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Although metabarcoding is a well-established tool for describing diversity of pelagic communities, its quantitative value is still controversial,
with poor correlations previously reported between organism abundance/biomass and sequence reads. In this study, we explored an enhanced
quantitative approach by metabarcoding whole zooplankton communities using a highly degenerate primer set for the mitochondrial marker
cytochrome oxidase | and compared the results to biomass estimates obtained using the traditional morphological approach of processing
zooplankton samples. As expected, detected species richness using the metabarcoding approach was 3—4 times higher compared to morpho-
logical processing, with the highest differences found in the meroplankton fraction. About 75% of the species identified using microscopy were
also recovered in the metabarcoding run. Within the taxa detected using both approaches, the relative numbers of sequence counts showed
a strong quantitative relationship to their relative biomass, estimated from length-weight regressions, for a wide range of metazoan taxa. The
highest correlations were found for crustaceans and the lowest for meroplanktonic larvae. Our results show that the reported approach of using
a metabarcoding marker with improved taxonomic resolution, universal coverage for metazoans, reduced primer bias, and availability of a com-
prehensive reference database, allow for rapid and relatively inexpensive processing of hundreds of samples at a higher taxonomic resolution
than traditional zooplankton sorting. The described approach can therefore be widely applied for monitoring or ecological studies.
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Additionally, since plankton drifts passively with currents, distinct

Introduction

Mesozooplankton are critical components of the world oceans, pro-
viding an essential link from the ocean’s microbial primary and sec-
ondary producers to the upper levels of the food web. Monitoring
zooplankton communities provides us with critical insight on the
state of the pelagic ecosystem, as well as the implications for con-
sumers, including harvestable species. Compared to organisms in
other marine and terrestrial habitats, most planktonic species are
characterized by relatively short generation times and react very
rapidly to shifts in the physical environment, acting as first sen-
tinels of climate change (Richardson, 2008; Beaugrand et al., 2009).

planktonic communities and individual species can serve as use-
ful markers of currents and water mass types (Beaugrand et al.,
2002). Monitoring of zooplankton communities is a common way
to quantify the feeding stocks of higher trophic levels, including
commercially valuable species (Orlova et al., 2002). It can also be
used to assess the general state of the ecosystem, such as introduc-
tion of alien species (Couton ef al., 2019; Sepulveda et al., 2020) or
changes in the community due to anthropological forcing (Andu-
jar et al., 2018). The need for such surveys globally is growing,
as marine systems are placed under increasing strain through de-
velopment of shipping and industry, pollution, overfishing, and
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changing climate patterns (Chiba et al, 2018; Klunder et al,
2020).

Although zooplankton is easy to sample from both small and
large vessels, and the methods of collection do not require special
skills or expensive equipment, the post-processing of samples
continues to be a bottleneck in most zooplankton monitoring
surveys. For example, a recent study examining long-term ecosys-
tem shifts in the Norwegian Sea included more than 1500 bulk
zooplankton biomass measurements, yet merely one hundred
samples were analysed taxonomically due to “limited capacity at
the laboratory to analyze samples” (Toresen et al., 2019). Despite
significant advances in the development of optical, acoustic and
molecular approaches in zooplankton ecology, these methods still
often lack sufficient power to discriminate between taxa, and/or are
not quantitative. Microscopic processing of preserved zooplank-
ton samples remains therefore the main method for quantitative
assessment of zooplankton communities at the species level. This
time-consuming approach requires a trained taxonomist, and the
processing of a single sample can take from several hours to several
days. Additionally, this method is inadequate for quantifying
organisms that deform or disintegrate in fixatives (i.e. gelatinous
plankton) or those that lack sufficient morphological features for
visual identification (many early larval stages of both planktonic
and benthic animals). The data produced via manual sorting are
also highly prone to human bias, with the education and back-
ground of the person performing the analysis playing a key role.
As a result of the high time and expertise requirements, many
months or years generally pass between sample collection and data
acquisition, which may cause significant delays in management ac-
tions. This drives the need for the development of rapid, alternative
methods of bulk assessment of planktonic communities.

In recent years, deoxyribonucleic acid (DNA) barcoding of zoo-
plankton taxa has greatly reduced the time and expertise needed for
zooplankton identification by taking advantage of the divergence
in DNA sequences across taxa (Hebert et al., 2003). Advances
in DNA-based identification have challenged some established
paradigms in zooplankton ecology, such as species distribution
ranges (Choquet et al., 2017), and highlighted the widespread exis-
tence of cryptic or pseudo-cryptic species complexes in the marine
realm (Miyamoto et al, 2010; Burridge et al., 2015; Kolbasova
et al., 2015; Cornils et al., 2017; Ershova, 2020; Ershova et al.,
2021). However, most molecular studies to this day have focused
on individual species or groups, and biodiversity or community
analyses via metabarcoding are only now becoming widely applied
in zooplankton research (Bucklin et al., 2016, 2019; Zhang et al.,
2018; Santoferrara, 2019; Questel et al., 2021). Unlike optical-based
technologies, metabarcoding can potentially detect all species in
a community, regardless of developmental stage or preservation
of distinguishing features. Metabarcoding can therefore be used
for the rapid detection of shifts in biodiversity and community
composition, for monitoring of rare species that are unlikely to
be captured in sufficient numbers to be identified visually, and for
the detection of invasive species. One challenge that has limited
the application of metabarcoding is finding a suitable DNA target
region and a set of primers to amplify it. Ideally, the primers need
to be truly universal, binding to all taxa equally, but the ampli-
fied DNA regions themselves need to be sufficiently genetically
divergent across species while conserved within species, to allow
species-level identification. Finally, to ensure the identification of
all taxa present, the target DNA region needs to have a complete
database of reference sequences, containing all species that may
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be found in the community. To this day, the majority of metabar-
coding plankton studies have used various regions of the 18S
gene (Bucklin et al., 2016), the primer-binding sites for which are
well conserved across most taxa, but also provide relatively poor
taxonomic resolution for metazoan groups (Mohrbeck et al., 2015).
Other commonly used markers include regions of the nuclear
28s rRNA and the mitochondrial 16S rRNA gene (Bucklin et al,
2016). Although the mitochondrial cytochrome oxidase I (COI),
the commonly used “barcoding” gene for metazoans, is generally
too long for next-generation sequencing, good success has been
demonstrated using smaller fragments of this gene, such as the one
amplified by the Leray primer set (Leray and Knowlton, 2015).
Although metabarcoding is now a well-established tool for
describing diversity of marine biological communities, its quanti-
tative value is still controversial, with poor correlations previously
reported between organism abundance and sequence reads (Buck-
lin et al., 2016; Lamb et al., 2019; Santoferrara, 2019; van der Loos
and Nijland, 2020). Since the size of planktonic organisms spans ten
orders of magnitude, the amount of DNA per organism is extremely
variable, with even organisms of the same species often having
vastly different numbers of DNA copies at different life stages. Bet-
ter correlations have been obtained for biomass within some groups
of organisms, typically, copepods (Clarke et al., 2017; Yang et al.,
2017). In addition to an initial discrepancy in DNA copy num-
bers, extraction and polymerase chain reaction (PCR) methods
introduce additional biases, resulting in better DNA recovery and
amplification of some organisms than others. Given the exponential
nature of PCR, these errors can compound to a very high degree.
In this study, we aimed to establish a relatively inexpensive
and rapid protocol that would amount in a maximum recovery of
diversity in environmental zooplankton samples, as well as provide
quantitative information on relative biomass of organisms in the
sample. To accomplish this, we used the highly degenerate modifi-
cation of the Leray primers (Leray and Knowlton, 2015), Leray-XT
(Wangensteen et al., 2018), to amplify a 313-base pair (bp) region
of the COI gene in whole zooplankton samples. Degeneration
ensures high attachment across multiple groups of metazoans, and
the availability of the Barcode of Life Database (BOLD) allows for
a good rate of success in species-level identification, despite the
existing gaps in databases for marine taxa (Wangensteen et al,
2018). The results of metabarcoding using the Leray-XT primer set
have been shown to reflect the quantitative composition of rocky
reef benthic communities (Wangensteen et al., 2018), freshwater
invertebrates (Elbrecht and Leese, 2015), and trophic contents
(Siegenthaler et al., 2019), but have not yet been tested on marine
zooplankton. Simultaneously, we processed the sample using
traditional microscope sorting and estimated the biomass of all
organisms present using published length-mass relationships. We
hypothesized that (i) metabarcoding will recover a higher diversity
of zooplankton, including most of the species identified via micro-
scope sorting, and (ii) the relative proportion of sequence reads
will be correlated with estimated relative biomass of the respective
organisms. As such, this method could allow rapid and relatively
inexpensive bulk processing of samples while limiting human bias,
and provide a valuable tool in zooplankton monitoring studies.

Methods

Material
We used nine zooplankton samples from five locations in the Arc-
tic and north Atlantic (Figure 1, Supplementary Table 1)—in the
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Figure 1. Locations of sampling stations used for analysis.

northern Barents Sea (one sample), Svalbard fjords (two sam-
ples), and north Norwegian fjords (six samples). The samples were
collected using a WP2 net (mesh size 64 or 180 pm) and preserved
with 96% ethanol. Samples were split quantitatively into two frac-
tions. The first half was saved for traditional sorting and the other
for molecular analysis. Any large (>1 cm) organisms in the sample
were counted and measured prior to splitting.

Visual identification and biomass estimation
The subsample was washed from the ethanol with filtered seawater,
after which it was split into consecutively smaller fractions using a
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Folsom plankton splitter until approximately 100 individuals of the
most common taxa remained in the final split. Increasingly larger
fractions were examined for rarer groups until a total of approx-
imately 500 individuals were counted under a Leica stereomicro-
scope at 25-40x magnification. The entire sample was screened for
larger organisms such as chaetognaths or jellies. Each counted or-
ganism was measured using the ZoopBiom digitizing system (Roff
and Hopcroft, 1986) and its biomass in milligram dry weight was
estimated using a length-weight regression known from published
literature for this or a similar species (Hopcroft et al., 2010; Ershova
et al., 2015). Pseudocalanus spp. and Microcalanus spp. were iden-
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tified at the genus level. Calanus glacialis and Calanus finmarchicus
were identified based on prosome length and pigmentation as de-
scribed in Unstad and Tande (1991). Meroplanktonic larvae were
identified at the phylum or class level.

Molecular analysis

The second half of the sample was homogenized in a 2000 W
blender for 3 minutes, then the excess ethanol was removed using
centrifugation and three 0.3 g subsamples of the homogenate were
taken for DNA extraction. Extraction was done using the Power-
Soil DNA extraction kit (Qiagen) according to the manufacturer’s
protocol. Strict measures to avoid sample cross-contamination
were observed, and all instruments were cleaned with 10% bleach
and rinsed in distilled water between samples. Since DNA ex-
tracted from plankton net samples is organismal-DNA (not ex-
traorganismal DNA), less strict measures to avoid contamination
may be taken compared to eDNA samples (Rodriguez-Ezpeleta et
al., 2021). A ~313 bp fragment from the 5 region of the COI
gene was amplified using the Leray-XT primers (Wangensteen et
al., 2018), which include the forward primer mlCOIintF-XT 5“-
GGWACWRGWTGRACWITITAYCCYCC-3” and reverse primer
jgHCO2198 5“-TAIACYTCIGGRTGICCRAARAAYCA-3” (Geller
et al., 2013). Both ends of the primers contained sample tags of 8 bp
and a variable number (2-4) of leading Ns for improving sequence
diversity. Amplification was conducted in a single PCR using Am-
pliTaq Gold DNA polymerase (Applied Biosystems), with 1 ul of
each 5 uM forward and reverse tagged primers, 3 ug of bovine
serum albumin, and 2 ul of extracted DNA in a total volume of
20 pl per sample. The PCR protocol consisted of a denaturing step
of 10 min at 95°C, followed by 35 cycles of 94°C for 1 min, 45°C for
1 min, and 72°C for 1 min, and a final extension of 5 min at 72°C.
Two PCR blanks were added to the pool of multiplexed samples,
which yielded only a few metabarcoding reads (<30 reads/blank
sample). The PCR products were purified using Minelute PCR pu-
rification columns (www.qiagen.com) and pooled into a single li-
brary. The Illumina library was prepared from the DNA pool using
the NextFlex PCR-free library preparation kit (Perkin-Elmer). This
protocol incorporates Illumina adapters using a ligation procedure
without any further PCR step, thus minimizing biases. The result-
ing library was sequenced in an Illumina MiSeq using ; of a V3
2x%250 bp kit (Tllumina).

Bioinformatics

The first quality filtering steps of the bioinformatics pipeline were
conducted using OBITools v.1.01.22 (Boyer et al. 2016). Paired-end
reads were aligned with illuminapairedend and reads with align-
ment score >40 were kept. Demultiplexing and removal of primer
sequences were done using ngsfilter. Reads with length between
299 and 320 and without ambiguous nucleotides were selected
using obigrep and dereplicated using obiuniq. The uchime_denovo
algorithm (Edgar et al.,, 2011)) implemented in vsearch v.1.10.1
(Rognes et al., 2016) was then used to remove chimeric sequences.
Step-by-step clustering was performed in SWARM 2.1.13 (Mahé
et al., 2015) using a distance value of d =13 to cluster individual
sequences into molecular operational taxonomic units (MOTUs).
This distance value has previously been used to cluster similar
datasets using the same COI fragment (e.g. Bakker et al., 2019;
Antich et al., 2020; Atienza et al., 2020). After removing singletons
(MOTUs with abundance of one read), taxonomic assignment
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of the representative sequence of remaining MOTUs was then
performed using ecotag (Boyer et al., 2016) against DUFA-Leray
v.2020-06-10, a custom reference database (publicly available from
github.com/uit-metabarcoding/DUFA), which included Leray
fragment sequences extracted from BOLD and Genbank, com-
pleted with in-house generated sequences. The resulting dataset
was curated for putative pseudogene sequences using the alogrithm
LULU (Froslev et al., 2017). The next refining steps consisted of
removing MOTUs assigned to Prokaryotes and taxonomy check of
selected MOTUs using BOLD (www.boldsystems.org). A species
level identification was assigned with a minimum of 97% similarity,
with the exception of Parasagitta elegans, which can have extremely
high within-species divergence of the mitochondrial genome (Mar-
létaz et al., 2017) and for which a similarity cut-off of 90% was used.
A barcoding gap analysis was performed for the most common
planktonic metazoan taxa with enough intra-species information
in BOLD (Supplementary File F1). This analysis confirmed similar
behaviours for the whole Folmer barcode fragment (~673 bp)
and the Leray fragment (~313 bp). Therefore, identical similarity
thresholds can be used for both markers for a species-level as-
signment match. All MOTUs belonging to clearly non-planktonic
organisms (i.e. insects and mammals) were removed. Finally, only
MOTUs observed in a minimum of two sample replicates and
accounting for at least 0.01% of the total reads of any sample were
kept in the final dataset.

Data analysis

All analyses were performed in R (R Development Core Team,
2011). The recovery of biodiversity via metabarcoding was esti-
mated by rarefaction curves using the package “vegan” (Oksanen et
al., 2016). Relative biomass and relative sequence counts (%) were
used in analyses. These values were fourth-root transformed to ac-
count for the very large spread of the biomass values and the ex-
ponential nature of PCR in the sequencing data. Overall commu-
nity structure and replication was investigated using non-metric
multidimensional scaling (nMDS) on Bray-Curtis dissimilarities
of fourth-root transformed relative sequence counts using “vegan”
(Oksanen et al., 2016). Relationships between relative abundance,
biomass, and sequence counts (%) of both broad taxonomic cate-
gories and individual species across samples and within each indi-
vidual sample were examined using simple linear regressions, with
a Bonferroni correction to the p-value when multiple comparisons
were included (pagjus)- Significance was assumed at p < 0.05.

Results

Sequencing summary

The MiSeq run produced 4082508 paired-end raw reads for the
multiplexed library. After all quality filtering steps, the final dataset
consisted of 3418499 metabarcoding reads, clustered into 477 eu-
karyotic MOTUs. The sequencing depth per sample ranged from
45109 to 238991 reads, with an average value of 128840 reads per
sample. Rarefaction curves (Supplementary Figure 1) suggest that
this was enough to recover most, although not all diversity, although
some individual station replicates failed to reach an asymptote.

Replication
The nMDS ordination (Figure 2) showed the three extraction
replicates of each sample to be very similar in composition,
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Figure 2. The nMDS ordination of fourth-root transformed sequencing data. Each symbol represents a single replicate of the sample and

colours indicate stations.

with differences between stations generally greatly exceeding any
within-sample variability. Despite limited sample size, the ordina-
tion also showed grouping within each location. On a broader spa-
tial scale, the two Svalbard fjords were similar to each other while
the two Norwegian Sea fjords were more divergent.

Overall biodiversity

A total of 48 unique taxa were identified visually (Supplementary
Table 2). Among sequences that accounted for at least 0.01% of to-
tal reads of any sample, 477 MOTUs were identified, which corre-
sponded to 189 unique taxonomic categories (Supplementary Ta-
ble 3). In total, 243 of the MOTUs were identified to species, 22 to
genus, and 27 to at least phylum level, while the remainder (188)
were grouped into an unknown category. Other large groupings
of MOTUs into a single taxonomic category included Parasagitta
elegans (37 MOTUs), and unknown Calanoida (32 MOTUs). The
number of unique taxa per station identified using morpholog-
ical identification was 20-30; metabarcoding resulted in 80-130
unique categories per station (Figure 3a). Metabarcoding provided
the largest gains in biodiversity compared to morphological identi-
fication for the meroplankton fraction, which expanded from 3-5
categories per station to 100 or more, followed by small copepods
and cnidarians. Of the 48 morphologically-identified taxa, 36 were
also identified via metabarcoding. The taxa that failed to appear
in the metabarcoding data included the appendicularians Oiko-
pleura vanhoeffeni and Fritellaria borealis, the pelagic polychaete
Tomopteris helgolandica, the pteropod Clione limacina and several
species of copepods. With the exception of C. limacina, all of the
excluded taxa were missing from the reference databases. Among
the top-ten dominant taxa by biomass and by sequence counts, five
to eight overlapped between the two methods (mean 6.9 & 1.1); of
the top-10 dominant taxa by abundance four to seven overlapped
(mean 5.4 & 1.0) (Figure 3b, Supplementary Table 3). Some of the

most common species identified by morphology that consistently
did not show up in the top-ten metabarcoding results include the
copepods Microsetella norvegica, Acartia spp. and Metridia spp.,
while metabarcoding regularly identified among the dominant taxa
Ctenophora and meroplanktonic groups, which failed to show up
in the top-ten dominant lists via abundance and biomass.

Composition of biomass vs. sequence counts

The proportional contribution of each broad taxonomic group was
very different among the metabarcoding, abundance, and biomass
data (Figure 4). Abundance was heavily dominated by small
copepods, with other groups contributing 25% or less, whereas
large copepods dominated the biomass, composing 20-95% of the
sample. The sequence reads were more evenly distributed between
taxa, with small and large copepods, chaetognaths, and mero-
plankton being significant contributors. Despite the differences in
absolute values, strong significant correlations (p < 0.02, Figure 5)
were found between relative proportions of biomass (fourth-root
transformed) and sequence reads for most taxonomic groups
present in sufficient numbers (with the exception of Pteropoda).
However, the ratios between sequence reads and biomass were
generally not following 1:1 (Figure 5). The large copepods were
consistently underrepresented in the sequencing data relative to the
biomass estimates, while small copepods and meroplankton were
consistently overrepresented. Abundance numbers were poorly
correlated to metabarcoding data, with only euphausiids showing
a significant correlation between transformed % abundance and %
sequence reads (p = 0.013)

Species-level correlations
We observed strong correlations between estimated % biomass
and % sequence reads of all taxa that were registered using both
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Figure 3. (a) The number of unique taxa identified using morphological identification and metabarcoding, and (b) the number of overlapping
taxa among the top-ten most common taxa by metabarcoding and biomass estimation. Green colour indicates common taxa; yellow—taxa
identified via metabarcoding; and blue—taxa identified using morphological ID. For species codes, see Figure 6.

methods (examined at the highest common taxonomic resolution),
both within each individual sample and when all samples were
pooled together (R? =0.59, Padjust < 0.0001, Figure 6). The corre-
lations were strongest for copepods (R*=0.70, Padjust < 0.0001)
and euphausiids (R*=0.78, Padjust < 0.0001), and weakest for
meroplankton (R*=0.52, Padjust < 0.0001). Once again, some
species/taxonomic categories were consistently overrepresented
in the biomass estimate vs. the metabarcoding (i.e. Calanus spp.),
while others were consistently underrepresented (i.e. Polychaete
larvae) in the biomass.

Case study: pseudo-cryptic taxa

We examined the relative composition of three common pseudo-
cryptic copepod genera, Calanus spp., Pseudocalanus spp., and
Microcalanus spp. (Figures 7 and 8) in the metabarcoding data.
Calanus was among the dominant groups both in the metabar-
coding and biomass data, and was represented by the Arctic C.
glacialis and Calanus hyperboreus and the boreal C. finmarchicus
and Calanus helgolandicus. Overall, the results of visual and molec-
ular identification revealed remarkably similar patterns (Figure 7).
Calanus finmarchicus dominated at most locations both in terms
of estimated biomass and sequence counts, composing 35-90% of
all Calanus DNA, followed by C. glacialis. Calanus hyperboreus was
detected visually at only the three Arctic stations and one Balsfjord
station in very low numbers, and was also less abundant in the se-
quence counts (with the exception of B34 in the Barents Sea). Sur-
prisingly, its highest relative contribution was not in the Arctic lo-
cations, but in Ramfjord in November, where it was not detected vi-
sually. Calanus helgolandicus was the rarest of all Calanus, and was
only observed via metabarcoding in Balsfjord and Ramfjord.

Although we did not identify the species visually within Pseu-
docalanus and Microcalanus genera, we anticipated more than one
species to be present. We found Pseudocalanus to consist of four
species: the Arctic Pseudocalanus acuspes and Pseudocalanus min-
utus, and boreal Pseudocalanus moultoni and Pseudocalanus elon-
gatus (Figure 8a). In the Norwegian fjords, all four species were
present, with the relative proportions changing seasonally. Pseudo-
calanus acuspes was the dominant species in all samples except the
three Balsfjord stations and Ramfjord in December, where P. moul-
toni dominated. Pseudocalanus elongatus was observed only in the
two Norwegian fjords, where its contribution was comparable with
that of the other species. Pseudocalanus minutus was the least com-
mon species, with its highest contribution observed in the Barents
Sea. Within the Microcalanus genus, only M. pusillus was observed
at all examined locations.

Case study: meroplankton

Above we already showed that estimated biomass of meroplank-
ton using visual identification was correlated with numbers of se-
quence reads, but the taxonomic resolution between the two meth-
ods was vastly different (Figure 3a and b). Seven categories of
meroplankton were identified using microscopic sorting (Supple-
mentary Table 1). A total of 118 benthic species belonging to 12
taxonomic groups were observed in the DNA sequences, making
meroplankton the group dominating the metabarcoding dataset in
terms of biodiversity. Together, meroplankton accounted for 12%
of all sequence reads and 65% of the total unique taxa observed.
Benthic taxa not detected using morphological identification but
present in the DNA pool included members of Ascidiacea, Porifera,
Cnidaria, and Caudofoveata. The most abundant groups were poly-
chaetes, echinoderms, and bivalves, with polychaetes being the
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Figure 5. Linear relationships between fourth-root transformed % of sequence reads and % biomass of the different taxa in the examined
stations. Black line shows a relationship of 1:1 between fourth-root transformed % of sequence reads and % biomass. Symbol colours indicate
stations.
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dominant group both in terms of diversity and sequence numbers,
accounting for half of the total meroplankton species and 7.5% of
total sequence reads (65% of meroplankton sequences). The high-
est abundance and diversity of meroplankton was observed in the
Balsfjord samples. An example of the species composition of echin-
oderm larvae is shown on Figure 8b. For example, the echino-
derm larvae in Billefjorden were heavily dominated by Ophiocten
sericeum, whereas this species was absent or rare in all other sam-
ples. The differences between the three Balsfjord samples (BF1-3)
are notable, with Ophiacantha bidentata present in only one, and
Asterias rubens in only two samples, despite the fact that these sam-
ples were collected in the same location and time. In the Ramfjor-
den samples (RF), the two winter samples were dominated by the
holothurian Labidoplax buskii, but in the March sample it is re-
placed by Strongylocentrotus pallidus.

Discussion

Metabarcoding has been widely applied in ecology to investigate
the biodiversity of microbial, invertebrate, and vertebrate commu-
nities, as well as food web interactions between them (Albaina et
al., 2016; Bucklin et al., 2016; Jakubaviciute et al., 2017; Zhang et
al., 2018; Couton et al., 2019). Within the zooplankton samples ex-
amined in our study, metabarcoding yielded similar, and in many
groups vastly better taxonomic resolution, than traditional micro-
scopic sorting. Metabarcoding identified 75% of the species iden-
tified by microscopic sorting and we expect this number to con-
tinue going up as additional species are added to the sequence ref-

erence databases. Since monitoring studies often focus on the most
common species, assuming them to be the most ecologically rele-
vant, it is worth noting the 50-80% (but not 100%) overlap in the
top-ten most common species in the metabarcoding and morpho-
logical approaches, both when looking at abundance and biomass
(Figure 3b). It is notable that among the discrepancies between the
two methods, the taxa that showed up in the top-ten of metabarcod-
ing dataset included those that are traditionally underrepresented
using morphological analysis, such as ctenophores and meroplank-
ton.

Although metabarcoding is increasingly used as a tool in zoo-
plankton ecology to investigate biodiversity, so far few studies have
applied it as a quantitative tool in real environmental zooplankton
samples. Nonetheless, such relationships have been explored previ-
ously, with most studies reporting poor to moderate correlations to
zooplankton organism abundance (Elbrecht and Leese, 2015; Sun
et al., 2015; Bucklin et al., 2019), which is not surprising as plank-
tonic organisms span ten orders of magnitude in body size. Bet-
ter correlations have been observed between sequence counts and
biomass (Hirai et al., 2015; Thomas et al., 2016; Yang et al., 2017).
A meta-analysis of 22 metabarcoding studies that targeted a wide
variety of organisms and genetic markers, found a significant, al-
beit weak, quantitative relationship between organism biomass and
number of produced sequences (Lamb et al., 2019). Similarly, our
results show a poor relationship of DNA relative abundance to in-
dividual abundance, but strong, robust correlations between rel-
ative biomass and relative DNA read counts across a wide range
of taxonomic groups. The correlations we observed were stronger,
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and covered more taxa, than have been demonstrated in previous
works (Lamb et al., 2019, Hirai et al., 2015; Thomas et al., 2016;
Yang et al., 2017), likely due to our choice of a highly degenerate
primer set. Since we used two separate subsamples for metabarcod-
ing and microscopic sorting, and obtained biomass estimates indi-
rectly (via length-weight regressions), it is important to note that
these values also inevitably have a high error rate associated with
them. This is especially true for groups where such length-weight
relationships are poorly described, and a perfect relationship was
not expected. Unsurprisingly, the best quantitative results were ob-
tained for the well-studied crustaceans—copepods and euphausi-
ids. Additionally, since our study included only nine samples, it is
important to acknowledge the error rates that can be associated with
such a small sample size, with a strong potential of outliers affecting
the patterns in both directions. However, despite the absence of ac-
curate regression formulas for many groups, such as benthic inver-
tebrate larvae, and the small sample size within our study, the cor-
relations were remarkably strong and statistically significant, sug-
gesting that true patterns may be even stronger.

The potential quantitative value of metabarcoding has frequently
been questioned (Bucklin et al., 2016) due to the difficulty of find-
ing truly universal primers, which amplify all groups equally well,
as well as the interspecies variability in the initial amount of DNA.
This is also true for our data, as the relationships that we observed
between relative DNA counts and relative biomass for the different
taxonomic groups rarely followed a 1:1 ratio, with certain groups
being consistently overestimated either in the biomass or the se-
quence reads numbers. This was particularly visible in large cope-
pods, which were the dominant group within the biomass, but had a
ca. ten times lower contribution to the total DNA reads. This is not
entirely unexpected, as large copepods from cold regions contain
large lipid stores, which can make up more than 70% of the body
mass (Falk-Petersen et al., 2009), and are thus relatively poor in
DNA. Other groups, such as polychaetes, had a consistently higher
contribution in the sequencing data, most likely due to inaccurate
estimation of their biomass or inadequate identification. For exam-
ple, “unknown larvae” and eggs from the morphological counts may
have belonged to polychaetes. Knowing the individual traits of the
different species, conversion factors can be developed for different
taxonomic groups, or even individual species/genera. In our sam-
ples, for example, the application of a conversion factor of 10x to
the number of sequence reads of large copepods brought the ratio
for this group closer to 1:1 and improved correlations for the other
groups, as well as the overall contributions of the individual taxa.

Many metrics are used when performing ecosystem assessments,
including overall abundance and biomass, presence/absence of cer-
tain indicator species, diversity estimates and quantitative commu-
nity composition, and various wellness indices that take into ac-
count age, size, body composition, and population structure of key
species (Miloslavich et al., 2018; Canonico et al., 2019). Although
metabarcoding cannot readily provide information on abundance
or size/population structure of organisms, it can be used to esti-
mate the other metrics at a comparable, or better level of accuracy
than traditional zooplankton sorting. We would like to emphasize,
however, that the work of skilled taxonomists is still very much
needed to supply reliable identification of specimens used in bar-
code reference databases. With a single bulk biomass measurement
of the sample, and the application of taxa-specific conversion fac-
tors, metabarcoding data can be converted from relative to absolute
biomass and serve as a proxy of organism biomass in the samples
(Coguiec et al., 2021). For species with a relatively constant body
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size, i.e. copepods, these values can be then transformed to esti-
mate relative abundance, as is frequently done vice versa [e.g. Glu-
chowska et al. (2017) and references therein].

Although metabarcoding methods are increasingly coming into
maturity, a series of challenges still remains to be solved before
we can obtain their full potential. The most important present
handicap for marine invertebrate communities is the presence of
significant gaps in reference sequence databases, although signifi-
cant efforts are being made to remedy this (Bucklin et al., 2021).
Our samples were collected in a relatively homogenous, low diver-
sity environment (Atlantic Arctic and sub-Arctic), with relatively
good reference databases (Bluhm ef al., 2011). Therefore, these re-
sults should be tested with communities from other parts of the
world with higher species diversity and less complete databases.
We chose a clustering-based method of taxonomic assignment as
opposed to a pipeline based on sequence variants, since the latter
are not recommended for COI (or any other similarly hypervari-
able marker), due to widespread intra-species variability leading
to millions of sequence variants. However, the choice of the clus-
tering algorithm to delineate MOTUs presents an additional chal-
lenge, as it can vastly impact the resulting diversity. In our pipelines,
we have used Swarm v.2.1.13 (Mahé et al., 2015), a step-by-step
clustering algorithm, which avoids the use of arbitrary similarity
thresholds. Moreover, we used taxonomic clustering when measur-
ing diversity, which only counted uniquely identified taxonomic
categories (e.g. all unknown Calanoid MOTUs were collapsed into
a single group). Taxonomic clusters thus obtained are highly de-
pendent on the completeness of the reference database, so the rich-
ness values could increase in the future when existing reference
gaps are progressively filled. The 97% similarity threshold we ap-
plied for species assignments, while the accepted standard used by
BOLD and applied in most ecological studies, can be significantly
higher or lower in different groups of metazoans, and could also re-
sult in an under- or an over-estimation of diversity. Richness values
obtained from COI metabarcoding can also be significantly over-
estimated by the presence of nuclear pseudogenes (nuclear mito-
chondrial DNA, or NUMTs) (Song et al., 2008). Our pipeline in-
cluded a curation step using the LULU algorithm, which allowed us
to minimize the impact of these pseudogenes (Froslev et al., 2017).
However, the presence of these sequences in marine invertebrate
genomes are poorly understood. Future studies involving analyses
of whole genomes of marine metazoans would help to understand
the impact of this issue in molecular biodiversity metrics. Finally,
although the Leray-XT primers are nearly universal for metazoans,
and the metabarcoding datasets resulting from their use undoubt-
edly show enhanced quantitative value compared to others obtained
using less-degenerate primer sets, it still fails to amplify some plank-
tonic organisms, which needs to be taken into account. For exam-
ple, within our study pteropods and mollusc larvae were very poorly
represented in the sequencing data, which could be a fault of either
the DNA extraction step, or the PCR. Molluscs in general are no-
toriously difficult to extract and amplify DNA from (Pereira et al.,
2011). Alternatively, the Leray-XT primer set may not provide op-
timal binding conditions for this group. Further studies including
mock samples should test the extent of non-detectable planktonic
taxa by this primer set. If these organisms are of particular interest,
then other more specific markers can be used in conjunction with
the Leray-XT set.

Despite the aforementioned limitations, our metabarcoding ap-
proach can prove invaluable to monitor cryptic/pseudocryptic
species or larval communities. This is a common issue within zoo-
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plankton studies, since several closely related species, sharing a
very similar morphology, may be present in the water column
simultaneously, and very few studies attempt to distinguish be-
tween them. Examples include complexes of the copepod “species”
Oithona similis (Cornils et al., 2017), Acartia tonsa (Drillet et al.,
2008), Eurytemora affinis (Devreker et al., 2012) or the jellyfish
Cyanea capillata (Kolbasova et al., 2015). Despite their morpho-
logical similarity, different members of such species complexes
may play different roles in the ecosystem, and often have differ-
ent, slightly overlapping geographical ranges, the exact extents of
which were until now difficult to parse out. Within our studied
zooplankton communities, examples of such pseudo-cryptic gen-
era included Calanus (Choquet et al., 2017) and Pseudocalanus spp.
(Frost, 1989; Ershova et al., 2017), which were each represented by
four species in our area of study. Detection of these species in our
study regions is in agreement with other studies that have exam-
ined the species composition of these groups using different molec-
ular markers (Choquet et al., 2018; Coguiec et al., 2021). Surpris-
ingly, only one species of Microcalanus, M. pusillus, was observed
at all examined locations, although M. pygmeaus has also been pre-
viously reported in these regions (Klekowski and Westawski, 1990;
Walkusz et al., 2009). Similarly, meroplanktonic larvae are most fre-
quently ignored in plankton studies, or are grouped into broad tax-
onomic categories. Within our study, the metabarcoding protocol
identified DNA of over 100 benthic taxa, most of which presumably
belong to planktonic larvae. Monitoring the timing when certain
species are present in the water column can give important insight
on the life cycles of benthic animals, as well as track the potential
expansion of introduced bottom-dwelling species into the region
(Couton et al., 2019; Ershova et al., 2019). Another clear advan-
tage of metabarcoding is that the use of hypervariable markers, such
as COI, has the potential to provide intra-species diversity infor-
mation (population genetics) for multiple species at the same time
(Turon et al., 2020), which can be applied to detect subtle changes
in the composition of planktonic communities over both time and
space.

Although molecular approaches have always been associated
with a high cost, they are rapidly becoming more affordable. With
metabarcoding in particular, an increasing number of simultane-
ously processed samples will reduce the cost dramatically (Figure
9a; Supplementary Table 4). Similarly, the time required for process-

ing per sample will be reduced substantially when using a metabar-
coding approach, in contrast with traditional sorting, which follows
a linear progression of effort per sample (Figure 9b; Supplementary
Table 4). For this reason, we suggest that this protocol can serve
as a useful alternative to traditional sorting for monitoring studies,
which generally involve hundreds of samples and require thousands
of technician hours for processing. As zooplankton is inherently
patchy, this would also allow for increased replication (i.e. process-
ing more than one sample from the samelocation), the lack of which
is a serious, but generally overlooked issue in zooplankton ecology
(Skjoldal et al., 2013). The variable nature of zooplankton was ap-
parent already in our results, where three net tows taken during the
same day in the same location produced similar, but far from iden-
tical results, with several species showing up in one or two, but not
all three samples. The development of sequencing technology and
advances in metabarcoding approaches makes the protocol devel-
oped herein scalable and affordable. The protocol uses metabarcod-
ing primers with unique eight-base sample-tags attached to each
primer pair (Wangensteen et al., 2018), and 96 such primer pairs
allow multiplexing 96 samples in a single library. A library-tag can
subsequently be ligated to each library, allowing for up-scaling for
simultaneous sequencing of 100-1000’s of samples in a single se-
quencing run. For example, a project that wants to analyse 1440
samples using our protocol, will have to extract the samples in 15
96-well plates, run PCRs in 15 plates, pool the samples in each plate,
purify each pool, and prepare 15 libraries by ligating Illumina se-
quencing adaptors and library-tags on each pool. These 15 libraries
can then be pooled into a single tube and sequenced on an Illumina
Novaseq using 250 bp paired-end chemistry. With an output of
400 million paired-end reads, the Novaseq is cheaper, and provides
more sequencing depth per sample compared an Illumina MiSeq.
These reductions in costs and time consumption will only increase
within the next few years for the metabarcoding approach, as se-
quencing run time keeps reducing and semi-automated and fully
automated pipelines are starting to emerge for markers like COL
Similarly, we expect reference databases to vastly improve in their
coverage in the coming years to allow for maximum taxonomic ac-
curacy in the sequencing data. Therefore, by reducing processing
time, metabarcoding will allow analysis of more samples than was
possible before with prospects for improved replication and/or spa-
tiotemporal resolution.
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Conclusions

Our results highlight the quantitative value of a metabarcoding ap-
proach using the highly degenerate Leray-XT primer set, which
provides improved taxonomic resolution, universal coverage for
metazoans, reduced primer bias, and availability of a comprehen-
sive reference database, to investigate zooplankton biodiversity,
community composition, relative species biomass, and the presence
of rare, poorly preserved, or cryptic species. We suggest that rela-
tive sequence counts can be used to estimate individual organism
biomass via a single bulk biomass measurement, particularly within
a single study, which will facilitate monitoring of spatial, seasonal,
and inter-annual dynamics of zooplankton communities. Our pro-
tocol can allow rapid and relatively inexpensive processing of hun-
dreds to thousands of samples at a higher taxonomic resolution than
traditional zooplankton sorting, and can be widely applied for mon-
itoring or ecological studies.
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