planetary model grid. The azimuth of 0 ° is the CML
line. The image scale is transformed arcsec to the scale of
Jovian radius '� . The intensity of the image converted into
auroral brightnesses (1 kR represents a photon source flux of
109cm−2s−1 radiating into 4 c steradians) using the the con-
version factor 1 kR = 1.473×10−3counts s−1 pixel [11] of total
H2 emission over the 80-170 nm spectral range. . . . . . . . 14



l ist of figures ix

2.8 The illustration of the observer zenith angle \ and the cosine. 16
2.9 S catter plot of ln(� `) as a function of ln(``0) with 1 degree

resolution. The asymmetry of the sunlit side and the termi-
nator side is clearly seen in the latitude bin close to the pole
and the equator. The asymmetry in the polar latitude bin is
considered to be caused by the auroral emission. . . . . . . . 18

2.10 There is a difference in day and night side mean intensity
function of MLAT. The range between the red vertical lines is
determined as the auroral oval region following criteria. The
outside of the red vertical lines is the non-auroral region. . . 20

2.11 Peak auroral region intensity in MLAT range of -87° to -66° .
There are seen some peaks of auroral emissions. . . . . . . . 20

2.12 Non auroral region pixel intensity vs cosine of Solar Zenith
Angle (SZA) and Observer Zenith Angle (OZA). . . . . . . . 21

3.1 The polar projection of subtracted image. The image scale is
the Jovian radius '� . The azimuth of 0 ° is the CML line. The
intensity of the image is converted into auroral brightnesses
(1 kR represents a photon source flux of 109cm−2s−1 radiating
into 4 c steradians) using the the conversion factor 1 kR =

1.473 × 10−3counts s−1 pixel [11] for total H2 emission over
the 80-170 nm spectral range. . . . . . . . . . . . . . . . . . 23

3.2 (Top) Original image (Dataset: j9rlb0fxq_drz). The intensity
unit is the numbers of photons count per Pixel (Middle) calcu-
lated Minnaert model from the original image with the Min-
naert model with 1 degree latitude bins, (Bottom) The sub-
tracted image. The scale of the image is in pixel. . . . . . . . 24

3.3 (Top) Original image (Dataset: j9rlb0fxq_drz). The intensity
unit is the numbers of photons count per Pixel (Middle) cal-
culated Li model from the original image with the Minnaert
model with 1 degree latitude bins, (Bottom) The subtracted
image. The scale of the image is in pixel. . . . . . . . . . . . 25



x list of figures

4.1 (From [7]) Sketch of the geometry of the planet and the ob-
server. The eccentricity of the planetary ellipsoid is exagger-
ated for clarity. The figure is a cut through the planet that
contains the plante’s rotation axis I and the observer direc-
tion %obs. The G -axis is contained in the equatorial plane of
the planet and in the plane of the figure. The direction n̂B is
the local normal of the ellipse perpendicular to the observing
direction %obs. The plane of the limb is contained in a plane
perpendicular to the figure and its intersection with the plane
of the figure is the dashed line segment. n̂! is the direction
normal to the plane of the limb and pointing toward the ob-
server. The angle between n̂! and the G -axis is Vn̂! . Finally
(GB, ~B) are the axes for the plane of the sky as seen by the
observer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.1 An example of Voronoi diagram. Dots are seeds, dashed lines
and solid lines are bisector between associate seeds. Each
region with a point separated by the lines is VR. VD appears
with a form of dashed and solid lines. . . . . . . . . . . . . . 42

5.2 An example of the appearance of Voronoi graph and the De-
launay triangulations. . . . . . . . . . . . . . . . . . . . . . 43

5.3 (from [6]) The image of how the weights effect on seed place-
ment. Seeds are added to the central hexagonal region (upper-
left panel) recursively for three iterations, adding 18 seeds.
The weights are FB = 1

4 , FE =
3
4 (upper-right), FB = 1

2 , FE =
1
2 (lower-left), FB = 3

4 , FE =
1
4 (lower-right), . . . . . . . . . 45



1
Introduction
1.1 Objective of this project

The goal of this project is to develop a planetary auroral image processing tool
around the Voronoi Image SEgmentation (VOISE) algorithm [6]. The application of
VOISE has been presented in some astronomical imaging. One is the semi-automatic
planetary disc parameters detection which contains the limb and terminator equations
and fitting algorithm[4]. Also the method for auroral feature detection by combined
image segmentation and clustering analysis[3]. For this project, our interest is to
understand the planetary auroral physics from images. The images are often captured
by both ground- and space-based instruments, and have been studied. Planetary
auroral images have become a particularly useful diagnostic tool for morphological
characterizations of the planetary aurora and its magnetosphere. During the last two
decades, the Hubble Space Telescope (HST) has provided high sensitivity and high
resolution images of Jupiter and its moons, Saturn and Uranus in the ultraviolet
(UV) spectral region space observation required. The images capture spectacular
auroal phenomena occurring in the polar region of the gas giants as a result of
strong magnetospheric particles raining down onto the planet’s upper atmosphere.
At Jupiter and Saturn, the dominant atmospheric species is hydrogen, which emits
in the UV when excited by auroral electron impact. Combining remote imaging
with in situ data allows the study of magnetospheric processes and how they affect
the planet’s upper atmosphere, and ionosphere via the planet’s magnetic field, and
the footprint auroral emission of satellites. However, before getting into the more
interpretative physics of the planetary aurora, the techniques of the image processing
have to be defined. For example, before to any detailed investigation, we need to get a

1



2 chapter 1 introduction

set of parameters for these images related to each particular observation. In addition,
geometrical transformation technique is required so that we can understand the polar
region aurora from a 2 dimensional image. Moreover, the faint or noisy features of
the image need to be removed, for further processing by VOISE. For this project, we
chose the Jovian auroral images. The important steps for planetary auroral imaging
are introduced in the second chapter of Planetary auroral imaging.

1. Introduce the data source of images with basic information and tools for
identifying the astronomical parameters to each data set. The motivation for
this is to know the exact geometry of the planetary aurora. This step is in
sections 2.1 to 2.3.

2. Geometric transformation to 2 dimensional image by using planetary model
provided by Professor Patrick Guio. Because, we want to look down and
study the polar region aurora, polar projection to the 2 dimensional image is
required. This step is in section 2.4.

3. Program two airglow model to isolate the intrinsic auroral emissions. This
is a pre-processing method before further image processing by VOISE. This
step is in section 2.5.

1.2 Jovian aurora and magnetosphere

1.2.1 Earth’s magnetosphere and aurora

The term magnetosphere was introduced by T. Gold in 1959 to describe the region
above the ionosphere in which the magnetic field of the Earth controls the motions of
charged particles. The magnetic field traps low-energy charged particles and forms
the Van Allen belts, torus-shaped regions in which high-energy ions and electrons,
tens of keV and higher, drift around the Earth. The control of charged particles by
the planetary magnetic field extends many Earth radii into space but terminates near
10 Earth radii in the direction toward the Sun. At this distance, the magnetosphere is
confined by a low density magnetized plasma called the solar wind that flows radially
outward from the Sun at supersonic speeds. Qualitatively, a planetary magnetosphere
is the volume of space from which the solar wind is excluded by a planet’s magnetic
field. A schematic illustration of the terrestrial magnetosphere is given in Fig 1.1,
which shows how the solar wind is diverted around the magnetopause, a surface
that surrounds the volume containing the Earth, its distorted magnetic field, and
the plasma trapped within the field[15]. This qualitative definition is far from
precise. Some solar wind plasma finds its way in and dynamical phenomena give
clear evidence of intermittent direct links between the solar wind and the plasmas
governed by a planet’s magnetic field. Auroras are the result of disturbances in the
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magnetosphere caused by the solar wind. These disturbances alter the trajectories of
charged particles in the magnetospheric plasma. These particles, mainly electrons
and protons, precipitate into the upper atmosphere then they collide with gas atoms,
causing the atoms to give off light.
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Figure 1.1: Schematic illustration of the Earth’s magnetosphere. The Earth’s magnetic field
lines are shown as modified by the interaction with the solar wind. The solar
wind, whose flow speed exceeds the speeds at which perturbations of the field
and the plasma flow directions can propagate in the plasma, is incident from the
left. The pressure exerted by the Earth’s magnetic field excludes the solar wind.
The boundary of the magnetospheric cavity is called the magnetopause, its
nose distance (black arrow) being '< Sunward (upstream) of the magnetopause.
The bow shock shows the incident flow, and the perturbed solar wind plasma
between the bow shock and the magnetopause is called the magnetosheath.
Antisunward (downstream) of the Earth, the magnetic field lines stretch out to
form the magnetotail. In the northen portion of the magnetotail, field lines point
generally sunward, while in the southern portion, the orientation reverses. These
regions are referred to as the northern and southern lobes, and they are separated
by a sheet of electrical current flowing generally dawn to dusk across the near-
equatorial mangetotail in the plasmasheet. Low-energy plasma diffusing up
from the ionosphere is found close to Earth in the region called plasmasphere
whose boundary is the plasmapause. The dots show the entry of magnetosheath
plasma that originated in the solar wind into the magnetosphere, particularly
in the polar cusp regions. Inset is a diagram showing the three-dimensional
structure of the Van Allen belts of energetic particles that are trapped in the
magnetic field and drift around the Earth. Source: The New Solar System (eds.
Kelly Seatty et al.), CUP/Sky Publishing. Credit: Steve Bartlett; Inset: Don
Davis..[15]
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1.2.2 Jovian magnetosphere

The Jovian magnetosphere is the largest magnetosphere of the solar system. The
distance from the planet center of the dayside magnetopause can reach to 100
Jovian radii

(
'�

)
, while the limit only reach to 10 Earth radii for Earth. Jupiter’s

internal magnetic dipole axis is tilted by 9.6° from the rotation axis of the planet
and its rotation period is 9h55m. The Jovian magnetosphere structure is usually
divided into 3 regions: the inner magnetosphere expands from 5 to 10 '� , the
middle magnetosphere spans from 10 to 40 '� , and the outer magnetosphere ranges
from 40 '� to magnetopause. The Jovian magnetosphere differs from the Earth
magnetosphere in two main aspects, one is the plasma source and another is the
energy source. The Earth magnetosphere is a solar wind-driven magnetosphere
in which both the plasma and the energy mainly originate from the solar wind.
Jupiter’s magnetosphere is an internally-driven magnetosphere and the available
energy is mainly provided by the rapid rotation of the planet’s strong magnetic field.
Additionally, the magnetospheric plasma essentially originates from an internal
source, Jovian moon Io’s volcanism. There are four particularly big moons which
are called Galillean satellites, Io, Europa, Ganymede, and Callisto. The moon Io
orbits around Jupiter from about 6 '� and Io is exposed to large tidal forces and heat.
The interior of Io liberates from its volcanoes of the order of 1 tonne B−1 of sulphur
and oxygen plasma into the neighbourhood of its orbit. The inner magnetosphere
(5 to 10 '� ) is mainly controlled by the Jovian internal magnetic field. The main
features are the inner radiation belts and the Io’s plasma torus. The plasma feels
the fast rotation of Jupiter’s magnetic field and is accelerated to the same rotation
rate as the planet. This fast rotation causes it to diffuse away from Jupiter due to the
centrifugal force. The migrating plasma from the inner magnetosphere is slowed
down and expands creating a vast spinning middle and outer magnetosphere of
around Jupiter. The strong magnetic field keeps all this plasma rotating at the same
angular velocity. This enforcement is moderated by an electric current system and
a part of this system drives the electrons to upper-atmosphere and create the main
auroral ovals. Jupiter exhibits two more other classes of auroral features which are
the moon footprint and the polar auroras. The moon footprints are spots of auroral
emission that are magnetically linked to the Galilean moons. The brightest spot is
that associated with Io, and it also exhibits a tail, or wake that traces in the direction
of rotation of Jupiter.
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1.3 Coordinate and latitude system

Jupiter is a gaseous planet, as far as the polar aurorae are concerned, the most
relevant coordinate system is the System III. The illustration of System III is shown
in Fig 1.2. Since the main auroral features are approximately fixed in this reference
frame. This coordinate system is bound to the Jovian magnetic field. This coordinate
system is left-handed, the longitudes increase from dusk to dawn through noon.
The System III longitude at the intersection point of the Earth-Jupiter line with the
Jovian surface is called the Central Meridian Longitude (CML).

Since the shape of Jupiter is an ellipse, with the equatorial radius is about 71492 km
and the polar radius is about 66854 km. Two latitude systems co-exist, planetocentric
and the planetographic latitudes. The planetocentric latitude (Φ′ ) refers to the angle
between the line joining the planet center to the considered point and the equatorial
plane, while the planetographic latitude (Φ) refers to the angle between the normal
to the surface at the considered point and the equatorial plane. These two angles
have a relation with the semi-major axis 0 and semi-minor axis 1.

tan (Φ′) = 1
2

02
tan (Φ) . (1.1)

Figure 1.2: (Left) Illustration of the System III coordinate system. The z-axis is defined
by the spin axis of Jupiter. The x-axis is defined by 0° latitude on the System
III longitude _� � � = 0° which is the prime meridian of Jupiter. The y-axis
completes the orthogonal left-handed system. Latiutude V defined from the
equator. (Right) Illustration of the planetocentric (Φ′) and planetographic (Φ)
latitudes.



2
Planetary auroral imaging
2.1 APIS database (Auroral Planetary Imaging

and Spectroscopy service)

Firstly, introduce the data source of images with basic information which are from the
Auroral Planetary Imaging and Spectroscopy service (APIS)[8] database. The APIS
service started in 2015. It provides an open access to processed auroral observations
of the outer planets and their satellites. Their high resolution far ultraviolet (FUV)
images are a wealth of information on planetary environments. The planetary
image data has been provided by HST many campaigns before the APIS service
began, the information of the image are not beginner friendly, however, because
of their complexity. The APIS database allows beginners easy access to a high
level processed data, built from public HST observations. For the FUV imaging, the
instruments are restricted to the mostly used, such as Space Telescope Spectrograph
(STIS)[16] and the Advanced Camera for Surveys (ACS). APIS provides a set of
value-added data corresponding to the level of processing for each of images in fits
[13] files. The images are provided under three levels of processing. The image data
are chosen from the APIS database. The image processing tool needs to be built for
both processed and raw auroral data. The processed data has abundant astronomical
ephemeris information and a set of extensions. The extensions are necessary for
limb darkening process, but the raw data does not have those data. To fill the lack
of information, we need to get the raw image data close to the processed one. Using
the planetary model in Appendix 1 provided by Professor Patrick Guio, with the
accurate center of the planet we can get similar data equivalent to the processed

7



8 chapter 2 planetary auroral imaging

data.

Fig 2.1 is the image of Jupiter taken by ACS of HST on 20th of February, 2007
(Dataset: j9rlb0fxq_drz) from APIS. I used this dataset for further image processing
in this project.

Figure 2.1: The image of Jupiter taken by HST 2007-02-20 (Dataset: j9rlb0fxq_drz). This
is the raw data which has no extensions and less information than the processed
one. The scale of the image is in pixel.

2.2 Determination of the center of the planet

The determination of the planetary center is a mandatory step before locating any
structure in the image. The planet is modeled by the equations written in Appendix
1. The accurate center of the planet is important to get the projections of the image
also to get the limb darkening model. The raw data from the APIS database has
the basic information, such as the position of a particular structure. Unfortunately,
HST pointing coordinates are not generally known with sufficient accuracy for this
project. The precision of the star catalog along with the uncertainty in the start time
of tracking motion is on the order of 1 arc sec while it is desired to have an accuracy
of the order of 1 pixel, i.e. 0.02-0.03 arc sec for STIS and ACS instruments, in order to
locate any structure accurately or to build polar projections of the planetary aurora[5].
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The correction of the center point to the 2 dimensional image was checked with the
metadata provided with the NASA Navigation and Ancillary Information Facility
SPICE system [1] SPICE tool kit, internet query service (Institut de Mécanique
Céleste et de Calcul des Ephémérides or IMCCE), and the manual way. In this
project, I use the manually corrected center for projection and building the ariglow
model.

2.3 Right ascension and declination

A standard way of specifying a location of the planet from the Earth is to use
astronomical ephemeris, which refer the orbit to a frame of reference that is fixed
relative to the stars. HST is actually orbiting about the Earth, I assumed the HST
observation is almost same as from the Earth. The frame of reference that is
commonly used can be defined in terms of x, y, and z axes. The z axis is along the
Earth’s rotation axis in north direction. It is at an angle of 23°27′8′′ to the normal
of the ecliptic plane. The y axis is a ’right-handed’ orthogonal to the (G, I)-plane.
The celestial sphere is the name given to a sphere with infinite radius centred on the
Earth. The z axis meets it at a point known as the North celestial pole. The motion
of the target planet % and the Sun on the celestial sphere is illustrated in Fig 2.2.
The point P on the celestial sphere, the direction OP expressed in terms of the two
angles U and V . The angle U between OX and the equatorial radius is called the right
ascension of P. Its declination V is the angle between OP and the equatorial plane.

Figure 2.2: The image of celestial sphere and right ascension and declination.
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2.4 Geometric transformation

Geometric transformation is an essential image processing technique that has
wide applications. It could also be applied to project an image to another image
plane.

2.4.1 Orthographic projection

Orthographic projection in cartography is a perspective projection. Fig 2.3 shows a
sketch of orthographic projection. The orthographic perspective is the view from
space, a vertical perspective from infinity with parallel rays. In which the sphere
(ellipsoid) is projected onto a tangent plane of its surface point. Any point in the
planetary surface can be projected into Cℎ4 B:~ ?;0=4 and seen like as 3D image.
As a map projection, the orthographic has a feature which has negligible distortion
near the origin of the projection (Cℎ4 B:~ ?;0=4) but the areas of near the edges
are distorted. Orthographic projection depicts a hemisphere, where the horizon is
a great circle. The planetary model in Appendix 1 is the core algorithm of this
projection method.

Figure 2.3: A vertical perspective from infinity with parallel rays. This is the sketch of the
orthographic projection. The planetary model which has (G,~, I)-coordinate
system is projected into the tangent plane (GB , ~B)-coordinate. Orthographic
image is the same image we see in the picture of the planet. The origin of the
(GB , ~B)-coordinate is always at the center of the ellipse (limb) of the planet.
The center point is corresponding to the sub-Earth point of the planet to the
Earth observer.
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2.4.2 Rotation of the image

To apply the planetary model of Appendix 1 to the planetary image, it is required to
rotate its rotation axis to align with the rotation axis of the planet in the image. Here
we introduce the HST axes of reference which is called (+ 1,+ 2,+ 3)-coordinate[9],
where + 1 is the axis pointing to the target body along the axis of optics. + 3
represents the direction of the ordinates of the planetary image plane. (+ 2 completes
the abscissa of the image plane. We can write the relation between (+ 1,+ 2,+ 3)-
coordinate and the (G,~, I)-coordinate for the planetary model built as follows

(G, ~, I) = (−+ 1, −+ 2, + 3) (2.1)

Using the SPICE toolkit, We can get the angle U which is the position angle between
celestial north (direction normal to the ecliptic) and the axis of Jupiter. Moreover, we
can get the angle of U�() which is the orientation angle between celestial north and
the+ 3 axis from the data set. So we can know the rotation angle (U −U�() ) to align
the planetary model rotation axis to along the~B axis of the image plane through the
system of the celestial sphere. Fig 2.4 shows the illustration of the rotation and Fig
2.5 shows the rotated image of Jupiter with planetary model grid and some markers.

Figure 2.4: Rotation of the planetary image. The planetary model grid is rotated with the
angle of (U − U�() ) where U is the position angle between celestial north
(direction normal to the ecliptic) and the axis of the Jupiter. U�() which is the
orientation angle between celestial north and the+ 3 axis of HST camera.
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Figure 2.5: The rotated image of Jupiter with grid lines (Dataset: j9rlb0fxq_drz). This is
the same image of Fig 2.1 but plotted with the planetary model grids and lines
of limb and terminator generated by the algorithm of Appendix 1. The center
of the planet is checked with SPICE tool kit and IMCCE query service. Then
the center point is chosen manually corrected one. The scale of the image is
transformed pixel to arcsec.
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2.4.3 Polar projection

Polar projection is used to change the perspective of the observer to the two dimen-
sional planetary image. This method allows us to look down the polar region of
the target planet by performing the transformation (See Fig 2.6). It must be noted
that we need to take into account a possible tilt of the rotation axis of the planetary
model before this transformation (explained in previous section). Since the axis
of the planet in the image is not always the same as ~B . To get the polar projected
view from the two dimensional planetary image, firstly, we need to project back the
pixel picture images ((GB, ~B, IB = 0)-coordinate in Fig 2.6) onto the surface of the
planetary model in (−I,~, G)-coordinate. Then project it again into the objective
direction of the sky plane.

Figure 2.6: Sketch of transformation of two dimensional planetary image into polar projec-
tion.

The polar projection of the Jupiter image (Dataset: j9rlb0fxq_drz) is shown in Fig
2.7. The number of image pixels around the polar region in the original image does
not have sufficient pixels to cover the polar region of the polar projected image. The
dispersion of the pixels around projected polar region causes the bad effect in the
image, so we need to interpolate it to reduce it.
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Figure 2.7: The image of Jupiter in polar projection (Dataset: j9rlb0fxq_drz) with the
planetary model grid. The azimuth of 0 ° is the CML line. The image scale is
transformed arcsec to the scale of Jovian radius '� . The intensity of the image
converted into auroral brightnesses (1 kR represents a photon source flux of
109cm−2s−1 radiating into 4 c steradians) using the the conversion factor 1 kR
= 1.473 × 10−3counts s−1 pixel [11] of total H2 emission over the 80-170 nm
spectral range.
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2.5 Airglow model and subtract it from the
image

To get clear auroral forms in the planetary image, subtracting the background airglow
allows us to observe the auroral emission with clear location and size. Airglow is the
natural “glowing” of the atmosphere of the planet. Dayglow forms when sunlight
strikes the daytime atmosphere. Some of the sunlight is absorbed by the molecules
in the atmosphere, which gives them excess energy. They become excited, the
molecules then release this energy as light. This illumination modeling is also
helpful to feed the astronomical image to VOISE algorithm to detect the auroral
features.

2.5.1 Cosine illumination model

The illumination intensity from the planet surface at the 1 bar level can be modeled
by the observed intensity and the cosine of the angles between the surface normal
n̂B and the direction of the observer and the Sun. In this section, taking the observer
direction as an example, we detail the cosine illumination model.

In the ?;0=4C>24=CA82 coordinate system, the ellipsoidal model of the planet which
has semi-major axis A4 , latitude V , and longitude _, we have

G = A4 cos _ cos V
~ = A4 sin _ cos V

I = A4
√
1 − 42 sin V

. (2.2)

Here 4 is the eccentricity of the spheroid. The observing direction in the planeto-
centric coordinate %obs (see Fig 4.1) with the latitude angle Vobs, which is given by

%obs = (cos Vobs, 0, sin Vobs) . (2.3)

In addition, the direction normal to the ellipsoid at a point (G,~, I) is defined by the
vector n̂B . For an implicit function � (G,~, I) = 0 such as a spheroid, the vector n̂B
is given by the gradient ∇� . In Cartesian coordinate system the normal n̂B at any
point of the spheroid is given by

n̂B =
1√

G2 + ~2 + I2/(1 − 42)2
(
G, ~,

I

1 − 42
)
. (2.4)

Fig 2.8 shows, the intensity at the point %B on the image-plane corresponds to a
point % on the surface of the planetary model. For the observer, the intensity at %B
pixel has a factor of cos\ to the originally radiated intensity. By using the observer
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zenith angle \ which is the angle between the surface normal n̂B and the observer
direction. The cosine can be written as

cos\ =
n̂B · %obs

‖n̂B ‖‖%obs‖
=

1√
G2 + ~2 + I2/(1 − 42)2

(
G cos Vobs +

I

1 − 42 sin Vobs
)
.

(2.5)

This cosine illumination model is calculated for both the Observer and the Solar
zenith angles. These angles are derived by using the sub-Earth and -Solar points on
the modeled planetary surface. Using this feature, two background airglow models
are performed in Section 2.5.2.

Figure 2.8: The illustration of the observer zenith angle \ and the cosine.
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2.5.2 Minnaert model

The Minnaert function is a photometric function used to interpret astronomical
observations and remote sensing data for the Earth. The FUV imaging instruments
of the Space Telescope Spectrograph (STIS) and the Advanced Camera for Surveys
(ACS) capture the planetary disks which mainly originate from reflected sunlight
on the planet. The classical method to build the back ground dayglow model is the
generalised Minnaert function[18, 2]

ln(� `) = � + �G +�G2 + �G3. (2.6)

Where I is the observed intensity, ` and `0 are the cosines of the observer zenith
angles and solar zenith angles respectively, G = ln(``0), A, B, C, and D are derived
coefficients determined by fitting to the intensity at a selected latitude range. There
are asymmetry in the fitting of the intensity profile between where the sunlit limb
and the terminator limb occurs[18].

For a good limb darkening, two coefficients set at both the sunlit limb and terminator
limb are required. My application of the Minnaert function consisted of deriving
two set of coefficients which is one set each for the sunlit side and the terminator
side of the planet. The original method is provided in the reference paper[18]. The
algorithm is following. The coefficients for the sunlit limb were derived at a given
latitude over longitudes ranging from about 85 ° off the Central meridian longitude
(CML) toward the sunlit limb to 45 ° CML toward the terminator. Similarly, the
coefficients for the terminator side were derived over the longitudes ranging from
about 70 ° off the CML toward the terminator to 45 ° beyond the CML toward
the sunlit limb. The two set of coefficients are linearly weighted with respect to
longitude.

I used the one degree latitudinal bins for model fitting to the image intensity and
performed it using the Matlab curve fitting toolbox. As the Fig 2.9 shows, the
asymmetry is observed in the plot. My application of this algorithm in Matlab code
is attached in Appendix 3.
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Figure 2.9: S catter plot of ln(� `) as a function of ln(``0) with 1 degree resolution. The
asymmetry of the sunlit side and the terminator side is clearly seen in the latitude
bin close to the pole and the equator. The asymmetry in the polar latitude bin
is considered to be caused by the auroral emission.
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2.5.3 Li model

This method removes dayglow effects from UV images by using the sum of the
cosines of the Observation and Solar zenith angles[10]. Detecting the auroral oval
bounds in magnetic latitude (MLAT), then using the non-auroral dayglow pixels,
allow to estimate the non-auroral intensity as a function of the cosine of the Solar
and Observer zenith angles. The author of the paper[10] introduced a threshold
technique, because of the comparable intensities of aurora and dayglow pixels. This
technique consists of two parts, the first stage identifies the geomagnetic latitude
range of the auroral oval, then the second stage estimates the dayglow intensity with
the model function.

First stage: Geomagnetic latitude range of the auroral oval
In this stage, we determine the magnetic latitude (MLAT) range of auroral ovals. I
binned the night side and day side pixels on the MLAT values with 1° resolution to
compare with the Minnaert model. Then the mean intensity value as the function of
MLAT is obtained. The author presented the automatic determination method using
only the night side pixels to determine the auroral oval region. But this method does
not cover sufficient auroral emission area in the image I used in this project. To cover
the auroral oval region and to get non-auroral pixel intensities, I used the threshold
condition as follows. I defined that the night side is from sub-Solar longitude dusk
and the day side is from sub-Solar longitude to dawn. Firstly, the location of the
peak intensity in the MLAT range is obtained in both day and night side. Then
the minimum intensity values for both directions of pole-ward and equator-ward
are checked for day and night side. These minimum along and peak values are
used to determine the equator-ward and pole-ward bounds all over the auroral oval
based on the following subjective criteria. The MLAT values for the auroral bounds
pole-ward and equator-ward for day and night side, are where the MLAT value of
the intensity drops from the peak value to below 80 % of the intensity difference
between peak value and minimum value. If there is no applicable mean intensity
to below 80 % of the intensity difference between peak value and minimum value,
the minimum mean intensity value is chosen as the boundary. The histogram plot
of MLAT vs mean intensity for both day and night side are shown in the Fig 2.10.
The boundaries between day and night side are different. So I used the pole-ward
boundary of -79° from night side and equator-ward boundary of -66° from day
side to model the dayglow. The numerical model is presented in the second stage.
Fig 2.11 shows the peak auroral region intensity in MLAT range of -87° to -66° ,
and Fig 2.12 shows the non auroral region pixel intensity vs cosine of Solar Zenith
Angle (SZA) and Observer Zenith Angle (OZA).
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Figure 2.10: There is a difference in day and night side mean intensity function of MLAT.
The range between the red vertical lines is determined as the auroral oval region
following criteria. The outside of the red vertical lines is the non-auroral region.

Figure 2.11: Peak auroral region intensity in MLAT range of -87° to -66° . There are seen
some peaks of auroral emissions.
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Figure 2.12: Non auroral region pixel intensity vs cosine of Solar Zenith Angle (SZA) and
Observer Zenith Angle (OZA).

Second: Dayglow model
The dayglow model with the Li method is based on the fact that the intensities of
dayglow pixels at FUV can be estimated as a function of the SZA and the OZA. The
following equation is used for the Li model,

I = � + � cos((/�) +� cos($/�). (2.7)

Where I is the estimated dayglow intensity, A, B, and C are the fitting coefficients.
I used the one degree latitudinal bins for model fitting the image intensity and
performed the fitting to the non-auroral region intensities, with the Matlab curve
fitting toolbox. My application of this algorithm is presented in Appendix 4.





3
Result and discussion
3.1 Result of airglow models

The output of the calculation in polar projections of subtracted images are shown in
Fig 3.1. The Minnaert model is in Fig 3.2 and the Li model is in Fig 3.3.

Figure 3.1: The polar projection of subtracted image. The image scale is the Jovian radius
'� . The azimuth of 0 ° is the CML line. The intensity of the image is converted
into auroral brightnesses (1 kR represents a photon source flux of 109cm−2s−1
radiating into 4 c steradians) using the the conversion factor 1 kR = 1.473 ×
10−3counts s−1 pixel [11] for total H2 emission over the 80-170 nm spectral
range.

23
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Figure 3.2: (Top) Original image (Dataset: j9rlb0fxq_drz). The intensity unit is the numbers
of photons count per Pixel (Middle) calculated Minnaert model from the original
image with the Minnaert model with 1 degree latitude bins, (Bottom) The
subtracted image. The scale of the image is in pixel.
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Figure 3.3: (Top) Original image (Dataset: j9rlb0fxq_drz). The intensity unit is the numbers
of photons count per Pixel (Middle) calculated Li model from the original image
with the Minnaert model with 1 degree latitude bins, (Bottom) The subtracted
image. The scale of the image is in pixel.
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3.2 Discussion and conclusion

The objective of this project is to develop a planetary auroral image processing tool
around VOISE. Through the processes of geometric transformation and airglow
modeling, This has been partly achieved. There are some points needing to be
improved. First, the correction of the center point of the planetary model could
be improved with high accuracy by the technique to estimate the disc parameter
which is presented in the literature[5]. In this project the center point was corrected
by manually. Secondary, the airglow models subtracts too much intensity from
the original. Both the Minnaert model and the Li model work well to subtract the
airglow from the original image. However my Minnaert model does not fit the
original intensity well. The reason for this is thought that the the auroral intensity is
not appropriately excluded from the fitting process of airglow.



4
Appendix 1: Planetary
model from Professor
Patrick Guio’s note
4.1 Planetary model

The planet is modelled by an ellipsoid, which equatorial radius (semi-major axis)
A4 and polar radius (semi-minor axis) A? , where

A2? = A24 (1 − 42), (4.1)

here 4 is the eccentricity of the spheroid. The planet rotation vector is assumed to be
along the I-axis with positive angular velocity 8 > 0 corresponds to the right-hand
grip rule. In Cartesian coordinate system the ellipsoid is written in

G2 + ~2

A24
+ I2

A24 (1 − 42)
= 1. (4.2)

In spherical coordinate system where q is the zenith angle or co-latitude (0 ≤ q ≤
2c) and \ is the azimuth or longitude (0 ≤ \ ≤ 2c) we have

G = A4 cos\ sinq
~ = A4 sin\ sinq

I = A4
√
1 − 42 cosq

. (4.3)

27
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In ?;0=4C>24=CA82 coordinate system where V is the latitude, i.e. the complementary
angle to the co-latitude q , V +q = c/2, (−c/2 ≤ V ≤ c/2) and _ is the longitude
(−c ≤ _ ≤ c) we have 

G = A4 cos _ cos V
~ = A4 sin _ cos V

I = A4
√
1 − 42 sin V

. (4.4)

The direction normal to the ellipsoid at point (G,~, I)-coordinate is defined by the
vector n̂B . For an implicit function � (G,~, I) = 0 such as a spheroid, the vector n̂B
is given by the gradient ∇� . In Cartesian coordinate system the normal n̂B at any
point of the spheroid is given by

n̂B =
1√

G2 + ~2 + I2/(1 − 42)2
(
G, ~,

I

1 − 42
)
. (4.5)

Figure 4.1: (From [7]) Sketch of the geometry of the planet and the observer. The eccen-
tricity of the planetary ellipsoid is exaggerated for clarity. The figure is a cut
through the planet that contains the plante’s rotation axis I and the observer
direction %obs. The G-axis is contained in the equatorial plane of the planet and
in the plane of the figure. The direction n̂B is the local normal of the ellipse
perpendicular to the observing direction %obs. The plane of the limb is contained
in a plane perpendicular to the figure and its intersection with the plane of the
figure is the dashed line segment. n̂! is the direction normal to the plane of the
limb and pointing toward the observer. The angle between n̂! and the G-axis
is Vn̂! . Finally (GB , ~B) are the axes for the plane of the sky as seen by the
observer.
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4.2 Limb projection

For the limb projection calculation, we assume, without loss of generality, the
observing direction in the planetocentric coordinate %obs with latitude angle Vobs,
which written by

%obs = (cos Vobs, 0, sin Vobs) . (4.6)

The plane of the limb of the planet consists of the points on the planet surface where
the normal to the surface n̂B , defined in Eq.(3.5), which is perpendicular to the
observing direction %obs (see Fig 3.1). Taking into account the relation n̂B ·%obs = 0,
the limb is thus defined analytically by the set of equations

n̂B · %obs = G cos Vobs + I
sin Vobs
(1 − 42) = 0

= G (1 − 42) cos Vobs + I sin Vobs = 0 ,
(4.7)

G2 + ~2

A24
+ I2

A24 (1 − 42)
= 1. (4.8)

Eq.(3.7) expresses the fact that the limb is contained in a plane with normal vector
n̂! defined by

n̂! =
1√

(1 − 42)2 cos2 Vobs + sin2 Vobs
· ((1 − 42) cos Vobs, 0, sin Vobs).

(4.9)

We define following set of angles for the vector n̂!. (see Fig 3.1)
cos Vn̂! =

1√
(1 − 42)2 cos2 Vobs + sin2 Vobs

(1 − 42) cos Vobs

sin Vn̂! =
1√

(1 − 42)2 cos2 Vobs + sin2 Vobs
sin Vobs

, (4.10)

then Eq.(3.9) becomes

n̂! = (cos Vn̂! , 0, sin Vn̂! ). (4.11)

When the eccentricity 4 = 0, i.e. the planet is sphere (like the Moon), the direction
normal to the plane containing the limb, defined by n̂!, which is aligned to the
observing direction %obs. In the case where 4 ≠ 0 they are not aligned and we
see from Eq.(3.10) that |Vn̂! | > |Vobs |. Let us define the following coordinate
transformation which transforms any point of (G,~, I) into a point (G ′, ~ ′, I ′)

G ′

~ ′

I ′

 =


0 1 0

− sin Vn̂! 0 cos Vn̂!
cos Vn̂! 0 sin Vn̂!



G

~

I

 . (4.12)
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This transformation transforms the plane of the limb given by Eq.(3.7) into the
(G ′, ~ ′)-plane, so that I ′ = 0. Since it is an >ACℎ>6>=0; CA0=B 5 >A<0C8>=, the
inverse coordinate transformation is defined by the transpose of the matrix given by


G

~

I

 =


0 − sin Vn̂! cos Vn̂!
1 0 0
0 cos Vn̂! sin Vn̂!



G ′

~ ′

I ′

 . (4.13)

Let us transform the limb defined by Eqs.(3.7-8) using the inverse transformation.
Assuming the ellipsoid is not degenerated (4 ≠ 1), being careful with I ′ = 0 the
calculation Eq.(3.13) gives


G = −~ ′ sin Vn̂!
~ = G ′

I = ~ ′ cos Vn̂!

,

then do following preparation

G2 = ~ ′2 sin2 Vn̂! ,
~2 = G ′2,

G2 + ~2 = G ′2 + ~ ′2 sin2 Vn̂! ,

inserting this into Eq.(3.8), we have

G ′2 + ~ ′2 sin2 Vn̂!
A24

+
~ ′2 cos2 Vn̂!
A24 (1 − 42)

= 1,

finally,

I ′ = 0,
G ′2

A24
+ ~ ′2

cos2 Vn̂! + (1 − 42) sin2 Vn̂!
A24 (1 − 42)

= 1.

Let us take into account Eq.(3.10). Then the Eq.(3.8) becomes

G ′2

A24
+ ~
′2

A24

(1 − 42)2 cos2 Vobs + (1 − 42) sin2 Vobs
(1 − 42)

[
(1 − 42)2 cos2 Vobs + sin2 Vobs

] = 1. (4.14)
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Let us take a look at the inverse of the factor of ~
′2

A24
in Eq.(3.14),

(1 − 42)
[
(1 − 42)2 cos2 Vobs + sin2 Vobs

]
(1 − 42)2 cos2 Vobs + (1 − 42) sin2 Vobs

=
(1 − 42)2 cos2 Vobs + sin2 Vobs
(1 − 42) cos2 Vobs + sin2 Vobs

=
(1 − 42) cos2 Vobs − 42(1 − 42) cos2 Vobs + sin2 Vobs

(1 − 42) cos2 Vobs + sin2 Vobs

= 1 − 4
2(1 − 42) cos2 Vobs
1 − 42 cos2 Vobs

= 1 − 42
(
cos2 Vobs − 42 cos2 Vobs

1 − 42 cos2 Vobs

)
= 1 − 42

(
1 − sin2 Vobs − 42 cos2 Vobs

1 − 42 cos2 Vobs

)
= 1 − 42

(
1 − sin2 Vobs

1 − 42 cos2 Vobs

)
.

We find the eccentricity of the ellipse corresponding to the limb in 8CB >F= ?;0=4
can be expressed as a function of the observation latitude Vobs and the planetary
model’s eccentricity 4

42
Vobs

= 42
(
1 − sin2 Vobs

1 − 42 cos2 Vobs

)
. (4.15)

The transformed Eq.(3.8), which is in (G ′, ~ ′, I ′ = 0)-coordinate, can be expressed
by the canonical form

G ′2

A24
+ ~ ′2

A24 (1 − 42Vobs)
= 1. (4.16)

Eq.(3.16) is an ellipse with centre (0, 0), semi-major axis A4 i′, and semi-minor axis
A4

√
1 − 42

Vobs
j′.

Here, we introduce the basis vectors ( i′, j′) of the (G ′, ~ ′)-plane (since I ′ = 0),
where the plane that the transformed limb is on. The basis vectors are given in
(G,~, I)-coordinate given by

i′ = (0, 1, 0), (4.17)
j′ = (− sin Vn̂! , 0, cos Vn̂! ). (4.18)

Let us put the transformed limb into the sky plane, (GB, ~B)-coordinate, which is
perpendicular to observing direction %obs. In the (G,~, I)-plane. )ℎ4 B:~ ?;0=4
has basis vectors ( iB, jB) such that

iB = (0, 1 0), (4.19)
jB = (− sin Vobs, 0, cos Vobs). (4.20)
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and remind that the direction orthogonal to Cℎ4 B:~ ?;0=4, kB , is equal to the
observing direction %obs

kB = (cos Vobs, 0, sin Vobs). (4.21)

The projection of the basis vectors ( i′, j′) onto the basis vectors of Cℎ4 B:~ ?;0=4
( iB, jB) are defined by

iB = ( i′ · iB) i′ + (j′ · iB)j′, (4.22)
jB = ( i′ · jB) i′ + (j′ · jB)j′, (4.23)

Let us do calculations for each factors

i′ · iB = 0 + 1 + 0
= 1

j′ · iB = 0 + 0 + 0
= 0

i′ · jB = 0 + 0 + 0
= 0

j′ · jB = sin Vobs sin Vn̂! + cos Vobs cos Vn̂!
= cos Vobs cos Vn̂! + sin Vobs sin Vn̂!

then Eqs.(3.22-23) become

iB = i′, (4.24)
jB =

(
cos Vobs cos Vn̂! + sin Vobs sin Vn̂!

)
j′. (4.25)

The Eqs.(3.24-25) shows that the projection of the limb into Cℎ4 B:~ ?;0=4 has
no-effect on the semi-major axis, but has an effect on the semi-minor axis with the
scale factor of

(
cos Vobs cos Vn̂! + sin Vobs sin Vn̂!

)
. This factor can be simplified

into cos(Vobs − Vn̂! ) and is given by %obs · n̂! using Eq.(3.6) and Eq.(3.9),

%obs · n̂! = cos(Vobs − Vn̂! )

=
(1 − 42) cos2 Vobs + sin2 Vobs√
(1 − 42)2 cos2 Vobs + sin2 Vobs

=
1 − 42 cos2 Vobs√

(1 − 42)2 cos2 Vobs + sin2 Vobs
.

(4.26)

Finally the projection of the limb into Cℎ4 B:~ ?;0=4 appearing as the ellipse is
written in Cℎ4 B:~ ?;0=4 , (GB, ~B)-coordinate as

G2B

A24
+ ~2B

A24 (1 − 42 cos2 Vobs)
= 1. (4.27)

The Eq.(3.27) shows that the ellipse of the limb, seen from the observer, always
appearing with the same semi-major axis as the equatorial radius of the planet. But
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the semi-minor axis changes depending on the observing latitude Vobs. When the
observer is watching down from the polar region of the planet, the semi-minor axis
becomes equal to the equatorial radius. The eccentricity of the limb projected into
Cℎ4 B:~ ?;0=4 , is written by

4! = 4 cos Vobs, (4.28)

as the same way, the ellipse in the Cℎ4 B:~ ?;0=4, (GB, ~B)-coordinate, can be
expressed in the canonical form

G2B

A24
+ ~2B

A24 (1 − 42!)
= 1. (4.29)

4.3 Terminator projection

A terminator or twilight zone is a moving line that divides the daylight side and the
dark night side on the planetary body. The terminator lines can also be interpreted as
the limb for an >1B4AE8=6 38A42C8>= corresponding to the illumination source and
further projected into Cℎ4 B:~ ?;0=4 along the observing direction. In this section,we
present the method to project the terminator into Cℎ4 B:~ ?;0=4 , (GB, ~B)-coordinate.
We can define, without loss of generality, the coordinate system (G1, ~1, I1), where
I1 is the planet rotation axis, which is identical to I. The G1 is defined so that the
(G1, I1)-plane contains the illumination source, as we saw in the limb calculation
section, and the latitude of the illumination source, Vsun, moreover, introduce the
?ℎ0B4 0=6;4 between the G-axis and G1-axis, which is written by Δ_ = _sun − _obs.
The coordinate transformation from (G,~, I) into (G1, ~1, I1) is equivalent to a
rotation along the I-axis with the negative quantity of Cℎ4 ?ℎ0B4 0=6;4 , −Δ_.

G1
~1
I1

 =


cosΔ_ sinΔ_ 0
− sinΔ_ cosΔ_ 0

0 0 1



G

~

I

 , (4.30)

and inversely, the transformation from (G1, ~1, I1) into (G,~, I) is obtained by taking
the transpose of the matrix which is

G

~

I

 =


cosΔ_ − sinΔ_ 0
sinΔ_ cosΔ_ 0

0 0 1



G1
~1
I1

 . (4.31)

In the (G1, ~1, I1)-coordinate system, the direction of the illumination source, the
sun, %sun, is similarly to the limb calculation case, given by

%sun = (cos Vsun, 0, sin Vsun) , (4.32)

while in the (G,~, I)-coordinate system, %sun is transformed by Eq.(3.31), becomes

%sun = (cos Vsun cosΔ_, cos Vsun sinΔ_, sin Vsun) . (4.33)
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In the (G1, ~1, I1)-coordinate system, the terminator is defined with similar equations
like as Eqs.(3.7-8). We have n̂B · %sun = 0 and the equation of ellipse given by

n̂B · %sun = G1 cos Vsun + I1
sin Vsun
1 − 42 = 0

= G1(1 − 42) cos Vsun + I1 sin Vsun = 0 ,
(4.34)

G21 + ~21
A24

+
I21

A24 (1 − 42)
= 1. (4.35)

The ellipse formed by the terminator is contained in a plane with normal vector n̂)
defined by in a similar manner as for the limb normal calculation in the Eqs.(3.9-11).
Eq.(3.34) expresses the fact that the terminator is contained in a plane with normal
vector n̂) defined by

n̂) =
1√

(1 − 42)2 cos2 Vsun + sin2 Vsun
· ((1 − 42) cos Vsun, 0, sin Vsun),

(4.36)

We define following set of angles for the vector n̂)
cos Vn̂) =

1√
(1 − 42)2 cos2 Vsun + sin2 Vsun

(1 − 42) cos Vsun

sin Vn̂) =
1√

(1 − 42)2 cos2 Vsun + sin2 Vsun
sin Vsun

, (4.37)

then Eq.(3.36), which is the terminator normal n̂) in the(G1, ~1, I1)-coordinate
system, becomes

n̂) = (cos Vn̂) , 0, sin Vn̂) ). (4.38)

As we did in the limb calculation, we can define the following coordinate transforma-
tion which transforms any point of (G1, ~1, I1)-coordinate into a point (G ′1, ~ ′1, I ′1)-
coordinate such that

G ′1
~ ′1
I ′1

 =


0 1 0

− sin Vn̂) 0 cos Vn̂)
cos Vn̂) 0 sin Vn̂)



G1
~1
I1

 . (4.39)

Same to the limb calculation, it transforms the plane of the terminator Eq.(3.38),
which is in the (G1, ~1, I1)-coordinate, into the (G ′1, ~ ′1)-plane, since we transformed
it to get I ′1 = 0. The inverse coordinate transformation is also defined by the
transpose of the matrix

G1
~1
I1

 =


0 − sin Vn̂) cos Vn̂)
1 0 0
0 cos Vn̂) sin Vn̂)



G ′1
~ ′1
I ′1

 . (4.40)
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Let us transform the terminator defined by Eqs.(3.34-3.35) using the inverse trans-
formation Eq.(3.40). Assuming the ellipsoid is not degenerated (4 ≠ 1), in the
same manner we did in the limb calculation section, Eqs.(3.34-3.35) become to the
equation of an ellipse in the (G ′1, ~ ′1, I ′1 = 0)-plane with

G ′21
A24
+

~ ′21
A24 (1 − 42Vsun)

= 1. (4.41)

The projected ellipse has its centre at (0, 0), semi-major axis A4 i′1, and semi-minor
axis A4

√
1 − 42

Vsun
j′1, where 4Vsun is given by Eq.(3.15) replacing Vobs with Vsun,

42
Vsun

= 42
(
1 − sin2 Vsun

1 − 42 cos2 Vsun

)
. (4.42)

In the same manner of the limb calculation, here we want to introduce the basis
vectors ( i′1, j′1) of the (G ′1, ~ ′1)-plane for transform the terminator into (G,~, I)-
coordinate system are expressed by

i′1 = (− sinΔ_, cosΔ_, 0),
j′1 = (− sin Vn̂) cosΔ_, − sin Vn̂) sinΔ_, cos Vn̂) ) .

In the (G,~, I)-plane, Cℎ4 B:~ ?;0=4 has vector basis given by Eqs.(3.19-20) and
therefore projecting the basis ( i′1, j′1) onto the sky basis, as previously we did in
Eqs.(3.22-23) taking into account Eq.(3.37)

i′1 · iB = cosΔ_

j′1 · iB = − sin Vn̂) sinΔ_
i′1 · jB = sin Vobs sinΔ_

j′1 · jB = sin Vn̂) sin Vobs cosΔ_ + cos Vn̂) cos Vobs

iB = cosΔ_ i′1 − sin Vn̂) sinΔ_j′1, (4.43)
jB = sin Vobs sinΔ_ i′1 + (sin Vn̂) sin Vobs cosΔ_ + cos Vobs cos Vn̂) )j′1. (4.44)

We can write the projector from (G ′1, ~ ′1) onto (GB, ~B) as[
GB
~B

]
=

[
0 1

2 3

] [
G ′1
~ ′1

]
= �

[
G ′1
~ ′1

]
, (4.45)

where

0 = cosΔ_, (4.46)
1 = − sin Vn̂) sinΔ_, (4.47)
2 = sin Vobs sinΔ_, (4.48)
3 = sin Vobs sin Vn̂) cosΔ_ + cos Vobs cos Vn̂) , (4.49)

� =

[
cosΔ_ − sin Vn̂) sinΔ_

sin Vobs sinΔ_ sin Vobs sin Vn̂) cosΔ_ + cos Vobs cos Vn̂)

]
, (4.50)
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and inversely [
G ′1
~ ′1

]
=

1
03 − 12

[
3 −1
−2 0

] [
GB
~B

]
, (4.51)

and[
G ′1
~ ′1

]
=

1
03 − 12

[
sin Vobs sin Vn̂) cosΔ_ + cos Vobs cos Vn̂) sin Vn̂) sinΔ_

− sin Vobs sinΔ_ cosΔ_

] [
GB
~B

]
,

(4.52)
with

03 − 12 = sin Vobs sin Vn̂) cos2 Δ_ + cos Vn̂) cos Vobs cosΔ_ + sin Vobs sin Vn̂) sin2 Δ_
= sin Vobs sin Vn̂) + cos Vobs cos Vn̂) cosΔ_.

(4.53)

4.4 Cusp points and terminator determinant

Cusp points are the points where the plane of the limb and the plane of the terminator
are identical, which means %obs × %sun = 0. Otherwise, since Cℎ4 B:~ ?;0=4 seen
from the observer and Cℎ4 B:~ ?;0=4 seen from the sun are each perpendicular
to observing direction %obs and illumination source direction %sun. So the vector
%obs × %sun can be interpreted as the direction of the line defined as the intersection
of Cℎ4 B:~ ?;0=4 seen from the observer and Cℎ4 B:~ ?;0=4 seen from the sun.
Therefore the line with direction %obs × %sun intersects the limb projection and the
terminator projection at two points, these points are called the 2DB? ?>8=CB.
In the (G,~, I)-coordinate system, %obs × %sun is given by calculating Eq.(3.6) and
Eq.(3.33), we have

%obs × %sun =


cos Vobs

0
sin Vobs

 ×

cos Vsun cosΔ_
cos Vsun sinΔ_

sin Vsun


=


− sin Vobs cos Vsun sinΔ_

sin Vobs cos Vsun cosΔ_ − cos Vobs sin Vsun
cos Vobs cos Vsun sinΔ_


(4.54)

We define the rotation that transforms any point of (G,~, I)-coordinate into (GB, ~B, IB)-
coordinate system

GB
~B
IB

 =


0 1 0

− sin Vobs 0 cos Vobs
cos Vobs 0 sin Vobs



G

~

I

 . (4.55)

where (GB, ~B) (since IB = 0) are points in Cℎ4 B:~ ?;0=4. Let us transform the
vector %obs × %sun into (GB, ~B, IB)-coordinate by using Eqs.(3.54-55).

GB = sin Vobs cos Vsun cosΔ_ − cos Vobs sin Vsun,
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~B = sin2 Vobs cos Vsun sinΔ_ + cos2 Vobs cos Vsun sinΔ_
= cos Vsun sinΔ_,

IB = − cos Vobs sin Vobs cos Vsun sinΔ_ + cos Vobs sin Vobs cos Vsun sinΔ_ = 0,

Finally, we get %obs × %sun in the (GB, ~B, IB)-coordinate as follows

%obs×%sun = (sin Vobs cos Vsun cosΔ_−cos Vobs sin Vsun, cos Vsun sinΔ_, 0),
(4.56)

which as expected is lying on Cℎ4 B:~ ?;0=4 , i.e. IB = 0.
The inverse rotation is written

G

~

I

 =


0 − sin Vobs cos Vobs
1 0 0
0 cos Vobs sin Vobs



GB
~B
IB

 . (4.57)

The feature of the intersection of the two B:~ ?;0=4B, also give the major axis of
the ellipse formed by the terminator. Let us define the vector of Cℎ4 B:~ ?;0=4
u = (D, E) which is co-linear to %obs × %sun in (GB, ~B, IB)-coordinate,{

D = sin Vobs cos Vsun cosΔ_ − sin Vsun cos Vobs
E = cos Vsun sinΔ_

, (4.58)

and the parametric form of the line containing the major axis of the ellipse is given
by {

GB = DC

~B = EC
. (4.59)

The 2DB?B are the two points of the end of this line that intersect the projection of
the limb in Cℎ4 B:~ ?;0=4 given by Eq.(3.29), cusp points of the line with parameter
C = C1. Let us do calculation, insert (GB = DC1, ~B = EC1) into Eq.(3.29)

D2C21

A24
+

E2C21

A24 (1 − 42!)
= 1

C21
(
D2 (

1 − 42!
)
+ E2

)
= A24

(
1 − 42!

)
then with Eq.(3.28), this becomes

C21 =
A24 (1 − 42 cos2 Vobs)

D2(1 − 42 cos2 Vobs) + E2
. (4.60)

Meanwhile the ellipse formed by the terminator is a tilted ellipse with tilt angle \)
with respect to the GB -axis which expressed as

\) = tan−1
( E
D

)
=

(
cos Vsun sinΔ_

sin Vobs cos Vsun cosΔ_ − sin Vsun cos Vobs

)
. (4.61)

Similarly, naturally the minor axis is lying on the straight line with direction u⊥
orthogonal to u, the vector is given u⊥ = (E, −D), in Cℎ4 B:~ ?;0=4, (GB, ~B)-
coordinate. Projecting back the line u⊥ = (E, −D),onto the (G ′1, ~ ′1)-plane with
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Eq.(3.53). Let us do calculation using Eq.(3.53) and (GB = EC, ~B = −DC), we
have [

G ′1
~ ′1

]
=

1
03 − 12

[
3 −1
−2 0

] [
EC

−DC

]
=

1
03 − 12

[
3EC + 1DC
− (2EC + 0DC)

]
=

C

03 − 12

[
3E + 1D
− (2E + 0D)

]
so we can write (G ′1, ~ ′1)

G ′1 = C
3E + 1D
03 − 12 , (4.62)

~ ′1 = −C
2E + 0D
03 − 12 . (4.63)

Substituting (G ′1, ~ ′1) into the equation of the terminator Eq.(3.41) with C = C2

G ′21
A24
+

~ ′21
A24 (1 − 42Vsun)

= 1

C22

(03 − 12)2 A24

(
(3E + 1D)2 + (2E + 0D)

2

(1 − 42
Vsun
)

)
= 1

C22

(
(3E + 1D)2 (1 − 42

Vsun
) + (2E + 0D)2

)
= (03 − 12)2 A24 (1 − 42Vsun)

C22 =
A24 (1 − 42Vsun) (03 − 12)

2

(3E + 1D)2(1 − 42
Vsun
) + (2E + 0D)2

(4.64)

Which is the intersection between the ellipse of the terminator and the line with
direction u⊥ Then the semi-major and semi-minor axes of the projection of the
terminator onto Cℎ4 B:~ ?;0=4 are expressed as follows

02) = (D2 + E2)C21 , (4.65)
12) = (D2 + E2)C22 . (4.66)

With the tilt angle \) , and the semi-major and semi-minor axes Eqs.(3.65-66), the
projection of the terminator can be written in parametric form in Cℎ4 B:~ ?;0=4 as{

G) = 0) cos\) cos\ + 1) sin\) sin\
~) = −0) sin\) cos\ + 1) cos\) sin\

, (4.67)

where \ is an oriented angle measured from the GB -axis.
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4.5 Find visible and hidden terminator

In order to find the visible (bright) and hidden (dark) terminator, we can project
any point of the terminator and limb, along the direction perpendicular to the line
joining the two cusps, and can check the orientation of the projection of the sun.
The direction of the sun in Cℎ4 B:~ ?;0=4 , (GB, ~B, IB = 0)-coordinate, %sunB , is
calculated by Eq.(3.55) and Eq.(3.33) with IB = 0,

%sunB =


0 1 0

− sin Vobs 0 cos Vobs
cos Vobs 0 sin Vobs



cos Vsun cosΔ_
cos Vsun sinΔ_

sin Vsun


=


cos Vsun sinΔ_

− sin Vobs cos Vsun cosΔ_ + cos Vobs sin Vsun
0

 ,
so we have %sunB in reduced dimension (GB, ~B) written as

%sunB = (cos Vsun sinΔ_, − sin Vobs cos Vsun cosΔ_ + cos Vobs sin Vsun) .
(4.68)

Letus considerany point% (GB, ~B) of the projection of the terminator in Cℎ4 B:~ ?;0=4
and the direction u⊥ = (E,−D) orthogonal to u. We can construct the algebraic
measure

� = (%sunB · u⊥) (UV · u⊥), (4.69)

or written with details of the components as follows

� =

(
(cos Vsun sinΔ_)2 + (sin Vobs cos Vsun cosΔ_ − cos Vobs sin Vsun)2

)
(cos Vsun sinΔ_ GB + (− sin Vobs cos Vsun cosΔ_ + cos Vobs sin Vsun) ~B) ,

(4.70)

then check for its sign. � > 0 means visible terminator, which is the bright limb,
� < 0 means hidden terminator, which is the dark limb, � = 0 means cusp point.
In addition, that the sign of � is the same as the same of the quantity of � ′.

� ′ = cos Vsun sinΔ_ GB + (− sin Vobs cos Vsun cosΔ_ + cos Vobs sin Vsun) ~B .
(4.71)

Any point% (GB, ~B) (sinceIB = 0) of the projection of the terminator in Cℎ4 B:~ ?;0=4
has the following coordinates in the (G,~, I) system. Let us do calculation using
Eq.(3.57) 

G

~

I

 =


0 − sin Vobs cos Vobs
1 0 0
0 cos Vobs sin Vobs




GB
~B

IB = 0


=


−~B sin Vobs

GB
~B cos Vobs


(4.72)
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then the normal to the terminator n̂) can be also transformed into (G,~, I) system
which is calculated by using Eq.(3.31) and Eq.(3.38)

G

~

I

 =


cosΔ_ − sinΔ_ 0
sinΔ_ cosΔ_ 0

0 0 1



cos Vn̂)

0
sin Vn̂)


=


cos Vn̂) cosΔ_
cos Vn̂) sinΔ_

sin Vn̂)


(4.73)

The signed distance between % and the plane containing the terminator is given by
calculating � = UV · n̂) with Eqs.(3.72-73)

UV · n̂) =


−~B sin Vobs

GB
~B cos Vobs



cos Vn̂) cosΔ_
cos Vn̂) sinΔ_

sin Vn̂)


= −~B cos Vn̂) sin Vobs cosΔ_ + GB cos Vn̂) sinΔ + ~B sin Vn̂) cos Vobs
= GB cos Vn̂) sinΔ_ + ~B

(
− cos Vn̂) sin Vobs cosΔ_ + sin Vn̂) cos Vobs

)
.

(4.74)
and points such that� > 0 belong to the visible terminator while points with� < 0
are hidden, and � = 0 are cusp points.
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Appendix 2: Voronoi
diagram and VOISE
algorithm
5.1 Voronoi diagram

The shape of Voronoi diagram (VD) evokes fractals and fibonacci spirals, which
turns up frequently in the natural world. The first VD concept was established in
17th century by Peter Gustav Lejeune Dirichlet and Georgy Feodosevich Voronoy.
VD is a collection of boundary points in the # dimensions space which divided into
a set of disjoint convex polygons called Voronoi Region (VR). Each VR is generated
by a corresponding point which called seeds, sometimes germs, or generators. Let
us start with considering a set of seeds ( = {s1, s2, ..., s=}, where s8 are distinct
points in the plane R2. The VR generated by s8 , written in R(s8), is the set of points
p in the plane R2 closer to s8 than other seeds of s 9 . As regards Euclidean distance
3 the formal form of R(s8) is given by

R(s8) = {p ∈ R2 | 3 (p, s8) < 3 (p, s 9 ), s 9 ∈ (\s8}. (5.1)

We can also express its 2;>BDA4 , written in R(s8), of the R(s8) defined by

R(s8) = {p ∈ R2 | 3 (p, s8) ≤ 3 (p, s 9 ), s 9 ∈ (\s8}. (5.2)

The VD formed by a set of seeds ( , written inV((), which consists of the boundary
points of a set of VRs. So VD shapes graph or ’skeleton’ form by means of the

41
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boundaries of VRs, which is defined by

V(() =
⋂
s8 ∈(
R(s8) . (5.3)

The geometrical representation of VD is seen its set of boundary lines associating
VRs. Fig 4.1 illustrates a VD for a set of 6 seeds in R2. In mathematical termi-

Figure 5.1: An example of Voronoi diagram. Dots are seeds, dashed lines and solid lines
are bisector between associate seeds. Each region with a point separated by the
lines is VR. VD appears with a form of dashed and solid lines.

nology, a VR R(s8) generated by a seed s8 is called the 8=5 ;D4=24 I>=4 or the
3><8=0=24 A468>= of the seed s8 . The whole picture of the VRs is seen like as a
C4BB4;;0C8>= ofpolygons ofR(s8) andVDV(() forms the( 4;4C>=1~ �=5 ;D4=24 />=4B
which abbreviated into SKIZ.

5.2 Delaunay triangulation

In addition, we see another representation of the VD in graph theory. The Voronoi
graph,� (() = (+ , �), is a planar graph in two-dimensional space, which represents
the topological structure of the neighbouring VRs. Fig 4.2 shows the Voronoi graph
into Fig 4.1. In Fig 4.2, the vertices or nodes,+ , are seen as blue dots and the line
connecting two neighbour vertices is called edge written in � of the Voronoi graph
� . The neighbour seeds of a seed s1 areN(s1) = {s2, s3, s4, s5, s6} in the given
set of seeds ( . The links of Voronoi graph structure associated by a seed s1 are
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{s1, s2}, {s1, s3}, {s1, s4}, {s1, s5}, and {s1, s6}. As a dual of Voronoi graph,
there is Delaunay triangulation (DT) which appears by connecting all the pairs of
neighbour seeds. DT is the unique triangulation, which elements of one DT share
one particular circumcircle. The circumcircle does not contain other vertices in/on
it. Therefore, the DT optimizes the geometric ’compactness’ of the triangulation
which means DT maximises the minimum angles of the triangle.

Figure 5.2: An example of the appearance of Voronoi graph and the Delaunay triangulations.

5.3 VOISE algorithm

VD has been studied in many image-processing applications, including interpolation,
compression, pattern recognition, texture analysis [17], and object representation,
require partitioning the support of the images [14]. VOISE algorithm [6] is a
dynamic and self-organising algorithm to create a partition of an image pixel into
VD according to prescribed homogeneity criterion. The created VD is updated in
iterative way by adding and removing the seeds in the image plane. However,updating
VD for the whole plane would be burden on computation. To be more efficient
algorithm, an incremental algorithm was chosen. In addition, there is a requirement
VD to be discrete because of their degeneracy. As long as the three elements of
DT belong to one circumcircle, the DT is a unique triangulation which satisfies the
discreteness of VD. However, if there are seeds more than 4 sharing a circumcicle,
the DT would not be unique, where VD is in degenerate condition. For a successful
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algorithm, VOISE was developed using 38B2A4C4 E4AB8>= > 5 ( �/ 0;6>A8Cℎ<[14]
which can deal with the degeneracy due to the cocircular seeds.
The characterization of the image with VD depends on the location of the seeds which
are one per polygon. The areas of the image with greater gradient in pixel intensities
are characterised by smaller polygons and uniform image intensities have larger
polygons. The emergence of the seeds on the image plane, the emphasized features
of the target image, help us to identify the lines and curves of the planetary auroral
images with less noise. Here after, introduce four phases in the VOISE algorithm,
which are initialisation phase, dividing phase, merging phase, and regularisation
phase.

5.4 Initialization phase

In this phase the seeds for the VDs are initially distributed in the finite image plane
Ω in a random way according to the uniform probability distribution which is known
as a binomial point process. The information of the seed s8 and its VRs are an unique
value depending on the region R(s8) and the intensity of the image pixels within
that region. This information defines the initial tessellation in the image plane and
be used in the subsequent phases.

5.5 Dividing phase

The dividing phase is an iterative process and is the most important phase. After the
initialization phase, each VRs extracts the homogeneous of the pixel intensity in it.
The predefined homogeneity criteria is applied to the region. Untile the VR fills the
criteria the iteration continues and the tessellation in the image plane develops. To
get the non-homogeneous region satisfy the homogeneity criteria, the homogeneity
merit function j (I, B) is introduced. The homogeneity merit function of Voronoi
region associated seed s8 is defined:

j (I, s8) =
max

p∈R(s8 )
[I(p)] − min

p∈R(s8 )
[I(p)]

‖j (I, ()‖ (5.4)

‖j (I, ()‖ = max
s8 ∈(

{
max

p∈R(s8 )
[I(p)] − min

p∈R(s8 )
[I(p)]

}
(5.5)

Where I is the image pixels within the R(s8) and I(p) is the image intensity at
point p. The denominator, Eq.(4.5), is the largest value of the numerator over all
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VRs, so that j (I, s) takes its value in the bound of [0, 1] ∀ s ∈ ( . The similarity
is seen its low value and dissimilarity is seen its closeness to 1. We check the
homogeneity to over all VRs with merit function and the predefined criteria j<, if
it is below the j< such that j (I, s8) ≥ j<. If j (I, s8) is not below the threshold,
by adding seeds to the R(s8) and recreate the Voronoi diagram. The number of
seeds added corresponds to the number of vertices in the VD. Each added seed is
on the extension line passing the corresponding single vertex and the corresponding
seed locating in the inhomogeneous VR. The weight parameters,FB corresponding
to the seeds and FE corresponding to the vertices of the diagram, greatly affect
the location of added seeds and the shape of VD. Those weight parameters also
correspond to a fixed relative distance from the seed. The most probable number
of vertices/edges of a typical cell of a Poisson-Voronoi diagram is six[12] VOISE
author found a good compromise value forFE = 3

8 and forFB = 5
8 between quick

convergence and comparable size of new region. Fig 4.3 shows how the effect of
the weight parameters.[6] In each iteration, homogeneity threshold j< is calculated

Figure 5.3: (from [6]) The image of how the weights effect on seed placement. Seeds are
added to the central hexagonal region (upper-left panel) recursively for three
iterations, adding 18 seeds. The weights are FB = 1

4 , FE = 3
4 (upper-right),

FB =
1
2 , FE =

1
2 (lower-left),FB = 3

4 , FE =
1
4 (lower-right),

using statistics on the sample j8 of the measure of homogeneity,

j8 = {j (I, s8), s8 < (} . (5.6)

j< is defined as the value of the homogeneity measure for which a fraction ?�
100

of the polygons are homogeneous so that j (I, s8) < j<. Defining the probability
Prob we can write the following:

Prob [j (I, s8) < j<] =
?�

100
(5.7)
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During the dividing phase, the region with higher measure of homogeneity j (I, s8)
is split into regions which have smaller measure of homogeneity than j (I, s8). As
the dividing iteration goes on, the Eq.(4.5) decreases which results in the increase
of the strictness of the criteria j< . The dividing iteration continues until all VRs are
classified as homogeneous, or the size of the polygon does not allow further addition
of new seeds. The information of the minimum distance 3< between two seeds is
also checked by VOISE. For efficient operation of the dividing phase to the most
contrasted region and not to low-contrasted region, the author of the VOIS presented
a large percentile value of ?� = (70−80) % with a median merit function j (I, s8).
Otherwise, for the smaller region detection or more noisey features, the percentile
of ?� = 60 − 70 % is also suggested but not for the most contrasted features. The
minimum distance 3< is the parameter which limits the length scale of the features
we want to detect. So 3< needs to be carefully chosen by taking into account the
size of the smallest resolvable features.

5.6 Merging phase

When VRs becomes homogeneous with respect to the threshold j< or its shape does
not allow adding new seed in, the merging phase starts. This phase is iterative process
consists of removing unnecessary ‘fine’ regions where adjacent VRs have very
similar characteristics. The unnecessary VRs have undesirable effect of fragmenting
regions. In order to reduce the bad effect, redundant seeds are removed with the
following conditions. The averaged intensity `8 of the image for the region R(s8)
associated with a seed s8 . A seed s8 is defined as redundant and ought to be removed
when the following conditions are fulfilled.

(a) The region R(s8) is homogeneous with respect to the threshold j< .

j (I, s8) < j< (5.8)

where
Prob[j (I, s8) < j<] =

%"

100
. (5.9)

%" is a parameter to be set in the VOISE configuration.

(b) Among its neighbouring seeds s 9 ∈ N (s8) which are around in the homoge-
neous region, the relative difference between the averaged values `8 and ` 9 is
less than the predefined threshold Δ`

|`8 − ` 9 | < Δ` |`8 |. (5.10)
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(c) The total length L of the edges shared with non-homogeneous neighbours
normalized to the perimeter P of the region does not exceed a prescribed
threshold ΔH

L
P < ΔH (5.11)

At each iteration all seeds are checked. If all three conditions are satisfied, the
seed is removed and the VD is updated. The neighbour cells expand to include
the pixels previously allocated to that seed. Because j (I, s8) can only increase
with the removal of seeds, condition (a) becomes more strict in the iteration and
so the merging phase ends when no more regions meet all three conditions. A
large percentile of ?" leads to less merging so the more seeds and VRs remain. A
smaller value of ?" leads to more merging so the number of seeds and VRs become
small.

5.7 Regularization phase

Usually, the VRs after the second and third phases are highly irregular seen by
many acute angles and elongated polygons. So the VRs are regularized in this phase
in iterative process. This process is to calculate a new VD where each seed s8 is
replaced by the center of the mass b8 (s8) of the VR;

b =

∑
p∈R(s8 )

pd (p)∑
p∈R(s8 )

d (p) (5.12)

Where the d is a pixel intensity density function at pixel p, which is close to uniform
within each VR after the second and third phases. This iterative process stops when
the difference between seed position s8 and b8 (s8) is less than 1 for all s8 ∈ ( .
Because the center of mass and seeds are only defined in the image plane Ω, the
1 pixel limit is enough. And also when the iteration reached to the predefined
maximum iteration, the process can be terminated. After regularisation, the process
is complete.
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Appendix 3: Minnaert
model Matlab code

1 function imgsub = minnvince(params,img,se,lat,lon,oza,sza)
2

3 % INPUT
4 % img : image data
5 % se : sub−Earth point on the target planet for the ...

calculation of linear
6 % weight with longitude to the 2 models calculation.
7 % lat : Latitude matrix corresponding to the image pixel
8 % lon : Longitude matrix corresponding to the image pixel
9 % oza : Observer zenith angle corresponding to the image pixel

10 % sza : Solar zenith angle corresponding to the image pixel
11 %
12 % OUTPUT
13 % imgsub : subtracted image
14 %
15 % (Vincent) log(mu*I) = C0 + C1*x + C2*x.^2 + C3*x.^3;
16 % (Left side // estimated image intensity)
17 % I :observed image intensity
18 % mu :cosine of the observation zenith angle
19 % mu0 :cosine of the solar zenith angle
20 % x :log(mu*mu0)
21 %
22 % Vincent: doi:10.1006/icar.1999.6232
23 % coefficients are derived by a least−squares fit to the ...

intensity at a

49
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24 % selected latitude range.
25 %
26

27 img = params.W;
28

29 % conversion factor
30 d2r = cspice_rpd; % degree to darian
31 r2d = cspice_dpr; % radian to degree
32

33 sza = sza*d2r; oza = oza*d2r;
34

35 % mu and mu0
36 mu = cos(oza); mu0 = cos(sza);
37

38 % exclude aurora emission
39 imgcalc = img; a_region=find(lat<−60 & lat≠−100);
40 a_intensity = isoutlier(imgcalc(a_region),'median');
41 imgcalc(a_region(a_intensity))=NaN; ...

imgcalc=fillmissing(imgcalc,'linear');
42

43 ydata = log(imgcalc.*mu); ydata(isinf(ydata))=0; % −inf
44 x1=log(mu.*mu0);
45

46 model = zeros(size(img));
47

48 % latitude bin
49 latbin=linspace(−90,0,91);
50

51 for i = 1:length(latbin)
52 latid = find(lat>latbin(i) & lat≤latbin(i)+1);
53 poscos = latid(find(mu(latid)>0 & mu0(latid)>0));
54 % index sunlit−side longitude range with latitude bin
55 idsunlit = find(lat>latbin(i) & lat≤latbin(i)+1 & ...

lon≥−85 & lon≤45);
56 % index terminator−side longitude range with latitude bin
57 idtermi = find(lat>latbin(i) & lat≤latbin(i)+1 & ...

lon≥−45 & lon≤70);
58

59 % index negative cosines
60 negative_s = find(mu(idsunlit)<0);
61 negative_t = find(mu0(idtermi)<0);
62

63 if numel(idsunlit)≠0 && numel(idtermi)≠0
64 % pick up x1,ydata in the bin for generating ...

fitting functions
65 X1=x1(poscos);
66

67 X1s = x1(idsunlit); Ydatas = ydata(idsunlit);
68 outs = ...

excludedata(X1s(:),Ydatas(:),'indices',negative_s);
69 [X1s,Is] = sort(X1s); Ydatas=Ydatas(Is);
70 outs = outs | excludedata(X1s(:),Ydatas(:),'range', ...

[−8 −0.01]);
71
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72 X1t=x1(idtermi); Ydatat=ydata(idtermi);
73 outt = ...

excludedata(X1t(:),Ydatat(:),'indices',negative_t);
74 [X1t,It] = sort(X1t); Ydatat=Ydatat(It);
75 outt = outt | excludedata(X1t(:),Ydatat(:),'range', ...

[−8 −0.01]);
76

77 if length(Ydatas(¬outs))>4 && ...
length(Ydatat(¬outt))>4 % check if there is the ...
enough sample data

78 % generate fit function
79 warning off
80 [fs,¬,¬]=fit(X1s(:),Ydatas(:),'poly3','Exclude',outs,'Robust','on');
81 [ft,¬,¬]=fit(X1t(:),Ydatat(:),'poly3','Exclude',outt,'Robust','on');
82 warning on
83

84 if 1 % fit data plot
85 if latbin(i)== −86 || latbin(i)== −76 || ...

latbin(i)== −66 || latbin(i)== −56 ...
86 || latbin(i)== −46 || latbin(i)== −36 ...

|| latbin(i)== −26
87 X1s = X1s(¬outs); Ydatas=Ydatas(¬outs);
88 X1t = X1t(¬outt); Ydatat=Ydatat(¬outt);
89 figure;
90 % plot(fs,X1s(:),Ydatas(:))
91 plot(X1s(:),Ydatas(:),'bx','DisplayName','Data/sunlit')
92 hold on
93 % plot(ft,X1t(:),Ydatat(:))
94 plot(X1s(:),feval(fs,X1s(:)),'rx','DisplayName','Fit/sunlit')
95 plot(−X1t(:),Ydatat(:),'bo','DisplayName','Data/terminator')
96 plot(−X1t(:),feval(ft,X1t(:)),'ro','DisplayName','Fit/terminator')
97 hold off
98 title(['Latitude bin from ' ...

num2str(latbin(i)) ' to ' ...
num2str(latbin(i)+1) ' [deg]'])

99 legend('Location','southeast');
100 xlim([−6 6]);
101 ylim([−8 0]);
102 xlabel('x = Log(mu*mu0)')
103 ylabel('y = Log(I*mu)')
104 end
105 end
106

107 for j=1:length(poscos)
108 % linear unit weight wrt longitude to the ...

set of coefficients
109 model(poscos(j)) = ...

feval(ft,X1(j))*((90−se.lon+lon(poscos(j)))/180)+ ...
...

110 feval(fs,X1(j))*(1−(90−se.lon+lon(poscos(j)))/180);
111 if model(poscos(j))>0 || model(poscos(j))==0
112 model(poscos(j))=0;
113 else
114 model(poscos(j))=exp(model(poscos(j)))/mu(poscos(j));
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115 end
116 end
117 end
118 end
119 end
120

121

122 imgsub = img − model;
123 imgsub(imgsub<0) = 0;
124

125 end
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Appendix 4: Li model
Matlab code

1 function imgsub = li_dayglow(params,img,lat,lon,oza,sza,ss,se)
2

3 % INPUT
4 % img : image data
5 % se : sub−Earth point on the target planet
6 % ss : sub−Solar point on the target planet
7 % lat : Latitude matrix corresponding to the image pixel
8 % lon : Longitude matrix corresponding to the image pixel
9 % oza : Observer zenith angle corresponding to the image pixel

10 % sza : Solar zenith angle corresponding to the image pixel
11 %
12 % OUTPUT
13 % imgsub : subtracted image
14 %
15 % >(Li) I = A + B*cos(SZA) + C*cos(VZA); (1)
16 %
17 % I :estimated image intensity
18 % SZA :solar zenith angle
19 % VZA :observation zenith angle
20 % A,B,and C :fitting coefficients
21 %
22 % Li: DOI:10.1109/IGARSS.2004.1369944
23 % fit based on the equation (1) is used to estimate the ...

dayglow intensity
24 % as function of cos(SZA) and cos(VZA)

53
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25 %
26

27 img = params.W;
28

29 % conversion factor
30 d2r = cspice_rpd; r2d = cspice_dpr;
31

32 sza = sza*d2r; oza = oza*d2r;
33

34 % cosines of zenith angles
35 x1 = cos(sza); % cosines of solar zenith angle
36 x2 = cos(oza); % cosines of observer zenith angle
37

38 lon = lon − (ss.lon−se.lon); % shift longitude mesh to get ...
the noon at the center

39

40 % Magnetic latitude 'Mlat' and the Mean intesity values 'Mlatv'
41 Mlat=linspace(−90,−40,51);
42 Mlatnv=zeros(size(Mlat));Mlatdv=zeros(size(Mlat));
43 for i = 1:length(Mlat)
44 % data in latitude bin night side
45 Mlatidn=find(lat≥Mlat(i) & lat≤Mlat(i)+1 & lon>0);% ...

nightside
46 Mlatidd=find(lat≥Mlat(i) & lat≤Mlat(i)+1 & lon<0);% dayside
47 Mlatnv(i)=mean(img(Mlatidn));% nightside
48 Mlatdv(i)=mean(img(Mlatidd));% dayside
49 end
50

51 % nightside peak
52 [peakvn, peakidn]=max(Mlatnv,[],'all','linear')
53 % nightside peak in Mlat
54 peakMlatn=Mlat(peakidn)
55

56 % nightside pole−ward minimum
57 [poleminn,poleminidn]=min(Mlatnv(Mlat<peakMlatn),[],'all','linear')
58 % nightside pole−ward
59 poleboundn=max(Mlat(find(Mlatnv(Mlat<peakMlatn)<0.8*(peakvn−poleminn))))
60

61 % nightside equator ward
62 [equminn,equidn]=min(Mlatnv(Mlat>peakMlatn),[],'all','linear')
63 equidn = equidn+peakidn−1;
64 % nightside find equator−ward boundary by the subjective ...

criteria
65 Mlatequn = Mlat(Mlat>peakMlatn); Mlatvequn = ...

Mlatnv(Mlat>peakMlatn);
66 equboundn=min(Mlatequn(Mlatvequn < 0.8*(peakvn−equminn)))
67

68

69 % dayside peak
70 [peakvd, peakidd]=max(Mlatdv,[],'all','linear')
71 % dayside peak location in Mlat
72 peakMlatd=Mlat(peakidd)
73

74 % dayside pole−ward minimum
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75 [polemind,poleminidd]=min(Mlatdv(Mlat<peakMlatd),[],'all','linear')
76

77 % dayside pole−ward
78 poleboundd=max(Mlat(Mlatdv(Mlat<peakMlatd)<0.8*(peakvd−polemind)))
79

80 % dayside equator−ward
81 [equmind,equidd]=min(Mlatdv(Mlat>peakMlatd),[],'all','linear')
82 equidd = equidd+peakidd−1;
83 % dayside find equator−ward boundary by the subjective criteria
84 Mlatequd = Mlat(Mlat>peakMlatd); Mlatvequd = ...

Mlatdv(Mlat>peakMlatd);
85 equboundd=min(Mlatequd(Mlatvequd<0.8*(peakvd−equmind)));
86 if isempty(equboundd)
87 equboundd = Mlat(equidd)
88 end
89

90 if poleminn > peakvn/2 | equminn > peakvn/2
91 poleboundn = Mlat(poleminidn);
92 equboundn = Mlat(equidn);
93 end
94

95

96 % night side index info for non auroral and auroral region ...
in the image

97 equregionn=find(lat>equboundn & lat≠−100);
98 poleregionn=find(lat<poleboundn & lat≠−100);
99 % dayside index info for non auroral and auroral region in ...

the image
100 equregiond=find(lat>equboundd & lat≠−100);
101 poleregiond=find(lat<poleboundd & lat≠−100);
102

103 non_auroran=vertcat(equregionn,poleregionn); % non auroral ...
region indexies

104 non_auroramix=vertcat(equregiond,poleregionn); % non ...
auroral region mix side indexies

105 auroran=find(lat>poleboundn & lat<equboundn); % auroral ...
region indexies

106 aurorad=find(lat>poleboundd & lat<equboundd); % auroral ...
region indexies

107 auroramix=find(lat>poleboundn & lat<equboundd); % auroral ...
region mix side indexies

108

109

110 model = zeros(size(img)); latbin=linspace(−90,0,91);
111 for i=1:length(latbin)
112 if latbin(i)>equboundd || latbin(i)<poleboundn
113 % for non auroral region
114 latid1=find(lat≥latbin(i) & lat≤latbin(i)+1);
115 X1=[x1(latid1) x2(latid1)]; I=img(latid1);
116 flag=1;
117 else % for auroral region
118 latid1=find(lat≥latbin(i) & lat≤latbin(i)+1);
119 latid2=latid1(¬isoutlier(img(latid1),'median')); % ...

filter auroral intensity
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120 X1=[x1(latid1) x2(latid1)];
121 X2=[x1(latid2) x2(latid2)]; I=img(latid2);
122 flag=0;
123 end
124 % pick up cos(sza) cos(oza)
125 if length(I(I≠0))>3 % check if there is the enough ...

sample data
126 if flag
127 warning off
128 [fli,¬,¬]=fit(X1,I,ft);
129 warning on
130 for j=1:length(latid1)
131 % using cos(sza) and cos(oza) get estimated ...

intensity by
132 % the generated fit function 'fli'
133 model(latid1(j)) = feval(fli,X1(j,:));
134 end
135 else
136 warning off
137 [fli,¬,¬]=fit(X2,I,ft);
138 warning on
139 for j=1:length(latid1)
140 % using cos(sza) and cos(oza) get estimated ...

intensity by
141 % the generated fit function 'fli'
142 model(latid1(j)) = feval(fli,X1(j,:));
143 end
144 end
145 end
146 end
147 subimg = img−model; subimg(subimg<0) = 0;
148 end
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