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Introduction: Although lower high-density lipoprotein cholesterol (HDL-C) levels are considered a risk

factor for cardiovascular disease (CVD), experimental evidence suggest that aging, inflammation, and

oxidative stress may remodel HDL-C, leading to dysfunctional HDL-C. Population studies on HDL-C and

loss of the glomerular filtration rate (GFR) reported inconsistent results, but they used inaccurate estimates

of the GFR and may have been confounded by comorbidity.

Methods: We investigated the association of HDL-C levels with risk of GFR loss in a general population

cohort; the participants were aged 50–62 years and did not have diabetes, CVD, or chronic kidney disease

(CKD) at baseline. The GFR was measured using iohexol-clearance at baseline (n¼1627) and at the follow-

up (n¼1324) after a median of 5.6 years. We also investigated any possible effect modification by low-

grade inflammation, physical activity, and sex.

Results: Higher HDL-C levels were associated with steeper GFR decline rates and increased risk of rapid

GFR decline (>3 ml/min per 1.73 m2 per year) in multivariable adjusted linear mixed models and logistic

regression (–0.64 ml/min per 1.73 m2 per year [95% CI –0.99, –0.29; P < 0.001] and odds ratio 2.7 [95% CI

1.4, 5.2; P < 0.001] per doubling in HDL-C). Effect modifications indicated a stronger association between

high HDL-C and GFR loss in physically inactive persons, those with low-grade inflammation, and men.

Conclusion: Higher HDL-C levels were independently associated with accelerated GFR loss in a general

middle-aged nondiabetic population.
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K
idney function, as assessed by the GFR, declines
with age, even in healthy individuals, leading to a

high prevalence of CKD in the elderly population.1

However, there is large variation in the rate of GFR
decline among individuals, regardless of risk factors
such as diabetes and hypertension.2,3 Although the
mechanisms leading to age-related GFR decline are
largely unknown, the interindividual variation in the
rate of GFR decline indicates that CKD may be
prevented.

Lower HDL-C levels have been considered a risk
factor for atherosclerosis, CVD, and CKD for decades.
This paradigm has been challenged, as clinical trials
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designed to increase HDL-C levels have failed to show
any clinical benefits,4 and most Mendelian randomiza-
tion studies have not confirmed low HDL-C to be a risk
factor for CVD or CKD.5–8 However, Mendelian
randomization studies may not account for pleiotropic
effects of the included genes, nonlinear associations
between the risk factors and outcomes, and different or
opposite effects of changes in HDL-C levels across
population subgroups.6,9

Previous experimental studies and human data
indicate that there is a complex association between
higher HDL-C levels and vascular dysfunction,
atherosclerosis, and kidney dysfunction.9 HDL-C is a
large molecule with multiple potentially beneficial
functions, but proinflammatory enzymes, hyperglyce-
mia, and oxidative stress may remodel HDL-C, leading
to dysfunctional and proinflammatory HDL-C parti-
cles.9–12 Increased levels of dysfunctional HDL-C par-
ticles have been associated with a sedentary lifestyle,
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an older age, low-grade systemic inflammation, and
higher risk of CVD.9–13 In the kidneys, both HDL-C
deficiency and HDL-C dysfunction have been linked
to vascular atherosclerosis and tubulointerstitial injury
in experimental studies.14–16 These possible dual effects
of HDL-C are in accordance with the results of epide-
miologic studies showing a U-shaped association
between HDL-C levels and the risk of CKD, CVD, or all-
cause mortality in various populations.17–19

Although several studies have reported an associa-
tion of low HDL-C levels with incident CKD, both low
and high HDL-C levels were associated with a GFR loss,
CKD progression and end-stage kidney disease in a
study of nearly 2 million male US veterans.19 However,
none of these studies fully adjusted for possible con-
founding factors, and they were all limited by the use
of the estimated GFR (eGFR). eGFR based on creatinine
or cystatin-C levels is biased by non–GFR-related fac-
tors such as muscle mass, inflammation, and obesity
and may therefore lead to confounded results, partic-
ularly in studies on metabolic risk factors and in older
persons.20–23

In this study, we investigated the association of
HDL-C levels with decline in measured GFR in persons
from the general population without pre-existing CKD,
diabetes, or CVD. Because physical activity, low-grade
inflammation, and sex have been shown to influence
HDL-C functionality,9,12,24,25 we also investigated any
possible effect modification caused by these factors.
METHODS

Study Population

The Renal Iohexol Clearance Survey (RENIS) is a sub-
study of the sixth wave of the population-based
Tromsø Study (Tromsø 6), Northern Norway. A 40%
random sample of individuals in the municipality of
Tromsø aged 50–59 years and all individuals aged 60–
62 years (5464 total subjects) were invited, and 3564
(65%) individuals completed the main study. Partici-
pants who did not report having a history of myocar-
dial infarction, angina pectoris, stroke, diabetes, or
kidney disease were invited to join RENIS-T6
(Figure 1). A total of 1982 subjects were eligible for
inclusion, and 1627 were included in a random order
according to a predetermined target for number of
participants in the RENIS-T6.21 A follow-up measure-
ment of the GFR in the RENIS follow-up study (RENIS-
FU) was recorded for 1324 (81%) participants after a
median observation time of 5.6 years (interquartile
range 5.2–6.0) (Figure 1). A random sample of 88 per-
sons participated in a second follow-up within 8 weeks
after the RENIS-FU. This repeat GFR measurement
conducted in a subsample allowed us to calculate the
Kidney International Reports (2021) 6, 2084–2094
day-to-day variation in the GFR measurements and to
use a linear mixed regression model in longitudinal
data analyses.

The RENIS study was approved by the local ethics
committees and performed in accordance with the
guidelines of the Declaration of Helsinki. All subjects
provided written informed consent.
Measurements

The RENIS-T6 and RENIS-FU were conducted at the
Clinical Research Unit at the University Hospital of
North Norway. The participants fasted at home from
midnight and were asked to drink 2 glasses of water in
the morning before they came to the hospital between
8:00 AM and 10:00 AM to have their GFR measured and
blood samples drawn. Participants with symptoms of
intercurrent illness had to reschedule their
appointments.

The GFR was measured at baseline and at follow-up
with single-sample plasma clearance of iohexol (mGFR)
as previously described in detail.26 This method has
been validated against gold standard methods and was
recently found to show substantial agreement with the
multiple-sample method.20,27 The intraindividual coef-
ficient of variation for the GFR measurement (day-to-
day variation) was 4.2% (3.4%–4.9%).3

The fasting serum glucose, triglycerides, total
cholesterol, low-density lipoprotein cholesterol, and
HDL-C concentrations were measured by a Modular
P800 (Roche Diagnostics, Mannheim, Germany) in-
strument. The HDL-C level was categorized as low
when it was #1.0 mmol/l (#40 mg/dl), intermediate
when it was 1.1–1.6 mmol/l (41–61 mg/dl), and high
when it was >1.6 mmol/l (>61 mg/dl), as suggested
previously.28,29

Serum creatinine analyses were performed using a
standardized enzymatic assay, and cystatin C was
measured by particle-enhanced turbidimetric immu-
noassay.30 The GFR was estimated using the Chronic
Kidney Disease Epidemiology Collaboration (CKD-EPI)
equations.

Three samples of first-void morning spot urine were
collected on consecutive days prior to the GFR mea-
surements. The urinary albumin and creatinine con-
centrations were measured in fresh urine, as previously
reported.31 The albumin-to-creatinine ratio (ACR) in
mg/mmol was calculated for each urine specimen, and
the median ACR value was used in the analyses.

High-sensitivity C-reactive protein (Hs-CRP) and
HbA1c were measured in the main Tromsø 6 study, as
described previously.30,32

Blood pressure was measured 3 times in a seated
position after a 2-minute rest period. The average of the
2085
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Figure 1. Flowchart of the Renal Iohexol clearance survey (RENIS).
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second and third measurements was used in the
analyses.

Questionnaire

A health questionnaire included questions on to-
bacco and alcohol use, current medications, and
physical activity related to the frequency and in-
tensity of leisure-time physical exercise.33,34 The
reliability for the physical activity questions was
reported to be good, and the correlation between
reported physical activity and maximal oxygen
consumption (VO2max) was moderate in a study where
questions were repeated and physical fitness was
assessed by the measurement VO2max (Spearman cor-
relation and weighted kappa frequency for test-
retest: r ¼ 0.82–0.87, and correlation with VO2max:
r ¼ 0.40–0.48; P < 0.01).35
2086
We dichotomized physical activity, as reported in a
previous publication, as follows: active (>1-h hard
physical activity a week [becoming breathless, sweaty,
or exhausted] and/or >3-h light activity [without
becoming breathless or sweaty]) or inactive (all
others).33

Alcohol use was categorized according to the fre-
quency at which subjects drank alcohol (never, once a
month or less, 2–4 times a month, 2–3 times a week, or
>4 times a week). Individuals were categorized as be-
ing a daily smoker, previously being a daily smoker, or
never being a daily smoker.

Statistical Methods

A linear trend across groups by HDL-C levels was
tested with linear or median regression for continuous
variables and with logistic regression for dichotomous
Kidney International Reports (2021) 6, 2084–2094



Table 1. Study population at baseline by HDL-C levels

Characteristics
Overall

(N [ 1627)
Low HDL-C (£1.0 mmol/l)

(n [ 182)
Intermediate HDL-C (1.1--1.6 mmol/l)

(n [ 886)
High HDL-C (>1.6 mmol/l)

(n [ 559) P value

Women, n (%) 826 (51) 42 (23) 386 (44) 398 (71) <0.001

Age, yr 58.0 (3.8) 58.2 (53.9–61.2) 58.5 (54.6–61.3) 59.0 (54.9–61.7) 0.02

Body mass index 27.3 (4.0) 28.6 (26.6–31.2) 27.5 (25.4–30.3) 25.0 (22.9–27.8) <0.001

Waist-hip ratio 0.91 (0.07) 0.96 (0.92–1.03) 0.92 (0.88–0.97) 0.87 (0.83–0.92) <0.001

Systolic blood pressure, mm Hg 130 (18) 129 (121–142) 130 (118–142) 126 (113–138) <0.001

Diastolic blood pressure, mm Hg 83 (10) 84 (79–91) 84 (78–91) 81 (74–88) <0.001

Blood pressure medication, n (%) 299 (18) 44 (24) 186 (21) 69 (12) <0.001

Fasting blood glucose, mmol/l 5.4 (0.6) 5.4 (5.1–5.8) 5.3 (5.1–5.7) 5.1 (4.9–5.5) <0.001

Total cholesterol, mmol/l 5.6 (0.9) 5.4 (4.7–6.3) 5.6 (5.0–6.2) 5.6 (5.2–6.3) <0.001

LDL-C, mmol/l 3.7 (0.9) 3.8 (3.2–4.4) 3.7 (3.2–4.3) 3.4 (2.9–4.0) <0.001

HDL-C, mmol/l 1.5 (1.2–1.8) 0.95 (0.90–1.00) 1.4 (1.2–1.5) 1.9 (1.8–2.1)

Triglycerides, mmol/l 1.0 (0.8–1.5) 1.8 (1.3–2.4) 1.1 (0.9–1.5) 0.8 (0.6–1.0) <0.001

Lipid-lowering medication, n (%) 107 (7) 9 (5) 62 (7) 36 (6) 0.6

High-sensitivity CRP, mg/l 1.20 (0.65–2.26) 1.64 (0.99–3.47) 1.34 (0.70–2.43) 0.93 (0.51–1.65) <0.001

Daily smoker, n (%) 0.01

Never 504 (31) 51 (28) 268 (30) 185 (33)

Yes, previously 771 (47) 76 (42) 437 (49) 258 (46)

Yes, currently 344 (21) 52 (29) 180 (20) 112 (20)

Alcohol use, n (%) <0.001

Once a month or less 461 (28) 79 (43) 255 (29) 127 (23)

2–4 times a month 717 (44) 80 (44) 402 (45) 235 (42)

2 times a week or more 442 (27) 23 (13) 225 (25) 194 (35)

Physical activityb, n (%)

>1-h high-intensity and/or >3-h low-intensity per week 705 (43) 70 (38) 358 (40) 277 (50) 0.01

Urinary ACR, mg/mmol 0.23 (0.10–0.54) 0.31 (0.10–0.54) 0.23 (0.10–0.53) 0.22 (0.10–0.56) 0.01

mGFRiohexol, ml/min per 1.73 m2 93.9 (14.4) 96.5 (86.4–106.3) 94.7 (85.6–104.2) 92.0 (84.3–101.2) <0.001

mGFRFollow-Up, ml/min per 1.73 m2 89.0 (14.5) 92.6 (82.6–102.2) 89.8 (80.8–100.0) 87.5 (77.7–95.9) <0.001

eGFRCKDEPIcrea, ml/min per 1.73 m2 94.8 (9.5) 97.3 (92.7–101.5) 97.1 (90.1–101.3) 96.1 (90.4–100.5) 0.3

eGFRCKDEPIcrea FU, ml/min per 1.73 m2 88.2 (10.5) 90.6 (82.1–96.1) 91.1 (83.2–95.5) 90.0 (82.1–95.0) 0.2

Follow-up time, yr 5.6 (5.2–6.0) 5.7 (5.1–6.0) 5.6 (5.2–6.0) 5.7 (5.3–6.0)

ACR, albumin-to-creatinine ratio; CRP, C-reactive protein; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; mGFRiohexol, the glomerular filtration
rate measured using iohexol clearance.
Data are presented as mean (SD) and median (interquartile range) for continuous variables and n (%) for dichotomous variables.
bBased on self-reported leisure-time physical activity: Active (>1-h hard physical activity a week [becoming breathless or sweaty, or exhausted] and/or >3-h light activity [without
becoming breathless or sweaty]) or inactive (all others).33
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variables. The association between the baseline HDL-C
levels (as a categorical and log-transformed continuous
variable) and change in the GFR was analyzed by a
linear mixed regression model with a random intercept
and slope. All 1627 participants with 1 to 3 GFR mea-
surements were included in the analyses because linear
mixed models allow for missing observations at 1 or
more time points as long as the observations are
missing at random.36,37 Missing of the third GFR mea-
surement for the majority of participants was part of
the design of this study, and these observations are
“missing completely at random.” For the minority of
subjects who did not have a follow-up measurement it
is plausible that they are missing at random conditional
on the baseline variables. Although 3 measurements
were only available for a random subsample (n¼88) in
the RENIS-FU, this method allowed us to estimate the 3
variance components in the unstructured covariance
matrix of the model. The association of the HDL-C level
Kidney International Reports (2021) 6, 2084–2094
with the rate of GFR decline was analyzed by including
2-way interaction terms between the HDL-C variable
and the time variable.

The association of HDL-C with the odds of rapid GFR
decline was analyzed using logistic regression for those
with at least 1 follow-up (n ¼ 1324). Rapid GFR decline
was defined as a rate of GFR decline steeper than 3 ml/
min per 1.73 m2 per year (calculated as GFRfollow-up –
GFRbaseline / observation time), a cut-off that has been
used in previous studies.38,39 In sensitivity analyses,
we defined the subjects with rapid GFR decline as the
10% of subjects with the steepest rates of GFR decline,
as calculated using an adjusted linear mixed model.40,41

In the linear mixed regression models, we adjusted
for baseline variables that are known or assumed to be
associated with HDL-C levels and GFR loss in 3 separate
models: for model 1, age and sex; for model 2, model
1 þ body mass index, fasting triglycerides, the use of
lipid-lowering drugs, and alcohol consumption; for
2087



Figure 2. The distribution of high-density lipoprotein cholesterol
(HDL-C) levels at baseline.
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model 3, model 2 þ systolic blood pressure, low-
density lipoprotein cholesterol level, fasting glucose
level, smoking status, leisure-time physical activity,
waist-to-hip ratio, hs-CRP level, ACR, and the use of
antihypertensive medications. In the logistic regression
analyses, we included a fourth model with an addi-
tional adjustment for the baseline GFR.

We tested for effect modification by age, sex, hs-CRP
level, and physical activity by including an interaction
term between each of these variables and HDL-C and,
in the linear mixed regression models, a triple inter-
action term that also included the time variable.
Nonlinear associations between HDL-C and GFR decline
were investigated by including a quadratic term for
HDL-C.

The statistical significance level was set to be 0.05.
All statistical analyses were performed in Stata/MP 16.0
(Stata Corp., College Station, TX).

RESULTS

The study population characteristics at baseline
grouped by low, intermediate, and high levels of HDL-
C are shown in Table 1 and by sex-specific quartiles of
HDL-C in Supplementary Table S1. Fifty-one percent
(n ¼ 826) were women, the mean (SD) age was 58.1 (3.8)
years, and the mean GFR was 93.9 (14.4) ml/min per
1.73 m2. The median HDL-C level was 1.5 (interquartile
range 1.2–1.8) mmol/l (58 [interquartile range 46–70]
mg/dl). The distribution of HDL-C levels at baseline is
shown in Figure 2. Participants with higher HDL-C
levels were more often women and generally had a
healthier risk profile, but they consumed alcohol more
often (Table 1).

Association of HDL-C With GFR Decline

The unadjusted mean rate of GFR decline was –0.84
(95% CI –0.96, –0.75) ml/min per 1.73 m2 per year. A
rapid GFR decline (GFR loss > 3.0 ml/min per 1.73 m2

per year) was observed in 70 men and 68 women.
Higher HDL-C levels were associated with a steeper
annual GFR decline and an increased odds ratio (OR) of
rapid GFR decline (beta coefficient: –0.64 ml/min per
1.73 m2 per year (95% CI –0.99, –0.29; P < 0.001) and
OR 2.7 (95% CI 1.4, 5.2; P < 0.001) per doubling (log2)
in HDL-C) (Tables 2 and 3). Subjects with HDL-C >1.6
mmol/l had an odds ratio of 3.0 (95% CI 1.3, 7.1; P ¼
0.01) for rapid GFR decline, compared to subjects with
HDL-C#1.0 mmol/l. There was no relevant collinearity
between covariates (mean and maximum variation
inflation factor was 1.3 and 2.2), and the logistic
regression models were well calibrated according to the
Hosmer-Lemeshow statistics.

The associations with HDL-C were modified by
physical activity for both the mean GFR decline rate
2088
(mixed linear regression) and odds ratio for rapid
decline (P value for interaction < 0.01 and 0.04); the
results stratified by physical activity are shown in
Table 4. The association of HDL-C levels with GFR
change rates (GFRfollow-up – GFRbaseline / observation
time) were also calculated using linear regression; the
results were essentially the same as in the mixed model
analyses and are shown by physical activity group in
Supplementary Table S2 and Figure 3.

No statistically significant interactions were found
for age, sex, or hs-CRP on the association between
HDL-C and odds ratio of rapid GFR decline assessed by
logistic regression. However, the association of HDL-C
with the mean GFR decline calculated using linear
mixed model was stronger for men than for women and
stronger for subjects with higher hs-CRP levels (P
value for interaction ranged from 0.02 to 0.06 in model
1–3 for sex and from 0.01 to 0.02 for hs-CRP)
(Supplementary Tables S3 and S4).

Twenty-six subjects developed stage 3 incident
CKD, defined as new-onset mGFR <60 ml/min per 1.73
m2 at follow-up. The OR per doubling of HDL-C for
incident CKD was 4.6 (95% CI 1.11, 19.2; P ¼ 0.04) in
the fully adjusted model (Supplementary Table S5).

There were no statistically significant nonlinear as-
sociations between HDL-C and GFR decline or the risk
of rapid decline.
Sensitivity Analyses

Thirty-four participants had a measured GFR <60 ml/
min per 1.73 m2 and 42 had hs-CRP >20 mg/l at
Kidney International Reports (2021) 6, 2084–2094



Table 2. Association between baseline HDL-C levels and annual GFR change rates
Model 1 Model 2 Model 3

GFR, ml/min
per 1.73 m2 per yeara (95 % CI) P value

GFR, ml/min
per 1.73 m2 per yeara (95 % CI) P value

GFR, ml/min
per 1.73 m2 per yeara (95 % CI)

P
value

HDL-C, per doubling (log2) –0.22 (–0.51, 0.06) 0.13 –0.53 (–0.87, –0.18) <0.01 –0.64 (–0.99, –0.29) <0.001

Low HDL-Cb Ref Ref Ref

Intermediate HDL-Cb –0.11 (–0.46, 0.23) 0.53 –0.32 (–0.70, 0.06) 0.10 –0.29 (–0.67, 0.10) 0.15

High HDL-Cb –0.20 (–0.57, 0.18) 0.30 –0.51 (–0.95, –0.08) 0.02 –0.53 (–0.97, –0.08) 0.02

GFR, glomerular filtration rate; HDL-C, high-density lipoprotein cholesterol.
aA negative coefficient means a steeper decline; it was calculated using linear mixed model with random intercept and slope.
bLow HDL-C, #1.0 mmol/l (#40 mg/dl); intermediate HDL-C, 1.1–1.6 mmol/l (41–61 mg/dl); high HDL-C, >1.6 mmol/l (>61 mg/dl).
Model 1: Adjusted for sex and age.
Model 2: Model 1 þ body mass index, triglycerides, use of lipid-lowering drugs, and alcohol consumption.
Model 3: Model 2 þ low-density lipoprotein cholesterol, systolic blood pressure, fasting glucose, smoking, physical activity, waist-to-hip ratio, high sensitivity C-reactive protein,
albumin-to-creatinine ratio, and use of antihypertensive medications.
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baseline. We excluded these participants to avoid
possible bias due to a transient reduction in the GFR at
baseline affecting predominantly those with low HDL-
C levels. The results were comparable to those in the
main analysis (Supplementary Tables S6 and S7).

To test whether a phase of hyperfiltration
(increasing GFR from baseline to follow-up) in subjects
with low HDL-C could have influenced our results, we
excluded 138 persons with incident prediabetes (fast-
ing glucose level of 6.1–7.0 mmol/l or an HbA1c level of
6.0% to <6.5%) and 38 persons with incident diabetes
(fasting glucose level of >7.0 mmol/l or an HbA1c level
of $6.5%) at follow-up. The results remained almost
identical (Supplementary Table S8).

We repeated the logistic regression analyses using a
different definition of rapid GFR decline, defined as the
10% steepest GFR slopes calculated using an adjusted
linear mixed model.40,41 The association of HDL-C with
this outcome was similar (Supplementary Table S9).

The results were also similar using sex-specific
quartiles of HDL-C and another predefined categoriza-
tion of physical activity (Supplementary Tables S10–
S12).34

Finally, we repeated the analyses using the eGFR
on the basis of the creatinine and/or cystatin C
level (eGFRcrea, eGFRcys, and eGFRcreacys) as a
Table 3. Association between baseline HDL-C levels and rapid GFR decli
Model 1 Model 2

OR 95% CI P value OR 95% CI

HDL-C, per doubling (log2) 1.32 (0.91, 2.33) 0.27 1.98 (1.10, 3.58)

Low HDL-Ca Ref Ref

Intermediate HDL-C 1.06 (0.57, 1.98) 0.86 1.33 (0.67, 2.65)

High HDL-C 1.44 (0.75, 2.78) 0.28 2.21 (1.02, 4.79)

GFR, glomerular filtration rate; HDL-C, high-density lipoprotein cholesterol.
aLow HDL-C, #1.0 mmol/l (# 40 mg/dl); intermediate HDL-C, 1.1–1.6 mmol/l (41–61 mg/dl); high
Model 1: Adjusted for sex and age.
Model 2: Age, sex, body mass index, triglycerides, use of lipid-lowering drugs, and alcohol co
Model 3: Model 2 þ low-density lipoprotein cholesterol, systolic blood pressure, fasting glu
albumin-to-creatinine ratio, and use of antihypertensive medications.
Model 4: Model 3 þ baseline GFR.
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dependent variable. The HDL-C levels were not
associated with the mean GFR decline or risk of rapid
eGFR decline using eGFRcys, but a similar tendency
to the results using the measured GFR was found for
eGFRcrea and eGFRcreacys, including a significant
interaction between a rapid decline and physical
activity using eGFRcreacys (Supplementary
Tables S13–15).
DISCUSSION

In middle-aged subjects from the general population
without pre-existing diabetes, CVD, or CKD, we found
that higher HDL-C levels were independently associ-
ated with a steeper GFR decline and an increased risk of
rapid GFR decline during a median of 5.6 years of
follow-up.

Previous epidemiologic studies of HDL-C and the
risk of kidney disease, including 3 Mendelian
Randomization studies, reported inconsistent results.6–
8,42 However, 5 population-based studies reported an
association between low HDL-C levels and steeper
rates of eGFR decline or a higher risk of incident
CKD.19,43–46

All these studies used estimates of GFR, and some
studies included persons with diabetes or CKD. In most
ne (GFR change rate < –3.0 ml/min per 1.73 m2 per year)
Model 3 Model 4

P value OR 95% CI P value OR 95% CI P value

0.02 2.62 (1.38, 4.97) 0.00 2.70 (1.39, 5.22) 0.00

Ref Ref

0.41 1.48 (0.70, 3.13) 0.30 1.56 (0.72, 3.38) 0.26

0.05 2.76 (1.20, 6.35) 0.02 2.97 (1.25, 7.07) 0.01

HDL-C, >1.6 mmol/l (>61 mg/dl).

nsumption.
cose, smoking, physical activity, waist-to-hip ratio, high sensitivity C-reactive protein,
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Table 4. Association between baseline HDL-C levels and GFR decline by physical activitya

Annual GFR decline rate (n [ 1623)b

Model 1 Model 2 Model 3

GFR, ml/min per 1.73
m2 per year 95% CI

P
value

GFR, ml/min per 1.73
m2 per year 95% CI P value

GFR, ml/min per 1.73
m2 per year 95% CI P value

Inactivec (n ¼ 918); HDL-C, per
doubling (log2)

–0.63 (–1.02, –0.24) 0.001 –0.82 (–1.30, –0.34) 0.001 –1.04 (–1.52, –0.55) <0.001d

Activec (n ¼ 705); HDL-C, per
doubling (log2)

0.17 (–0.25, 0.59) 0.44 –0.27 (–0.76, 0.21) 0.27 –0.29 (–0.80, 0.22) 0.26

Rapid GFR decline (n ¼ 1321)b

(GFR loss > 3 ml/min per 1.73 m2

per year)

Inactivec (n ¼ 729); HDL-C, per
doubling (log2)

2.02 (1.07, 3.82) 0.03 3.51 (1.55, 7.92) <0.01 5.98 (2.33, 15.34) <0.001e

Activec (n ¼ 592); HDL-C, per
doubling (log2)

0.77 (0.35, 1.69) 0.51 0.94 (0.38, 2.31) 0.89 1.09 (0.41, 2.94) 0.86

GFR, glomerular filtration rate; HDL-C, high-density lipoprotein cholesterol.
aBased on self-reported frequency and intensity of leisure-time physical activity (PA) as previously reported.33
bAll participants were included regardless of number of GFR measurements, because linear mixed regression allows for missing observations at$1 time points. Only those with $2 GFR
measurements were included in the logistic regression of rapid GFR decline. There were 4 missing values for PA (3 missing for PA for rapid GFR decline).
cActive (>1-h hard physical activity a week [becoming breathless or sweaty, or exhausted] and/or >3-h light activity [without becoming breathless or sweaty]) or inactive (all others).
dP value for interaction with physical activity < 0.01.
eP value for interaction with physical activity ¼ 0.04.
Model 1: Adjusted for sex and age. Model 2: Model 1 þ body mass index, low-density lipoprotein cholesterol (LDL-C), triglycerides, use of lipid-lowering drugs, and alcohol use.
Model 3: Model 2 þ LDL-C, systolic blood pressure, fasting glucose, smoking, physical activity, waist-to-hip ratio, high-sensitivity C-reactive protein, albumin-to-creatinine ratio, and use
of antihypertensive medications. For the rapid GFR decline outcome, we also included baseline GFR in model 3.
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studies, the populations were not representative of the
general population, and in several studies they did not
adjust for relevant confounders.19,43–46 Hyper-
triglyceridemia and abdominal obesity, in particular,
correlate with lower HDL-C levels and have been linked
to GFR decline and incident CKD in the general
population.39

In the largest study of HDL-C levels and renal out-
comes, consisting of 1,943,682 male veterans, the au-
thors reported a U-shaped association of HDL-C with
eGFR decline and end-stage kidney disease.19 In the
current study, we did not observe any nonlinear as-
sociations between HDL-C and the outcomes, possibly
because few had low HDL-C levels, as we included
relatively healthy subjects. Conversely, in the US
Veteran study, 31% of the subjects had diabetes, 33%
had CVD, 40% had obesity, and 52% used statins at
baseline. The increased risk associated with higher
HDL-C levels in the US Veteran study started at
approximately 55 mg/dl (1.42 mmol/l), corresponding
to the median HDL-C level in our study.

HDL-C is traditionally regarded as “good” choles-
terol, and the association of higher HDL-C with the loss
of the GFR may seem counterintuitive. Several hy-
potheses can be raised as explanations for our findings.

Persons with high HDL-C levels may suffer from
other conditions that can influence the GFR decline
rate, such as inflammation or alcohol abuse.29,47 How-
ever, the inclusion of hs-CRP, cardiovascular risk fac-
tors and alcohol consumption as covariates
strengthened rather than attenuated the association.

Experimental evidence suggests that high levels of
HDL-C per se, or higher levels of dysfunctional HDL-C,
2090
contribute to endothelial dysfunction and vascular
disease.9,11,48 Although very low HDL-C levels may
enhance endothelial dysfunction, it has been demon-
strated that moderate to high HDL-C levels (1.0–2.1
mmol/l [40–80 mg/dl]) obtained from healthy subjects
paradoxically enhanced the senescence of human
endothelial progenitor cells and related angiogenesis.48

We did not measure HDL-C dysfunction in the
current study; however, previous studies have shown
that HDL-C from healthy nonobese elderly persons
contains higher levels of glycosylated apoA-1 and ex-
hibits a lower antioxidative ability than does HDL-C
from younger persons.13 The treatment of human
dermal fibroblasts and macrophages with HDL-C iso-
lated from elderly subjects (mean age 71 � 4 years)
increased cellular senescence and foam cell formation,
whereas treatment with HDL-C from young adults
suppressed senescence and atherosclerosis.11

Smaller modified HDL-C particles and HDL compo-
nents, such as ApoA1, may interact with several renal
cell classes, as they are filtered in the glomeruli and
reabsorbed in the proximal tubuli.16 Indeed, oxidized
HDL-C enhances the production of reactive oxygen
species and upregulates the expression of proin-
flammatory factors in human proximal tubule epithelial
cells in a dose-dependent manner.15

Associations of higher HDL-C levels with the GFR
change rate and risk of rapid GFR decline were found
in subjects who reported performing little or no
physical activity, and the association with the GFR
change rate was significant for men and subjects with
higher hs-CRP levels only. Although the results of
subgroup analyses should be interpreted with caution,
Kidney International Reports (2021) 6, 2084–2094



Figure 3. The association of HDL-C levels with annual GFR decline rates by physical active and inactive participants. Physical active persons
are shown in light-blue dots and inactive persons in dark blue. (Unadjusted beta coefficient per doubling of HDL-C level for active versus
inactive persons: -0.7 [95% CI –1.0, –0.3] ml/min per 1.72 m2 per year vs. 0.1 [95% CI –0.3, 0.5] ml/min per 1.72 m2 per year. P value for
interaction < 0.01.) GFR, glomerular filtration rate; HDL-C, high-density lipoprotein cholesterol.
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we speculate that the effect modifications of hs-CRP,
physical activity, and sex may be explained by
altered HDL-C functionality. Experimental studies
showed that low-grade inflammation modulates the
composition and function of human HDL-C, leading to
the loss of endothelial protective properties.9,12

Physical activity, on the other hand, and particu-
larly aerobic exercise, has been shown to reduce low-
grade inflammation and to improve the antioxidant
and anti-inflammatory effects of HDL-C.24,25 Whether
HDL-C in part mediates a possible deleterious effect of
inflammation on GFR loss or vice versa and whether
this can be prevented by physical activity should be
addressed in future studies. A study of statin treatment
in subjects with high levels of dysfunctional HDL-C
may also be warranted, as the inflammatory proper-
ties of dysfunctional HDL-C may be improved by
simvastatin.9,10

We observed a stronger association of HDL-C with
the mean GFR decline rate in men than in women.
Several sex-specific differences have been reported in
the etiology and epidemiology of CKD, but the
Kidney International Reports (2021) 6, 2084–2094
underlying mechanisms are unclear. Sex differences in
vascular function, HDL oxidation leading to dysfunc-
tional HDL-C, and inflammation in the kidneys may
potentially influence the association of HDL-C with
GFR decline.49

The main strength of the current study is the GFR
measurements in a well-described general population
cohort. Our results were robust when both linear
mixed and logistic regression models were used. Some
limitations should be mentioned. We investigated
middle-aged persons mainly of North European
ancestry; thus, our results cannot necessarily be
generalized to other age groups or ethnicities. We did
not include markers of dysfunctional HDL-C or objec-
tive measures of physical activity. The observation
time was limited to 5.6 years, and the vast majority of
subjects had 1 follow-up GFR only.

We conclude that higher HDL-C levels were associ-
ated with a steeper GFR decline rate and increased the
risk of rapid GFR decline in middle-aged subjects
without diabetes and pre-existing CKD. Effect modifi-
cations indicated stronger associations of HDL-C with
2091
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GFR loss in physically inactive persons, in those with
higher hs-CRP levels and in men. This complex asso-
ciation of HDL-C with GFR loss should be addressed in
future studies.
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