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The last decade has witnessed the development of sophisticated biobehavioral and

genetic, ambulatory, and other measures that promise unprecedented insight into

psychiatric disorders. As yet, clinical sciences have struggled with implementing these

objective measures and they have yet to move beyond “proof of concept.” In part,

this struggle reflects a traditional, and conceptually flawed, application of traditional

psychometrics (i.e., reliability and validity) for evaluating them. This paper focuses on

“resolution,” concerning the degree to which changes in a signal can be detected

and quantified, which is central to measurement evaluation in informatics, engineering,

computational and biomedical sciences. We define and discuss resolution in terms of

traditional reliability and validity evaluation for psychiatric measures, then highlight its

importance in a study using acoustic features to predict self-injurious thoughts/behaviors

(SITB). This study involved tracking natural language and self-reported symptoms in

124 psychiatric patients: (a) over 5–14 recording sessions, collected using a smart

phone application, and (b) during a clinical interview. Importantly, the scope of these

measures varied as a function of time (minutes, weeks) and spatial setting (i.e., smart

phone vs. interview). Regarding reliability, acoustic features were temporally unstable

until we specified the level of temporal/spatial resolution. Regarding validity, accuracy

based on machine learning of acoustic features predicting SITB varied as a function of

resolution. High accuracy was achieved (i.e., ∼87%), but only when the acoustic and

SITB measures were “temporally-matched” in resolution was the model generalizable to

new data. Unlocking the potential of biobehavioral technologies for clinical psychiatry will

require careful consideration of resolution.

Keywords: digital phenotyping, serious mental illness, clinical science, psychiatric illness, biobehavioral,

psychometrics

INTRODUCTION

The 1850’s cholera epidemic in the SOHO district of the United Kingdom serves as a stark example
of the need for precisionmeasures inmedicine (1). In response to a rising death toll, experts tracked
and measured mortality associated with the disease; a metric with near perfect consistency across
experts (i.e., inter-rater reliability) and time (i.e., test-retest reliability) and a high degree of face,
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convergent, predictive and construct validity (i.e., death). Yet
this measure was insufficient for accurately understanding
the problem and led to ineffective causal theories (e.g., the
“miasma” theory—that toxic air was causing the illness) and
treatments. It was not until Dr. John Snow began mapping
positive and negative cases in three-dimensional space that the
epicenter of the health crisis was identified and resolved (i.e.,
the responsible water pump was disabled), its bacterial cause was
identified, and a treatment/cure could be realized. This landmark
event illustrates how traditional psychometrics, focusing on
gross levels of reliability and validity, can be insufficient
for developing tools that successfully understand, treat and
cure pathology.

A similar situation is occurring in clinical sciences.
Clinical psychiatric/psychological disorders reflect one of
the most economically costly and deleterious conditions
known to humankind (2). Despite thousands of reliable
and valid clinical measures in use, our understanding of
these disorders is generally poor and existing treatments
are palliative instead of curative and preventative. The 21st
century is witness to the development of highly sophisticated
measures with increased attention to biobehavioral and genetic
measures, ambulatory assessments, and other measures that
promise unprecedented insight into psychiatric disorders
(2–6). This involves, at least in part, the development
and application of relatively inexpensive “biobehavioral”
measures that evaluate specific channels of objectively-
defined behavior tied to key neurobiological functions, for
example, through the use of portable electroencephalography,
eye-tracking and facial and speech analysis. Many of these
technologies yield continuous data streams that can be collected
unobtrusively while a patient navigates their daily routine—
thus extending assessment well-beyond the confines of the
traditional clinical setting. Complementing these methods
are novel models of serious mental illness that focus less on
subjective and clinically observable phenomena and more
on psychopathology across levels of complexity within the
central nervous system [e.g., the Research Domain Criteria
initiative; (7)]. Collectively, these advances promise to
provide low-cost and time-efficient procedures translatable
to a wide array of clinical and non-clinical settings, and in
doing so, can yield unprecedented objective, large-scale data
sets on the nature of psychiatric diseases. This in turn can
inform interventions by facilitating biofeedback, optimizing
pharmacological type/dosing, improving psychosocial
intervention efficiency, and personalizing interventions
more generally. However, behavioral and neuro-sciences
have struggled with evaluating and implementing objective
measures capable of effectively predicting, diagnosing,
or treating psychopathology (8–10). It is the thesis of
this paper that the application of clinical psychometrics
will need to change, borrowing from bioinformatics,
engineering, computational and other sciences. Seeing past
the “psychopathology miasma” that currently hampers scientific
discovery of psychological/psychiatric disease may require a
focus on “resolution.”

CLASSICAL TEST THEORY AND
RESOLUTION

Despite statistical and methodological improvements in the
field of psychometrics since its birth in the 19th century, their
application to measures of psychiatric disease have remained
relatively consistent. This involves a focus on reliability and
validity. Reliability concerns the consistency of a measure: across
individual items of a measure (e.g., internal consistency), time
(test-retest reliability), informants (e.g., inter-rater reliability),
and situations (e.g., situational reliability). Validity concerns the
accuracy of the measure and is evaluated based on convergence
with clinically-relevant criterion (concurrent and predictive
criterion validity), relationships with conceptually related
(e.g., convergent measure) and unrelated (e.g., discriminant
validity) constructs, conceptual comprehensiveness (e.g., content
validity), and putative structure (e.g., structural validity).
Importantly, the reliability and validity of measures in clinical
psychology and psychiatry is far below what would be acceptable
in other sciences. For example, test-retest and inter-rater
reliability values explaining 50–70% of score variance are
generally considered moderate and good, respectively (i.e., Intra-
Class Correlation Coefficients > 0.50 & 0.70) (11). Values for
the most important and popular psychiatric clinical measures,
such as the Structured Clinical Interview for the DSM IV (e.g.,
interrater reliability = 0.47–0.80) (12), cognitive measures (e.g.,
test-retest of theMATRICS Consensus Cognitive Battery= 0.60–
0.84) (13), symptom measures and self-report scales (e.g., test-
retest and internal consistency of Beck Depression Inventory
= 0.69 and 0.84) (14) are generally in this range. In physics,
chemistry, engineering, biological, computer, informatics and
other sciences concerned with measurement error, such high
levels of unexplained variance and uncertainty would generally
be considered unacceptable and associated with potentially
catastrophic outcomes. In these fields, “resolution” is a critical
factor in evaluating and optimizing the reliability and validity of
a measure.

Human behavior is complex—and many factors contributing
to this complexity likely constrain reliability and validity
estimates. “Resolution” offers the ability to systematically
quantify these factors. Resolution concerns the degree to
which changes in a signal can be detected and quantified.
Practically speaking, resolution helps optimize information for
specific inferential purposes. There are three types of resolution
potentially relevant to clinical measures: temporal, spatial, and
spectral. Temporal resolution concerns the ability to discern
information conveyed across time and is measured in units of
time (e.g., seconds, minutes, weeks, years). Spatial resolution
concerns how information is conveyed across physical (e.g.,
pixels, voxels, feet, miles, seasons), virtual (e.g., degrees of
familiarity in a social network), and semantic spaces within a
single time frame. It includes the ability to discern relationships
of an “object” with other “objects” within this space. Spectral
resolution concerns the ability to discern various aspects and
subcomponents of a phenomenon. A physical example of spectral
resolution involves the manner in which a prism decomposes
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TABLE 1 | “Resolution” types discussed in this article.

Temporal Spatial Spectral

General focus The ability to discern information conveyed

across time.

The ability to discern information conveyed

across physical, virtual and semantic space.

The ability to discern information conveyed

across subcomponents.

Physical examples of

measurement units

Seconds, annual seasons Meters, pixels Electromagnetic wavelengths

Application to self-injurious

thoughts/behaviors

The ability to discern SITB variability as a

function of daily circadian and seasonal

patterns.

The ability to discern SITB variability as a

function of proximity to trauma-related cues.

The ability to discern intensities of various

levels of SITB and its subcomponents.

light into its various wavelengths across the spectrum visible to
humans. Definitions and examples are provided in Table 1.

To illustrate how resolution can affect informatics and
ultimately constrain reliability and validity estimates, a bocce
ball analogy is presented in Figure 1. This analogy follows
the “dartboard” analogy typically used to illustrate reliability
and validity. The object of the game is for players to throw
their colored bocce balls as close to the target (the “jack,”
a white colored ball) as possible. Following completion of a
“frame” (when all the teams’ balls have been thrown), points
are awarded to a single team based on the number of balls
closest to the jack. Gameplay involves multiple frames, until
a team reaches a predetermined score. To effectively play the
game, one must be able to discern the various teams’ bocce
balls from each other (spectral resolution), discern the relative
distances from the bocce balls to the jack (spatial resolution),
and discern the various frames from each other for scoring
purposes (temporal resolution). Court 1a shows how reliability
and validity is typically expressed; in this case, between teams
using red, green and blue bocce balls during a single frame. This
information is critical for establishing the winner of each frame.
Courts 1b through 1d highlight how this process is affected by
resolution. In Court 1b, there is insufficient spatial resolution,
hence obscuring the relative location of the balls and the jack in
dimensional space. In contrast, Court 1c suffers from insufficient
temporal resolution, obscuring the balls from various frames
played throughout the game. Court 1d suffers from insufficient
spectral resolution, making it difficult to discern information
regarding the “subcomponent” teams from each other.

Within traditional clinical psychometrics, increasing levels
of reliability and validity are almost invariably interpreted as
desirable. This is not the case with resolution, which can only
be interpreted with respect to the measure’s intent. If resolution
is too low, as in the case of Figure 1B, there is insufficient
information for measuring one signal of interest, namely the
exact distances between the bocce balls and the jack. If spatial
resolution is high, but the measurements are collected over an
unsuitably long timeframe, as in the case of Figure 1C, there
is too much information and one cannot effectively separate
signal of interest from “noise” of irrelevant bocce balls aimed at
an unidentified jack. However, if we are primarily interested in
whether teams have taken similar numbers of turns, Figure 1B is
best because the low spatial resolution allows for highly efficient
visual feature detection of red, blue and green colors on the
court. On the other hand, Figure 1C would be optimal for

understanding whether any player had successfully hit the jack
that day, or whether there are imperfections in the court that
affect game play. Importantly, many contemporary measures,
particularly those that encode data digitally, are not static with
respect to resolution. Rather, they facilitate dynamic resolution.
Hence, spatial, temporal, and spectral resolution are scalable
based on user-defined parameters. Consider on-line digital maps
that provide interfaces for modifying the spatial (e.g., area
scale), spectral (e.g., including geographic, roadway, business,
traffic, weather, and other information) and even temporal
information. Digital map use has been greatly enhanced by
graphical interfaces that allow the user to view results in real
time while manipulating their resolution, effectively optimizing
information to answer specific questions. In the next sections,
we explore how psychiatric phenotypes, such as reflected in self-
injurious thoughts and behaviors, hostility and psychosis, are
scalable across time, space and subcomponent and why this is
critical for psychometric evaluation.

RESOLUTION AND CLINICAL
PSYCHOMETRICS

Most psychiatric, psychological, and related clinical constructs
are scalable, dynamic across time and space, and are
multidimensional in structure. Note that our use of “space”
here refers to proximity of a variety of factors potentially
affecting the construct during a single timeframe, including
those in physical, virtual and even conceptual/semantic “spaces.”
Using ecological momentary analysis, for example, it is well-
known that positive emotion, motivation, emotion regulation
and hallucinatory experiences, vary tremendously within
individuals as they navigate their daily routines, yet show
predictable patterns over larger temporal epochs and when
considering proximity to physical/conceptual “objects” in their
spatial environment [e.g., family members, stress, arousal,
fatigue; (15–18)]. Even psychological constructs considered to be
“trait-like” and “immutable,” like narcissism (19), psychopathy
(20), and cognition (21) appear to be dynamic over temporal and
spatial epochs using high resolution measures. Understanding
how psychological constructs “predictably change,” that is,
show characteristic patterns across time and space, has been an
emerging theme in contemporary psychopathology research.
Examples include understanding “sundowning” effects in
neurodegenerative disorders (22), affective dysregulation in
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FIGURE 1 | Bocci ball analogy to demonstrate reliability, validity, and the importance of resolution. (A) Red player shows relatively low reliability, and validity. Green

player shows relatively high reliability and low validity. Blue player shows relatively high reliability and high validity. (B) Image has relatively low spatial resolution. (C)

Image has relatively low temporal resolution. (D) Image has relatively low spectral resolution.

personality disorders (23), craving in individuals with substance
use disorders (17), and delusions in psychosis (18).

While clinical constructs are often scalable and dynamic
with respect to resolution, data from their consequent clinical
measures are often not. Structured clinical interviews, personality
tests, symptom inventories, functioning measures and such
generally rely on self-report information obtained cross-
sectionally during a spatially- “constrained” interaction (i.e., a
clinical visit). Consequently, traditional clinical measures are
limited in their precision for quantifying severity of specific
symptoms at a specific moment in time (e.g., for measuring social
anhedonia severity between 15:00 and 17:00 last Thursday) or as
a function of context (e.g., with friends vs. alone). Consider how
anxiety scores from a standard clinical test compare in precision
to continuous heart rate variability data. The latter data can be
scaled and compared as a function of both time and context.
In part, the limitations of clinical tests in this regard reflect the
fact that they rarely provide ratio level data (i.e., data with an
absolute zero and equal/definite ratio between data points) nor
specify how these data fluctuate over defined periods of time
or over clearly-operationalized spatial contexts [see (8, 23–25)
for elaboration]. Consequently, they are often unable to quantify
isolated channels associated with the clinical construct (i.e., poor
spectral resolution), beyond general global domains associated
with their factor structures.

Biobehavioral technologies offer the potential for data
collection over user-defined temporal epochs (e.g., seconds,
days, months), are often highly sensitive to subtle environmental
changes (i.e., space), and can be constructed to simultaneously
capture multiple aspects of a psychological construct. Hence,
many biobehavioral technologies can be potentially scaled to
measure a wide array of user-defined psychological functions.
However, the dynamic nature of biobehavioral data presents a

significant challenge in terms of their psychometric evaluation
and their consequent analysis. High-temporal resolution
measures collected in variable contexts are capturing sources
of variance not necessarily present in traditional measures,
and may therefore be unstable over short temporal epochs.
Moreover, to the extent that the latter are used to validate
the former, lack of convergence between them could be
interpreted as a failure of the high-resolution biobehavioral
measures to carry useful information. This is not necessarily
true: as they are capturing different information and may
have additional layers of complexity to account for. These
concerns motivate a validation approach that considers the
temporal, spatial and spectral resolution not only of the
biobehavioral measure under development, but also of the
criterion measures being used for validation. To illustrate this
point, we examine natural vocal acoustic data from a large
corpus of psychiatric patients in their variability over time and
“space” (i.e., spatial conditions/resolutions) and in their ability
to predict clinical phenomenon, namely self-injurious thoughts
and behaviors (SITB).

ILLUSTRATING THE IMPORTANCE OF
RESOLUTION: MODELING
SELF-INJURIOUS THOUGHTS/BEHAVIORS
WITH ACOUSTIC VOCAL FEATURES

Background
Acoustic vocal analysis involves quantifying aspects of vocal
expression such as pitch, intonation, emphasis, vocal rate and
speech production. Acoustic vocal analysis can be automated,
is generally inexpensive, and uses behavioral samples that can
be collected using many different modalities/media (e.g., using
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telephone and ambient recording procedures). Vocal expression
is informative for understanding a wide range of emotional,
cognitive and psychiatric states [e.g., (26–28)], and is often
abnormal in the presence of SITB [e.g., see (29) for a recent
review of this literature]. Hence, acoustic analysis has been
proposed as an efficient, objective and potentially automated
measure of SITB translatable to clinical settings (e.g., crisis phone
centers, emergency rooms). To date, acoustic measures of SITB
has been the focus of over a dozen peer-reviewed studies and
scientific proceedings [e.g., (30–39)] and legal patents.

Despite promising “proof of concept” research, acoustic
technologies have yet to be implemented in any clinical
settings or approved by any governmental regulatory agency
for prediction of SITB. In part, this reflects a general lack of
replication of any specific methods and findings across studies.
Early studies suggested that specific acoustic features, notably
related to “jitter,” were particularly useful for identifying SITB
(33, 35). However, subsequent research has failed to uniformly
replicate this, and has focused on much broader acoustic feature
sets, including those encompassing fundamental frequency,
intensity, formant frequency, spectral analysis, articulation rate
and pause behaviors. These feature sets range from singular
to large (i.e., over 6,000 features), procured using a variety of
speaking tasks, and analyzed using a variety of hypothesis driven
and exploratory procedures. Moreover, measures of SITB vary
widely by study, for example, using clinical rating scales (e.g.,
Hamilton Depression Rating Scales, as in Hashim et al. (34);
Columbia Suicide Severity Rating Scale, as in Venek et al. (38),
and/or recent suicide attempt behavior [e.g., (33)]).

Resolution is critical for both interpreting the extant literature
and for extending it. Although prior studies of SITB have
generally not examined temporal stability, acoustic features show
considerable variability as a function of an individual’s emotional
state, context, speaking task and other “spatial” and “temporal”
factors (26, 40–42). Hence, reliability should be low to modest
unless accounting for these factors, as they would be expected
to naturally fluctuate. Kelso et al. (41) provided a conceptual
framework for understanding how relatively low-level features
of speech articulation are highly dynamic, and difficult if not
impossible to interpret without contextual information. Building
on this, we have demonstrated how spatial resolution of acoustic
features affects stability of natural speech recorded from smart
phones over a 1-week epoch in patients with schizophrenia
and non-psychiatric controls (24). When not accounting for
contextual factors (e.g., “what type of activity are you engaged
in prior to speaking?), the consistency of acoustic features was
poor [i.e., < 0.50; (43)], with a range of Intra-class Correlation
Coefficient values [ICC] 0.00–0.48.When accounting for obvious
contextual factors (e.g., in a social setting, at home/work), ICC
values increased appreciably, with many exceeding moderate and
acceptable thresholds [i.e., 0.50 and 0.75, respectively; (43)].

Resolution is also important for understanding concurrent
and predictive validity, as validity should be constrained when
acoustic features and SITB measures are grossly unmatched in
temporal and spatial resolution. Typically, “gold standard” SITB
measures (e.g., HAMD, CSSR) are used for validation; measures
that cover a broad, variable or ambiguous swath of time and

are often imprecise with respect to setting [e.g., cover a broad
range of settings; (44)]. This is problematic in light of increasing
evidence that SITB is highly variable across brief temporal epochs
(45), and more importantly, that the acoustic sampling was likely
conducted hours, days, or weeks from the SITB assessment and
in an entirely different context. It is true that machine learning
based algorithms have demonstrated impressive accuracy for
predicting “gold standard” SITB measures [e.g., (36, 46)] with
accuracy far exceeding the near-chance levels seen with clinical
judgement (47). However, to our knowledge, generalizability
to other “resolutions” settings, speaking tasks and measures
of suicidality have not been demonstrated [a point alluded
to in Ribeiro et al. (48)]. In support of this generalizability
concern, Walsh et al. (46) employed machine learning of clinical
history and demographic information to predict SITB at various
time points (e.g., 1-week, 1-month, 1-year). While their models
showed impressive accuracy, the model features and weights
varied considerably across these time points (46). It is our thesis
that optimizing the reliability, validity and generalizability of
acoustic analysis for measuring SITB requires consideration of
temporal and spatial resolution.

In the following section, we examine a limited vocal feature set
in predicting SITB in a sample of inpatient and outpatients with
various psychiatric diagnoses. These analyses are constrained
by the nature of our data and were meant to explore the role
of resolution on reliability and validity using “real-world” data,
as opposed to developing generalizable algorithms for SITB
prediction. SITB was examined across two different temporal
resolutions: momentary [i.e., ratings based on Ecological
Momentary Assessment (EMA) within 5-min of vocalization],
and 2-week (i.e., clinical ratings from the prior 2-weeks) epochs.
Vocal samples were evaluated across ambulatory (i.e., recorded
from a mobile device) and clinical interview (i.e., recorded
during a structured clinical interview) assessment formats. While
perhaps a bit esoteric, this recording format reflects a kind of
spatial resolution in their systematic differences in terms of
where they lie in a semantically-defined “assessment space.” The
clinical interview format reflects a traditional assessment domain
characterized by a semi-structured dyadic interaction whereas
the ambulatory format reflects a more novel assessment domain
using pre-recorded, technology-based interaction. We examined
how temporal reliability and concurrent validity of these vocal
features change as a function of these temporal and spatial
resolutions, and how they change when the vocal data are scaled
to match the criterion measure (i.e., from seconds to weeks).
It was our expectation that models with acceptable reliability
and validity could be established, but only when examined as a
function of the aforementioned temporal/spatial resolutions. We
did not examine SITB as a function of spectral resolution for lack
of data, though it is widely regarded that SITB is comprised of at
least several subcomponents (49).

METHODS AND MATERIALS

Participants
Data presented here were part of several studies that employed
a mobile application for longitudinally tracking mental states
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of psychiatric patients (50–57). The software application—
delta Mental Status Examination (dMSE), comprises a number
of assessment tasks that engage participants in spoken and
touch-based interactions in order to capture daily measures
of cognition, affect, and clinical state for tracking various
SMI-related risk states. Patients were 25 stable outpatients
with SMI (i.e., actively being treated for a schizophrenia,
mania or depression-spectrum disorder) recruited from a
community group home and 99 psychiatric inpatients recruited
from a community-based substance-use treatment facility.
Approximately a third of the sample met criteria for major
depressive disorder lifetime (n = 40), 15 percent met criteria
for schizophrenia (n = 19), and a minority met criteria for
bipolar disorder (n= 7). The remainder of patients suffered from
various substance use, personality, anxiety and other depression-
spectrum disorders (not formally assessed in this study). The
sample was predominantly male (96%), in large part, because
the inpatient facility exclusively admitted men. The sample was
African-American (56%) and Caucasian (44%). Most of the
participants had earned a high school or equivalent degree (70%),
and half had at least some college or university education (50%).
The average age of the participants was 38.54 years (standard
deviation = 11.05). Participants were free from major medical
or other neurological disorders that would be expected to impair
compliance with the physical production of speech or operation
of a smart phone (e.g., blindness). Participants received extensive
instruction on using the dMSE app. They were asked to find
a quiet place to complete testing and were paid one dollar for
completing each session. Study staff provided daily instructional
and technical support as needed. Stable outpatients were asked to
complete five sessions on consecutive days during business hours
and inpatients were asked to complete four sessions per week
during business hours for the duration of their inpatient stay (up
to 28 days). Completion rates among active participants (e.g., not
discharged from the inpatient facility) was excellent (i.e., > 90%).
This high completion rate likely reflects the support offered by
study staff and that compensation was provided directly after
each administration. The Louisiana State University Institutional
Review Board approved this project (IRB protocol 3618), and
participants gave informed consent prior to their involvement
in the study [see (56) for information about the dMSE and data
security and protections].

Vocal Assessments
Vocal data were examined across two different contexts, or
“spatial resolutions.” The first involved an active interaction with
the dMSE application during several standardized tasks. One
involved a verbal memory recall task that was ∼75 words long
(range 69–85). Participants first heard a recording of the story,
and then recalled the story immediately and after a delay. For
the outpatient data collection this delay was on average 17min,
and for the inpatient data collection the delayed recall was
collected during the next testing session (1–3 days). Participants
had a maximum of 60 s to respond [see (50, 55) for more
information]. Another task involved providing responses to static
color images (selected to optimize vocal expression during the
early validation phase of this project). Each image was displayed

on the screen of the smart device and participants had up to
60 s to respond. These tasks were selected for analysis because
they were both administered to the inpatient and outpatient
samples, and provided sufficient speech for acoustic analysis (i.e.,
more than monosyllabic or two utterance responses). In the
present study, these tasks were originally analyzed separately,
however, they did not appreciably differ in acoustic features, so
they were combined for the analyses presented here. Samples
with less than three vocal utterances were excluded from this
study (i.e., speech bounded by silence >150 ms in length
with no contiguous pause > 50 ms). For the second spatial
condition, vocal features were extracted from the video-recorded
clinical interview (when available), using the first and last 5-
min epochs as separate samples. The clinical interview involved
a structured interview to asses DSM 5 diagnosis or symptom
severity and was conducted by a trained research assistant. All
interviewer speech was digitally spliced from the audio recording,
and both interviewer and patient speech were removed when
they were speaking simultaneously. There were 2,221 usable
ambulatory and 117 interview recordings examined in this study,
though the exact number analyzed varied as a function of
data availability (outlined below). Approximately 39% of the
ambulatory recordings were excluded because they contained
less than three utterances (K of original ambulatory recordings
= 3,656).

Acoustic Feature Extraction
In evaluating the extant literature on acoustic analysis and
SITB, it is clear that (a) a wide variety of features have
demonstrated value in predicting SITB, and (b) conceptually
diverse feature sets generally outperform singular ones (see intro
for elaboration). Our intent in this study was not to optimize
prediction of a SITB measure, but rather, to demonstrate
how various features change in their reliability and validity
as a function of changes in resolution. For this reason, we
used a relatively simple “macroscopic” feature set defined by
the Computerized Assessment of Natural Speech [CANS; (53,
58–61)]. This set, generated using various Praat scripts, was
developed and validated by our research team for measuring
psychiatric states. These features resemble (conceptually, if not
mathematically) those with shown associations to SITB in at
least some prior studies (see Table 2). Each feature has been
associated with psychopathology symptoms, notably depression
(29, 53, 62, 63) and most have been associated with SITB in
prior research; [Fundamental Frequency (F0) mean (38, 64), F0
variability (37), jitter (33, 35), silence/pause duration/number of
utterances (34, 37, 38) and formant frequencies (33, 39)].

A description of the nine vocal features used are included
in Table 2. These features were selected based on prior
Principal Component Analysis of 1,350 non-psychiatric adults
(61), 309 patients with SMI (60) and published analysis of
the 25 outpatients examined in this study (53). Importantly,
the latter study did not involve any measures of SITB. The
acoustic features were non-redundant, with all but three inter-
correlations < 0.30, and all < 0.80. In terms of scaling, acoustic
analysis was conducted approximately every 20 milliseconds of
recording, and features are computed based on the full recording.
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TABLE 2 | Vocal properties and features examined in this study.

Feature Function Operational definition

“Speech variability”

“Pitch” Frequency of vocal fold vibrations Average fundamental frequency (F0; in semitones)

Intonation Variability in F0 SD of F0 within each utterance, averaged across utterances

Emphasis Variability in intensity/volume SD of intensity within each utterance, averaged across utterances (in decibels)

Jitter F0 signal perturbation Change in F0 signal in consecutive measures, averaged across utterances

Shimmer Intensity/volume signal perturbation Change in intensity/volume signal in consecutive measures, averaged across utterances

“Formant frequencies”

F1 Variability Vertical tongue movement SD of F1 values within each utterance, averaged across utterances (in Hertz)

F2 Variability Sagittal tongue movement SD of F2 values within each utterance, averaged across utterances (in Hertz)

“Speech production”

Pause mean Pauses between vocal units Average silence between voiced utterance (in seconds)

Number of utterances Speech quantity Number of voicings bounded by silence

For ambulatory testing, there were three recordings during
each session, and between three and five sessions per week
per participant.

Self-Injurious Thoughts/Behavior
Two measures of SITB were used in this study. The first reflected
measurement at a single moment and was procured at the
same time as the vocal sample (recorded during the dMSE
session). Hence, they were “matched” in temporal resolution.
This involved a digital slider to indicate how much participants
felt like “harming themselves” on a scale from one to 100. Data
were available for 811 of 875 potential data points (i.e., missing
for 64 samples). A lower temporal resolution measure of SITB,
based on the “suicidality” item from the Brief Psychiatric Rating
Scale (65) was also used; this measure of SITB was not “matched”
in temporal resolution with the single moment, ambulatory vocal
sample. This item involves an ordinal rating of the most severe
SITB over the last 2 weeks. Information was based on self-report,
medical record and staff. All clinical assessments were conducted
by a licensed clinical psychologist (Alex Cohen) and his research
team. Ratings and diagnoses reflect a consensus from this team.
BPRS scores were collected for all 25 outpatients, and for 47
inpatients. Due to limited interviewing resources and time, we
prioritized BPRS ratings for those inpatients that carried SMI
diagnoses (i.e., psychosis, mania or depression-spectrum) or were
actively symptomatic per medical records or staff report. BPRS
data were not collected for 52 inpatients (K = 805 samples). For
prediction purposes, the momentary (using a cut-score of 51/100
and above) and 2-week (using a cut-score of 2.1, indicating
at least “mild” symptoms) measures were dichotomized. Using
these criteria, 201 of 1,958 samples and 105 of 1,698 samples,
respectively, met threshold for SITB. The SITB measures did not
correlate highly with each other (r = 0.15).

Analyses
To evaluate reliability, we computed Intra-class Correlation
Coefficients (ICC) for each of nine vocal features. ICC values
were based on a single measurement, two-way mixed effects
model [type 1, in Koo and Li (43)], computed for all recordings,

and separately as a function of two spatial resolutions (i.e.,
ambulatory and interview recordings), and three temporal (i.e.,
speaking task, or “averaged” across the testing session or averaged
across 2 weeks) resolutions. We expected ICC values to be poor
overall (e.g., < 0.40) (11), but would increase when separately
examined as a function of time and space/context, or when
temporally “scaled” (i.e., averaged within the session or over a
2-week period). Given our interest in SITB, we also examined
ICC in individuals with mild or greater SITB (momentary rating
< 51/100).

To evaluate validity, we modeled SITB as a function of our
limited acoustic feature set from the speech samples using rare
events logistic regression [ReLogit; (66, 67) using the Zelig
package (68, 69) package for R 3.6.3 (70)]. We forced the
model to behave as if SITB are observed in 50% of cases in
the general population, despite constituting <5% of our sample
(τ = 0.5). This amplified the penalty associated with failing
to identify positive cases, thereby avoiding models that could
otherwise achieve high accuracy by ignoring the acoustic features
and always guess the more likely outcome (no SITB). Before
modeling, the acoustic features were standardized and trimmed
(values exceeding 3.5 standard deviations were replace with
values of 3.5 SD).

Model accuracy was assessed with 10-fold cross-validation [cf.
(71)]. The data was randomly split into ten sets, each containing
a roughly equal ratio of positive and negative cases. Models
were then fit to a subset of the data composed of nine sets
(90% of samples) and evaluated on the one remaining set (10%
of samples). This was repeated so that each set was used for
evaluation. Performance metrics from each cross-validation fold
were averaged before reporting. Model accuracy is computed as
the average of the true positive rate and the true negative rate:
(TPR+ TNR)/2. This accuracy metric is both more conservative
and easily interpretable than raw accuracy given how infrequent
positive cases are. If the model is guessing at random (TPR =

0.50; TNR = 0.50) or is always guessing the more frequent
outcome (TPR = 0; TNR = 1), accuracy is 0.50. Thus, 0.50 can
always be understood to indicate that a model that is failing to
discover predictive structure in the speech samples.
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FIGURE 2 | Temporal stability of acoustic features across a variety temporal and spatial resolutions. Dotted midline reflects “fair” stability, defined at 0.50. See Table 2

for definitions.

RESULTS

Reliability
ICC values for nearly every vocal feature were low (well
below 0.40) when computed without regard to temporal or
spatial resolution (K samples = 2,335) (Figure 2). When data
were “scaled” within the session (examining ambulatory data
solely), ICC values did not appreciably change. When data
were scaled across a 2-week epoch, moderate or greater stability
was observed for each of the acoustic features (K = 192).
With respect to spatial resolution, the stability of vocal features
solely examined from the interview was impressively high,
with the majority of ICC values exceeding 0.80 (K = 114).
This was not observed for ICC values of ambulatory vocal
features, which were uniformly low (K = 2,221). When the
vocal data were scaled to include only patients reporting SITB
(K = 85), moderate or greater stability was observed in four of
nine vocal features. In sum, vocal features were unstable over
time unless various contextual, setting or patient characteristics
were considered. Importantly, improved stability was not solely
a function of increased sampling or number of observations
within individuals.

Validity
The vocal features were modeled to fit momentary SITB, both
collected with the dMSE application at the same time (Table 3).
A model using momentary vocal features to predict momentary
SITB for the training set was computed with an adjusted accuracy
of 83% (K = 1,958). This reflected good hit (i.e., 85%) and false
alarm (i.e., 19%) rates for predicting SITB. When this model was
applied to the test set, an average of 83% accuracy for predicting
SITB was observed across the 10-folds of the model (range =

0.72–0.91). The coefficient weights are provided in supplemental
tables (see Supplementary Table 1). However, this model did not
generalize well to the same SITB measure using acoustic features
extracted from a different spatial resolution (i.e., the clinical
interview), as 48% accuracy was observed with poor hit (22%)
and false alarm (27%) rates. This model also did not generalize

well to the 2-week measure of SITB (i.e., from the BPRS), where
61% adjusted accuracy was observed. This reflected relatively low
rates of false positives (i.e., 24%) and true positives (i.e., 47%)
for predicting SITB. Importantly, the poor generalizability from
the momentary to the 2-week SITB measure did not reflect a
complete disconnect between the latter and the vocal features.
When a new model was computed using ambulatory vocal
features to predict the 2-week measure of SITB (i.e., from the
BPRS, as opposed to momentary ratings), decent accuracy was
observed for the training (accuracy = 71%, true positive = 72%,
false alarm = 30%) and test (accuracy across 10-folds = 742,
average true positive= 77%, average false alarm= 33%) sets. This
model did not meaningfully generalize to either the momentary
suicidal measure or to the interview data (accuracies < 56%).

To test the idea that the inaccuracy in applying these models
to new data reflects a mismatch in resolution, we applied the
aforementioned model using momentary acoustic features and
momentary SITB (i.e., with 83% accuracy) to predict a different
measure of SITB—the 2-week measure based on clinical ratings
(showing 61% accuracy above). However, we temporally-scaled
the former so they approximated that of the latter (i.e., including
only averaged data from the 2-week epoch from which the 2-
week SITB measure was derived from). This is a very preliminary
test of whether matching resolution improves accuracy, as (a)
there were data from 849 cases, but only 57 participants for
analysis, (b) of these participants, only three had mild or higher
levels of SITB, and (c) the number of sessions for extracting
acoustic features varied considerable across participants, from
one to 12. Nonetheless, we saw model accuracy improve to 74%.
This reflected improvements over the generalization models with
more true positives (i.e., 47 vs. 67%). These data are summarized
in Table 3.

DISCUSSION

These experimental findings highlight the importance of
resolution in understanding and evaluating biobehavioral data.
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TABLE 3 | Modeling “momentary” and “2-week” self-injurious thoughts/behaviors based on “momentary” vocal features.

Time scale Spatial scale Model

accuracy

Model 1: Using predictor & criterion data that are temporally matched yields good accuracy

Predictors: Acoustic features Momentary Ambulatory recording Adjusted accuracy: 83%

Criterion: SITB Momentary Ambulatory recording True positive: 85%

False positive: 19%

Model 2: Using predictor & criterion data that are not temporally matched yield poor accuracy

Predictors: Acoustic features Momentary Ambulatory recording Adjusted accuracy: 61%

Criterion: SITB 2-Week Clinical Interview True positive: 47%

False positive: 24%

Model 3: Using predictor & temporally-scaled criterion data to temporally matched them improves accuracya

Predictors: Acoustic features 2-Week Ambulatory recording Adjusted accuracy: 74%

Criterion: SITB 2-Week Clinical interview True positive: 67%

False positive: 19%

aData temporally scaled by averaging data over the 2-week assessment epoch.

As expected, vocal features were highly unstable over time and
space. When we accounted for temporal and spatial resolution,
temporal reliability improved. Replicating prior research [e.g.,
(29)], we were able to predict SITB with reasonable accuracy,
much higher than that seen using traditional clinical measures
(47, 72). The models derived using specific temporal and spatial
resolution parameters did not generalize to data using different
resolution parameters. However, when data from the original
model were temporally scaled so they approximated that of the
criterion, accuracy improved. It should be noted that, while
these accuracy rates for predicting SITB far exceed chance,
and those seen using clinician judgement and “gold-standard”
measures (8, 47, 72), the present study was not a clinical trial.
Hence, the models are insufficient for clinical implementation by
themselves but are important for illustration purposes. Of note,
our reliability metrics were far from the values advocated for in
the beginning of this paper (e.g., 0.90 ICC values). Moreover,
the models are derived from primarily male samples from one
geographic region of the world using relatively constrained
types of speaking tasks. There were some missing clinical data,
and it is unclear how this may have impacted the findings.
Finally, SITB was not well-represented in the sample and
was not comprehensively measured. Nonetheless, our findings
highlight the importance of resolution for future research and
clinical implementation of existing models. Replication and
further external validation will be key in this regard. Better
understanding of potential moderating variables affecting the
acoustics-SITB relationship is critical, as this knowledge can
help improve generalization of the models. In lexical expression,
for example, autobiographical language has been important for
understanding SITB (36, 73, 74), and this knowledge could
be critical for generalizing models to language from a wide
array of contexts/spatial resolutions (e.g., where autobiographical
reference may be more pronounced).

How Should Resolution Be Addressed?
The importance of resolution when evaluating biobehavioral
data is well-known outside of psychiatric and psychological

sciences. In evaluating medical devices, for example, the US Food
and Drug Administration addresses this by focusing on test-
retest reliability (dubbed “precision”) and accuracy (i.e., “the
degree of closeness to a known true value”) under prescribed
conditions (75) the latter of which helps constrain temporal
and contextual factors that influence a known signal. Evaluating
accuracy as a function of “known stimuli and conditions” is
common in experimental psychological research. “Manipulation
checks” using unambiguous conditions and stimuli, for example,
fMRI, electrophysiology and facial/vocal biobehavioral signal
are often conducted using a range of physical, cognitive
and emotion manipulations. Established stimuli corpuses, with
standardized and well-normed stimuli, exist for this purpose
[e.g., International Affective Picture System; IAPS; (76, 77)].
Examining validity when temporal and contextual factors are
controlled for is also important for calibrating measures over
time, in essence, reducing noise due to measurement drift.

Statistical and methodological solutions for evaluating the
psychometrics of high-resolution biobehavioral measures exist.
For example, “Multitrait-multimethod” matrix approach (78),
and Generalizability Theory (79), provide systematic methods
for differentiating potential sources of variance reflecting
the construct of interest, various contextual influences, and
unexplained noise. These approaches have been used, for
example, to determine how ADHD ratings vary as a function
of class, parent and teacher data sources (80, 81). Examples
of their application to biobehavioral data include attempts to
understand fMRI signal in individuals across different geographic
testing sites and different testing equipment (82) and source
variance of neuro-electrophysiological signal as a function of
within-participant, test trial, psychiatric diagnosis and other
signal factors (83). Multi-Level Modeling (MLM) approaches
have also been used extensively for understanding biobehavioral
data.MLM can accommodate data with a “nested” structure, such
that observations are hierarchically organized within individuals,
settings, and times/days. MLM, for example, has been used to
understand how acoustics and facial features change as a function
of time, social context and setting in schizophrenia (24, 84–86).
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While current solutions can help address temporal and
spatial resolution issues, a significant challenge remains in
addressing the “spectral” complexity of psychiatric disorders.
Compared to psychiatric diseases, cholera has a simple phenotype
and pathophysiology. Hence, the solutions employed by Dr.
John Snow in the 19th century may be overly simplistic for
understanding psychiatric disorders. SITB, for example, can
be potentially expressed across a wide spectrum of behavioral
channels (e.g., facial expressions, hand gestures, language, vocal
modulation), and this spectrum may vary within and between
individuals over time and space. The present analyses involved
a limited set of acoustic variables in this study, and some
models include thousands of non-redundant acoustic features
(87). When combined with the myriad of features from other
behavioral domains, accurately modeling them becomes a
staggeringly complex endeavor. Importantly, best practice for
psychiatric assessment typically involves the use of multiple
data-streams (e.g., various streams of self-report, behavioral,
historical and test data) with different spatial, temporal and
spectral resolution. In effect, the human brain can model these
complex data and their temporal and spatial inter-relations to at
least some degree. A growing field of understanding “network
medicine” reflecting “networks of networks” is being developed
to accommodate this complexity, though its application in
clinical psychiatry has yet to be realized (88). This type of
network approach could allow the end user, be they clinician,
pharmacological or psychosocial treatment developer, forensic
evaluator, peer, public policy analyst or the patient themselves,
to reap the benefits of the new analytic approaches without being
burdened with the details of the raw data or the algorithm itself.

SUMMARY AND CONCLUSIONS

Much like cholera prior to the 19th century, psychiatric illness
exacts tremendous human cost due to ignorance about its
causes, and the lack of precision assessments for quantifying
it. There have been repeated calls for the development of more
sophisticated measures, for example, through the use of objective
biobehavioral technologies, ambulatory assessment, and “big-
data” analytics. Despite this, there is no obvious strategy in place
for evaluating and implementing these technologies. Thus, these
technologies have yet to move beyond a “proof of concept”
phase. It is clear that traditional clinical psychometrics reflects
an obstacle for evaluating and implementing these measures.
Borrowing from computer, informatics, and physical sciences,
a focus on “resolution” can help overcome this obstacle and
can advance precision psychiatry in at least four ways. First,
improved spatial, temporal, and spectral resolution can provide
more nuanced and sensitive information about psychopathology,
its nature, assessment, treatment, and cures. Second, improved
resolution and data scalability can help monitor “within-person”
change in ways existing measures cannot. In this regard, people

can be tracked over time to best match them to interventions to
minimize invasiveness, side-effects, and cost and to maximize
their effectiveness (89, 90). Third, accounting for signal variation
can help identify noise due to technical and recording issues,
which can help efforts to optimize recording protocols. Knowing,
for example, the level of unexplained variance in audio or video
recordings across time/space can provide critical information
for the recording equipment, software and conditions being
used. Unexplained noise can even potentially be included as
a measure of uncertainty when modeling. Finally, improved
resolution can help facilitate integration across data streams
such that complex systems can be modeled and understood. In
the 21st century, technological and methodological advances
hold the promise to revolutionize our understanding, assessment
and treatment of psychopathology. However, to capitalize
on these advances, we will need psychometrics that can
help evaluate these technologically and methodologically
sophisticated tools.
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