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In this paper, we investigate the completeness of the Stark resonant states for a par-
ticle in a square-well potential. We find that the resonant state expansions for target
functions converge inside the potential well and that the existence of this convergence
does not depend on the depth of the potential well, V0. By analyzing the asymptotic
form of the terms in these expansions, we prove some results on the relation between
smoothness of target functions and the asymptotic rate of convergence of the corre-
sponding resonant state expansion and show that the asymptotic rate of convergence
is also independent of V0, but the absolute size terms in the series asymptotically goes
as V−1

0 . Published by AIP Publishing. https://doi.org/10.1063/1.5042523

I. INTRODUCTION

Decaying quantum states were first introduced in 1928 by Gamow1,2 and independently by
Gurney and Condon3,4 in the context of nuclear physics, to describe long-lived wave functions of
particles that eventually “escape” from a confining but unstable potential. This was however not
the first time decaying eigenstates were used in physics. As early as 1884, Thomson5 used them to
describe decay phenomena in electromagnetism. Characterization of the unstable states using the
absence of incoming waves was first introduced by Siegert6 in the context of the nuclear scattering
matrix. The Siegert characterization was taken up by Peierls,7 Couteur,8 and Humblet9 and developed
into a powerful tool in nuclear scattering theory. The wave functions satisfying the Siegert outgoing-
wave conditions became known as resonant states and their properties have been investigated for
many years (for example, Refs. 10–19).

The fact that resonant states decay exponentially in time implies that it is more likely to find the
released particle far from the nucleus than closer to it since it is more likely to have been released
by an earlier time than a later one. The resonant states are thus not normalizable, at least not in the
standard sense introduced by von Neumann when he gave a proper mathematical foundation20 for a
subset of the Dirac formalization of quantum mechanics21 in terms of Hilbert spaces for the states
and Hermitian operators for the observables. Subsequently, after many intervening years of steady
mathematical progress involving many people, an extended mathematical foundation for the full
Dirac formalization, involving rigged Hilbert spaces, was developed by Gelfand.22 It turned out that
the context of rigged Hilbert spaces was flexible enough to also include resonant states even if such
states were not part of Dirac’s original formalization of quantum mechanics. However, the theory of
rigged Hilbert spaces is perhaps a bit heavy on the mathematical side, and therefore, several other
extensions of the von Neumann foundation of quantum mechanics designed to accommodate resonant
states has been developed over the years.23–28 Over and above these mathematical developments, a
key issue involving resonant states has been their physical interpretation. The fact that they cannot
be normalized in the Hilbert space setting means that the Born interpretation of quantum states in
terms of probability theory fails. However, it has been shown that a state with infinite norm can
be given a probabilistic interpretation by considering an expanding sphere in which the probability
density (and the norm) remains conserved.29 Be this as it may, it has always been recognized that
such states contain useful physical information. For example, the temporal decay of the resonant state
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corresponding to a bound state in the zero field limit is related to the life time of that state under the
influence of the field.

The mathematical peculiarities were perhaps perceived less as an obstacle in electromagnetics
where the counterparts of quantum resonances are the so-called leaky modes. These are configurations
of the electromagnetic fields inside unstable resonators and waveguides that can “survive” for long
times, but eventually radiate their energy away. They have been studied with keen interest in resonator
cavities,30,31 optical waveguides,32 and photonic33 and plasmonic34,35 structures and are often utilized
for numerical simulations.

However, despite their long history of utility (e.g., Refs. 36–39) in various fields, the unstable
states, both quantum and electromagnetic, have not yet been fully understood. On the quantum side,
the lack of a general theory for non-self adjoint operators is challenging and is the reason why
non-Hermitian systems are mostly investigated on a case-by-case basis (see, e.g., Ref. 25). Ours is
precisely such a study of a concrete quantum system.

Our particular motivation for investigating this problem comes from our long time involvement
in the problem of high intensity optical pulse propagation.40,41 For such high intensity fields, it is very
challenging to come up with a material response theory that is reasonably accurate and also reasonably
fast to evaluate. This last requirement is of paramount importance for long distance propagation42 and
rules out any scheme involving a direct integration of the Schrödinger equation43 because of the large
spectrum of space and time scales involved. There are roughly three orders of magnitude between
the oscillation time scale for the electrons in the atom and the optical time scale. This difference,
which is a problem for any direct integration scheme, also presents an opportunity for simplification;
if one can find a complete set of resonant states for an atom in a constant field, then the solutions for a
variable field can be expanded, to a good approximation, in the same set of resonant states by simply
making the parameter representing the field strength time dependent. This is an adiabatic assumption
that becomes more accurate with the larger the gap between electronic time scale and the optical time
scale becomes.

The purpose of this paper is to demonstrate the completeness of the resonant eigenstates for a
quantum particle in a square-well potential that is exposed to a homogeneous external electric field
and to investigate the convergence properties of the corresponding resonant-state expansion. The
external field, even a weak one, has a profound effect on the energetic spectrum of the system; As
soon as the field is switched on, all discrete-energy eigenstates dissolve into the energy-continuum
which fills up the whole real axis.44 At the same time, resonances appear in the complex energy
plane, and it is these decaying states our work is concerned with. The results presented in this work
generalize and extend the findings in our previous study,45 where the convergence of a resonant state
expansion was investigated for the case of a zero-range Dirac-delta potential.46–48 In particular, the
more realistic system investigated here allows us to make conjectures concerning a wide family of
one-dimensional quantum systems.

The paper is organized as follows. In Sec. II, we set up the problem by introducing the resonant
states for a square-well potential and the locations of their energy eigenvalues in the complex plane;
these results are known from the literature.49 In an attempt to make the paper more readable, we
decided to omit most of the technical but rather standard calculation details in favor of demonstrating
the validity of important intermediate results with the help of high-precision numerical tests. In
particular, we have made extensive numerical investigations into the convergence of the resonant
state expansions and in Sec. III we show some of the results of these investigations. They indicate
strongly that the resonant state expansions converge point-wise to the left (i.e., against the pull of
the field) of the well and inside the well, but diverge to the right of the well, assuming here that the
external field points to the right. This result is consistent with what was obtained for the case of a
Dirac delta potential in Ref. 45. In Sec. IV, we prove that what the numerical evidence indicates is
indeed true. Resonant state expansions are shown to converge point-wise to the left of the well and
inside the well and diverge to the right of the well for all reasonable initial data for the Schrödinger
equation. In Sec. V, we investigate the asymptotic form of the terms in the resonant state expansion
and make precise statements about the rate of convergence and how this rate relates to the smoothness
of the function that is being expanded. We also present high-precision numerical calculations to verify
the correctness of our asymptotic formulas and the statements on convergence rates. One surprising
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conclusion that came out of this investigation is that the depth of the potential well does not play much
of a role; both the question of convergence of the resonant state expansion and its asymptotic rate
of convergence are independent of the depth of the well. We finish the paper with Sec. VI where we
briefly discuss on what has been achieved and where we also spell out the aforementioned conjecture
in some more detail.

II. STARK RESONANT STATES FOR A SQUARE WELL

Let us consider the following Hamiltonian:

H =−
1
2
∂xx + V (x) − εx, (1)

where ε is the strength of the external field and where we without loss of generality assume that
ε > 0, which corresponds to the external electric field pulling the electron to the right. The atomic
potential, V (x), is modeled by a square well of width 2d and depth V0

V (x)=

{
−V0, |x | < d,

0, |x | > d.

According to Siegert’s characterization, Stark resonant states for the square well are wave functions
of the form

ψ(x, t)=ψω(x)e−iωt , (2)

where ψω(x) are solutions to the equation

Hψω =ωψ, (3)

which satisfy the boundary conditions

ψω(x)→ 0 when x→−∞,

ψω(x) and ψ ′ω(x) are continuous at x =−d, d,

ψω(x) is a purely outgoing wave at x =∞. (4)

The resonant states can be expressed in terms of Airy functions in the form

ψp(x)≡ψωp (x)=




a1Ai(y1(x,ωp)) x <−d,

a2Ai(y2(x,ωp)) + a3Bi(y2(x,ωp)), −d < x < d,

a4Ci+(y1(x,ωp)) d < x <∞,
(5)

with the notation Ci+ = Bi + iAi representing an Airy combination that asymptotically behaves as
an outgoing wave. The functions y1(x, ω) and y2(x, ω) that parametrize the arguments of the Airy
functions above are given by

y1(x,ω)=−2(2ε)−
2
3 (εx + ω),

y2(x,ω)=−2(2ε)−
2
3 (εx + V0 + ω).

The resonant eigenvalues ωp are obtained as solvability conditions for the coefficients ai ensuring
that the wave function and its derivative are both continuous at the edges of the potential well, at
x = ±d. There is a countable set of such solutions in the complex plane, determined by the equation

det M(ωp)= 0, (6)

where M(ω) is a certain 4 × 4 matrix. The explicit expression for the determinant of M(ω) is

det M(ω)= (A0A′1 − A′0A1)(B2C ′3 − B′2C3) − (A0B′1 − A′0B1)(A2C ′3 − A′2C3),

where we have defined

A0 =Ai
(
µ
(
−d +

ω

ε

))
, A1 =Ai

(
µ

(
−d +

ω + V0

ε

))
, B1 =Bi

(
µ

(
−d +

ω + V0

ε

))
,

A2 =Ai

(
µ

(
d +

ω + V0

ε

))
, B2 =Bi

(
µ

(
d +

ω + V0

ε

))
, C3 =Ci+

(
µ
(
d +

ω

ε

))
with µ=−(2ε)

1
3 .
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The resonant eigenvalues lie in the lower complex half plane which means that the corresponding
resonant-state wave functions (2) are decaying in time, as they should. Figure 1 shows the zero
contours of the real and imaginary parts of the equation. The points where they cross are the zero
points of the determinant and thus are the resonant eigenvalues. There exist two infinite families of
resonant eigenvalues. The family on the right side of the imaginary axis, called as the A-series in this
paper, has zeros located close to the positive real axis and correspond to longer living states, while
the family to the left of the imaginary axis has eigenvalues located along the ray arg(z)=− 2π

3 and
corresponds to fast decaying states. We call this second family as the C-series. Figure 1 also shows
a finite family of resonant states lying close to the negative real axis that corresponds to the bound
state eigenvalues for the square well in the limit when the external field approach zero. We call these
states as perturbed bound states. This structural division of the resonant states into a finite number
of perturbed bound states and the two infinite A-series and C-series is also seen for the short range
delta potential in Ref. 45, is probably generic, and should be expected for more general potentials
also.

Our focus in this paper is to investigate to what extent the resonant states we have found can be
used to expand initial conditions for the Schrödinger equation. If any given initial condition can be
expanded in resonant states

f (x)=
∑

p

(
f ,ψp

)(
ψp,ψp

) ψp(x), (7)

the solution to the time dependent Schrödinger equation for the Hamiltonian operator (1), with initial
data ψ(x, 0) = f (x), is given by

ψ(x, t)=
∑

p

(
f ,ψp

)(
ψp,ψp

) ψp(x)e−iωpt . (8)

This is an exact solution for a static external field corresponding to a fixed value for ε in (1). For the
case of an external field that varies slowly on the atomic time scale, which we take to be atto-seconds,
the expansion (8), where now the resonant states and their complex eigenvalues vary in time through
their dependence on ε = ε (t), is a good approximation to the exact solution.

The eigenvalue problem (3) and (4) is not self-adjoint and as a consequence the eigenvalues
displayed in Fig. 1 are complex and the resonant states (5) are not normalizable on the real line. This
is, as discussed in the Introduction, to be expected on physical grounds.

In order to achieve the normalization for the resonant states, we rely on the technique used in
Ref. 50. In this technique, one introduces a complex contour L on which the resonant states are

FIG. 1. Contour plot of det M(ωR + iωI ). The green and red lines are the zero contours of the real and imaginary part of det
M(ωR + iωI ). The parameters chosen for this illustration were ε = 0.03, V0 = 0.5, d = 4. The eigenvalues from the A-series
are the blue dots, those from the C-series are purple, and the perturbed bound states are in black.
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evaluated. The contour we will be using has the form

L= z(x)=



x, x < xc,

xc + eiθ (x − xc) x > xc
(9)

which serves its purpose for any chosen parameters xc > 0 and 0 < θ ≤ π
2 . In the following, we

will consider θ = π
2 and xc > d to the right of the well. One can see from the form of the res-

onant states that they decay on the negative axis, while on the positive part, where the outgoing
wave dominates the wave function shape, they show exponential growth. It turns out that for any
0 < θ ≤ π

2 , the outgoing part of the wave function decays along the contour and integration along the
contour can be used to normalize the states. The normalization is achieved by replacing the usual
Hermitian inner product for complex valued functions on the real line by another bilinear product
for complex valued functions defined on the contour L; this is the product denoted by (·, ·) in (7)
and (8).

More generally, for any complex contour C and analytic functions Φ and Ψ, we can define a
bilinear complex valued product (Φ, Ψ) by the formula

(Φ,Ψ)=
∫

C
dzΦ(z)Ψ(z),

whereΨ(z)=Ψ(z) is the natural generalization of a complex conjugate preserving the class of analytic
functions. For the particular choice of contour (9) with θ = π

2 , we have the explicit expression

(ϕ,ψ)=
∫ xc

−∞

dxϕ(x)ψ(x) + i
∫ ∞

xc

dxϕ(x)ψ(x), (10)

where now ϕ(x) = Φ(z(x)) and ψ(x)=Ψ(z(x)) are smooth functions defined on the real axes that are
singular at the point x = xc. At the point xc, we have

∂xϕ|
a = i∂xϕ|a,

∂xψ |
a = i∂xψ |a,

where for any function f (x) we have introduced the notation f |xc = limx→x+
c

and f |xc = limx→x−c f (x).
This set of functions clearly forms a vector space over the complex numbers, but it is an unusual
complex vector space in several ways. Taking the complex conjugate of vectors in V brings us out of
the space, the product, (·, ·), is not positive, (ϕ, ϕ) is in general a complex number, and this complex
valued product is symmetric (ϕ,ψ)= (ψ, ϕ). However, the space V equipped with the product (10)
is the natural setting for working with resonant states; not only does it contain the resonant states as
vectors but also the Hamiltonian (1) is self-adjoint on this space

(Hϕ,ψ)= (ϕ, Hψ).

This means that resonant states corresponding to different eigenvalues are orthogonal and this fact
leads to the expansion (1). For self-adjoint operators in Hilbert space, one has a completeness theorem.
We are not aware of the existence of such a result for the space V. In order to prove such a result for
the space V, one has first to construct an appropriate topology and then use this topology as a starting
point for a completeness theorem. This kind of investigation, which certainly is worthwhile to pursue
mathematically, will however at best to lead to some kind of convergence that is weaker than the
pointwise convergence which is our goal to investigate in the current paper. We will therefore not
pursue these mathematical issues here.

Note that the relevance of this kind of mathematical structure for describing expansion into
decaying states was noted already in 1938 by Kapur and Peierls while studying the dispersion formulas
for nuclear reactions.51

III. NUMERICAL RESULTS

We have done extensive numerical tests of the resonant state expansions (7). For particular
choices of functions, f (x), and particular square wells, the expansion coefficients were calculated
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FIG. 2. The test function f (x)= e−x2
and the corresponding expansion f̂ (x) using resonant states from A-series. The parameters

are V0 = 2, d = 14, ε = 0.03. Note that the function to be expanded in this and the following figure is well localized inside the
potential well. (a) 100 terms used in the expansion. (b) 1000 terms used in the expansion.

using resonant states from the set of perturbed bound states and the A-series. The sample results
displayed in Figs. 2 and 3 show what we find is generic behaviour. For this illustration, we used a
Gaussian function and a Gaussian wave packet, and computed from 20 to 1000 terms taken from
the set of perturbed bound states and from the A-series in the resonant state expansion thereby
defining a function f̂ (x)=

∑
n cnψωn (x), which could possibly be different from our original f. We

calculate numerically, the complex energy eigenvalues, ωp, which are solutions of (6) and the coef-
ficients a1· · · a4, ensuring the continuity of the resonant states at the points x = �d, d. From these
pictures and many like them, our conjecture is that resonant state expansions based on the set of
perturbed bound states and the A-series will converge point-wise for all reasonable initial data for the
Schrödinger equation. The convergence appears to be fairly slow compared to the convergence of a
regular Fourier series for the same functions. The slow convergence is, in particular, well illustrated
by Fig. 3. The correspondence between the convergence and the pictures in Fig. 3 lies in the fact
that if we increase the number of terms in the expansion, the difference between the two functions
decreases.

In the remainder of this paper, we will prove that our conjecture is true and also investigate in
detail how the rate of convergence depends on all parameters in the problem.

FIG. 3. The test function f (x)= e−x2
ei6x and the corresponding expansion f̂ (x) using resonant states from A-series. The

parameters are V0 = 2, d = 14, ε = 0.03. (a) 1000 terms used in the expansion. (b) 10086 terms used in the expansion.
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IV. RESONANT STATES EXPANSION

The numerical tests in Sec. III suggest that the resonant state expansion (7) converges inside
the well, although the rate of convergence is rather slow. In this chapter, we present a proof that
confirms the pointwise convergence. Let us begin by noting that the Stark Hamiltonian (1) has no
bound states. The continuous spectrum is found by imposing scattering boundary conditions on the
Stark Hamiltonian where we have both incoming and outgoing waves at positive infinity and decaying
outgoing waves at negative infinity.

The Stark Hamiltonian is an unbounded self-adjoint operator and as such it has an associated
resolution of the identity.52 In general, the spectral resolution contains an integration over point
spectra and also absolute continuous and singularly continuous spectral components. For the Stark
Hamiltonian in this paper, it has been proven53–55 that both the point spectrum and the singularly
continuous spectrum are empty and that the absolutely continuous spectrum is equal to the whole
real line. Thus we have ∫ ∞

−∞

ψω(x)ψω(x′)dω = δ(x − x′), (11)

where the complex conjugate in (11) is missing because in our case the scattering states are real. For
our particular Stark Hamiltonian (1), we find that the scattering states are given by

ψω(x)= χ




2
π2 | det M(ω) |

Ai
(
µ
(
x + ω

ε

))
, x <−d,

2
π | det M(ω) |

[
(B′1A0 − B1A′0)Ai

(
µ
(
x + ω+V0

ε

))
+(A1A′0 − A′1A0)Bi

(
µ
(
x + ω+V0

ε

))]
−d < x < d,

i
(

det M(ω)
det M(ω)

) 1
2
Ci+

(
µ
(
x + ω

ε

))
−i

(
det M(ω)
det M(ω)

) 1
2
Ci−

(
µ
(
x + ω

ε

))
d < x,

where µ=−(2ε)
1
3 , Ci± = Bi(x) ± iAi(x) and where det M(ω)= det M(ω). The normalization constant

χ = 2−
2
3 ε−

1
6 ensures that the multiplier of the delta functions on the right-hand side of (11) is one.

Since Ci+ and Ci� represent outgoing and incoming waves at positive infinity, there is a natural
split of the scattering states in outgoing, ψ+

ω(x), and incoming, ψ−ω(x), parts. These are

ψ+
ω(x)= χ




i
(

det M(ω)
det M(ω)

) 1
2
Ci+

(
µ
(
d + ω

ε

)) Ai(µ(x+ω
ε ))

πp(ω) x <−d,

i
(

det M(ω)
det M(ω)

) 1
2
Ci+

(
µ
(
d + ω

ε

))
1

p(ω)
[
(B′1A0 − B1A′0)Ai

(
µ
(
x + ω+V0

ε

))
+(A1A′0 − A′1A0)Bi

(
µ
(
x + ω+V0

ε

))]
, −d < x < d,

i
(

det M(ω)
det M(ω)

) 1
2
Ci+

(
µ
(
x + ω

ε

))
d < x,

(12)

ψ−ω(x)= χ




−i
(

det M(ω)
det M(ω)

) 1
2
Ci−

(
µ
(
d + ω

ε

)) Ai(µ(x+ω
ε ))

πp(ω) x <−d,

−i
(

det M(ω)
det M(ω)

) 1
2
Ci−

(
µ
(
d + ω

ε

))
1

p(ω)
[
(B′1A0 − B1A′0)Ai

(
µ
(
x + ω+V0

ε

))
+(A1A′0 − A′1A0)Bi

(
µ
(
x + ω+V0

ε

))]
−d < x < d,

−i
(

det M(ω)
det M(ω)

) 1
2
Ci−

(
µ
(
x + ω

ε

))
d < x,

(13)
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where we have defined p(ω)= (B′1A0 − B1A′0)A2 + (A1A′0 − A′1A0)B2. Observe that by construction,
we have

ψω(x)=ψ+
ω(x) + ψ−ω(x).

We can use the completeness to split any functions in the span of {ψω} into outgoing and incoming
parts

f (x)=
∫ ∞
−∞

ds δ(x − s)f (s)

=

∫ ∞
−∞

ds
∫ ∞
−∞

dω ψω(x)ψω(s)
∫ ∞
−∞

dω′ a(ω′)ψω′(s)

=

∫ ∞
−∞

dω′ a(ω′)
∫ ∞
−∞

dω ψω(x)
∫ ∞
−∞

dsψω(s)ψω′(s),

where a(ω′)= ∫
∞
−∞ dx ψω′(x)f (x) is the energy representation of f (x). We now split the scattering state

ψω ′(s) into outgoing and incoming parts using (12) and (13) and find that f (x) = f +(x) + f �(x), where

f ±(x)=
∫ ∞
−∞

dω′ a(ω′)
∫ ∞
−∞

dω ψω(x)
∫ ∞
−∞

dsψω(s)ψ±ω′(s).

Using special rules for anti-derivatives of Airy functions56 and generalizing the approach used in
Ref. 45, we get the following expressions for the outgoing and incoming parts of f (x):

f ±(x)=
1
2

∫ ∞
−∞

dω′ a(ω′)

[
∓i
| det M(ω′)|

p(ω′)

] ∫ ∞
−∞

dω ψω(x)
ψω(d)

ω − ω′ ∓ iξ
. (14)

Note that the inner integral in (14) has been regularized using a parameter ξ that will be removed at
the end of our calculations by letting it approach zero from above.

We will now focus on the outgoing part of f (x); the incoming part of f (x) is treated in an entirely
similar manner. For the outgoing part of f (x), we observe that the integrand in the inner integral in
the expression (14) defining f +(x)

Pξ (ω′)=
∫ ∞
−∞

dω ψω(x)
ψω(d)

ω − ω′ − iξ
(15)

has poles at the point ω = ω′ + iξ in the upper half plane and at the zeroes for the functions det M(ω)
and det M(ω) in the lower and upper half plane.

We now rewrite the quantity Pξ (ω′) using the residue theorem on the contour ΓR which is closed
in the lower half plane. This contour is depicted in Fig. 4. The only poles of the integrand inside this
contour are the zeroes of det M(ω) and we thus have

FIG. 4. Closed contour ΓR in the lower complex frequency half plane, ω.
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PR
ξ (ω′)≡

∫ R

−R
dω ψω(x)

ψω(d)
ω − ω′ − iξ

(16)

=
2π
i

∑
j

Res

(
ψω(x)

ψω(d)
ω − ω′ − iξ

,ωj

)
−

∫
CR

dω ψω(x)
ψω(d)

ω − ω′ − iξ
.

Observe that PR
ξ converges to Pξ in (15) as R→∞. From (16), it is evident that if the integral over

the contour CR vanishes in the limit when R approaches infinity

lim
R→∞

∫
CR

dω ψω(x)
ψω(d)

ω − ω′ − iξ
= 0, (17)

then the Pξ (ω′) will be a sum of residues

Pξ (ω′)=
2π
i

∑
j

Res

(
ψω(x)

ψω(d)
ω − ω′ − iξ

,ωj

)
,

and from this it is then a simple matter to show that the regulator ξ can be safely removed and that
formula (14) reduces to a resonant state expansion for the outgoing part of f

f +(x)=
∑

j

cjψj(x), (18)

which is what we wanted to prove.
Thus the proof of convergence for the resonant state expansion for any given x is reduced

to showing that the limit (17) holds for that x. In order to investigate this limit, we parameterize
the circular arc CR in the lower half plane using ω = Reiθ and use standard formulas for the Airy
functions57 in the large argument limit to derive asymptotic formulas for the scattering statesψω in the
limit of large R. Because of the well known Stokes phenomenon, the resulting asymptotic expressions
for the scattering states are different for the two angular sectors − 2π

3 < θ < 0 and −π < θ <− 2π
3 . We

find that in the second sector, the scattering state ψω(x) decays exponentially for all x and thus this
angular sector gives no contribution to the limit (17). In the first angular sector, we have the following
asymptotic expression for the scattering state:

ψω(x)= χ




2(κR)
1
4

iπ
1
2 σ

1
2

e−iβ%R
1
2 e$xR

1
2 x <−d,

2(κR)
1
4

iπ
1
2 σ

1
2

e−i(β+σ)%R
1
2 e
$R

1
2

(
x+

V0
ε

)
−d < x < d,

− σ
1
2

2(κR)
3
4 π

1
2

ei%R
1
2 (σ−3β)e

−$R
1
2

(
x+

V0
ε

)

i 2(κR)
1
4

π
1
2 σ

1
2

e−iβ%R
1
2 e$xR

1
2
− i σ

1
2

2π
1
2 (κR)

3
4

eiβ%R
1
2 e−$xR

1
2 d < x,

where $, % are complex numbers depending on θ and µ= (2ε)−
2
3 , β = 2µεd, σ = 2µV0, and

κ = 2µeiθ . Let us start analyzing the various regions in x. For x < �d, we find that the limit is
zero and that for x > d it does not exist. Thus the resonant state expansion converges for x < �d, but
not for x > d. This is consistent with what was found for the Dirac delta potential in Ref. 45 if we
imagine approaching the Dirac delta function using a sequence of square wells where V0 approach
minus infinity, while d approach zero.
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For x inside the square well, where � d < x < d, the asymptotic expression for the integrand in
(17) is found to be

ψω(x)
ψω(d+)

ω − ω′ ∓ iξ
≈−

χ2

ω − ω′ ∓ iξ
*
,

1

π(κR)
1
2

e−iσ%rR
1
2 e

(2µ)
1
2 ���sin( 1

2 θ)
���R

1
2

[
ε2µ

(
x+

V0
ε −d

)
−σ

]

e
i$iR

1
2

(
x+

V0
ε −d

)
−

σ

8π(κR)
3
2

ei%rR
1
2 (σ−2β)e

(2µ)
1
2 ���sin( 1

2 θ)
���R

1
2

[
−ε2µ

(
x+

V0
ε +d

)
+(σ−2β)

]

e
−i$iR

1
2

(
x+

V0
ε +d

)

−
4(κR)

1
2

πσ

e−i(2β+σ)%rR
1
2 e

(2µ)
1
2 ���sin( 1

2 θ)
���R

1
2

[
ε2µ

(
x+

V0
ε +d

)
−(2β+σ)

]

e
i$iR

1
2

(
x+

V0
ε +d

)

+
1

π(κR)
1
2

ei%rR
1
2 (σ−4β)e

(2µ)
1
2 ���sin( 1

2 θ)
���R

1
2

[
−ε2µ

(
x+

V0
ε −d

)
+(σ−4β)

]

e
−i$iR

1
2

(
x+

V0
ε −d

) )
. (19)

If this expression decays exponentially in the limit R→∞, the resonant state expansion will converge
inside the square well. In (19), we have four different terms that need to be checked separately. The
first two exponentials in (19) decay if

ε2µ

(
x +

V0

ε
− d

)
− σ < 0, −ε2µ

(
x +

V0

ε
+ d

)
+ (σ − 2β)< 0,

⇓ ⇓

d > x, −3d < x. (20)

These conditions are satisfied inside the well, �d < x < d.
The second two parts of (19) converge to zero if

ε2µ

(
x +

V0

ε
+ d

)
− (2β + σ)< 0, −ε2µ

(
x +

V0

ε
− d

)
+ (σ − 4β)<0,

⇓ ⇓

d > x, −3d < x, (21)

which are also satisfied inside the well. Note that the depth of the well V0 disappears from the
inequalities (20) and (21). Thus we reach the surprising conclusion that the resonant state expansion
converges for all x inside the square well independently of the depth of the well.

V. RATE OF CONVERGENCE

In this section, we directly investigate the rate of convergence of the resonant state expansion
(18) found to converge for �∞ < x < d in Sec. IV. As we have discussed in Sec. II of this paper,
the energy eigenvalues can be categorized into three groups. The first is the finite set of perturbed
bound states, the second set is the A-series, which are located in the fourth quadrant in the complex
plane, and the third is the C-series located in the third quadrant. The perturbed set of bound states is
finite and thus does not contribute to the rate of convergence, but the A-series and the C-series are
both infinite and they do contribute to the rate of convergence. First, we look at the part of the sum
corresponding to the eigenvalues from the A-series and after that briefly sum up the results for the
C-series. In order to do this, we need an asymptotic expression for resonant state eigenvalues from
the A-series. In principle, we find this expression by first finding the leading order contribution of the
determinant function, here denoted by det M∞(ω), for |ω| → ∞ and then finding the leading order
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expression for the roots of the equation det M∞(ω) = 0 that define the A-series. The final formula
for the resonant eigenvalues ωp is simple and is reproduced below in (22), but even though nothing
beyond the standard asymptotic formulas for Airy functions are required for this derivation, the details
are technical and will not be presented (this remark applies to most of the explicit formulas derived
in this section). The formula for ωp is

ωp ≈ γ
−1

(
3π
2
ξp

) 2
3

, (22)

where

ξp = p −
i

3π
ln(p) + iρ +

i
2π

ln
(����sin

(
c2p

1
3

) ����

)
−

1
2π

h(p), (23)

where p� 1 is the index of the eigenvalues. The parameters appearing in (22) and (23) are given by

γ = 2(2ε)−
2
3 ,

c1 =
V0γ

2
1
3 3

2
3 π

8
3

,

c2 = 2d(3πε)
1
3 ,

ρ=
ln

(
π2c1

)
2π

,

h(p)= arg
(
sin

(
c2p

1
3

))
.

In Fig. 5, we compare the asymptotic formula for the resonant eigenvalues with an arbitrary pre-
cision numerical calculation of the eigenvalues. As we can see, our asymptotic formula is highly
accurate.

We will now use the asymptotic formula for the location of the resonant eigenvalues of the
A-series to get an estimate of the rate of convergence of the resonant state expansion for functions
f whose support are inside the square well. The rate of expansion in general depends on x, but here
we will focus on the point x = 0. The resonant state expansion for f then becomes the following
numerical series: ∑

p

bp

Np
,

where

bp =ψωp (0)
∫ d

−d
f (x)ψωp (x)dx,

Np =

∫ d

−d
ψωp (x)2dx.

FIG. 5. Comparison between a high precision numerical calculation of the pole positions and the asymptotic formula (22) for
two different ranges of the pole index.
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Using the asymptotic formula for the resonant eigenvalues from the A-series (22), we get the following
asymptotic expressions for bp and Np:

bp ≈ π
−1

(
3π
2

)− 1
3

p−
1
3 {a3 cos(g1(p) +

π

4
) + a2 sin(g1(p) +

π

4
)}

∫ d

−d
dx f (x){a3 cos(g1(p) + xg2(p) +

π

4
) + a2 sin(g1(p) + xg2(p) +

π

4
)},

Np ≈
a2

1

γε
π−1

(
3πp

2

) 1
3

, (24)

where

g1(p)=
2
3
µ

3
2 ξp + µ

1
2 p

1
3 γV0,

g2(p)= µ
1
2 γεp

1
3 .

Recall that (a1, . . ., a4) is a vector that spans the null space of the matrix Mp = M(ωp). In general, this
vector also depends on p. However, in the asymptotic range, when p� 1 the matrix Mp simplifies in
such a way that the null-space vector can be chosen to be independent of p.

In Fig. 6, where we have chosen f (x) to be a Gaussian function, we see how accurate the
asymptotic expressions are. They are showing two sets of points, the absolute value of the numerically
calculated value of the term, and the value we get from the asymptotic formulas. For smaller values
of p, the approximation seems to fluctuate around the exact values and does not seem to catch up on
the most extreme swings and breaks. However, as we move forward to higher values, the asymptotic
formula eventually catches all the wild swings of the terms in the series.

We will now derive some analytic estimates for the rate of convergence using the asymptotic
expressions (24) for bp and Np. First we note that for the special case of a function that is constant
equal to one inside the well and zero outside, we can find an analytic expression for bp. Let us call this

FIG. 6. The absolute value of exact and asymptotic ratios
����

bp
Np

���� for different ranges of the eigenvalue index p. In these pictures,

we used V0 = 2, d = 14, ε = 0.03, xc = 20, and θ = π
2 .
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quantity as b0
p. The details of the calculation are relegated to the Appendix. The resulting expression

is
���b

0
p

���≈
α

V0
���cos

(
d(3πεp)

1
3

) ���
,

where α is a numerical factor that does not depend on p or V0. Now let f (x) be a function that is zero
at x = ±d and is n times continuously differentiable. From formula (24), it is clear that each time the
trigonometric sum under the integral sign is integrated, a factor of g2(p) appears in the denominator.
It is also clear that any number of integrations will preserve the form of the trigonometric term in the
integrand up to sign after an even number of integrations. Thus, using integration by parts, n = 2m
times will give us

�����
bp

Np

�����
. p−

n+1
3

βMn

V0
���cos

(
d(3πεp)

1
3

) ���
,

where β is another numerical factor not depending on p or V0 and ��� f (n)(x)��� ≤Mn for x inside the well.
This formula shows explicitly how the size of the terms in the resonant state series for a function
depends on the smoothness of that function and the depth of the well. Note that the depth of the well
cancels if we divide two consecutive terms to get the rate of convergence, and we can conclude that
the absolute size of the terms depends on the depth of the well as V−1

0 , but that the rate of convergence
is independent of V0.

So far we have only considered convergence of the part of the resonant state expansion that
comes from the A-series. However, detailed investigations of the terms in the series coming from the
C-series have shown that they are decaying exponentially in the resonant state index, p, and thus have
no influence on the question of convergence for the series as a whole. These investigations, which
follow the same approach as for the A-series, will not be presented here.

VI. CONCLUSION

We have investigated the completeness of the Stark resonant states in a system with a square-well
potential and a homogeneous external field. Our conclusion is that when the field pulls the particle to
the right, the resonant state expansions converge pointwise to the left of the well as well as inside the
well. Interestingly, we have found that the existence of convergence is independent of the depth of
the potential well, V0. In other words, no matter how shallow the well might be, there is a convergent
resonant-state expansion.

We have also derived formulas that show how the rate of convergence depends on the smooth-
ness of the function being expanded. These formulas indicate that the rate of convergence is also
independent of the depth of the well, but the absolute size of the terms grows like V−1

0 . Thus, for
any given target accuracy, a smaller potential depth means that more terms have to be included in the
series.

Taking into account the similar nature of the convergence results for the Dirac delta poten-
tial45 and for the square potential treated in this paper, we conjecture a similar result for a general
potential of compact support. Such a potential can be approximated by a finite set of conjoined
square wells, as illustrated in Fig. 7, and we expect that our approach can be generalized to this
setting using a transfer-matrix technique. In the limit when the set of conjoined square wells
approach the smooth potential, there will inevitably be square wells that are arbitrarily shallow
but we expect, based on the result derived in this paper, that this will not destroy the conver-
gence. In fact, this same result leads us to conjecture pointwise convergence even for non-compact
potentials.

Finally let us note that there are issues that invite further investigations. Our resonant-state
expansion is constructed separately for the incoming and outgoing portions of the given wave function,
and there is certain similarity here with the Green’s function approach in which the imposed boundary
conditions can select the outgoing waves. Naturally, what constitutes the outgoing and incoming
parts of the given function in the region far from the origin (in the direction of the field) is given and
unique, and corresponds to the decomposition into Ci+ and Ci�. However, the in- and out-split is not
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FIG. 7. A continuous potential V (x) with a suitable discretization V i.

necessarily unique inside the potential well. It is an open question of how such a degree of freedom
affects the resulting expansion.
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APPENDIX: EVALUATION OF b0
p

The integral in (24) is computed as

π−
1
2

(
3π
2

)− 1
6

p−
1
6

∫ d

−d
dx f (x){a3 cos(g1(p) + xg2(p) +

π

4
) + a2 sin(g1(p) + xg2(p) +

π

4
)}

= π−
1
2

(
3π
2

)− 1
6

p−
1
6

1
g2(p)

∫ g1(p)+dg2(p)+ π
4

g1(p)−dg2(p)+ π
4

[
a2 sin(y) + a3 cos(y)

]
dy

= π−
1
2

(
3π
2

)− 1
6

p−
1
6

1
g2(p)

[
a3 sin(y) − a2 cos(y)

] ���
y=g1(p)+dg2(p)+ π

4

y=g1(p)−dg2(p)+ π
4

= π−
1
2

(
3π
2

)− 1
6

p−
1
6

1
g2(p)

[
a3 sin

(
g1(p) + dg2(p) +

π

4

)
− a2 cos

(
g1(p) + dg2(p) +

π

4

)
−a3 sin

(
g1(p) − dg2(p) +

π

4

)
+ a2 cos

(
g1(p) − dg2(p) +

π

4

)]

= π−
1
2

(
3π
2

)− 1
6

p−
1
6

2 sin(dg2(p))
g2(p)

[
a3 cos

(
g1(p) +

π

4

)
+ a2 sin

(
g1(p) +

π

4

)]
. (A1)

Using (A1) and the asymptotic forms of the Airy functions, the coefficients bp in (24) become

b0
p ≈ π

− 1
2

(
3π
2

)− 1
6

p−
1
6

[
a2 sin

(
g1(p) +

π

4

)
+ a3 cos

(
g1(p) +

π

4

)]

π−
1
2

(
3π
2

)− 1
6

p−
1
6

2 sin(ag2(p))
g2(p)

[
a3 cos

(
g1(p) +

π

4

)
+ a2 sin

(
g1(p) +

π

4

)]

= π−1
(

3π
2

)− 1
3

p−
1
3

2 sin(ag2(p))
g2(p)

[
a2 sin

(
g1(p) +

π

4

)
+ a3 cos

(
g1(p) +

π

4

)]2
. (A2)
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We take a further look at the trigonometric terms. After writing them in exponential forms, we find
that one of the two exponentials can be neglected in the limit p� 1. Therefore we get

sin
(
g1(p) +

π

4

)
≈

1
2i

(−1)pp
1
3
(
π2c1

)− 1
2 ����sin

(
c3p

1
3

) ����
− 1

2
e

i
(
µ

1
2 p

1
3 γV0−

1
2 h(p)+ π

4

)
,

cos
(
g1(p) +

π

4

)
≈

1
2

(−1)pp
1
3
(
π2c1

)− 1
2 ����sin

(
c3p

1
3

) ����
− 1

2
e

i
(
µ

1
2 p

1
3 γV0−

1
2 h(p)+ π

4

)
. (A3)

Using (A3), we rewrite (A2) as

b0
p ≈π

−1
(

3π
2

)− 1
3

p−
1
3

2 sin
(
d(3πεp)

1
3

)
g2(p)


a2

1
2i

(−1)pp
1
3
(
π2c1

)− 1
2 ����sin

(
c3p

1
3

) ����
− 1

2

e
i
(
µ

1
2 p

1
3 γV0−

1
2 h(p)+ π

4

)

+a3
1
2

(−1)pp
1
3
(
π2c1
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c3p

1
3
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2
e

i
(
µ

1
2 p

1
3 γV0−

1
2 h(p)+ π

4
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2
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(
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3
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3
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1
3
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µ

1
2 p

1
3 γε

*
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1
2
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1
3
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-
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(
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2d(3πεp)

1
3

) ����
−1

e
i2

(
µ

1
2 p

1
3 γV0−

1
2 h(p)+ π

4

) (a2

i
+ a3

)2

=

(
3π
2

)− 1
3 sin

(
d(3πεp)

1
3

)
2(3πε)

1
3

(
π3c1

)−1����sin
(
2d(3πεp)

1
3

) ����
−1

e
i2

(
µ

1
2 p

1
3 γV0−

1
2 h(p)+ π

4

) (a2

i
+ a3

)2
.

Thus

���b
0
p

���≈
α

V0

�������

sin
(
d(3πεp)

1
3

)
sin

(
2d(3πεp)

1
3

) �������
=

α

V0
���cos

(
d(3πεp)

1
3

) ���
,

where

α =
ε

1
3

2
5
3 π
|(a3 − i a2)|2.
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