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Summary 
With this thesis, I address gaps in research about how pre-service teachers (PSTs) 

develop and make use of knowledge for science teaching. In the project I used a 

qualitative case study approach to investigate seven PSTs’ science teaching, their use 

of pedagogical content knowledge (PCK) for pedagogical reasoning, and the sources 

contributing to their development of PCK. I explored how PSTs develop knowledge 

about students and instructional strategies. I also examined how they enacted these 

components of PCK.  

I videotaped the PSTs’ science teaching in grade 6–10 school practica in the first and 

third years of teacher education. I analyzed the videos to identify dimensions of 

quality instruction related to PCK. In their first-year school practica, the PSTs’ science 

instruction was student-centered, focusing on students’ prior knowledge and classroom 

discourse. However, the PSTs struggled to clearly communicate science concepts, and 

inquiry teaching was almost absent. In stimulated recall interviews performed shortly 

after some of the lessons, I used video recordings to prompt the PSTs to reconstruct 

thinking from the lessons. In their reflections, the PSTs shared nuanced knowledge 

about students, which informed their student-centered instruction with suitable 

instructional strategies. Specialized science courses, PST peers, and personal learning 

experiences were central sources of their PCK. 

I repeated video observations and stimulated recall interviews with three PSTs in 

third-year school practica. I examined whether and how experiences from specialized 

science teacher education courses, which intertwine content knowledge and PCK, 

made a difference in their classroom teaching. By comparing lessons, I found the 

PSTs’ instructional strategies and their reasons for selecting them were more grounded 

in science PCK and less in general pedagogy when they were teaching topics they had 

learned in specialized science courses. The PSTs viewed these courses as supporting 

their development of content knowledge, PCK, and self-efficacy for science teaching. 

Implications for teacher education includes that pre-service teachers’ prior knowledge 

of teaching may be a useful starting point for professional development, and teacher 
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education courses that combine science and pedagogy seem to benefit PSTs when 

paired with opportunities to teach the same topics in school practica. 
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Samandrag 
Gjennom denne doktorgradsavhandlinga addresserar eg eit behov for forsking på 

korleis lærarstudentar utviklar og gjer seg bruk av fagdidaktisk kunnskap om 

naturfagundervising. Prosjektet vart gjennomført som ein kasusstudie av sju 

lærarstudentar si undervising i praksis på 6.-10. trinn på fyrste og tredje år i 

lærarutdanninga. Gjennom videoobservasjonar og intervju studerte eg korleis 

lærarstudentane utvikla kunnskap om elevar og kunnskap om undervisingsmetodar, og 

korleis dei sette slik kunnskap i verk i klasserommet.  

Videoopptak av all naturfagundervising til seks lærarstudentar første studieåret vart 

analysert ut frå ulike dimensjonar av kvalitetsundervisning, knytt til fagdidaktisk 

kunnskap. Undervisinga var elevsentrert. Det innebar at lærarstudentane la vekt på 

elevane sin tidlegare kunnskap og la til rette for opne samtalar om emnet i 

klasserommet. Lærarstudentane strevde med å formidla naturfagleg innhald tydeleg, 

og elevane fekk sjeldan høve til å utforska. I stimulerte gjenkallingsintervju kort tid 

etter nokre av timane gjengav lærarstudentar tenking frå situasjonane i klasserommet 

medan dei såg opptak frå timen. Lærarstudentane hadde nyansert kunnskap om 

elevane, og brukte denne kunnskapen til å gjera undervisinga elevsentrert, og ta i bruk 

høvelege undervisingsmetodar. Lærarstudentane oppgav at dei hadde slik samankopla 

kunnskap om elevar og undervisingsmetodar frå fagdidaktiske lærarutdanningskurs, 

medstudentar, og eigne erfaringar med læring. 

I tredjeårspraksis gjentok eg videoobservasjonar og stimulerte gjenkallingsintervju av 

tre lærarstudentar. Eg undersøkte om og korleis fagdidaktiske kurs frå lærarutdanninga 

hadde innverknad på undervisning i klasserommet. Resultat frå denne samanliknande 

studien viste at kursa utgjorde ein positiv skilnad. Særskilt var undervisingsmetodar og 

grunngjevingar for val av desse kopla meir til fagdidaktikk enn generell pedagogikk 

når lærarstudentane underviste i emne dei hadde hatt i fagdidaktiske kurs. 

Lærarstudentane oppfatta desse kursa som nyttige for eiga utvikling av kunnskap om 

fag og didaktikk og tru på eiga meistring i utøving av yrket. Funn frå prosjektet peikar 

mot at lærarutdannarar med fordel kan dra nytte av lærarstudentar sine tidlegare 
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læringserfaringar. Funna viser òg at fagdidaktiske kurs er til nytte for lærarstudentane, 

særleg dersom dei får høve til å undervisa i dei same emna i praksis. 
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1 Introduction 
In this thesis, I will present and discuss the findings of my investigations into how pre-

service teachers’ (PSTs) enact pedagogical content knowledge (PCK) as they teach 

science lessons in school practica. The thesis adds to the current understanding of how 

PSTs develop knowledge and apply it to provide quality instruction. In the 

introduction, I locate the project within the research on teacher education and argue for 

its importance. Then, I present the purpose of the study, the two overarching research 

questions, and the structure of the thesis. 

1.1 Background and objectives 
Our educational systems serve various ends. Biesta (2009) identified three purposes of 

education: qualification, socialization, and subjectification. Qualification, the only of 

the three focused upon in the current thesis, is a major function of education. It 

includes providing students with knowledge, skills, and understanding that enables 

them to perform certain actions (Biesta, 2009). Science education, for example, aims 

to qualify students to be scientifically literate and thereby take informed personal 

decisions about science-related issues (Roberts & Bybee, 2014).  

School teachers are known to play a critical role in the development of students’ 

scientific literacy (OECD, 2005; van Driel et al., 2014) through quality science 

instruction (Kunter et al., 2013; Seidel & Shavelson, 2007). Their instructional 

practices are informed by knowledge for teaching (Chan & Hume, 2019; Todorova et 

al., 2017; van Driel et al., 2014). The current study focuses on the dialectics between 

teachers’ knowledge and instruction. 

Since the invention of schools hundreds of years ago, content knowledge (CK) and 

pedagogical knowledge (PK) were intertwined. In the context of an educational 

institution, a master was an expert in both content and pedagogy. During the last few 

centuries, these have been separated into distinct knowledge bases, and education 

communities have focused on one or the other (Shulman, 1986). In recent decades, 

researchers have turned their focus toward a component of teacher knowledge that 
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received little attention after the separation of CK and PK. Lee Shulman (1987) 

conceptualized this “missing paradigm” as PCK, defined as “that special amalgam of 

content and pedagogy that is uniquely the province of teachers, their own special form 

of professional understanding” (p. 8). PCK is shaped by a teacher’s CK, PK, and 

context knowledge (Grossman, 1990). It refers to how specific science subjects are 

taught to specific students (Magnusson et al., 1999; Shulman, 1987) in order to result 

in learning (Kind & Chan, 2019). 

The current thesis focuses on how pre-service science teachers enact their first pieces 

of professional knowledge, especially PCK. I draw upon the refined consensus model 

of PCK (Carlson et al., 2020) to discuss how individual pre-service teachers (PSTs) 

develop their own personal PCK (pPCK), and how this knowledge is transformed into 

enacted PCK (ePCK) (in this case, science teaching). Knowledge of how PSTs think 

and teach is useful for improving teacher education programs that provide PSTs with 

coherent opportunities for professional development. The field of research on teacher 

knowledge requires long-term studies that explore how PCK enables high-quality 

instruction (Alonzo et al., 2020; Sorge, Kröger, et al., 2019; Sorge, Stender, et al., 

2019; van Driel et al., 2014). Further, there is a need to study how PSTs develop PCK 

(Kaya, 2009), particularly in relation to their learning experiences during teacher 

education (Coetzee et al., 2020). Existing research on school practica is dominated by 

PSTs’ self-reports (Lawson et al., 2015; Wilson et al., 2001). In addition, existing 

studies of PCK related to classroom teaching are focused on teachers’ thinking about 

instruction (reflection-on-action) rather than the actual knowledge being played out in 

the classroom (reflection-in-action) (Kirschner et al., 2015; van Driel et al., 2014). 

By investigating PSTs’ translation of knowledge into instruction, my research sheds 

light on the relationship between theory and practice. Within teacher education 

programs, knowledge and practice components are usually separated (Wilson et al., 

2001), particularly in the setting of school practica (Juhler, 2017). This issue is 

particularly relevant in Norway (Finne et al., 2014), where little cohesion among 

program components leads teacher education to have weak effects on the practices of 

new teachers (Hammerness, 2013). As a result, teachers are given the challenging task 
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of translating theories about teaching into classroom instruction. Typically, they start 

working on this challenge when they enter classrooms in school practica (Allsopp et 

al., 2006; Grossman et al., 2009). Thus, combining theory and practice is of specific 

relevance for school practice (Juhler, 2017). 

Shulman (1987) described pedagogical reasoning and action as the core of teaching. 

Three phases characterize teaching (Alonzo et al., 2020): planning, teaching, and 

reflection. Each phase includes theory applied in practice through pedagogical 

reasoning. Teachers’ thinking during planning and reflection may be characterized as 

reflection-on-action. Reflection-in-action, in contrast, characterizes teachers’ decision-

making during classroom teaching (Henderson & Tallman, 2006; Schön, 1992). 

Although reflection-in-action is more complicated to research, the teaching phase is 

particularly critical to understand in order to improve education.  

Park (2019) encouraged studies of the different levels of pedagogical reasoning based 

on science PCK. Focusing on PSTs’ PCK in research is a particularly useful way of 

combining the theory and practice of science teachers (Juhler, 2017). By examining 

classroom practice and reflection-in-action, I help to build a reliable and valid 

understanding of how theory (in the form of science PCK) is transformed into practice 

(in the form of science instruction).  

The project was initiated partly to evaluate the science part of a new teacher education 

program. The studied PSTs were in the first cohort of a new national five-year 

master’s degree program in Norway, which provided teacher education applicable to 

grades 5–10 (UiT The Arctic University of Norway, 2016). This program allows 

students to specialize in a few teaching subjects, and it aims at cohesion between the 

components of the program. Instead of including separate courses for science content 

and methods, which is the international standard (Etkina, 2010; Fones et al., 1999; 

Kind, 2019), the new program combines CK and PCK in specialized content courses.  

Whether and how specialized science courses impact classroom teaching and PSTs’ 

professional development remains a largely unexplored topic. However, in a recent 

paper to which I contributed (Olufsen et al., 2021), we used mixed methods to 
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investigate the effects of specialized science courses in the setting of school practica. 

Reports from PSTs and their mentor teachers indicated that specialized science courses 

had a positive impact on science teaching in this setting. 

In this thesis, I use evidence from two research approaches to understand how pPCK is 

enacted in science instruction. Video recordings of PSTs’ classroom practice were a 

critical data source, as they showed the PSTs’ actions in the classroom. The 

participating PSTs’ science teaching practices were described and related to their 

PCK. Further, the video recordings were used in video stimulated recall interviews 

(SRIs) to prompt PSTs to share their reflection-in-action. With this data, I investigated 

the PSTs’ instructional decisions and reasoning from their own recent teaching. 

Thereby, I accessed their capacity to reason (i.e., knowing why they did what they did) 

as well as some of the knowledge they did not utilize in the lessons, or their pPCK 

(Chan & Hume, 2019). Together, the video and SRI approaches contributed to 

fulfilling the purpose of this thesis. 

1.2 Purpose and overarching research questions 
The purpose of this thesis is to describe knowledge exchanges between collective PCK 

(cPCK), personal PCK (pPCK), and enacted PCK (ePCK), especially PSTs’ ePCK in 

the context of school practica. To fulfill this purpose, I answered two overarching 

research questions: (1) “How do pre-service science teachers enact their first pieces of 

professional knowledge, especially PCK, in school practica?” and (2) “How do PSTs 

develop pPCK, and how is this knowledge transformed into ePCK during science 

teaching?” These questions were answered through a long-term study of six PSTs in 

their first year of a teacher education program and five PSTs in the third year of a 

program. All their science instruction in school practica during these years were 

videotaped. The knowledge and skills they used to teach science were examined as a 

case.  

1.3 Structure of the thesis 
This thesis is written in accordance with standards for PhD dissertations (UiT The 

Arctic University of Norway, 2019; Universitets- og høgskolerådet, 2018). The cover 
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article you now read presents three research papers in a unified perspective. The 

papers are inserted in the latter part of the thesis. The current section outlines the 

components of the cover article.  

When investigating teachers’ knowledge and practices, it is necessary to clarify which 

theories of teacher knowledge and quality instruction are used as a starting point. In 

chapter 2, I present PCK as theoretical framework for teacher knowledge and 

overview existing knowledge about science teachers’ PCK development as PSTs’ 

PCK. Next, I discuss the connection between knowledge and classroom teaching. 

Based on this connection, particularly the connection from PCK to teaching, I describe 

a framework for instructional quality. Finally, I review research on PSTs’ science 

teaching practices. 

In chapter 3, I explain why video recordings and SRIs are suitable for addressing the 

overarching research questions. First, I present the overall research design. Second, I 

describe the context and participants of the project. I also present the structure and 

characteristics of the teacher education program under study. Third, I present and 

discuss the research methods in light of the overarching project design. Fourth, I 

discuss ethical considerations and quality aspects of my research. 

In chapter 4, I describe the results of the three papers. I connect them to the 

overarching research questions and synthesize their findings using the refined 

consensus model of PCK. 

In chapter 5, I discuss the results of the three papers in order to build rich descriptions 

of how PCK is enacted during classroom teaching in school practica. The chapter 

focuses on how the papers extend existing research on PSTs’ knowledge and skills for 

teaching. Based on the theoretical background, I discuss how science PCK develops in 

the setting of initial teacher education in order to help reduce the gap between theory 

and practice in teacher education programs. Finally, I discuss the limitations of the 

project, draw conclusions, and discuss the implications for teacher education. 
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2 Theoretical background 
In this chapter, I discuss the two theoretical frameworks I applied: pedagogical content 

knowledge (PCK) and instructional quality. Figure 1 illustrates the different forms of 

PCK and the two main approaches to determining science teachers’ PCK: self-reports 

and performance in teaching tasks. In this project, I used the second approach. I 

investigated pre-service teachers’ (PSTs) performance in teaching tasks in order to 

investigate what they know, what they do, and the reasoning for their actions. To 

closely connect my research to classroom teaching, I investigated PSTs’ actions in the 

classroom, articulation of decisions during instruction, and reflections on teaching. 

The PCK framework serves as base for my investigation of PSTs’ knowledge, their 

enacted knowledge, and their capacity to reason (fig. 1). Therefore, in section 2.1, I 

explore how PCK develops, and I review research on PSTs’ science PCK. In section 

2.2, I explain how classroom teaching is professional knowledge in action (i.e., 

ePCK). In section 2.3, I present the framework on instructional quality. In the fourth 

part of the theoretical background (2.4), I explore my views on learning in relation to 

the project. 
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2.1 Knowledge for teaching 
In the following, I first overview teachers’ professional knowledge bases (2.1.1). 

Second, I present the two models that are applied to examine PCK and argue for my 

focus on selected parts of the models (2.1.2). Third, I discuss researchers’ views on 

PCK development (2.1.3). Fourth, I present research on PCK development and the 

need for further research (2.1.4). Finally, I provide a short review of the field of 

research on PSTs’ science PCK (2.1.5).  

2.1.1 Overview of teachers’ professional knowledge 
Content knowledge (CK), general pedagogical knowledge (PK), context knowledge, 

and PCK are professional knowledge bases for teachers’ classroom work (Fischer et 

al., 2012; Gess-Newsome, 1999; Grossman, 1990; Shulman, 1987). 

• CK refers to teachers’ knowledge of the facts, concepts, and practices of a 

scientific discipline (Nixon et al., 2017), as well as how knowledge is structured 

in the discipline (Schwab, 1964; Shulman, 1986). 

• General PK is applicable across subjects, and it includes knowledge of learning 

and learners, general principles of instruction, and classroom management 

(Grossman, 1990). “General PK” and “PK” are used interchangeably in the 

current thesis. 

• Context knowledge is what teachers must know to adapt to students in a 

specific school or community. This includes knowledge about the educational 

climate, classroom environment, and student attributes (Carlson et al., 2020). 

One should note that the understanding of PK described above differs from the 

continental European understanding, which is relevant in Norway. Here, pedagogy 

(pedagogikk) includes knowledge of teaching, upbringing, socialization, and 

educational knowledge at different levels of society (Imsen, 2011). The concept of 

pedagogy used in the current thesis captures general knowledge of teaching that is 

bound to the classroom setting (Grossman, 1990). The other aspects of pedagogy are 

covered by context knowledge. 
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Figure 2: Teachers’ knowledge bases. Based on Grossman (1990). 

PCK is subject-specific knowledge that enables teachers to teach specific content well 

(Fischer et al., 2012; Grossman, 1990). Such knowledge is based on PK, CK, and 

context knowledge (Fig. 2).  PCK was first introduced by Lee Shulman (1986, 1987) 

as “that special amalgam of content and pedagogy that is uniquely the province of 

teachers, their own special form of professional understanding” (Shulman, 1987, p. 8). 

Later, PCK was developed for various subjects (e.g., Ball et al., 2008; Grossman, 

1990; Magnusson et al., 1999). Below, I will present two models that elaborate on the 

features of PCK. The first connects different realms of PCK, from shared knowledge 

to the knowledge held and enacted by an individual teacher. The second distinguishes 

between the concrete components of PCK that can be identified in research. 

2.1.2 Pedagogical content knowledge 
PCK has been found to be a useful framework for evaluating the knowledge required 

to teach science (Chan & Hume, 2019; Hermansen, 2018; Kind, 2009b). In addition, it 

is highly related to quality instruction that results in student learning (Fauth et al., 

2019; OECD, 2005; Sadler et al., 2013; Wilson et al., 2001). In this thesis, PCK serves 

as the conceptual framework for teacher knowledge. In line with Baxter and Lederman 

(1999), I view PCK as “both an external and internal construct, as it is constituted by 

what a teacher knows, what a teacher does, and the reasons for the teacher’s actions” 

(p. 158). These aspects are integrated in the refined consensus model (fig. 3), which 

presents three realms of the knowledge domain—enacted PCK (ePCK), personal PCK 
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(pPCK), and collective PCK (cPCK)—and situates PCK within knowledge bases 

(Carlson et al., 2020). 

ePCK involves the knowledge and skills used by a teacher in a specific teaching 

situation, such as pedagogical reasoning during planning, teaching, and reflection upon 

lessons (Carlson et al., 2020). ePCK brings together teachers’ knowledge, instruction, 

and students’ outcomes. 

 
Figure 3: The refined consensus model. Reprinted with permission from Springer Nature, 
Repositioning pedagogical content knowledge in teachers’ knowledge for teaching science, by A. 
Hume, R. Cooper, & A. Borowski (Eds.) COPYRIGHT 2020 

In the refined consensus model, the layers are connected by two-way arrows. These 

represent knowledge exchange, which is amplified or filtered through teachers’ 

attitudes and beliefs about, for example, students, the nature of science knowledge, or 

the role of the teacher. The innermost exchange takes place when ePCK is carved out 

from pPCK, or the whole of a teacher’s knowledge base for teaching science topics for 

particular students in particular learning contexts.  
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The learning context separates pPCK from cPCK, the most public realm. This context 

situates science teaching and learning in space and time. The three contextual levels 

are the broad educational climate, a specific classroom learning environment, and 

individual student attributes. The context amplifies and filters the teacher’s actions. 

For example, a national curriculum may encourage a teacher to use inquiry teaching, 

but a lack of equipment or students’ lack of experience with laboratory work may 

prevent a teacher from doing specific experiments. 

cPCK is the amalgam of the education community’s (somewhat generic) knowledge 

for teaching particular science topics. cPCK is located within various groups, from 

teachers working in a professional learning community to canonical PCK that is 

accessible in the research literature. Thus, in the realm of cPCK, a teacher may 

represent one of many contributors.  

The outermost circle of the refined consensus model represents professional 

knowledge bases that inform PCK: CK, PK, knowledge of students, curricular 

knowledge, and assessment knowledge. The size of the CK sector indicates its special 

importance for the development of PCK. The closer one gets to the center of the 

refined consensus model, the more likely it is that PCK exists in a tacit form. For 

example, while cPCK is likely to appear in conversations between educators or in 

written form, pPCK often appears in teachers’ reflection upon practice, and ePCK is 

the tacit knowledge that drives teachers’ instructional decisions (Alonzo et al., 2020). 

The authors of The refined consensus model of pedagogical content knowledge in 

science education chapter (Carlson et al., 2020), did not intend to replace prior models 

of PCK. As it lacks descriptions of concrete components of science PCK, I also use a 

model developed by Magnusson et al. (1999) (fig. 4), hereafter called the Magnusson 

model. 
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Figure 4: Magnusson PCK model as represented in A. Berry, P. Friedrichsen, & J. Loughran (Eds.) 
(2015). Reprinted with permission from Routledge. COPYRIGHT 2015 

It conceptualizes science PCK as consisting of four components: knowledge of science 

curricula, knowledge of students’ understanding of science, knowledge of instructional 

strategies, and knowledge of assessment of scientific literacy. Each of the components 
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includes sub-groups of knowledge. A fifth component of the model, orientation to 

teaching science, influences each of these four components.  

The orientation component has been interpreted in various ways (Friedrichsen et al., 

2011). In the refined consensus model, it is represented by the knowledge exchange 

arrows, which amplify or filter knowledge exchange. Although teachers do not 

separate their knowledge into silos, as suggested by a theoretical model (Friedrichsen, 

2015), the Magnusson model has proven useful in research (Friedrichsen & Berry, 

2015). In the refined consensus model, the four components are included in each of the 

three realms of PCK, and they are related to knowledge bases for PCK in the 

outermost circle (Carlson et al., 2020). 

Some researchers view PCK as topic-specific (e.g., knowledge of how to teach 

photosynthesis) (Gess-Newsome, 2015; Mavhunga, 2020), while others view PCK as 

existing at the discipline level (e.g., how to teach argumentation in science courses) 

(Davis & Krajcik, 2005). In the refined consensus model, each realm of PCK can be 

either topic- or discipline-level. In the current project, I examined both topic-specific 

and science-specific PCK. Although the Magnusson model is focused on topic-specific 

PCK, its categories may also be used to examine science-specific PCK (Friedrichsen et 

al., 2009).  

It is the totality of all components that makes PCK such a powerful conceptualization 

(Chan & Hume, 2019). However, two components are of particular importance to 

draw upon during lesson planning and enactment: knowledge of students’ 

understanding of science and knowledge of instructional strategies (Chan & Hume, 

2019; Kind, 2009b). Simultaneous use of these components is a critical step in PCK 

development (Akin & Uzuntiryaki-Kondakci, 2018; Park & Chen, 2012). Thus, in this 

thesis, I focus on these two components and the integration of them. This integration 

involves knowledge of how students’ learning processes impact the sequencing of 

instruction (Brown, 2008). My choice of focus sets aside other integrations, but a 

strategic choice of focus in PCK research is necessary (Schneider & Plasman, 2011).  



 

14 

PCK is related to didaktik, a concept of German origin. Didaktik covers various 

particularities connected to education such as how to form a subject from content 

knowledge, the relationship between content, its academic background and history, 

and questions of value related to education. PCK is a subset of didaktik concentrated 

on classroom teaching, that is oriented more towards research (Berry et al., 2016; 

Kansanen, 2009). In this thesis, the English term “subject-didactics” is used to 

describe the particular didaktik for science. Then, it is important to note that didaktik 

does not refer to a didactic orientation to teaching (Magnusson et al., 1999), in which 

students are seen as blank slates to be filled by the teacher.  

2.1.3 How science pedagogical content knowledge develops 
Supported by context knowledge, science CK and PK contribute to the development of 

science PCK (Kind & Chan, 2019; van Driel et al., 2014). This relationship can be 

understood in two different ways. First, when viewed as integrative, science PCK may 

be described as a chemical mixture of science CK, PK, and context knowledge (Gess-

Newsome, 1999; Kind, 2019). A teacher needs to develop these knowledge bases 

alongside each other, and they intersect in classroom teaching. According to the 

second view, when supported by context knowledge, science CK and PK can 

transform into PCK. In this transformative view, the formation of PCK is more like a 

chemical reaction forming a new compound (Gess-Newsome, 1999; Kind, 2019). The 

transformative view is most visible in the refined consensus model, as PCK is depicted 

as transformed from the knowledge base. However, the integrative view may also be 

illustrated by knowledge expressed in teacher actions (i.e., ePCK). Both views may be 

useful for describing the development of PCK, and Kind (2015) even concluded that 

the distinction was irrelevant. 

The goal for an individual teacher is to develop a solid pPCK to teach relevant topics. 

For this, they draw on (a) knowledge about teaching located across a continuum of 

groups, from peers or colleagues to canonical PCK accessible in research literature 

(i.e., cPCK outside the teacher’s specific context), and (b) teaching experience from 

within the context of a classroom (i.e., ePCK) (Sorge, Stender, et al., 2019) (see the 
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refined consensus model in section 2.1.2). Below, I discuss two sources of teachers’ 

pPCK from the cPCK realm, as well as teaching experience from the ePCK realm. 

First, personal learning experiences in K-13 schools are the initial source of teachers’ 

PCK (Brown, 2008; Coetzee et al., 2020; Friedrichsen et al., 2009; Grossman, 1990). 

These experiences from a teacher’s own schooling shape their CK, PK, and certain 

components of PCK. Memories of which goals their own teachers taught informs 

knowledge of science curricula, and experience with learning from their own 

schooling informs knowledge of students’ understanding (Grossman, 1990). This is 

particularly true for learning difficulties (Jong et al., 2005; Kellner et al., 2011) and 

what to expect from students (Grossman, 1990). Lastly, memories from learning 

specific content are connected to how the content was taught, thereby informing 

knowledge of instructional strategies (Grossman, 1990).  

Although prior learning experiences are a substantial source of PCK, they are often 

seen as a challenge to educational reform (Grossman, 1990). Labelled “apprenticeship 

of observation,” prior learning experiences have been found to conserve teaching 

practices and weaken the effects of teacher education (Juhler, 2017; Lortie, 1975; 

Sorge, Kröger, et al., 2019). In other words, there is a risk that new teachers will 

imitate their own teachers instead of using reformed teaching practices (Brown et al., 

2013; Grossman, 1990). However, other researchers have argued that this view is too 

deterministic, highlighting that specific memories from teaching and learning 

situations are less challenging than the general milieu of teaching experienced during 

years of schooling (Smagorinsky & Barnes, 2014).  

A second source of PCK development is teacher education courses. These are 

important as a starting point for targeted PCK development (Berry et al., 2016; 

Coetzee et al., 2020; Friedrichsen et al., 2009; Kind & Chan, 2019). In their cross-

national study of predictors of PCK, Park et al. (2020) found teaching certification to 

be closely related to higher PCK scores. Coursework is particularly useful when PCK 

is used as an explicit framework (Daehler et al., 2015; Etkina, 2010; Nilsson & 

Loughran, 2012; van Driel et al., 2002), specifically to understand students’ ideas and 
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how to build on students’ existing knowledge (Etkina, 2010). However, some studies 

have found that pre-service programs have a minimal impact on PCK development 

(e.g. Lee et al., 2007). For example, Brown et al. (2013) found that PSTs continue 

providing teacher-centered instruction after learning about student-centered strategies 

in a teacher education program. Research on the structure of teacher education 

programs indicates that intertwining science learning with science teaching is 

beneficial for growth in science PCK (Daehler et al., 2015). As an example, repeated 

exposure to and implementation of student-centered instruction have resulted in new 

student-focused teaching habits among PSTs (Etkina, 2015). 

Third, teaching experience is a central source of PCK development (Grossman, 1990; 

Großschedl et al., 2015; Nilsson & Loughran, 2012; Sorge, Stender, et al., 2019). 

Thus, school practica have the potential to serve as an arena for PCK development. In 

classroom teaching, PSTs have the opportunity to explore the dialectics between 

theory and practice (Lawson et al., 2015). Additionally, “learning is enhanced when 

teacher candidates are provided with multiple opportunities to apply what they have 

learned in meaningful contexts” (Allsopp et al., 2006, p. 20). In the classroom setting, 

teachers benefit from observing instruction (Sorge, Kröger, et al., 2019) and teaching 

their own lessons in which they can experience students’ behavior and questioning 

(van Driel et al., 2002). Classroom experience has been found to result in the 

development of knowledge about students’ thinking (Nilsson & Loughran, 2012; Park 

et al., 2020), specific learning difficulties (Jong et al., 2005; van Driel et al., 2014; van 

Driel et al., 2002), and conceptual teaching strategies (Coetzee et al., 2020).  

Although few studies have been conducted on PCK in the setting of teaching practice 

(van Driel et al., 2014), the available studies have provided useful insights. For 

example, reflection seems to be critical for developing PCK from teaching experience. 

In their study of PSTs in a teacher education program, Wongsopawiro et al. (2017) 

found that teachers who reflected on students’ learning alongside their classroom 

instruction developed PCK in support of instructional methods that promote students’ 

learning. Outside teacher education programs and without facilitated reflection on 
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teaching, research indicates that teaching experience does not result in the 

development of science PCK (Friedrichsen et al., 2009). 

2.1.4 Research on the development of science pedagogical content 
knowledge 

In the current section, I review empirical research on the development of science PCK 

and identify which areas of the field remain unexplored. Research on this topic is 

challenging. First, within in the realms of ePCK and (sometimes) pPCK, science PCK 

is tacit knowledge (Alonzo et al., 2020). In other words, it is seldom articulated by 

teachers, and therefore, it is difficult for researchers to access. Second, its relationships 

to CK and PK can be understood in different ways (Kind, 2019), complicating 

research on its development. Third, it is difficult to disentangle the impacts of personal 

experience, coursework, and other factors (Wilson et al., 2001).  

Although different lines of research have advanced the understanding of PCK 

development, there is a need for more research. For example, much of the existing 

research on school practica has been based on PSTs’ self-reports (Lawson et al., 2015; 

Wilson et al., 2001). Although self-reported conceptions are closely connected to 

teacher and student outcomes, they are prone to bias, misperception, and lack of 

memory (Ronfeldt & Reininger, 2012). Thus, there is a need for valid and reliable 

investigations of the development of science PCK in the context of school practica.  

Teachers may be aware of what is good teaching, but lack the ability to implement it 

(Kind, 2009b). Sorge, Stender, et al. (2019) specifically called for PCK studies related 

to the quality of learning opportunities. In addition, van Driel et al. (2014) stated that 

“questions related to what PSTs do with their PCK and how practice interacts with 

PCK so far remain largely unexplored” (p. 859). Recently, Alonzo et al. (2020) 

identified a similar gap regarding studies on the realm of ePCK.  

The tacit nature of PCK makes it challenging to capture in classrooms. Therefore, it is 

useful that teacher actions are closely related to teacher knowledge (Fauth et al., 2019) 

and may serve as an alternative data source. However, other research has indicated that 
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this relationship is highly variable (Baxter & Lederman, 1999). Thus, classroom 

observations alone are not sufficient to elicit teachers’ PCK. 

Studies of teachers’ lesson planning and reflection have provided valuable insights 

into the development of science PCK (e.g., Juhler, 2017). However, researchers need 

to include teachers’ thoughts about their own actions in the classroom in order to 

understand their exchange of pPCK into ePCK (Alonzo et al., 2020; Kind, 2019). van 

Driel et al. (2014) called for studies that relate classroom interactions from science 

lessons to teacher knowledge, suggesting stimulated recall interview (SRI) studies that 

explore teachers’ reflections on teaching practice. Such research builds on the 

assumption that teachers’ cognition is reflected in their teaching practice (Chan & 

Hume, 2019; van Driel et al., 2014). Sub-studies 2 and 3 in the current project are 

situated in this line of research, adding to existing studies that have used SRIs to 

examine instructional decisions (e.g., Brown, 2008; Nilsson, 2008; Schepens et al., 

2007; van Driel et al., 2002). 

Lastly, researchers in the field have recognized a need for research focused on 

teachers’ development of integrations among PCK components to make a topic 

understandable for students (Akin & Uzuntiryaki-Kondakci, 2018; Aydin et al., 2015; 

Chan & Hume, 2019). The current study adds to a line of research that responds to this 

need by further developing the PCK map approach proposed by Park and Chen (2012). 

2.1.5 Research on pre-service teachers’ science pedagogical content 
knowledge 

Available research on PSTs indicates that they usually have limited PCK for science 

(Kind, 2009b; Schneider & Plasman, 2011; van Driel et al., 2002). They may have 

problems understanding what students find difficult (i.e., knowledge of students’ 

understanding of science) (Halim & Meerah, 2002) and how to make abstract concepts 

accessible for students (i.e., knowledge of instructional strategies) (Jong et al., 2005; 

Kind, 2009b). Poor PCK may relate to lack of CK in the topics at hand (Käpylä et al., 

2009; van Driel et al., 2014). In a study aiming to explore PSTs’ PCK for teaching 

heritable variation, participants planned lessons based on PK, as they lacked PCK in 

the topic (Friedrichsen et al., 2009). In a recent Norwegian PCK study, PSTs in their 
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third year of a teacher education program focused mainly on concerns related to 

general management and survival in the role of teacher (Juhler, 2017).  

Some studies have identified PSTs’ PCK related to student difficulties (Jong et al., 

2005; Kellner et al., 2011), and reflections on instructional strategies in science 

(Sjöberg & Nyberg, 2020). Also, Kind (2019) found that a third of the participating 

PSTs had PCK relevant to the topic at hand. However, the PCK was incomplete and 

led to student misconceptions. 

PSTs seldom draw on multiple PCK components simultaneously, referred to as PCK 

integration (Akin & Uzuntiryaki-Kondakci, 2018; Aydin et al., 2015; Juhler, 2017; 

Kind, 2009b; Sickel & Friedrichsen, 2018). However, some studies show that PSTs 

can develop integrated PCK over time (Brown et al., 2013; Sjöberg & Nyberg, 2020) 

or through a PCK intervention in teacher education (Mavhunga, 2020). By analyzing 

Content Representations and video annotations made by science PSTs, Nilsson and 

Karlsson (2019) showed how these tools scaffolded reflections and integrations of 

PCK components. 

Little research has focused on ePCK (Alonzo et al., 2020). Park (2019) identified a 

need for studies on how PCK manifests in classroom practice with the use of SRIs. In 

one recent study, Coetzee et al. (2020) showed three PSTs’ ability to enact 

components of PCK to teach electromagnetism, although they did so at different levels 

for different ideas related to the topic. 

A main purpose of this thesis was to describe the enactment of PCK. Following 

suggestions mentioned in the preceding sections, I studied the integration of 

knowledge of students’ understanding of science and knowledge of instructional 

strategies in the realm of ePCK. Further, I have traced experiences from teacher 

education courses as one source of PCK development. 

2.2 Classroom practice – knowledge in action 
In this section, I explain how PCK relates to classroom teaching including how the 

refined consensus model locates classroom teaching within the realm of ePCK. 
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Inspired by Shulman (1986), I see quality teaching as not just acts or behavior, but 

self-conscious enactment of knowledge in complex classroom situations. This 

connection between knowledge and teaching is reflected in the refined consensus 

model, where ePCK refers to the subset of pPCK that is used in a particular teaching 

situation. Its location in the center of the model (fig. 3), together with student 

outcomes, represents that classroom instruction and student learning are the end goals 

of PCK development (Carlson et al., 2020).  

Alonzo et al. (2020) explained that PCK is enacted in three phases: planning, teaching, 

and reflection. At the macro level, a plan–teach–reflect cycle focuses on one unit of 

instruction. For example, teachers draw on their pPCK during lesson planning, 

teaching, and reflection on the lessons. The micro level of the same cycle occurs 

during the teaching phase of instruction. Indeed, each instructional move in the teach 

phase includes a micro cycle of pedagogical reasoning. For example, an interaction 

with a student may constitute an instructional move. The move may be introduced by a 

student sharing a question, to which the teacher responds using reflection-in-action 

(plan). The response is given (teach) and the interaction is evaluated (reflect) within 

the teacher’s reflection-in-action. ePCK is utilized in the multiple micro cycles that 

arise during a lesson (Alonzo et al., 2020). 

The relationship between ePCK and pPCK is two-way. As described above, based on 

Alonzo et al. (2020), instruction is characterized by the continuous process of pPCK 

transforming into ePCK. At the same time, teachers develop pPCK from pedagogical 

reasoning. This pPCK is most often tacit, which means that it is not articulated by the 

teacher. For example, attention to a specific student misconception may lead a 

teacher’s future lessons to take that misconception into account. However, it could be 

made explicit when, for example, a teacher reflects upon a student misconception in a 

lesson and thinks through possible strategies to address that misconception in future 

lessons. It should be noted that although multiple studies have found teaching 

experience to be a major source of PCK (Grossman, 1990; Nilsson & Loughran, 

2012), the ePCK/pPCK framework has contributed to mixed results regarding whether 
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ePCK has an impact on pPCK (Kulgemeyer et al., 2020). In the current project, the 

development of pPCK from ePCK is not a main focus.  

By locating classroom practice as the central component in the refined consensus 

model, the authors who developed it enable a coherent view of science classroom 

teaching in theory and practice (Carlson et al., 2020). Argyris and Schön (1974) define 

theories that are expressed through action as theories in use. When actions are based 

on theory, the actions carry theory with them. This is implicit in actions and can be 

derived from practice (Argyris & Schön, 1974; Pettersen, 2005). In this way, theories 

in use can contribute to explaining the relationship between a teacher’s knowledge and 

teaching practice. One way that PCK has contributed to education is by addressing an 

existing separation of theory and practice in teacher education (Juhler, 2017; Shulman, 

2015). By treating classroom practice as knowledge in action, the current thesis builds 

on this important point with PCK and contributes to the understanding of how PSTs 

use their knowledge for teaching. 

2.3 Instructional quality 
To investigate PCK embedded in teaching practice, I needed a theoretical framework 

on instructional quality connected to PCK. A number of studies have demonstrated a 

close connection between PCK and instructional quality, including those based on 

statistical analyses (Fauth et al., 2019; Kulgemeyer et al., 2020) and qualitative 

methods (Coetzee et al., 2020; Mavhunga & van der Merwe, 2020).  

I focused my investigations of enacted PCK on knowledge of students’ understanding 

of science integrated with knowledge of instructional strategies. Park et al. (2011) 

found these components and the integration of them to be highly connected to reform-

oriented teaching. This specific kind of quality teaching includes emphasis on student-

centered and inquiry-based teaching (Anderson et al., 1994; Sawada et al., 2002). A 

reform-oriented approach aligns with constructivist learning theories due to its focus 

on students as active learners rather than the teacher as a supplier of information 

(Anderson et al., 1994). Adding to the Park et al. (2011) paper, other researchers has 

elaborated on how the central PCK components in combination lead to reform-
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oriented instruction in the forms of student-centered teaching (Alonzo et al., 2012) and 

inquiry-based teaching with focus on argumentation (Suh & Park, 2017).  

Together, the four dimensions of instructional quality presented below include critical 

dimensions of instructional quality in connection to PCK. I used three central 

dimensions of instructional quality from a framework proposed by Klette et al. (2017): 

cognitive activation, discourse features, and instructional clarity. Further, I included 

scientific inquiry, representing a particularly important dimension of the subject of 

science (Crawford, 2014). The four dimensions of instructional quality are described 

and grounded in the literature below, as also presented in paper 1. 

2.3.1 Cognitive activation 
The dimension of cognitive activation concerns whether a teacher engages students in 

higher-level thinking (Klette et al., 2017). Science education research has emphasized 

the need for to support students in changing their conceptualization of science, making 

cognitive activation an important feature of science instruction (Fauth et al., 2019). 

According to some research, cognitive activation results in higher student achievement 

(Fauth et al., 2019; Förtsch et al., 2016; Neumann et al., 2012).  

When providing cognitively activating instruction, teachers engage students in 

reflection, analysis, and comparison of ideas. In less cognitive-activating instruction, 

students are provided with tasks that merely require them to repeat and recall 

information (Lipowsky et al., 2009). Cognitive activation also increases when 

students’ prior knowledge is activated (Grossman et al., 2013), and they are explicitly 

asked to reflect on their own learning (Lipowsky et al., 2009). In short, cognitive-

activating instruction challenges students to do more intellectual work (Klette et al., 

2017).  

Teachers with well-developed PCK are better able to give cognitively activating 

instruction (Fauth et al., 2019). They use knowledge of students’ misconceptions and 

difficulties with the science content to provide intellectual challenging questions 

(Ergönenç et al., 2014; Förtsch et al., 2016). 
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2.3.2 Discourse features 
The dimension of discourse features captures discussion formats as well as the quality 

of responses provided to students. In science it is important to allow students to argue 

and justify their ideas. Through this, dialogic classroom discourse eventually increases 

students’ science competency (Neumann et al., 2012; Scott et al., 2006; Treagust & 

Tsui, 2014).  

At lower levels, discourse might follow the initiation–response–evaluation format, in 

which the teacher closes the discussion without prompting further student responses 

(Scott et al., 2006). At higher levels, discourse is dialogic in format, with the teacher 

offering prompts for further elaboration and extending dialogues between the teacher 

and students or between students (Scott et al., 2006).  

The relationship between PCK and dialogic discourse is similar to that with cognitive 

activation. To engage students in discussions about science ideas, teachers need to 

know these ideas (knowledge of students’ understanding of science) and find 

approaches to initiate meaningful discussions (knowledge of instructional strategies). 

2.3.3 Instructional clarity  
Instructional clarity includes the clarity and explicitness of the learning goals, 

presented content, and feedback on students’ work or ideas. It relies upon 

representations, explanations, and precise use of scientific language (Klette et al., 

2017).  

This dimension most explicitly captures the need for teachers to communicate 

knowledge to students. Understood as interactions between teachers and students 

rather than transmissive teaching, explanations are a core element of teaching 

(Kulgemeyer et al., 2020). Research has documented the usefulness of instructional 

representations in science teaching to improve students’ cognitive and affective 

outcomes (Treagust & Tsui, 2014; Tytler et al., 2013). In particular, structured 

presentations have been found to impact student achievement positively (Neumann et 

al., 2012). Constructive feedback is an important aspect of supporting students’ 
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construction of knowledge, sensemaking, and conceptual change (Fauth et al., 2019; 

Grossman et al., 2013).  

Finally, instructional clarity in science emphasizes the need for real-life experience 

with science phenomena, as in practical activities. Students engaged in practical 

activities are known to have increased potential for learning science, especially if the 

practical activities involve working in groups and focus on developing scientific ideas 

(Abrahams & Millar, 2008; Hofstein & Kind, 2012). 

Central in science PCK are knowledge of what makes the content difficult, knowledge 

of specific misconceptions, and knowledge of instructional strategies with explanatory 

power (van Driel et al., 2014). Thus, instructional clarity is closely connected to PCK. 

2.3.4 Scientific inquiry 
The scientific inquiry dimension concerns the application and quality of inquiry 

teaching. It is related to scientific reasoning, a feature of quality instruction which 

focuses on inductive and deductive reasoning (Treagust & Tsui, 2014). Postman and 

Weingartner (1969) made the case that students need to develop the art and science of 

inquiring rather than remembering explanations from a teacher or a book.  

Three important phases have been emphasized by researchers of scientific inquiry: ask 

a question and plan an investigation, carry out the investigation and organize data, and 

reason based on the findings to draw conclusions (Bybee et al., 2006; Knain & Kolstø, 

2019). Through scientific inquiry, students can achieve cognitive gains and increased 

interest in science (Crawford, 2014). Also, they can develop competence related to the 

nature of scientific knowledge (NOSK) (Lederman & Lederman, 2019).  

The central components of PCK and integration of them has been found to correlate 

with reform-oriented inquiry teaching (Park et al., 2011). Supported by change in 

orientation to teaching science, teachers’ expanded knowledge of students’ 

understanding of a science concept may facilitate teachers’ use of inquiry (Suh & 

Park, 2017). It should be noted that scientific inquiry does not focus on the ability of 
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teachers to clearly communicate science content with students, but how to lead them 

into investigating their science-related questions in a fruitful way.  

2.3.5 Research on pre-service teachers’ instructional quality 
Although teaching activities form a major component of school practica in teacher 

education programs, studies of them are limited in number and, to some degree, 

characterized by reliance on self-reports (Cohen et al., 2013; Jenset, 2018; Lawson et 

al., 2015; Wilson et al., 2001). Existing studies indicate that beginner pre-service 

teachers (PSTs) focus on themselves rather than students and their learning (Juhler, 

2017; Kagan, 1992; Körkkö et al., 2016). Classroom management is a common 

concern among PSTs, leading them to design activities that give them more control 

(Zembal‐Saul et al., 2002). When PSTs assume the role of a transmitter of 

information, their ability to consider students and their learning is limited (Brown et 

al., 2013; Geddis & Roberts, 1998). 

Some studies have directly investigated beginner PSTs’ ability to carry out student-

centered teaching. In such teaching, prior knowledge is taken into account and 

students are active participants in their learning rather than passive recipients of 

information (Baeten et al., 2013). In a small case study, Mellado (1998) found that 

participating PSTs viewed the class more as a group than as different individuals. 

Further, they were incapable of transferring much of their knowledge about science 

teaching into the classroom. None of them were able to systematically address 

individual students’ ideas or monitor their learning individually (Mellado, 1998). 

Similarly, a study of 20 Finnish PSTs performed by Ratinen et al. (2015) showed that 

participants lacked the ability to challenge students’ thinking. Even though they had 

planned to teach dialogically, the participating PSTs ignored students’ pre-knowledge 

(Ratinen et al., 2015). 

Later in teacher education programs and during internships in schools, teachers may 

still struggle to give quality instruction. Vagi et al. (2019) reported on a large 

observation study of 1,283 PSTs’ development of quality teaching practices during 

school-based training in their senior year of teacher education. On average, the PSTs 

scored 2.4 on a seven-point scale, where a score of three indicated proficient teaching. 
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Scores increased throughout the year, although PSTs with high scores at the initial 

evaluation showed lower rates of improvement. In another study of 264 PSTs from 64 

schools, van de Grift et al. (2014) found that the average PST was able to create a safe 

and stimulating learning climate, manage classrooms effectively, deliver clear 

instruction, and activate their students’ learning. However, the PSTs had difficulties 

teaching learning strategies and adapting their teaching to address students’ 

differences and learning needs.  

However, some studies have found that PSTs can successfully carry out quality 

instruction. Based on their classroom observations, Thompson et al. (2013) found that 

11 of 26 PSTs readily carried out teaching with their target indicators related to 

student-centered teaching. While university courses and mentors pressed for this kind 

of teaching, demands at practicum schools to cover content and keeping pace with 

colleagues hindered the other 15 PSTs to perform student-centered teaching. Temiz 

and Topcu (2013) studied the teaching practices of science and mathematics PSTs in 

their third year of an undergraduate program. The participants scored high on the 

Reformed Teaching Observation Protocol (RTOP) (Sawada et al., 2002), indicating 

success in carrying out teaching focused on students. 

2.4 My views on learning 
Three important dimensions of learning are content, incentive, and interaction. Below, 

I briefly overview these based on the work of Illeris (2012). Jean Piaget (1896–1980) 

described the content dimension as the nature of how humans learn through 

constructing an understanding of the world. The incentive dimension involves the 

mobilization of mental energy to drive this learning process, including motivations, 

emotions, and volition. The interaction dimension is based on the idea that learning is 

not the domain of individuals, but takes place in social interactions (Lev Vygotsky, 

1896–1934). Interactional learning occurs in action, communication, and collaboration 

within the learning context, and use of language is a central means of knowledge 

construction. (Illeris, 2012) 
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My understanding of learning tends towards a constructivist position, as it is focused 

on content, although learning as interaction is certainly an important dimension. This 

view more or less extends to how I understand students’ learning, PSTs’ development 

of PCK, and the way I develop knowledge as a researcher.  

Students mainly construct their knowledge rather than receiving it from the teacher. In 

Piagetian terms, they are maintaining an equilibrium between adding elements to 

existing knowledge schemes and changing the schemes in response to knowledge that 

does not fit into the current schemes. Therefore, teachers should treat students as 

active participants in their own learning processes. This is part of the basis for reform-

oriented education, particularly student-centered (Anderson et al., 1994). At the same 

time, I acknowledge that students usually construct knowledge based on observable 

entities. For example, students learn about actual climate change, not merely an idea 

about climate change. Furthermore, the social aspect of learning is clearly important 

for student learning because scientific knowledge is discursive in nature and implies 

enculturation into science as a culture (Driver et al., 1994). This is represented in a 

focus on student–student interactions and participation in scientific practices or inquiry 

teaching in current science education reforms.  

PSTs do not develop their PCK solely by reading books, but by exploring the act of 

teaching, identifying common learning difficulties faced by students for various topics 

(Jong et al., 2005), and negotiating the complexities of teaching practice with others 

(Park, 2019). In other words, PCK development can be understood from a 

constructivist view of teacher learning. From a Piagetian perspective, individual PSTs 

build unique collections of PCK due to their unique set of schemas and knowledge. 

Thus, PCK is idiosyncratic, as confirmed by empirical studies (Akin & Uzuntiryaki-

Kondakci, 2018; Aydin & Boz, 2013). 

I understand PCK mainly as mental representations organized and held by individual 

teachers (pPCK), and thus, as a cognitive aspect of teacher learning. From this 

perspective, the development of knowledge through a complex process that includes 

pedagogical reasoning is considered to be the core of teacher learning (Russ et al., 
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2016). I also see PCK as mental representations enacted by individual teachers 

(ePCK). My investigation of sources for PCK revealed that PSTs link their mental 

PCK representations to other persons and situations. Thus, teacher learning can be best 

explained from a situated and sociocultural perspective as changes in communication 

with communities (Russ et al., 2016). 

I view my learning as a researcher as a product of my construction of knowledge and 

insights based on data. I see my research as a constructivist process centered around 

my use of observations, interviews, and theory. In building new knowledge, I seek to 

be true to actual actions, statements, and reflections by the participating PSTs. At the 

same time, I acknowledge that my positions and understandings impact the outcomes 

of the project. I selected the phenomena of study, area of focus, research questions, 

and methods, and I interpreted the findings. When suitable, my positions are explicitly 

discussed (see, for example, section 3.6.3, which concerns my role as a researcher). 
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3 Methodology 
Inspired by Yin (2009), I used a case study approach for this project. I also based my 

approach on Shulman’s (1986) paper, in which he proposed case knowledge as a 

central component of inquiries about teacher education. In my inquiry, a total of seven 

pre-service teachers (PSTs) were videotaped as they taught science in school practica 

over a timespan of three years. Shortly after the instruction, I probed their pedagogical 

reasoning through stimulated recall interviews (SRIs).  

In this chapter, I explain the study design, present the context and participants, and 

discuss research methods as well as issues of quality and ethics. 

3.1 Research design 
The research was designed as a qualitative case study. I followed the participating 

PSTs with multiple approaches to gain complimentary pieces of knowledge about their 

pedagogical content knowledge (PCK) and practice. The case study approach was 

appropriate as I wanted to study the phenomenon in depth and within a real-world 

context. The case included seven participating PSTs. Six were studied in papers 1 and 

2, and three were studied in paper 3. I studied the PSTs as embedded units in the same 

case, as they worked together in groups in school practica. I began by analyzing data at 

the level of individual PSTs but lumped them together as one case based on 

similarities. The method of a single case study with embedded units has been 

described by Yin (2009). The case was bound by the PSTs’ science teaching in school 

practica during their first and third years in a teacher education program. 

These seven PSTs were worth studying as they represented a variety of levels of 

science education and teaching experience. They were typical in age, having finished 

high school relatively recently, and most were available at several points in time for 

this long-term case study. Features of the context of school practicum were integrated 

into the case, as the PSTs planned science lessons together with peers and a mentor 

teacher.  
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Case studies are useful to answer both “how” questions and “why” questions (Yin, 

2009). Thus, the case study approach is a god fit for my project, as I aim to address 

both how PCK and teaching come about, and “why” questions regarding sources of 

knowledge and practices.  

Fig. 5 illustrates the phenomenon of PCK enacted in classrooms by a PST in the 

process of exchanging PCK into science instruction. 

 
Figure 5: The phenomenon under study: a PST entering a school practicum. cPCK is represented by a 

model of science teaching, sources of information, and reflections on the PSTs’ own classroom 

experience. pPCK held by the PST is brought into a specific context. ePCK is represented by teaching 

in a specific lesson with specific students. In summary, the model represents a PST in the process of 

exchanging PCK into classroom teaching. Illustration: Karin K Johansen design, kakvajo.no 

http://kakvajo.no/
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Teachers undergo a critical phase in their professional development as they take the 

leap from accessing collective PCK (cPCK) and holding personal PCK (pPCK) to 

enacting it in a classroom (Alonzo et al., 2020). When learning about PCK in teacher 

education and other places, PSTs remain outside the learning context, and thus their 

pPCK is not contextualized. Their first contextualization of PCK takes place during 

school practica, as illustrated in fig. 5. As they enter the science class, they also face 

the challenge of translating their pPCK into successful classroom teaching. This is 

illustrated in the figure as pPCK remaining in the PST’s head, while visible results are 

actions in the classroom (i.e., ePCK). Through studying this process, I wanted to 

understand the nature of the participating PSTs’ PCK and make interpretations about 

its development. To gain insight, I implemented an interpretive research paradigm. I 

intended to describe the “localized meanings of human experience” (Lederman & 

Abell, 2014, p. 7), in contrast to a post-positivist paradigm in which PCK levels for 

large samples are measured and generalized. Localized meanings are not openly 

accessible, but must be elicited through sustained engagement with the data material 

and multiple phases of analysis. My own ideas about good teaching, my experiences, 

and my culture affect this interpretive process. As an example, my views on learning 

have implications for my research (as outlined in section 2.4).    

Fig. 6 illustrates the main approaches of the sub-studies conducted as part of my 

project. First, a video study was carried out during the PSTs’ first school practica. 

Observation studies have advantages for PCK research as they do not require teachers 

to articulate (often tacit) PCK, and classroom observations focus on PCK in the 

context in which it matters most (Alonzo et al., 2012). Therefore, in the initial study 

(paper 1), I assessed the PSTs’ instructional quality using video observations. I applied 

a research-based video observation manual that captures quality dimensions related to 

PCK. With the video study, I aimed to uncover what the PSTs were capable of doing 

in terms of quality science instruction. 
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Figure 6: Project design.The video study covered all PSTs’ science teaching in first year school 
practica. The SRI studies captured PSTs’ reflections from selected lessons in first- and third-year 
school practica. Illustration: Karin K Johansen design, kakvajo.no 

In the second approach, I wanted to capture the PSTs’ enacted PCK (ePCK) more 

directly using SRIs (paper 2 and 3). In a sense, ePCK only exists in the moment of 

teaching. Researchers have claimed that capturing ePCK would require recording of 

teachers thinking aloud while teaching (Alonzo et al., 2020). They have also 

acknowledged this is unrealistic for research, and the best substitute is to record 

teachers as they reconstruct their thinking from lessons in video SRIs (Alonzo et al., 

2020; Park, 2019).  

The video study enabled investigation of PSTs’ actions and, thus, knowledge 

embedded in practice. The SRI studies were used to investigate how instruction came 

about through PSTs’ reflections. Such reflections included reflection-in-action, which 

involved reconstructing thinking from lessons (fig. 1: enacted knowledge and capacity 

to reason), and reflection-on-action, which involved commenting on and sharing the 

reasoning behind lessons (fig. 1: knowledge and capacity to reason). 

Alongside the two overarching research approaches, I collected secondary data, 

including lesson plans and field notes from classroom observation. In the lesson plans, 

the PSTs provided an outline of their lessons and described their CK, contextual 

factors, student group, instructional strategies, and assessment. The lesson plans were 

used to keep track of the different lessons, and in paper 3, they were used as a 

secondary data source to analyze instructional segments. Field notes were used as a 
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secondary data source in paper 3 as well as a starting point for initial and inductive 

analyses and reflection on my role as a researcher throughout the project.  

3.2 Context and participants 

3.2.1 Teacher education program 
The study was undertaken within a teacher education program educating middle 

school teachers (grades 5–10, ages 10–16) at UiT The Arctic University of Norway 

during the years 2017–2020. The program was initiated by a national reform to 

provide PSTs with deeper knowledge of content and subject didactics and apply more 

focus to research and development. The goals of this reform were to improve student 

learning outcomes and increase the status of the teaching profession (Ministry of 

Education and Research, 2009; Olufsen et al., 2017). The program design was 

influenced by the Finnish teacher education model (Elstad, 2020). It lasted for five 

years, focused on research, and included a mandatory master’s thesis on subject 

didactics (UiT The Arctic University of Norway, 2016). The program also included 

specialized content courses in three school subjects of the students’ choice. The three 

first years of the program are described in table 1. All the PSTs participating in the 

current study had selected science as their first subject and thus took specialized 

science courses equivalent to 50 ECTS during years one and three of the program. 

Science was not the focus of the second year.  

In many parts of the world, a common way of organizing science teacher education is 

to separate science content and methods courses (Etkina, 2010; Fones et al., 1999; 

Kind, 2019). The program examined in the current project was different, as content 

knowledge (CK) and PCK were integrated in specialized content courses. The 

curricula were aligned with the national science curriculum for Norwegian schools, 

which includes chemistry, physics, geology, biology, health, technology, and the 

nature of science. In line with the national school curriculum, the specialized science 

courses focused on practical work, inquiry teaching, and five basic skills: oral skills, 

reading, writing, digital skills, and numeracy. The courses were focused on science 

CK, although PCK was also addressed. A PCK focus was evident in textbooks in units 

on inquiry and argumentation, course instructors’ focus on students’ understanding of 
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the topics, and modeling of reformed instructional practices. For example, classroom-

relevant CK on chemistry was combined with PCK to teach a specific chemistry topic 

to students. 

Table 1: Years 1–3 of the teacher education program for grades 5–10 

YEAR 15 ECTS 15 ECTS 15 ECTS 15 ECTS PRACTICUM 

YEAR 1 Science (joint 

elementary and 

middle school 

PSTs) 

Science Subject 3 P&S 

(10) 

R&D 

(5) 

Field 

practicum,  

3+3 weeks 

YEAR 2 Subject 2 (joint 

elementary and 

middle school 

PSTs) 

Subject 2 Subject 3 P&S 

(10) 

R&D 

(5) 

Field 

practicum,  

3+3 weeks 

YEAR 3 Science (20) Subject 2 (20) R&D (5) R&D thesis Field 

practicum,  

3+3 weeks 

Note. Science = subject 1. P&S: Pedagogy and Students. R&D: Research and Development. 60 
ECTS = one year of full-time study. ECTS is shown in brackets when there is a difference from the 
columns. 

The Research and Development (R&D) course covered the nature of science, 

educational research, and classroom leadership. The Pedagogy and Students course 

(P&S) included educational law and curricula; how students aged 10–16 learn; and 

experiences involving planning, enactment, and assessment of instruction (UiT The 

Arctic University of Norway, 2016). 

For two periods each year (one in the fall and one in the spring), PSTs practiced 

teaching in schools. They were organized into groups of two to three and worked 

together at a primary or lower secondary school (grade 5–10) for three weeks at a 

time. They would function as a part of the teacher collegium at the school, following 

the time schedule of the mentoring schoolteacher. The mentor had a great impact on 

the practicum experience in terms of which subjects should be taught and the degree of 

freedom PSTs would get. Except for some days that involved observation, PSTs 
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planned and taught their own lessons on topics assigned by the mentor teacher. A main 

goal of the first-year school practica was observation and enactment of the teacher 

role. In the third-year practica, teaching based on national and local curricula was a 

main focus. In the spring semester during the third year, the PSTs were tasked with 

writing a thesis based on investigations of their own teaching practices (UiT The 

Arctic University of Norway, 2016). 

3.2.2 First round of data collection 
Sixteen PSTs entered the program in 2017. Those who chose science as their subject 1 

were invited to participate in the study. A total of 12 PSTs gave their consent to 

participate. Two groups of three (a total of six) were selected as the case PSTs for the 

first two sub-studies during the first round of data collection (fig 6). They were aged 

19–24 years (table 2). In addition, they were the only ones placed in groups in which 

all had given consent to participate in the study and had chosen teaching subjects that 

match the subjects taught by the mentor teachers recruited to the study. The mentor 

teachers were recruited from those assigned as mentors to the cohort. 

Three of the PSTs, Ingvild, Jens, and Sanna (pseudonyms), were placed at school 1 in 

one grade 7 classroom with 32 students aged 11–12. A female teacher with more than 

10 years of experience served as their mentor. She was not certified in science, but she 

enjoyed teaching the subject. Her mentoring style was supportive. While she did not 

encourage reform-oriented teaching practice, she did praise PSTs for focusing on 

students. The other three PSTs, Jakob, Pia, and Lena (pseudonyms), were placed at 

school 2 in one grade 6 classroom with 20 students aged 10–11. Their male mentor 

teacher had more than 10 years of experience, and science was a part of his initial 

teacher education. He was also supportive in his mentoring, and he encouraged 

project-based teaching across school subjects. This meant that his PSTs taught few 

science lessons in the first school practicum.  

Within both groups, the PSTs and their mentor teacher discussed lesson plans and 

issues regarding instruction. All PSTs and the mentor teacher were present in all 

lessons and provided feedback on the lesson to the PST leading it. In the mentoring 

sessions, both mentor teachers focused on issues regarding general pedagogy, such as 
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the diversity of students, and science topics were a secondary focus. The mentor 

teachers were responsible for selecting science topics, but the PSTs were allowed to 

make their own choices regarding how to teach. 

3.2.3 Second round of data collection 
In year two of the program, the PSTs focused on the subjects they had chosen as their 

subject 2 (mathematics, social sciences, etc.). In year three of the program (2019–

2020), science was again a focus of their coursework and school practica. In this year, 

I repeated data collection, connecting school practicum experiences to PSTs’ learning 

about how to teach. To make visible the role of specialized science courses, I aimed to 

contrast science teaching with and without related specialized science course 

experiences.  

In this round of data collection, all participating PSTs were placed at the same lower 

secondary school, teaching two different classes at grade 8 and 10. Two new mentor 

teachers were recruited. Both were educated science teachers who had more than 10 

years of teaching experience, extensive experience mentoring PSTs, and enthusiasm 

for science. In addition, both were willing to facilitate opportunities for the PSTs to 

teach one lesson on a topic for which the PSTs had received instruction in a 

specialized science course (aligned lesson) and one for which they had not (unaligned 

lesson). 

Of the six PSTs participating in the first round of data collection, four were still in the 

program: Ingvild, Jens, Jakob, and Pia. They agreed to participate in the second round 

and were assigned to one of the two mentor teachers. In addition, the school practicum 

administrator assigned one of the mentor teachers with another PST, Tina. She was 

invited to the study because I already aimed to follow her school practicum group. 

Thus, a total of five PSTs were invited to participate in the second round of data 

collection, as shown in table 2. However, only three PSTs (Jakob, Pia, and Tina) were 

able to teach at least one unaligned and one aligned lesson. They are the participants 

on which I report in paper 3.  
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Pia and Tina taught a grade 8 class. The 25 students in the class did not know each 

other well, and they were not used to group work in science. Their mentor teacher 

focused on science content in instruction and provided more feedback on accuracy of 

representations than other aspects of science teaching. Thus, his mentoring was 

focused on CK and did not encourage student-centered teaching. 

Jakob taught a grade 10 class with 21 students together with Jens and Ingvild. These 

students showed interest in and knowledge of science, but a lack of focus in some 

lessons. Their mentor teacher had clear ideas about what should be taught and which 

strategies would be useful. However, the mentor teacher provided feedback related to 

both CK and PCK. Jakob showed independence in designing his own lesson scripts, 

despite explicit guidance from the mentor teacher. 

Table 2: The participants, their science background, and their teaching experience. 

PST 
SCIENCE SPECIALIZATION IN 
HIGH SCHOOL 

TEACHING-RELATED 
EXPERIENCE 

PARTICIPATING 
IN DATA 
COLLECTION 
ROUND 

INGVILD 
Biology, chemistry, and 

technology and research 
Leader for kids’ activities 

1 

JENS None None 1 

SANNA 
Advanced mathematics, 

chemistry, and geology 
Leader for kids’ activities 

1 

JAKOB Biology Leader for kids’ activities 1,2 

PIA None Teaching experience 1,2 

LENA  None Teaching experience 1 

TINA Biology Leader for kids’ activities 2 

 

To gain insight into PSTs’ knowledge and skills for teaching, I applied multiple 

research methods during data collection in school practica. The primary methods were 
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video observations and SRIs with PSTs, while lesson plans, field notes, and mentor 

teacher interviews served as secondary data sources. In the following sections, I 

discuss the central methods of data collection, how data were analyzed, the quality of 

the study, and ethical considerations.  

3.3 Video observations 
Forty-five science lessons taught by the participating PSTs in school practica during 

the first and third years of the teacher education program were video-recorded. The 21 

lessons from year one served as the basis for paper 1. For the sake of time, I chose not 

to analyze video recordings from year three. I used two small high-resolution video 

cameras to capture the PSTs’ actions. Sound was recorded through a wireless 

microphone carried by the PST. 

The term “video study” refers to research on social or educational reality that is based 

on analysis of recordings (Janík et al., 2009). Compared to direct observations, video 

studies reduce the dependency on an observer’s skills, such as the ability to quickly 

write field notes (Hacking, 1983), which are known to influence observation results. 

Further, an observer will have problems overcoming human limitations and processing 

enough information to review classroom actions without missing some phenomena or 

over-emphasizing others (Erickson, 2006). However, video recordings are also 

selective in what they record. If something happens outside the frame of the camera, it 

is not recorded and thus is excluded from the study. This is why it is critical for video 

research to find a balance between recording events close-up and capturing enough of 

the context (Blikstad-Balas, 2016). As a purpose of the project was to overview pre-

service teachers’ science teaching, not only specific situations, I chose to capture the 

whole classroom. 

Video studies face challenges alongside their benefits. First, observations are always at 

risk of capturing situations that are not typical in practice. For example, the PSTs 

might act differently on camera than otherwise. Additionally, the presence of a 

researcher and camera equipment in the classroom may affect students’ behavior, even 

though young people are used to video recording devices and the devices were small 
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action cameras on mini tripods. This could be seen as reducing the reliability of video 

recordings. However, researchers have reported that this actor effect is temporary 

(Klette, 2009), and I have had similar experiences in the current project. Second, in 

regard to workload, video material may require a substantial amount of time for 

handling and analysis (Klette, 2009). I experienced this challenge, as I aimed to gain 

an overview of instructional quality across PSTs, schools, and instructional segments. 

Systematic analysis based on clear manuals is one way of overcoming the workload 

challenge. 

3.3.1 Analysis of video data 
To analyze recordings in the video study, I used a structured framework for 

assessment of instructional quality. Observation categories were selected from the 

Linking Instruction in Science and Student Impact (LISSI) observation manual 

(Ødegaard, Kjærnsli, Karlsen, Lunde, et al., 2020). This manual (Appendix) was 

designed to capture the central dimensions of quality science teaching. I was involved 

in designing the manual, which we based on the Protocol for Language Arts Teaching 

Observations (PLATO; Grossman et al., 2013), with additional inspiration from the 

Electronic Quality of Inquiry Protocol (Marshall et al., 2010) and the video manual 

used in the Budding Science and Literacy project (Ødegaard et al., 2014).  

The LISSI manual was refined through several rounds of review of research and 

analysis of classroom teaching. This ensured a valid measure of critical dimensions of 

science teaching practice. Inter-rater reliability was found to be satisfactory 

(Ødegaard, Kjærnsli, Karlsen, Kersting, et al., 2020).  

Twelve of the 19 categories in the LISSI manual were used in our analysis (table 3). 

These were selected based on my theoretical framework for instructional quality, 

which includes cognitive activation, discourse features, instructional clarity, and 

scientific inquiry (see section 2.3). The framework was related to the PCK components 

focused upon in this thesis: knowledge of students’ understanding of science and 

knowledge of instructional strategies.  
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In the coding procedure, science lessons were divided into 15-minute segments for 

analysis (N=71). Each segment was scored from 1–4 on the 12 categories, which 

represented distinct teaching practices. A score of 1 indicated almost no evidence of 

the targeted practice, 2 indicated limited evidence, 3 indicated evidence with some 

weaknesses, and 4 indicated consistent and strong evidence. While the scores for 

individual categories say little about the general quality of instruction, together, the 12 

categories capture important dimensions of quality science instruction. For example, 

the category representation of content is a central part of the instructional clarity 

dimension of instructional quality, and it is closely related to knowledge of 

instructional strategies. Table 3 overviews the 12 selected categories and their origins. 

Table 3: Categories in the video coding manual, with descriptions of evidence indicating low-end and 
high-end scores 

Evidence for low-end scores (1–2) Evidence for high-end scores (3–4) 

Cognitive activation: Activation of student thinking. 

Connections to Prior Knowledge1 

If students’ prior knowledge or experiences are 
referred to, it is done briefly or superficially and is 
not sufficiently connected to the day’s lesson. 

Students’ prior knowledge or experiences are 
elicited or referred to multiple times and are 
connected to the day’s lesson. 

Intellectual Challenge 1 

Students spend most of their time on activities or 
assignments that are rote or recall. 

Students spend most of their time on activities or 
assignments with high academic rigor that 
promote analysis, interpretation, inferencing, idea 
generation, or high-level analytical and inferential 
thinking. 

Student Reflection 2 

If students are encouraged to reflect on their 
learning, it is only at the level of remembering 
what the lesson was about. 

Students are encouraged to reflect on their 
understanding of the lesson or to think at higher 
levels. 

Discourse features: Facilitation of science discourse. 

Teacher Role 2 

The teacher is the center of the lesson or only 
occasionally facilitates student–student talk. 

Rather than being the center of the lesson, the 
teacher facilitates student–student talk. 

Classroom Discourse 1 
a) Opportunities for student talk:  
If they arise, opportunities for science-related 
discussions are short or characterized by 
recitation.  
b) Uptake of student responses: Responses by 

a) Opportunities for student talk: Open-ended 
science-related questions are discussed at some 
length. 
b) Uptake of student responses: The teacher and 
students carefully listen to each other and 
elaborate on or help develop science ideas. 
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Evidence for low-end scores (1–2) Evidence for high-end scores (3–4) 
the teacher and students responses usually do 
not elaborate on or help develop students’ ideas. 

Instructional clarity: Strategies for teaching new content. 

Representation of Content 1 
If provided, the teacher’s explanations, 
examples, illustrations, models, and analogies 
are incomplete, perfunctory, weak, or incorrect. 

The teacher presents accurate and clear 
explanations, examples, illustrations, models, or 
analogies. Nuances of concepts and student 
misunderstandings may be addressed. 

Use of Academic Language 1 
The teacher rarely or never uses any scientific 
language, or it is used but not explained. 

The teacher uses and explains scientific 
language, and students have opportunities to use 
it. 

Feedback 1 

If the teacher or students provide feedback on 
students’ work or ideas, it is mainly vague, 
repetitive, perfunctory, or misleading. 
Suggestions for how to improve performance are 
procedural rather than substantive. 

The teacher or students provide constructive 
feedback that specifically addresses students’ 
work or ideas. 

Practical Activities 4 
If students interact with objects beyond materials 
for reading or writing, these practical activities are 
not tied to learning science concepts. 

Students interact with objects beyond materials 
for reading or writing. Practical activities are 
connected to learning science concepts. 

Scientific Inquiry: Phases of inquiry teaching. 

Preparation for inquiry 3,4 
No researchable questions, hypotheses, or 
predictions are developed. However, the teacher 
may activate students’ prior knowledge or invite 
them to wonder about science. 

A researchable question, hypothesis, or 
prediction is developed. Further inquiry may be 
planned by the teacher or students. 

Data Collection 3,4 
Students may perform observations or 
investigations with or without addressing a 
researchable question, hypothesis, or prediction. 
Data are not documented. 

Students perform investigations to address a 
researchable question, hypothesis, or prediction. 
Data are documented and may be systemized. 

Consolidation 3,4 
Students may discuss observations or data. 
However, while they may draw simple 
descriptions from them, no conclusions are 
made. 

Students draw conclusions from observations or 
data. They may connect these to scientific 
theoretical knowledge and discuss the 
implications. 

Note. The selected categories from the LISSI manual. Literature bases for the categories: 1 Grossman 
et al. (2013). 2 Marshall et al. (2010). 3 Ødegaard et. al. (2014). 4 A new category in the LISSI manual 
(Ødegaard, Kjærnsli, Karlsen, Lunde, et al., 2020). 

The second author of paper 1 and I analyzed the video material together. We were 

both certified as reliable raters of the PLATO categories. To ensure reliable and valid 

coding, we co-coded 20% of the material. In three cycles, we coded identical 
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segments, discussed and revised any differing scores, and clarified the video 

observation manual. Of the 14 segments coded in this process, 90.5% were scored 

identically or within 1 score point by both raters. Then, I coded all 71 segments based 

on the clarified observation manual. 

The long-term nature of the video data was beneficial, as it was available for analysis 

bit-by-bit, in a well-structured manner, and with both qualitative and quantitative 

strategies (Roth, 2009). When two coders analyze the material, as we did, the 

reliability of analyses can increase (Blikstad-Balas, 2016; Janík et al., 2009). 

Structured analyses are useful for making meaning of complex classroom situations. 

Validated manuals reduce the impact of personal interpretations on analysis of 

complex classroom situations due to the use of consistent vocabulary (Klette et al., 

2017). They also allow for comparison of results from one study with similar studies 

(Klette, 2009). 

3.4 Stimulated recall interviews 
In sub-studies 2 and 3, I used SRIs to prompt PSTs to reconstruct their thinking from 

when they were teaching. SRIs were conducted shortly after instruction, usually within 

three hours, to ensure the PSTs still remembered situations in the lesson. Each 

interview lasted 45–90 minutes. A PST would view a video of their instruction with 

me, and I would explain that I was interested in what she thought during instruction. 

The PSTs were given control over the video, and they could pause the recording when 

they recalled thoughts from the lesson to share them verbally. One short reflection-in-

action shared by Ingvild in her first SRI was as follows: “I just picked a fun example 

that struck my mind as I stood there. I thought ‘you can say that’, just to regret the 

choice as I was in the middle of the example.” After reconstructing reflection-in-

action, the PSTs typically commented on the situation in retrospect (reflection-on-

action). Sometimes, I prompted further reflection to gain a deeper understanding of the 

PST’s thinking, and I would ask about which sources of knowledge were relevant to 

the thoughts shared by the PST. 
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SRIs were used to answer the second research question, which concerns how PSTs 

develop their pPCK and how this knowledge is transformed into ePCK during science 

teaching.  

The SRI approach was broader than the video approach in one sense, but more fine-

grained in another sense. The PSTs shared reflections from not only the teaching phase 

but also the planning phase. Additionally, through retrospective comments on the 

situations, the reflection phase was covered. Thus, the approach was broad. However, 

it was also fine-grained because multiple micro cycles of ePCK were evident in the 

PSTs’ reflections. For each micro cycle, they shared their thinking during a situation 

with students in the classroom, how they considered responding in that situation, and 

evaluation of how it turned out in the end. 

The SRIs captured PSTs’ knowledge, enacted knowledge, and capacity to reason (see 

sections 2 and 3.1). Pedagogical reasoning during classroom teaching is often chaotic 

in nature. Teachers use their mental models, or reflection-in-action, to handle 

uncertain situations in the classroom (Henderson & Tallman, 2006; Schön, 1992). 

Mental models are cognitive representations reflecting the structure of real-life-

situations (Henderson & Tallman, 2006). In classroom teaching, ePCK represents 

mental models. I used videos of the PSTs’ recent teaching to prompt sharing of these 

models. This use of SRIs enables research on elements from the chaotic and non-linear 

processes of classroom teaching with less of the filtering effect teachers typically add 

when asked to reflect on a lesson in retrospect (reflection-on-action) (Henderson & 

Tallman, 2006; Meade & McMeniman, 1992).  

Due to its focus on individual PSTs’ reflections, the SRI approach emphasizes 

cognitive aspects of teacher learning. I did not focus on how the PSTs in practice 

groups understood and developed PCK and teaching skills. This aligns with the PCK 

approach developed by Park and Chen (2012), which leaves teachers’ interaction with 

contextual factors in the background (Park, 2019). 

My use of SRIs prompted reflection-in-action. This is not obvious, as the reflections 

recorded on tape during SRIs were formulated in an interview situation, which differs 
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from the classroom situation in space and time. Thus, one could say that reflection-on-

action is what is possible to record in such interviews. However, I argue that the 

method brought about different reflections than would a traditional interview in which 

participants reflect on their practice. When I invited PSTs to participate the study and 

introduced the interview, I made clear that I wanted the PSTs to share their thoughts 

from the viewed lesson without filter. Further, I made clear that I did not know what 

was right and wrong to think or do in their lessons. The quotes from SRIs presented in 

papers 2 and 3 illustrate that the PSTs did share reflection-in-action. Earlier research 

has also shown that it is possible to recall reflections from a recent teaching event 

through the use of SRIs (Ericsson & Simon, 1993; Gess-Newsome, 2015; Henderson 

& Tallman, 2006; Meade & McMeniman, 1992).  

Another point of concern regarding the use of SRIs was that I wanted to leave the 

interview setting open for PSTs to freely share their thoughts from the lesson, but I 

was interested in specific elements of instruction and knowledge of instructional 

strategies. Thus, the interviewee might have filtered reflections assumed not to be of 

interest to me. I chose to be open with the PSTs about my focus, so they knew what to 

expect before the interview.  

A third issue is how I draw knowledge about the PSTs’ PCK and development thereof 

from their statements about specific teaching situations. It is important to keep in mind 

that I access only subsets of their PCK related to specific situations. I argue that these 

subsets, which are manifested as ePCK, can represent their pPCK. However, of course, 

they cannot present a holistic picture of their pPCK. 

3.4.1 Analysis of stimulated recall interview data 
The purposes of my analysis of SRI data were to capture elements of the knowledge 

structures enacted by PSTs in their classroom teaching and to relate their knowledge 

and practices to sources of PCK. The second author of papers 2 and 3 and I considered 

a variety of approaches to interpret the PSTs’ reflections in a meaningful and valid 

way. We adopted an inductive approach to identify each PST’s PCK integrations. We 

found the final analysis route, presented below, to be most true to the actual data and 

still produce useful interpretations: 
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1. In both SRI studies (papers 2 and 3), SRIs were first transcribed with the help of 

automated dictation in a text processing program, and then imported into NVivo 

software (QSR International, 2019).  

2. The transcripts were then divided into instructional segments. An instructional 

segment was defined a section of the interview related to a particular 

instructional strategy (e.g., a role-play about fundamental states) or another 

distinct phase of instruction, such as a specific example of a strategy (e.g., 

moving from overviewing a model of the human digestive system to teaching 

about a detail of the model, like the appendix) or shifting focus to a different 

student. 

3. Next, the material was coded based on the PCK sub-categories in the Magnusson 

model as well as inductive codes covering emerging PK in the SRIs. 

Instructional segments where PSTs simultaneously drew upon knowledge of 

students and knowledge of instructional strategies were analyzed as integrated 

segments. 

4. Further analysis of integrated segments was partly deductive, as it was structured 

around sub-components of two central PCK components: knowledge of students’ 

understanding of science and knowledge of instructional strategies. It was also 

partly inductive. First, components of PK emerged as central in the PSTs’ 

reflections about teaching specific science topics and were included in the 

analysis. Second, sub-categories of PCK were added to those included in the 

Magnusson model. Third, the integrated segments were coded for rationale, 

which was the reason PSTs used an instructional strategy. In sub-study 3, 

analyses from this step resulted in findings that were valid for all three 

participating PSTs. 

5. In sub-study 2, the quantity of each sub-code and the frequency of integrations 

among them were illustrated in PCK maps, inspired by Park and Chen (2012). 

Maps for each PST showed integration of one or more categories of knowledge 

of students, one category of instructional strategies, and one rationale for using 

the strategy. In the maps, font sizes and thickness of arrows reflected 

quantification of categories and connections between them across the total of 
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integrated segments for a PST. Figure 7 shows an example map. The font size 

illustrates the frequency of that sub-code in all of the PST’s integrated segments. 

Arrows illustrate the quantity of integrations. The example map shows that, for 

the case of Sanna, 20% or more of the total of 21 integrated segments were coded 

to prior knowledge (sub-category of knowledge of students’ understanding of 

science), and topic-specific representations (sub-category of knowledge of 

instructional strategies). The integration of prior knowledge and topic-specific 

representations is represented with a thin, continuous arrow. The map indicates 

that 10–14% of the 21 integrated segments were double-coded to these subcodes. 

Further, Sanna’s map shows that she frequently enacted topic-specific 

discussions with student participation as the rationale, informed by knowledge of 

general student characteristics. It also shows that she never addressed specific 

misconceptions. The PCK maps for each PST were used in analysis, resulting in 

findings that were valid for all six PSTs. 

 
Figure 7: PCK map of Sanna's integrations of knowledge of students and knowledge of instructional 
strategies 
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6. In both sub-studies 2 and 3, I identified sources of PCK and integrations of 

knowledge of students’ understanding of science and knowledge of instructional 

strategies. Codes emerged from the data, indicating from where the PSTs gained 

the knowledge that informed their instructional decisions. In this step, I used 

causation coding (Miles et al., 2014) to determine what caused PSTs to enact 

certain strategies. 

7. In sub-study 3, to capture the impact of specialized science courses on teaching 

practice, I performed variable-oriented analysis of PSTs’ responses to specific 

questions and other relevant utterances (Miles et al., 2014). I aimed to capture 

themes regarding the impact of specialized science courses on classroom 

teaching across the case PSTs. 

My fine-grained analysis of individual instructional segments and detailed 

representation of PCK integrations represents an innovation in PCK research 

methodology. In this way, I respond to Park (2019), who encouraged the development 

of innovative analytic methods for exploring pedagogical reasoning and ePCK. I found 

the PCK map approach useful (Park & Chen, 2012; Park & Suh, 2019), but in order to 

capture the mechanisms of ePCK at a proper level of detail, I had to tweak and adjust 

available methods. 

3.5 Validity and reliability issues 
Validity and reliability issues were important throughout the research process. First, to 

answer the first overarching research question, a central challenge was to capture a 

valid understanding of how the PSTs taught their science lessons. My use of categories 

from the LISSI standardized video observation manual (Ødegaard, Kjærnsli, Karlsen, 

Lunde, et al., 2020) strengthened validity of video analyses. Two researchers co-coded 

parts of the material and discussed different interpretations of classroom practice. This 

kind of triangulation reduced the likelihood of misinterpretations in video analysis 

(Stake, 2005). Section 3.3 provides further details on how validity and reliability were 

improved in the video study. 



 

48 

To answer the second research question, which concerned PSTs’ use of PCK during 

teaching situations, I had to gain a valid understanding of their thinking processes. I 

could have inferred their thinking from video analysis or interviewed the PSTs and 

asked for reflections on how they drew upon PCK. However, such strategies would 

leave considerable potential for misinterpretation based on my ideas and goals 

(Henderson & Tallman, 2006). In section 3.4, I explained why SRIs are valid and 

reliable as a data source for PSTs’ knowledge, knowledge in action, and capacity to 

reason. To ensure that interviewees still remember the situations and thus can recall 

their reflection-in-action, SRIs should be carried out shortly after the situation. Reports 

indicate that SRIs carried out within two days have 95% accuracy (Henderson & 

Tallman, 2006). Typically, I conducted the SRIs within two hours after the lesson. The 

validity of the analysis was increased by thorough examination of SRI transcripts and 

then innovation based on the PCK approach (Park & Chen, 2012). This provided a 

valid, fine-grained picture of the PSTs’ PCK integrations. For paper 3, I did a member 

check with the participants. They comment on my interpretations in the analysis of 

SRI data, resulting in increased credibility of the presented results.  

3.6 Ethical considerations 
Ethical considerations were central in all phases of the project, from recruitment of 

participants to publication. When PSTs were invited to participate in the project, I 

emphasized their freedom of participation and ensured that informed consent was 

given for participation. The Norwegian Centre for Research Data (NSD) was notified 

prior to data collection. Based on my descriptions of the project design and 

documentation of letters of invitation and interview guides, NSD approved the project 

(see appendix). 

PSTs and mentor teachers were invited to participate in the study. Mentor teachers 

contacted students and parents on my behalf with information and an invitation to 

participate in the study. In an effort to approach potential participants with respect, I 

strived to highlight that participation was voluntary, and withdrawing from the study at 

any time would not negatively impact their situation as PSTs, mentor teachers with a 

relationship to the university, or students with a relationship to the school. Consent for 
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participation was not received for a few students in the observed classrooms. These 

students were not recorded. 

3.6.1 Video recordings in classrooms 
Video recordings in classrooms over time raise ethical issues. Children’s right to 

human dignity and integrity is highlighted in Norwegian ethical guidelines for social 

sciences and the humanities (NESH, 2016). When invited to participate in a research 

project, children have limited abilities and power compared to adults (Hill, 2005). 

Concern about the use of images of children in research also has increased 

(Hammersley & Traianou, 2012). Despite this, my supervisors and I agreed that video 

recordings were necessary to fulfil the purpose of the project.  

Classroom research without recordings would also raise ethical issues, some of which 

are related to the dependence on a single researcher in the classroom. First, a single 

observer has limited capacity for simultaneous observations, limiting the information 

that can be analyzed (Erickson, 2006). Further, my judgement of instructional quality 

would have been less transparent, and building reliable analyses with the use of 

multiple raters would not have been possible. This would have hindered me from 

keeping the research process open and ensuring systematicity and documentation, 

which are principles of ethically sound research according to the Norwegian National 

Committees for Research Ethics (ETIKKOM, 2014). 

The presence of recording equipment and a researcher affect social settings in 

classrooms (Blikstad-Balas, 2016). However, in general, the students in the current 

project seemed to forget the video cameras and became used to the presence of a 

researcher. This has also been found in prior classroom studies (Blikstad-Balas, 2016). 

I asked the PSTs to guide me to act properly as a guest given the actual context. In two 

lessons on sexual health, the recordings were limited to audio only, as advised by the 

PST. Although I acknowledge that I did intervene into the classroom ecology, this is a 

necessity in qualitative research. 

The nature of PSTs’ teaching may also have been interrupted by the video recordings. 

In the interviews, PSTs assured me that, after a short while, they were not affected by 
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the video recordings. However, PSTs generally tend to deliver excellent instruction 

when observed by university staff. This may be grounded in a false belief that every 

observation by university staff is a summative assessment. I do not know the PSTs’ 

motivations, but my clear impression from following the participant PSTs through 

school practica is that they were oriented toward students’ learning, rather than me or 

the university. 

For the analysis phase of my project, it was necessary to determine what quality 

instruction entails. Assessment of instructional quality was central in my analysis. As 

the number of participants was low (N=7), descriptions of the material allow peer 

PSTs to identify individuals in my publications. Therefore, varieties in the material 

were discussed without being specific about individual PSTs. 

3.6.2 Sensitive data 
The classroom video data were sensitive, as students and other persons in the 

classrooms could be easily identified. Depending on the placement of the camera and 

audio recording device, private conversations and information such as computer 

passwords may be recorded in video studies (Frøyland et al., 2015). In our project, 

cameras were placed at a distance from individual students, and PSTs were instructed 

to mute their microphone whenever necessary. When I observed PSTs entering 

situations where conversations irrelevant to instruction took place, I muted the audio 

recording. I ensured that data were safely stored in accordance with guidelines from 

the National Committee for Research Ethics in the Social Sciences and the Humanities 

(NESH, 2016). All data were locked, and I was the only person with access. All digital 

data were also encrypted. 

3.6.3 My role as researcher 
When I started this project, I was a newly educated teacher with experience from a 

similar teacher education program to the one in the current project. As part of my PhD 

work duties, I served as a specialized science course instructor. I taught the 

participating PSTs in two units (the solar system, waves and sound) for a total of 12 

hours. Although I was a researcher, I also identified as a teacher, and I understood the 

context and participants better than an external researcher. This helped me to select a 
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relevant approach to fulfill the purpose of the project, maintain open communication 

with the participants, and interpret the results. 

However, I acknowledge that my proximity to the participants represents a potential 

ethical issue. Researchers have a special responsibility to take care of the interests of 

vulnerable groups (NESH, 2016). In some sense, I should view PSTs as a vulnerable 

group, as they are institutionalized and must submit to the university system. 

Instructors should be aware that their students are potentially subject to force or 

manipulation when they are invited to participate in research projects (Moreno, 1998). 

On the other hand, the PSTs in the current project were mature individuals who were 

seemingly capable of making their own decisions. Persons in groups like that should 

not mainly be seen as vulnerable, but treated with equality (Moreno, 1998). To address 

the issue, I invited the PSTs to participate in the study before I met them as an 

instructor. 

I did not want PSTs to view me as an evaluator of their knowledge and practices. 

Therefore, I did not participate in formal assessment of the PSTs. Following PSTs 

entering a teacher education program provided a great opportunity to maintain contact 

over time. In the end, this was beneficial for them as well, as it provided additional 

opportunities for them to reflect on their practice and knowledge. 
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4 Findings 
The overarching research questions in this thesis were (1) “How do pre-service science 

teachers (PSTs) enact their first pieces of professional knowledge, especially 

pedagogical content knowledge (PCK), in school practica?” and (2) “How do PSTs 

develop personal PCK (pPCK), and how is this knowledge transformed into enacted 

PCK (ePCK) during science teaching?” Each of the three papers contribute to 

answering these questions. In this chapter, I summarize the findings. For paper 1, I 

describe the PSTs’ science teaching in first-year school practica. For the other two 

papers, I describe how they drew upon integrated PCK in the same lessons (paper 2) 

and which sources of knowledge for teaching inspired these integrations (papers 2 and 

3). Table 4 overviews the research questions, data, analysis, and results. After 

summarizing the results of each paper, I provide a synthesis of them, using the refined 

consensus model as a framework to view PCK and classroom teaching together.  



 

 

 Table 4: Overview of papers and their research questions, data, analyses, and results 

 RESEARCH QUESTION DATA/ANALYSIS RESULTS 

1 What is the quality of six 

beginner pre-service 

middle school teachers’ 

science instruction in 

school practica? 

Video observation data 

(N=21 lessons) 

Video observation 

manual eliciting quality 

science instruction 

(LISSI manual) 

- PSTs activated students’ prior knowledge, but intellectually challenged students to only a 

moderate degree 

- Discourse in the classrooms was dialogic, and PSTs facilitated student–student talk 

- PSTs sometimes struggled to present science content with clarity, but they effectively used 

practical activities 

- Inquiry teaching was seldom or poorly implemented 

- The PSTs’ teaching was characterized by several aspects of student-centered teaching 

2 1) What is the frequency 

and nature of PSTs’ 

integration of the PCK 

components knowledge 

of students’ 

understanding of science 

and knowledge of 

instructional strategies?  

2) What are the sources 

that contribute to their 

PCK integration? 

SRI data, lesson plans1 

(N=12 lessons) 

Inductive and deductive 

analyses represented by 

detailed PCK maps 

Analysis of sources 

- The PSTs had highly integrated knowledge of students with knowledge of instructional 

strategies   

- In the integrated segments, the PSTs varied in their emphasis within the category of 

knowledge of students’ understanding of science. Some of the PSTs focused on 

requirements for learning and areas of difficulty, while others focused on student 

characteristics 

- In the integrated segments, the major of the instructional strategies were topic-specific; 

these strategies were used to either clarify the science content, apply it to a familiar setting, 

or engage students 

- The PSTs referred specialized science courses, peer PSTs, personal learning experiences, 

and mentor teachers as the sources of their knowledge of students’ understanding of science, 

knowledge of instructional strategies, and integration of those 

  



 

 

 RESEARCH QUESTION DATA/ANALYSIS RESULTS 

3 1) In three Norwegian 

science PSTs’ practica in 

lower secondary school, 

what were the 

differences, if any, 

between lessons 

aligned2 and unaligned 

with specialized science 

courses? 

2) What were these 

PSTs’ perceptions of 

how they drew upon 

specialized science 

courses? 

SRI data, lesson plans1, 

video observation data1 

(N=6 lessons) 

Inductive and deductive 

qualitative analysis 

Analysis of sources 

- Science- and topic-specific strategies were more often enacted in the aligned lessons 

- In the aligned lessons, the participating PSTs more often based their instructional decisions 

on topic- and science-specific PCK rationales 

- Instructional strategies in the aligned lessons were more often informed by knowledge of 

students’ understanding of the topic 

- PST highlighted specialized science courses as an important influence on their knowledge, 

skills, and self-efficacy for teaching science 

Note. 1Secondary data 2Aligned lessons were on topics previously taught to PSTs in specialized science courses for teachers. 
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4.1 Paper 1: Instructional quality 
Sæleset, J., Olufsen, M., & Karlsen, S. (Under review). Quality of beginner pre-service 

teachers’ science instruction. Acta Didactica Norden. 

In paper 1, I investigated the following research question: “What is the quality of six 

beginner pre-service middle school teachers’ science instruction in school practica?” 

This paper focused on the observable aspects of pre-service teachers’ classroom 

practices, using instructional quality as a framework. I focused on the following 

quality dimensions: cognitive activation, discourse features, instructional clarity, and 

scientific inquiry.  

Twenty-one science lessons were videotaped in six PSTs’ practica in grade 6 and 7, 

which took place during their first year in the teacher education program. These 

lessons were analyzed using 12 video coding categories from the LISSI video coding 

manual (Ødegaard, Kjærnsli, Karlsen, Lunde, et al., 2020). The categories were related 

to PCK, particularly knowledge of students’ understanding of science and knowledge 

of instructional strategies. For example, the first category, connections to prior 

knowledge, was related to what PSTs knew about students’ prior knowledge and 

experiences and how they facilitated connections to the day’s lesson with the selected 

instructional strategies. Each 15-minute segment was scored from 1–4 on each 

category based on evidence in the video. The PSTs had different scores, but there were 

many similarities. Further, contextual factors were considered, but only some 

categories showed differences between the first and second school practica, lessons, 

location of segment within lessons, and whether or not the lesson went into depth on 

conceptually difficult elements. The results include descriptions of PSTs’ teaching 

along the four dimensions of instructional quality. The scores on several of these 

dimensions reveal student-centered teaching. 

Here I list the main results of the study. First, PSTs activated students’ prior 

knowledge, but intellectually challenged students to only a moderate degree. In almost 

every lesson, PSTs referred to students’ experiences and knowledge and connected it 

to the topic at hand. However, the categories intellectual challenge and student 
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reflection indicated that PSTs struggled to make the instruction intellectually 

challenging and to prompt students to reflect upon their learning. Instructional 

segments were largely characterized by assignments, activities, and questions that 

focused on rote learning or recall of facts. When students were challenged to analyze, 

interpret, infer, generate ideas, or otherwise think analytically and inferentially, this 

was often accomplished through quality classroom discourse. 

Second, discourse in the classrooms was dialogic, and PSTs facilitated student–student 

talk. Communication patterns in the classrooms demonstrated that PSTs facilitated 

student participation in scientific discussions rather than just listening and responding 

to direct questions. In many segments, students’ contributions to the discourse were 

acknowledged as important, and PSTs advanced the conversations rather than closing 

them. 

Third, PSTs struggled to present complex science content with clarity, but effectively 

used practical activities. Differences among science topics were evident. In many 

lessons, especially when PSTs went into depth on abstract and dynamic topics, they 

rarely provided accurate and clear illustrations, examples, models, analogies, or 

explanations of the science content. PSTs were able to provide more accurate and clear 

representations during planned presentations. When they had to engage in unplanned 

interactions, their instruction sometimes indicated their limited content knowledge 

(CK) and scored lower on representation of content. Also, instructional clarity 

emerged as an issue during analysis of their feedback practices. Students were usually 

provided with no, vague, or unspecific feedback on their work or ideas. Practical 

activities, which included interaction with objects beyond materials for reading or 

writing, were used in a more proper way. In almost half the segments, practical 

activities were used. In most cases, the activities were tied to science concept learning. 

Fourth, inquiry teaching was seldom or poorly implemented. Inquiry teaching was 

analyzed as three distinct phases: preparation for inquiry, data collection, and 

consolidation. The potential for inquiry work identified in the preparation phase was 

not exploited, as few lessons included the important element of formulating of a 
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researchable question, hypothesis, or prediction. As a result, few data were collected, 

and limited consolidation of knowledge from inquiry was observed. 

Finally, characteristics of PSTs’ teaching across the material were related to student-

centered science teaching practices. Indeed, the participating PSTs (a) organized their 

classes with frequent group work as well as whole-class discussions, (b) facilitated 

student–student talk, (c) elicited and connected to students’ prior knowledge or 

experiences, and (d) facilitated high-quality discourse in which students’ contributions 

were valued. PSTs rarely focused on transferring knowledge to students or acted as the 

center of the classroom. Instead, they focused on facilitating opportunities for students 

to construct their own understanding. 

4.2 Paper 2: Pedagogical content knowledge integration 
Sæleset, J., & Friedrichsen, P. (2021). Pre-service science teachers’ pedagogical 

content knowledge integration of students’ understanding in science and instructional 

strategies. Eurasia Journal of Mathematics, Science and Technology Education, 17(5). 

https://doi.org/10.29333/ejmste/10859 

Based on some of the same video recordings analyzed in paper 1, I carried out 

stimulated recall interviews (SRIs) with the PSTs teaching the lessons. These 

interviews were conducted shortly after the lessons and were intended to capture 

reflection-in-action from the classroom. The reflections elicited in SRIs were analyzed 

in detail, resulting in PCK maps that show the integration of knowledge of students’ 

understanding of science and knowledge of instructional strategies. In paper 2, I 

sought to answer two research questions: (1) “What is the frequency and nature of 

PSTs’ integration of the PCK components knowledge of students’ understanding of 

science and knowledge of instructional strategies?” and (2) “What are the sources that 

contribute to their PCK integration?”  

The first three findings respond to the first research question. The first and second 

findings showed that PSTs included multiple kinds of knowledge about students into 

their instructional decisions. The PSTs held knowledge about students’ understanding 

of science both at the general level and the level of the specific students they taught. In 

https://doi.org/10.29333/ejmste/10859
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most instructional segments, they integrated this knowledge with knowledge of 

instructional strategies. Knowledge of students often directly informed their choice of 

instructional strategies. This means that the PSTs were oriented toward supporting 

students in their learning rather than following curricula or giving instruction without 

taking students’ ideas into account.  

The PCK maps show differences among the PSTs in terms of which kind of 

knowledge about students was emphasized. Half of the PSTs were focused on 

students’ knowledge and understanding of science content as well as their difficulties 

and misconceptions. The other three PSTs focused on students’ individual 

characteristics (i.e., how students approach specific science topics) and general 

characteristics (e.g., students’ context).  

The third finding identified which kinds of instructional strategies were used and why 

PSTs used them. In the integrated segments, the main instructional strategies were 

topic-specific (i.e., developed and/or adapted for the specific science topic) 

representations, activities, and discussions. In just a few of the studied instructional 

segments, PSTs used science-specific strategies, which were suitable across science 

topics, and general pedagogical strategies, which were suitable across school subjects.  

Based on how the PSTs commented their teaching, I inferred the rationales for why 

PSTs used certain instructional strategies. Topic-specific strategies were often enacted 

to clarify the science content, apply it to a setting familiar to the students, or engage 

students.  

In response to the second research question in paper 2, I identified sources 

contributing to PSTs’ PCK integration. The PSTs referred to specialized science 

courses, peer PSTs, personal learning experiences, and mentor teachers as sources of 

knowledge of students’ understanding of science, knowledge of instructional 

strategies, and integrations thereof. Notably, specialized science courses were the most 

frequently mentioned source, as PSTs had recently entered the program at the time of 

data collection. Peer PSTs worked together in groups of three during school practica 
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and discussed teaching with their mentor teachers. This gave them many opportunities 

to draw on each other’s knowledge. 

4.3 Paper 3: Classroom impact from specialized science 
courses 

Sæleset, J., & Friedrichsen, P. (Under review). A case study of specialized science 

courses in teacher education and their impact on classroom teaching. Journal of 

Science Teacher Education.  

The third paper was based on data collection in year three of the teacher education 

program. In this study, I videotaped four of the PSTs studied in sub-studies 1 and 2 as 

well as one additional PST as they taught science in lower secondary school practica. 

Two of the PSTs from sub-studies 1 and 2 were not available to participate in the 

study.  

Again, I conducted SRIs and asked follow up-questions. I wanted to follow up on the 

finding from paper 2 that specialized science courses were a major source of integrated 

PCK. Therefore, I aimed to understand whether and how experiences from specialized 

science courses were manifested in the enactment of PCK. Three of the PSTs taught 

one lesson on a topic that was covered in a specialized science course (aligned lessons) 

and one lesson on a topic that was not taught in a specialized science course 

(unaligned lessons). In the aligned lessons, the PSTs taught about oil and oil-based 

products, stars, the sun, northern lights, moon phases, and seasons. In the unaligned 

lessons, the PSTs taught about alcohols, animal cells, and oxygenation in lungs.  

The results indicated three findings regarding research question 1: In three Norwegian 

science PSTs’ practica in lower secondary school, what were the differences, if any, 

between lessons aligned and unaligned with specialized science courses? First, I found 

that specialized science courses directed PSTs to use instructional strategies 

specifically designed for teaching science. Indeed, science- and topic-specific 

strategies were more often enacted in aligned lessons. From the SRIs, observations, 

and lesson plans, I found that the PSTs drew upon knowledge from the specialized 

science courses in their instruction on the aligned topics. In all instructional segments, 
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the PSTs mostly used topic- or science-specific strategies. In the unaligned lessons, 

however, they relied more on general pedagogical strategies. 

The second finding indicated that the PSTs used different rationales for their 

instructional strategies in aligned lessons. In aligned lessons, PSTs used more PCK 

rationales. In other words, the reasons for instructional decisions were more grounded 

in topic- and science-specific PCK rather than pedagogical knowledge (PK). For 

example, in one unaligned lesson, the decision to use an online video about animal 

cells was grounded in a PK rationale about the need for variation in instruction. In 

contrast, in an aligned lesson, the decision to use an online video about distances in 

space was grounded in a PCK rationale about the need to address a specific 

misconception about the topic.  

The third finding on the differences between aligned and unaligned lessons indicated 

increased integration of knowledge of students’ understanding of science and 

knowledge of instructional strategies in aligned lessons. This integration is critical for 

PCK development (Chan & Hume, 2019; van Driel et al., 2014). I found that 

specialized science courses amplify its occurrence in PSTs’ classroom teaching. 

Integrated PCK was enacted when, for example, PSTs used knowledge about common 

misconceptions learned in specialized science courses and showed that they were 

prepared to address these misconceptions with instructional strategies.  

The second research question in paper 3 was “What were these PSTs’ perceptions of 

how they drew upon specialized science courses?” The PSTs reported that specialized 

science courses had a major impact on their CK, PCK, and self-efficacy for science 

teaching. In their experience, the most useful specialized science course lessons were 

those in which CK was presented at the level of their future students and with an 

emphasis on PCK and student participation. Specialized science course lessons that 

focused on CK beyond what their future students were supposed to learn were viewed 

as less useful for their teaching in grades 5–10. The PSTs also reported that inquiry 

teaching and laboratory experiments in specialized science courses developed their 

self-efficacy for science teaching. 
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4.4 How the findings relate to the refined consensus model of 
pedagogical content knowledge 

In this section, I discuss how my research empirically contributes to the realms of PCK 

and the knowledge exchanges represented in the refined consensus model (see section 

2.1.2). By using the shared vocabulary provided in the refined consensus model, my 

thesis helps to connect theory and practice in science teaching. The current chapter 

prepares for the discussion by explaining how the refined consensus model can be 

used to visualize connections among cPCK, pPCK, and ePCK. It also specifies two 

aspects that may threaten successful exchange from knowledge about teaching to 

classroom practice: contextual factors and filters within knowledge exchanges.  

The innermost circle of the refined consensus model represents the realm of ePCK. 

ePCK describes PCK in use during the three phases of teaching science lessons: plan, 

teach, and reflect (Carlson et al., 2020). Both overarching research questions of this 

thesis aim to unpack pre-service science teachers’ ePCK in school practica, how they 

teach, and how they draw upon PCK during instruction. I addressed these ideas 

through video analysis of the teach phase (paper 1) and analysis of PSTs’ reflections 

on the plan, teach, and reflect phases (paper 2 and 3).  

PCK enacted in one lesson is a subset of the teachers’ pPCK. Based on my study of 

PCK in action in lesson after lesson, I described subsets of the PSTs’ pPCK for 

teaching the observed topics. In the refined consensus model, pPCK is located in the 

concentric circle outside ePCK, and it refers to all knowledge held by a teacher about 

teaching one specific science topic. The video analysis (paper 1) enabled a surface 

description of elements of the PSTs’ pPCK embedded in teaching practice, while 

reflections from the lesson in SRIs (paper 2 and 3) enabled deeper understanding of 

their pPCK. Finally, PSTs responded to follow-up questions in SRIs where I 

specifically prompted them to share pPCK by, for example, explaining alternatives 

they considered when designing the lesson. This reveals pPCK that the teacher did not 

utilize during teaching (Chan & Hume, 2019). 

pPCK is located within a learning context that includes the broader educational 

climate, a specific classroom learning environment, and individual student attributes. 



 

62 

Thus, the four classrooms studied in this project represent four unique learning 

contexts. However, the educational climate, PSTs’ teacher education program, school 

grade level, and structure of school practica were similar for different participants. 

Differences included mentor teachers’ education and mentoring style, how PSTs were 

treated at the practicum schools, and student characteristics. In addition, each of the 45 

lessons represent a unique learning context. This level of context is not illustrated in 

the refined consensus model but may be covered by the double-ended arrows 

representing knowledge exchange between pPCK and ePCK. 

The outermost circle in the refined consensus model represents cPCK. This is 

available PCK for teaching a specific topic across a community. Communities with 

shared cPCK may consist of colleagues at a school or the larger community of PCK 

researchers. In my research, this realm is represented by sources of the participants’ 

pPCK (papers 2 and 3). PSTs spontaneously shared reflections on these sources in the 

SRIs. If they did not, I prompted them to. In this way, I studied the cPCK bases from 

which the PSTs built their pPCK and the way in which this translated to classroom 

teaching. 

In this section, I have shown how the current thesis relates to PCK realms in the 

refined consensus model. During the project, I also investigated connections between 

realms. Translations among the realms of cPCK, pPCK, and ePCK are mediated by 

knowledge exchanges, which are represented by double-headed arrows in the refined 

consensus model. These knowledge exchanges are central in PCK development. This 

is because solid cPCK is not useful for the teacher if it is not exchanged into pPCK. 

Further, it is of no benefit for students unless it is successfully enacted. Classroom 

teaching should contribute to developing a teachers’ PCK, and each teacher should 

contribute to shared cPCK.  

In the current project, I focus on two specific knowledge exchanges. First, through 

studying classroom teaching and using SRIs, I focus on the PSTs’ exchange from 

pPCK to ePCK. Second, I focused on how cPCK from specialized science courses and 

other sources contributed to participants’ development of pPCK. 
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5 Discussion 
In this chapter, I discuss the key findings presented in chapter 4. In 1986, Lee Shulman 

shared a vision of “professionals who are capable not only of acting, but of enacting – 

of acting in a manner that is self-conscious with respect to what their act is a case of, 

or to what their act entail” (Shulman, 1986, p. 8). His vision for the education of 

teachers who not just act, but enact a professional knowledge base, inspired many 

educational researchers. The exploration of how teaching practice is grounded in 

professional knowledge is ongoing.  

In the current project, I have investigated PSTs’ development of knowledge for 

teaching science and how this informs the enactment of teaching. I have implemented 

two theoretical frameworks that characterize good teachers: PCK and instructional 

quality.  

The results confirm and extend current insights into the connections between PCK and 

quality instruction. From previous research, we know that the ability to perform 

quality teaching can be derived from teachers’ knowledge base, especially PCK (Fauth 

et al., 2019; Kulgemeyer et al., 2020; Park et al., 2011). Alonzo et al. (2012) showed 

how knowledge of students’ understanding of science and knowledge of instructional 

strategies specifically led to student-centered teaching. 

The focus of the current project was PSTs’ competence to combine knowledge of 

students’ understanding of science and knowledge of instructional strategies. The case 

study of seven PSTs explored how this competence results in quality science teaching. 

From the SRI studies, I identified the PSTs’ nuanced knowledge of students, which 

informed their instructional decisions. From video observations, I found that these 

decisions result in science teaching with certain qualities as well as limitations to their 

practice. The following discussion is organized according to three main points: (1) the 

PSTs’ student-centered teaching (section 5.1), (2) how PSTs navigated the challenges 

of communicating science CK to students (section 5.2), and (3) characteristics of PCK 

development (section 5.3). 
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5.1 Teaching with students in mind 
The participating PSTs taught science with a sustained focus on students and students’ 

learning. Combination of data from the same first-year lessons, which were presented 

in papers 1 and 2, allows for data triangulation (Yin, 2009). Data from video and 

stimulated recall interviews (SRIs) revealed that PSTs were able to focus on their 

students and give student-centered teaching. Video analyses showed how the teaching 

played out across lessons and classrooms, and SRIs provided insight into the PCK 

behind some of those lessons. Data from year three, which was presented in paper 3, 

deepened the findings. PSTs did not just consider students to be passive recipients of 

knowledge. Rather, the PSTs’ reflections revolved around their students’ prior 

knowledge, their needs and interests, and their learning. In addition, the PSTs’ 

selection of instructional strategies was often grounded in these reflections. In this 

section, I elaborate on how student-centered teaching came about. 

Although the PSTs reflected on their role as teachers, their main concern was students. 

First, a focus on students was identified in the PSTs’ use of PCK. They held and 

enacted knowledge of students’ understanding of science and integrated this with 

knowledge of instructional strategies. This finding represents a contrast to prior 

research, which indicates that beginning teachers lack PCK for teaching specific topics 

(Friedrichsen, 2015; Kind, 2009b; Schneider & Plasman, 2011; van Driel et al., 1998), 

and, thereby, exhibit poor integration of PCK components (Akin & Uzuntiryaki-

Kondakci, 2018; Kind, 2009b; Sickel & Friedrichsen, 2018). The participating PSTs in 

sub-studies 1 and 2 used knowledge of students, including requirements for learning, 

areas of difficulty, and student characteristics, in a nuanced manner. This means that, 

for example, PSTs did not limit their attention to what students had learnt in prior 

science lessons, or to what they thought was their job as teachers (i.e., to continue 

teaching students where the prior teacher left off). Rather, the PSTs designed lessons 

and made in-class decisions in response to what they knew about their specific 

students and students in general. For student learning to occur, it is necessary to 

connect content knowledge (CK) and pedagogical knowledge (PK) (Kind & Chan, 

2019). One such connection is the PSTs’ use of knowledge about students, which was 



 

65 

outlined above. In a study of PSTs in an alternative certification program for teachers, 

Brown (2008) found that the case PSTs held PCK with integrated knowledge of 

students’ understanding of science and knowledge of instructional strategies. 

However, they struggled to reflect knowledge of students in their instruction, which 

remained teacher-centered. This contrasts the current project, where integrations 

evidently resulted in student-centered teaching. 

Second, by investigating the PSTs’ rationales for enacting instructional strategies, I 

deepened my understanding of how they integrated knowledge of students into 

instructional decisions. Fine-grained analyses of SRI data showed that they used a 

variety of rationales in year one (paper 2) and even more nuanced rationales in year 

three (paper 3). This indicates the PSTs’ dynamic purposes behind their selection of 

instructional strategies centered on the students. For example, they did not focus on 

one primary rationale, such as delivery of content to students based on knowledge of 

their misconceptions. This has the potential to impede student-centered teaching by 

filtering away other varieties of knowledge about students. However, the PSTs used a 

wide selection of rationales, including facilitation of student participation and 

application of content to students’ lives. This indicated profound engagement with 

students’ knowledge of and approaches to the science topics, indicating their progress 

on the learning trajectory toward an understanding of the role of students’ initial ideas 

and experiences. Such learning progressions have been described by Schneider and 

Plasman (2011) as important for PCK development. 

Third, evidence of student-centered teaching from the video study represents a contrast 

to previous studies of PSTs’ classroom practice. PSTs may have the ability to actively 

use students’ ideas about science in teaching (Thompson et al., 2013). However, most 

research seems to show that beginner PSTs lack an ability to focus on student learning 

(Kagan, 1992; Körkkö et al., 2016; Mellado, 1998) and activate students’ thinking 

(Ratinen et al., 2015). In recent Norwegian studies, third-year science PSTs were 

found to have limited focus on students and their learning during planning (Juhler, 

2016), particularly reflection upon physics lessons (Juhler, 2018). Based on video data 

from the same project, Juhler (2016) showed how second-year science PSTs focused 
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on the subject-matter aims of the physics lessons. However, PSTs kept students in 

mind, driven by an intervention combining lesson study and use of a PCK-related tool 

for planning science lessons. Summarizing the studies in his dissertation, Juhler (2017) 

characterized PSTs’ focus on students as mainly concerned with encouraging them to 

voice their ideas and helping them to give correct answers rather than probing into 

students’ understanding.  

The video evidence presented in paper 1 shows how beginner PSTs were able to notice 

and make use of students’ ideas, approaches, and misconceptions to give student-

centered teaching in several science topics. The participating PSTs were enrolled in a 

program for teachers for grade 5–10, like those reported in Juhler (2017). However, 

they had just a few months of experience in the program and were not participating in 

any interventions. Therefore, their student-centered teaching was notable. Further, it is 

interesting that the PSTs in my project had better performance in terms of student-

centered teaching compared to in-service teachers (Gamlem, 2019; Gamlem & 

Munthe, 2014). In particular, the PSTs in the current project generally facilitated high-

quality classroom discourse, while in-service mathematics teachers struggled to do so 

(Gamlem, 2019). 

The findings discussed in this section are based on empirical evidence of how PSTs’ 

pPCK was transformed into enacted PCK (ePCK). Classroom instruction represents 

PCK in action or enacted PCK (ePCK), which is a subset of a teachers’ pPCK in the 

refined consensus model of PCK (see section 4.4). The student-centered teaching I 

observed on video was likely to be grounded in the integration of knowledge of 

students’ understanding of science and knowledge of instructional strategies identified 

in SRIs. The relationship between pPCK and ePCK has been described in prior 

empirical studies (Kulgemeyer et al., 2020; Mavhunga & van der Merwe, 2020). This 

thesis describes how decisions made during the lesson were informed by knowledge 

about students, and it reveals that the rationales for using instructional strategies were 

nuanced.  
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5.2 Teaching with science in mind 
In this section, I focus on the particularities of teaching science content. I discuss 

PSTs’ abilities to communicate science content to students, followed by a discussion 

of their shortcomings. The PSTs taught physics (energy, fuels), astronomy (stars, the 

sun, northern lights, moon phases, seasons), chemistry (alcohols, oil), biology 

(animals, the eye, nutrients, energy content in food, drugs, sexual health, puberty, 

animal cells, oxygenation in lungs), and technology and design. The variety of topics 

makes the findings of the project relevant across science disciplines. However, this 

also makes it difficult to precisely capture the content aspect of PCK. This is discussed 

as a limitation in section 6.3. I begin the current section by discussing PSTs’ success in 

teaching with science in mind. 

First, video evidence showed how PSTs were able to effectively prompt students’ prior 

ideas about science that were relevant to the topic at hand and to connect these ideas to 

new knowledge. Although some segments indicated that PSTs remained at the surface 

level of students’ prior knowledge, in many segments, the PSTs effectively built on 

this knowledge. Connecting new knowledge to prior knowledge increases the chances 

for deep understanding of the content (Grossman et al., 2013). However, successfully 

making connections relies upon the teacher’s understanding of CK and which 

connections are fruitful.  

Second, in most segments, PSTs facilitated quality classroom discourse with a focus 

on science. To do so, they needed to not only lead students to talk together but also 

keep the dialogue focused on science and expand on core ideas expressed by 

participants. According to Scott et al. (2006), proper leadership of dialogic science 

classroom discourse relies on both general pedagogical principles and science-specific 

knowledge. The PSTs described in paper 1 acted on PK, science CK, and knowledge 

of instructional strategies (i.e., PCK) when leading scientific discussions. Third, the 

PSTs used practical activities in almost half of the segments. Most of these activities 

were linked to learning of science CK. In this way, students are engaged with 

important interplay between ideas and observations (Abrahams & Millar, 2008). Thus, 
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the PSTs had already started to overcome a challenge faced by science teachers: 

manipulating ideas, not just equipment (Hofstein & Kind, 2012). 

Evidence from the SRI studies (papers 2 and 3) sheds light on how PSTs took the 

specific features of the science subject into account in their teaching. In these studies, 

reflections on the use of instructional strategies were analyzed.  

First, in both SRI studies, the instructional strategies discussed by the PSTs were 

primarily topic-specific activities, representations, and discussions. Several of the 

strategies were developed by the PSTs themselves, showing their ability to break down 

science knowledge into components that are useful for teaching and to design 

strategies for teaching them. Thus, PSTs relied on general pedagogical strategies to 

teach science to only a small degree. This result contrasts a study conducted on 43 

teachers during their last year as PSTs and first year as teachers (Friedrichsen, 2015). 

Although PCK was in focus in her study, Friedrichsen’s results showed that the 

teachers developed more general PK than topic-specific PCK.  

Second, my analyses of PSTs’ rationales for using instructional strategies contribute to 

the understanding of PSTs’ science focus in their teaching. In year 1, the PSTs’ 

reasons for using instructional strategies were grounded in a mix of PK and PCK 

(paper 2). In year three, the balance was shifted toward PCK rationales. In most 

analyzed segments in paper 3, PSTs based their instructional decisions on science- and 

topic-specific PCK rationales. This deepens the finding discussed above, showing that 

PSTs’ instruction was not dominated by generalized patterns of instruction filled with 

science content. Rather, the thinking behind use of instructional strategies, often PCK 

strategies, was increasingly grounded in science PCK. This indicates that PSTs had an 

increasing ability for science-grounded decision-making three years into the program, 

resulting in a strengthened and enriched focus on the particularities of teaching 

science. Development may be caused by a sustained focus on science CK and PCK in 

the specialized science courses within their teacher education program. As paper 3 

showed that alignment with specialized science courses resulted in even higher 
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percentages of PCK-related rationales, these courses are probably beneficial for 

maintaining teaching with clear communication of science knowledge. 

On the other hand, evidence also showed the beginner PSTs’ shortcomings in teaching 

with science in mind. First, a central component of science instruction is to provide 

quality explanations useful for students to build sound understandings of science 

(Kulgemeyer et al., 2020). However, video evidence in paper 1 showed that PSTs’ 

scientific explanations, examples, illustrations, models, and analogies were often 

missing, weak, or incorrect. This was particularly true in lessons that went into depth 

on abstract and dynamic concepts, such as nutrients, energy content in food, energy, 

fuels, and technology and design. Although PSTs’ CK was not measured in this 

project, one can assume their CK of difficult topics not covered in their specialized 

science courses was limited. Thus, shortcomings in their science teaching should be 

expected.  

CK has been highlighted as a major knowledge base for PCK development (Carlson et 

al., 2020), and research has shown that teaching strategies may collapse with a lack of 

sound CK (Coetzee et al., 2020). The poor representations of science content are 

notable because the PSTs’ practical activities were focused on communicating science 

CK. This may indicate that it is more demanding for PSTs to explain and represent 

complex CK than to add a science focus to students’ practical activities.  

Second, a lack of knowledge of or attention to the importance of science language 

resulted in inconsistent use of scientific terms, often without explanation. Although 

consistent and clear use of subject-specific language is a crucial component of 

teaching (Klette et al., 2017), Juhler (2016) found that some Norwegian PSTs struggle 

with this.  

Third, shortcomings in teaching with science in mind became evident in PSTs’ 

unspecific feedback practices. Quality feedback addresses specific features of 

students’ work (Gamlem & Munthe, 2014; Grossman et al., 2013) and is closely 

bound to the core science ideas of the lesson. In general, the participating PSTs were 

not able to do this.  
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Fourth, the PSTs’ teaching involved questions and tasks with low cognitive challenge. 

Cognitively challenging instruction relies on sufficiently well-developed PCK for the 

topics being taught. This includes knowledge of students’ misconceptions, on which 

they can be challenged; which steps are likely to help students make progress in their 

learning; and strategies for completing those steps (Fauth et al., 2019).  

Fifth, paper 1 showed that PSTs seldom enacted inquiry teaching, even though it was 

emphasized in the specialized science courses. The lessons studied in paper 3 included 

lab sessions, but students never investigated their own questions. Inquiry teaching 

includes complex teaching tasks (Crawford, 2014) and relies on both profound PCK 

and CK to be effectively carried out (Lederman & Lederman, 2019). The almost 

complete absence of inquiry teaching indicates that the PSTs were at a low 

developmental stage in terms of inquiry teaching. This stage is characterized by a 

focus on the difficulties with inquiry teaching rather than providing students with 

opportunities to investigate their own questions (Schneider & Plasman, 2011). Prior 

studies of PSTs (Brown et al., 2013) and in-service teachers (Ødegaard, Kjærnsli, 

Karlsen, Kersting, et al., 2020) have also found inquiry teaching to be rare. This may 

be due to the use of a narrow definition, according to which general approaches to 

teaching inspired by scientific inquiry did not count as inquiry teaching. Reform-

oriented science education includes inquiry teaching as a central element (Anderson et 

al., 1994), and inquiry is central in the Norwegian national science curriculum 

(Norwegian Directorate for Education and Training, 2020), which makes its absence 

notable. 

These five points clearly show the potential for PSTs’ to place sharper and deeper 

emphasis on clear communication of science concepts and inquiry teaching. However, 

it should be noted that the participants were in their first and third years of a five-year 

teacher education program. Their educational backgrounds varied from no science 

specialization in high school to two years of classes in a science discipline. Thus, they 

are not expected to have profound CK in the science topics to which they were 

assigned, and it is not expected for them to have rich knowledge of instructional 

strategies for all topics. 
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The above discussions show both how PSTs managed to convey a solid understanding 

of CK and their limitations in this regard. Interestingly, both findings were identified 

in the same material, with data sometimes based on the same science lessons. Video 

evidence showed that they made efforts to let the specific science content guide their 

teaching. The SRI studies supported this.  

It is notable that the PSTs seldom shared reflections about science CK. On one hand, 

this indicates they did not have strong science CK for many of the topics they taught. 

This is an issue with the design of the teacher education program, which places limited 

focus on specialization in selected science disciplines. On the other hand, relevant CK 

was embedded in their PCK reflections. This supports a transformative view of PCK, 

highlighting that CK merges with PK to form PCK (see section 5.3.2).  

In summary, this section has clearly identified a need for PSTs to further develop CK 

and knowledge of instructional strategies for science teaching. Or, there may be a need 

for PSTs to better facilitate knowledge exchange from CK as a knowledge base and 

cPCK as shared knowledge for teaching science to pPCK and, eventually, classroom 

teaching (i.e., ePCK). 

5.3 How pedagogical content knowledge develops 
In these sections, I discuss how the current thesis contributes to the understanding of 

how teachers develop their knowledge and practices for science teaching. First, I 

discuss sources of PCK, focusing on prior learning experiences and specialized 

science courses. Next, I discuss how my data relate to two important knowledge bases 

for PCK: CK and PK. Third, I focus on how quality teaching serves as evidence of 

knowledge exchange between PCK realms. 

5.3.1 Sources of pedagogical content knowledge 
My investigations enable discussion of how future PSTs can develop professional 

knowledge that is useful for classroom science teaching. Two findings about PCK 

development caught my interest: (a) PSTs construct their PCK based on a variety of 

experiences, including experiences prior to formal teacher education, and (b) 
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specialized science courses can advance the development of PCK and support 

knowledge exchange, resulting in quality classroom teaching. 

In regard to the first finding, my case study shows that PSTs brought to their teacher 

education CK, knowledge of instructional strategies, and knowledge of how to 

integrate knowledge about students into science teaching. This was the case for both 

PSTs with and without teaching experience.  

The first round of data collection started in October 2017, less than three months after 

the PSTs entered the program. The PCK, PK, and teaching practices identified in 

papers 1 and 2 are thus likely to be constructed partly from PSTs’ experiences as 

students in primary and secondary school. Paper 2 confirms that one-fifth of the 

sources of PCK and PCK integrations were from prior learning experiences, including 

experiences from school and informal learning. This should not be surprising, as 

teachers are known to build their initial teaching practices based on experiences inside 

and outside formal teacher education (Pettersen, 2005). However, this so-called 

“apprenticeship of observation” is based on experiences from both effective and 

ineffective teaching methods, and therefore it may conserve teaching practices 

(Grossman, 1990). It is challenging for PSTs to wisely make use of the resource of 

prior learning experiences (Juhler, 2017). In my material, however, I see little 

conservation. The teaching practices I observed were not characterized by out-of-date 

teaching strategies with reference to prior learning experiences. Rather, PSTs seemed 

to make use of productive learning experiences after reflecting on them. The PSTs 

likely had experience with a variety of teaching practices, but it seems like student-

centered practices had the most impact on their own teaching. This indicates that the 

PSTs’ reflections were guided by reform-oriented views of science teaching (see 

section 5.3.3).  

The impact of specialized science courses on science teaching is a focus of this project 

due to the accumulating evidence of the central role of these courses as a source of 

PCK and, in turn, classroom teaching practices. As discussed in section 5.1, PSTs’ 

integrated PCK enabled student-centered teaching. Specialized science courses were 
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frequently mentioned as a source of this integrated PCK. Thus, specialized science 

courses contributed to PSTs’ student-centered teaching by only a few months into the 

program.  

The design of the teacher education program is described in section 3.2.1. More than a 

third of the PSTs’ references to sources in paper 2 were to specialized science courses. 

The PSTs reported that, after a short time in the teacher education program, their focus 

was on students and their learning. From specialized science courses, PSTs gained 

knowledge about common student misconceptions, useful instructional strategies for 

student-centered teaching, and knowledge of how to adjust instruction to individual 

students’ needs, among other things.  

The impact of these courses is likely intertwined with the impacts of other teacher 

education courses, including Pedagogy and Students (P&S) and Research and 

Development (R&D). For example, in the R&D course, during their first week in the 

school practicum, PSTs were assigned an observation task focusing on one individual 

student. The P&S course focused on students aged 10–16 and their development, 

learning, and motivation (UiT The Arctic University of Norway, 2016). The findings 

of paper 2 indicate the prevalent role of specialized science courses; other courses 

were not mentioned as important sources.  

Based on this finding, I performed the third sub-study to investigate how specialized 

science courses impacted classroom instruction. I showed that PSTs’ science teaching 

on topics taught in prior specialized science courses was more saturated with quality 

PCK. In these aligned lessons, PSTs enacted more topic- and science-specific PCK-

based rationales and more often drew upon knowledge of students’ understanding of 

science to inform instruction. According to their own statements, specialized science 

courses supported them in developing classroom-relevant CK, knowledge about 

students, knowledge about topic- and science-specific strategies, and self-efficacy for 

science teaching. Altogether, these findings show the ways in which specialized 

science courses can impact classroom teaching.  
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Although I did not analyze the structure of the current program or others, some 

interesting structural differences appeared during the project. Common models for 

science teacher education programs are based on content courses featuring lectures in 

a science discipline, lab sessions, and separate science methods courses (Etkina, 2010; 

Kind, 2019). Such programs, though cost-effective, often provide PSTs with poorly 

taught CK that is of limited relevance for their future career and limited PCK for 

specific topics (Bergman & Morphew, 2015; Fones et al., 1999). The design of the 

program studied in the current project (see section 3.2.1) may represent one way of 

connecting university courses with teaching in schools, as Grossman et al. (2009) 

called for. In her opinion, one should not assume that learning about teaching practices 

through reading articles or writing papers is enough to prepare PSTs for classroom 

teaching, particularly student-centered teaching. Further, research has suggested that 

science courses should integrate PCK and CK (Berry et al., 2016) and focus on science 

teacher knowledge in relation to teaching practice, rather than on the knowledge to be 

conceived by PSTs (van Driel et al., 2014). My case study indicates that specialized 

science courses align with these suggestions. 

5.3.2 Knowledge bases for pedagogical content knowledge 
In this section, I discuss the knowledge bases underlying the participants’ PCK and 

teaching practices. The specific sources of knowledge discussed in the previous 

section fuel PCK development with knowledge of context, science CK, and general 

pedagogical knowledge (PK) (Fischer et al., 2012; Sorge, Kröger, et al., 2019). Given 

that the data collection took place early in the first year of teacher education, it is 

interesting to discuss how CK and PK as knowledge bases support PCK development. 

Both CK and general PK have been highlighted as important knowledge bases for 

PCK development from early literature on the topic (Shulman, 1986, 1987) to recent 

publications (Kind & Chan, 2019; Sorge, Kröger, et al., 2019).  

This thesis has shown that participating PSTs had PCK for the topics they taught, and 

they integrated knowledge of students’ understanding with knowledge of instructional 

strategies from the first year on. This finding is notable because some of the PSTs had 
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no specialization in science from high school and just a few months of experience in 

the teacher education program.  

A focus on PK is more prevalent in Norway’s teacher education tradition than a focus 

on CK (Skagen & Elstad, 2020). Research indicates that the development of effective 

PCK requires some science CK (Kind, 2009b; van Driel et al., 2014). Additionally, 

good CK is not a precursor for good PCK, and PCK development does not have to 

wait for strong CK (Sorge, Kröger, et al., 2019). One study indicated that PCK may be 

even easier to develop outside of a teacher’s field of specialization (Kind, 2009a).  

In the current project, however, it has not been an issue for PSTs to use deep science 

CK in teaching. For example, they did not struggle with explaining a complex topic in 

sufficiently simple terms. Rather, they operated on the edge of their own CK. This CK 

seemed to be tied to their PCK, supporting a transformative view of PCK. In this view, 

PCK is developed by combining CK, context, and pedagogy into PCK (Gess-

Newsome, 1999; Kind, 2019). An integrative view of PCK would entail that teachers 

use CK as a separate knowledge base from PCK, ultimately merging them in the 

moment of teaching (Gess-Newsome, 1999). Although I could have split the 

knowledge shared by PSTs into context, content, and pedagogy, and PSTs probably 

developed these knowledge bases, the transformative view makes most sense in the 

current project. In my analysis of the knowledge used by the PSTs, the most precise 

description seemed to be PCK, rather than CK mixed with elements of PK and context 

knowledge. On one hand, unity of CK and PK is useful for classroom teaching, which 

is a motivation for including specialized science courses in teacher education. On the 

other hand, a separate process of CK development may be more continuous and would 

better prepare PSTs for a deep understanding of CK. 

5.3.3 Knowledge exchanges 
PCK is filtered in each knowledge exchange between realms and through the learning 

context (see section 2.1.2). I studied these important transitions. The long-term goal of 

becoming expert science teachers involves development of sound pPCK, which refers 

to knowledge at individual teachers’ disposal to teach specific topics (Carlson et al., 

2020). In their development of pPCK, teachers draw on both cPCK and ePCK. This 
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means that experiences from both within the context of a specific classroom as well as 

shared knowledge about teaching and learning of science outside that context 

contribute to the development of a teacher’s science pPCK.  

Teachers’ beliefs and attitudes amplify or filter knowledge exchanges (Carlson et al., 

2020). Magnusson et al. (1999) represented these as science teaching orientations, 

which represents ways of viewing science teaching. Currently, there is no consensus 

on what comprises science teaching orientations (Friedrichsen et al., 2011), and they 

are not a main focus of the current project. However, as ideas about science teaching 

and learning may be extracted from teaching practice (Schneider & Plasman, 2011), 

my investigations can inform discussion of the PSTs’ beliefs. One reasonable 

extrapolation based on my findings is that reform-based epistemological beliefs (Luft 

& Roehrig, 2007) amplified knowledge exchanges, resulting in the observed student-

centered teaching (see section 5.1). Reform-based beliefs align with constructivist 

theories of education due to their emphasis on the students as active learners rather 

than the teacher as supplier of information (Anderson et al., 1994; Pettersen, 2005). 

They lead to an emphasis on student-centered teaching, in which students co-construct 

meaning with their teacher, rather than receiving finished packages of knowledge 

(Luft & Roehrig, 2007). It is encouraging to identify some of these reform ideas in 

PSTs’ teaching practice. 

My finding of functional knowledge exchanges contrasts a prior study, which 

examined how PSTs tried to enact PCK from a reform-based teacher education 

program (Brown et al., 2013). The authors found that, although the PSTs gained new 

ideas about science teaching from their teacher education program, their classroom 

instruction remained teacher-centered. Robust science teaching orientations shaped by 

background experiences were identified as a reason for filtered knowledge exchange 

from pPCK to ePCK.  

I did not find this kind of filtering in the current project. Rather, the interview data 

indicate that specialized science courses formed science teaching orientations, 

amplifying the focus on students’ learning. Further, PSTs provided instruction with 
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clear parallels to specialized science course lessons. In terms of the refined consensus 

model, this means that cPCK allowed the PSTs to build pPCK that was relevant to 

science teaching in the classroom. Further, it was transferable to the context in which 

classroom teaching took place. Lastly, filters did not hinder knowledge exchange from 

taking place.  

The findings discussed here are confirmed by Olufsen et al. (2021). Based on reports 

from PSTs and mentor teachers, the authors found that the quality of teaching 

increased when PSTs had subject specialization in a program similar to the one studied 

in the current project. 
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6 Ending remarks 
6.1 Limitations 
Some limitations of the study should be mentioned. First, the number of participants in 

the project was small. However, my aim was not to produce generalizable results, but 

to gain insights into individual PSTs’ learning and teaching. In sub-study 2, the close 

attention to detail made analysis a time-consuming process, and a total of six 

participants was a reasonable limit. However, for the video analyses in paper 1, 

additional classrooms and lessons would have contributed to more robust 

interpretations. Additionally, of the PSTs I followed in sub-study 3, only three taught 

one unaligned and one aligned lesson. Thus, paper 3 was based on these three 

participants. The findings would have been more nuanced and stronger if they were 

built on additional PSTs’ experiences. 

Second, the participants were studied as one case, not seven individual cases. This 

limited the nuances I was able to discover. As discussed in section 3.1, my initial 

approach was at the individual level. However, the similarities I identified among 

participants led me to present the results as one case.  

Third, I did not focus on school practicum teaching experiences as a source of PCK. 

Teaching experience has been found to be a major source of PCK development 

(Grossman, 1990; Nilsson & Loughran, 2012; Sorge, Stender, et al., 2019). From the 

second school practicum on, the impact of teaching experience was probably amplified 

by the opportunities for PSTs to reflect on their classroom teaching based on videos. 

Indeed, use of classroom videos is known to enhance PSTs’ instruction (Johnson & 

Cotterman, 2015; Sun & van Es, 2015). In sub-study 2, the PSTs referenced peer PSTs 

and mentor teachers as sources of ePCK. However, I did not address the development 

of pPCK based on teaching experiences specifically. Teaching experience, or ePCK, 

as a source of pPCK may have caught my attention to a smaller degree than sources in 

the cPCK realm because the study design limited my ability to see and ask PSTs about 

this. In an effort to make sense of what was going on during teaching practice, the 

learning outcomes of the teaching practice itself remained in the background for both 

me and the participating PSTs. 
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Fourth, my use of the model of science PCK suggested by Magnusson et al. (1999) 

represents a limitation. I used this model to distinguish between separate components 

of PCK. However, scholars have argued that teachers do not organize their knowledge 

in silos (Friedrichsen, 2015). This is a discussion to which I have returned multiple 

times through the project. Recent models of PCK (Carlson et al., 2020; Gess-

Newsome, 2015) do not provide frameworks of specific components of PCK. 

Therefore, I used the Magnusson model’s categories, which are useful for the design 

of data collection and initial analysis (Friedrichsen, 2015).  

Fifth, as more than one view of teacher learning was relevant, emphasis on one view 

meant that other aspects of teacher learning remained in the background. The cognitive 

dimension of PCK development had the most impact on the study design, at the cost of 

the social dimension. The research methods I used, especially SRIs, were oriented 

toward capturing individual PSTs’ thinking and how different sources contributed to 

the cognitive construction of pPCK (Park, 2019). However, social learning was also 

evident, as PSTs referenced peer PSTs and mentor teachers as sources of PCK and 

PCK integrations. 

Sixth, the teaching of different science topics was studied together. This is a limitation, 

since PCK is often seen as specific to a certain topic, or at least a certain discipline 

(Chan & Hume, 2019). During the design phase of the project, I intended to study 

PSTs’ teaching of similar topics. However, the mentor teachers determined which 

topics PSTs would teach in school practica based on local plans and discussions with 

the PSTs. I decided that interrupting this process would be difficult and represent an 

unintended intervention. Therefore, for sub-studies 1 and 2, I decided to observe the 

science topics that were planned. For sub-study 3, I suggested that PSTs teach at least 

one of the topics covered in their previous specialized science courses and one other 

topic. Three of the PSTs did so. 

6.2 Conclusions 
The purpose of this project was to describe knowledge exchanges between cPCK, 

pPCK, and ePCK, especially PSTs’ enactment of PCK in the context of school 
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practica. I fulfilled this purpose by analyzing classroom video recordings and 

performing interviews with PSTs in which video recordings were used to prompt 

reconstruction of reflection-in-action from their classroom teaching.  

I respond to the need for more insight into PSTs’ development of science PCK and 

teaching practices. Specifically, researchers have pointed to a need for investigations 

of teaching practices in school practica beyond PSTs’ self-reports (Lawson et al., 

2015; Wilson et al., 2001). Others have indicated a need for insights into how PCK 

enables teachers to deliver quality instruction (Alonzo et al., 2020; Sorge, Kröger, et 

al., 2019; van Driel et al., 2014), and how teachers integrate components of PCK 

(Aydin et al., 2015; Chan & Hume, 2019). In responding to these calls, I followed 

suggestions to use SRIs to examine instructional decisions (Park, 2019; van Driel et 

al., 2014). I also performed a fine-grained analysis of PSTs’ reflection-in-action as a 

basis for visualizing their integrations of the two PCK components. In terms of 

method, my approach represents a development of the PCK map approach introduced 

by Park and Chen (2012). 

The first overarching research question was, “How do pre-service science teachers 

enact their first pieces of professional knowledge, especially PCK, in school practica?” 

Two answers to this question stand out. First, the video evidence showed dimensions 

of instructional quality, especially student-centered teaching, which facilitated 

students’ knowledge construction. Previous studies reported contrasting findings of 

teacher-centered teaching (Mellado, 1998; Ratinen et al., 2015). Second, there was 

limited precise communication of science and inquiry teaching. This may be due to 

PSTs’ lack of CK, knowledge of instructional strategies, or translation of such 

knowledge into teaching practice. 

The second overarching research question was, “How do PSTs develop pPCK, and 

how is this knowledge transformed into ePCK during science teaching?” There are 

several answers to this question. First, I found that the PSTs draw mainly on PCK in 

their teaching. In contrast, earlier research indicated that PSTs had limited PCK (Kind, 

2009b; van Driel et al., 2002) and relied on PK (Friedrichsen et al., 2009). The PSTs 
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built pPCK from various sources, including personal learning experiences and 

specialized science courses. The courses impacted classroom teaching by developing 

PSTs’ CK, PCK, and self-efficacy for science teaching. In classrooms, specialized 

science course experiences resulted in greater use of instructional strategies that were 

designed specifically for science due to PSTs’ nuanced usage of PCK. Second, I found 

that the PSTs integrated knowledge of students with knowledge of instructional 

strategies, and that this integration was enhanced by specialized science courses. My 

finding of rich integration differs from earlier studies (Aydin et al., 2015; Juhler, 2017; 

Sickel & Friedrichsen, 2018).  

Together, my findings contribute empirical evidence about PSTs’ PCK. Via pPCK 

within the learning context, the PSTs were able to transform cPCK into ePCK in 

classroom teaching, represented by PSTs’ decision-making and classroom practice. 

Thus, they showed an ability to put theory into action. My data support the 

connections outlined in the refined consensus model of PCK (Carlson et al., 2020), 

and explore mechanisms of functional knowledge exchange between realms.  

6.3 Implications for teacher education 
My case study suggests the possibility of including courses that combine CK and PCK 

in teacher education programs. Grossman (1990) suggested a focus on PCK 

development through a subject-specific approach, and Kind (2009b) suggested a 

transformative view of PCK in teacher education. The current thesis supports these 

viewpoints and shows how experiences with learning CK and PCK together in 

specialized science courses can directly inform classroom teaching. 

Another implication for the design of teacher education is that PSTs benefit from 

opportunities to teach science topics that are covered by specialized content courses 

within teacher education, as indicated by Olufsen et al. (2021). The current thesis 

shows how the teaching of these topics allows PSTs to practice what they have learned 

and to build self-efficacy for science teaching. The literature has elucidated the 

usefulness of parallel science teacher education and teaching (Berry et al., 2016; 

Schneider & Plasman, 2011). However, if beginner PSTs are assigned complex and 
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difficult topics to teach in classrooms, my findings indicate that they may face 

challenges teaching science with sufficient precision. 

Participant PSTs’ constructive use of prior learning experiences leads me to suggest 

that teacher educators should have a nuanced view on the “apprenticeship of 

observation.” It is important to acknowledge and build on school students’ prior 

knowledge and experiences (Grossman et al., 2013). Teacher educators should also 

acknowledge that beginner PSTs have years of experience from schools, including 

first-hand knowledge about how instruction facilitates learning and how it does not. 

The results of sub-study 2 support research indicating that prior teaching experience 

requires additional reflection to become useful for developing PCK (Friedrichsen et 

al., 2009; Wongsopawiro et al., 2017). For teacher educators, building upon these 

experiences should be seen as an efficient alternative to treating beginner PSTs as 

blank slates.  

An important aspect of reform-oriented science education is scientific inquiry 

(Anderson et al., 1994; Sawada et al., 2002). It was a focus in the PSTs’ specialized 

science courses (UiT The Arctic University of Norway, 2016), it is central in the 

Norwegian school curriculum (Norwegian Directorate for Education and Training, 

2020), and it was a topic discussed in the school practica. However, inquiry teaching 

was almost absent from the lessons I studied, indicating a potential for development. 

My case study invites reflection on the role of inquiry teaching in school practica. 

Teacher educators from universities and schools should discuss how a shared vision of 

different components of teacher education contributes to the development of PSTs’ 

competency in science inquiry teaching. 
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Informasjonsskriv studentar 

Førespurnad om deltaking i forskingsprosjektet 

 ”Naturfagstudentar si utvikling i praksisopplæringa” 
 

Bakgrunn og formål 

Dette forskingsprosjektet følger nokre lærarstudentar gjennom naturfagundervising i praksis frå første 

til tredje studieår. Studien skal gi svar på  

- Kva studentar gjer i naturfagundervising i praksisopplæringa. 

- Korleis naturfagstudentar utviklar sin didaktiske kompetanse, det vil sei kunnskap om 

naturfagundervising. 

Du blir som student og tidlegare deltakar i prosjektet spurt om å delta igjen. Datainnsamlinga skjer i 

skuleåret 2019/2020. Prosjektet er ein doktorgradsstudie ved institutt for lærarutdanning og 

pedagogikk, UiT – Norges arktiske universitet. Du får også val om å godkjenne at data blir brukt i 

opplæringsformål. 

 

Kva inneber deltaking i studien? 

Det blir gjort videoopptak av naturfagundervisinga du har ansvar for i begge praksisperiodane. Etter to 

av desse undervisingsøktene blir du spurt om å delta eit intervju som handlar om di tenking undervegs 

i timen. Intervjusamtalen varar 60-70 minutt. I tillegg blir innleverte dokument knytt til 

praksisopplæringa teke med i studien. 

 

Kva skjer med informasjonen om deg?  

Alle personopplysingar vil bli behandla konfidensielt. Prosjektgruppa beståande av meg og tre 

rettleiarar vil ha tilgang til materialet. Video- og lydopptak skal lagrast kryptert og sikra mot tilgang 

for utanforståande. Transkript av videoopptak og intervju skal avidentifiserast og navneliste 

oppbevarast separat på sikker stad. 

 

Det vil ikkje vera mogeleg å kjenna deg att i publikasjonar. 

 

Prosjektet skal avsluttast 01.06.2023. Innan denne datoen skal datamaterialet anonymiserast, og lyd- 

og videoopptak slettast, med mindre du gir samtykke til at videoopptak lagrast vidare til bruk i 

undervisingsføremål. Video vert då lagra utan tilgang for uvedkomande og slettast seinast 01.06.2032.  

 

Frivillig deltaking 

Det er frivillig å delta i studien, og du kan når som helst trekkje ditt samtykke utan å oppgi nokon 

grunn. Dersom du trekkjer deg, vil alle opplysingar om deg bli anonymisert. Det vil ikkje ha 

innverknad på ditt studieløp eller andre forhold dersom du ikkje vil delta i studien eller seinare vel å 

trekkja deg. 

 

Dine rettar 

Så lenge du kan identifiserast i datamaterialet, har du rett til: 

- innsyn i kva personopplysingar som er registrert om deg 

- å få retta personopplysingar om deg 

- å få sletta personopplysingar om deg 

- få utlevert ein kopi av dine personopplysingar (dataportabilitet), og 

- å sende klage til personvernombodet eller Datatilsynet om behandlinga av dine personopplysingar 

 

Kva gir oss rett til å behandla personopplysingar om deg?  

Vi behandlar opplysingar om deg basert på ditt samtykke. 

 



 

Informasjonsskriv studentar 

På oppdrag frå UiT Noregs arktiske universitet har NSD – Norsk senter for forskningsdata AS vurdert 

at behandlinga av personopplysningar i dette prosjektet er i samsvar med personvernregelverket. 

 

Kvar kan eg finne ut meir? 

Om du har spørsmål til studien, eller ynskjer å nytte deg av dine rettar, ta kontakt med: 

• UiT Noregs arktiske universitet ved PhD-student Johannes Sæleset. 

Tlf: 776 60 309/901 49 686. E-post: johannes.saleset@uit.no. 

• Vårt personvernombod: Joakim Bekkevold. Tlf 776 46 322. E-post: personvernombud@uit.no 

• NSD – Norsk senter for forskningsdata AS. E-post: personverntjenester@nsd.no. Tlf: 55 58 21 17 

 

 

Dersom du ynskjer å delta i studien kan du gi ditt samtykke ved å signera under. 

 

 

Samtykke til deltaking i studien 
 

 

 

Eg har motteke informasjon om studien, og er villig til å delta  
 

 

---------------------------------------------------------------------------------------------------------------- 

(Signert av prosjektdeltakar, dato) 

 

OG 

 

Kryss av her dersom du i tillegg vil gi samtykke til at  

 

☐ Videoopptak kan brukast til opplæringsføremål, også etter at prosjektet er avslutta 

 

 



 

Informasjonsskriv elevar 

Førespurnad om deltaking i forskingsprosjektet 

 ”Naturfagstudentar si utvikling i praksisopplæringa” 
 

Bakgrunn og formål 

Dette forskingsprosjektet følger nokre lærarstudentar gjennom naturfagundervising i praksis frå første 

til tredje studieår. Studien skal gi svar på 

- Kva studentar gjer i naturfagundervising i praksisopplæringa. 

- Korleis naturfagstudentar utviklar sin didaktiske kompetanse, det vil sei kunnskap om 

naturfagundervising. 

Ditt barn er elev i ein klasse som får praksisstudentar frå lærarutdanninga i naturfag skuleåret 19/20. 

Du blir her spurt om godkjenning til opptak av video i naturfagtimane. 

Prosjektet er ein doktorgradsstudie ved institutt for lærarutdanning og pedagogikk, UiT – Norges 

arktiske universitet. Du får også val om å godkjenne at data blir brukt i opplæringsformål. 

 

Kva inneber deltaking i studien? 

Det vil bli gjort videoopptak av studentane si naturfagundervising i praksis hausten 2019 og våren 

2020. 

o Formålet med filminga er å få opptak av praksisstudentane si undervising. 

o Ditt barn kan bli med på videoopptaka, men er ikkje fokus i prosjektet. 

 

Kva skjer med informasjonen om ditt barn?  

Alle personopplysingar vil bli behandla konfidensielt. Prosjektgruppa beståande av meg og tre 

rettleiarar vil ha tilgang til materialet. Video- og lydopptak skal lagrast kryptert og sikra mot tilgang 

for utanforståande. Avskrift av videoopptak og intervju skal avidentifiserast og namneliste oppbevarast 

separat på sikker stad. 

 

Det vil ikkje vera mogeleg å kjenna att deltakarane i studien i forskingsartiklar eller andre 

publikasjonar. 

 

Prosjektet skal avsluttast 01.06.2023. Innan denne datoen skal datamaterialet anonymiserast, og lyd- 

og videoopptak slettast, med mindre du samtykker til at videoopptak lagrast vidare til bruk i 

undervisingsføremål. Video vert då lagra utan tilgang for uvedkomande og slettast seinast 01.06.2032.  

 

Frivillig deltaking 

Det er frivillig å delta i studien, og du kan når som helst trekkje ditt samtykke utan å oppgi nokon 

grunn. Dersom du trekkjer samtykket, vil alle opplysingar om ditt barn bli anonymisert. Det vil ikkje 

ha innverknad på skulegangen eller andre forhold dersom du ikkje vil delta i studien eller seinare vel å 

trekkja samtykket. 

 

Dine rettar 

Så lenge du kan identifiserast i datamaterialet, har du rett til: 

- innsyn i kva personopplysingar som er registrert om ditt barn 

- å få retta personopplysingar om ditt barn 

- å få sletta personopplysingar om ditt barn 

- få utlevert ein kopi av dine personopplysingar (dataportabilitet), og 

- å sende klage til personvernombodet eller Datatilsynet om behandlinga av dine personopplysingar 

 

Kva gir oss rett til å behandla personopplysingar om ditt barn?  

Vi behandlar opplysingar om ditt barn basert på ditt samtykke. 

 



 

Informasjonsskriv elevar 

På oppdrag frå UiT Noregs arktiske universitet har NSD – Norsk senter for forskningsdata AS vurdert 

at behandlinga av personopplysningar i dette prosjektet er i samsvar med personvernregelverket. 

 

Kvar kan eg finne ut meir? 

Om du har spørsmål til studien, eller ynskjer å nytte deg av dine rettar, ta kontakt med: 

• UiT Noregs arktiske universitet ved PhD-student Johannes Sæleset. 

Tlf: 776 60 309/901 49 686. E-post: johannes.saleset@uit.no. 

• Vårt personvernombod: Joakim Bekkevold. Tlf 776 46 322. E-post: personvernombud@uit.no 

• NSD – Norsk senter for forskningsdata AS. E-post: personverntjenester@nsd.no. Tlf: 55 58 21 17 

 

 

Dersom du ynskjer å delta i studien kan du gi ditt samtykke ved å signera under. 

 

 

Samtykke til deltaking i studien 
 

Namn på elev: 

 

 

--------------------------------------------------------------------------------------------------------------- 

 

 

 

Eg har motteke informasjon om studien og gir fylgjande svar på førespurnaden: 

☐ Mitt barn kan delta i studien  

☐ Mitt barn kan ikkje delta i studien 

 
 

 

---------------------------------------------------------------------------------------------------------------- 

(Signert av føresett, dato) 

 

OG 

 

Kryss av her dersom du i tillegg vil gi samtykke til at  

 

☐ Videoopptak kan brukast til opplæringsføremål, også etter at prosjektet er avslutta 
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LISSI video observation manual 
Ødegaard, M., Kjærnsli, M., Karlsen, S., Lunde, M. L. S., Narvhus, E. K., Olufsen, 

M., & Sæleset, J. (2020). Linking Instruction in Science and Student Impact (LISSI) 

observasjonsmanual for naturfagundervising [Linking Instruction in Science and 

Student Impact (LISSI) observation manual for science instruction]. University of 

Oslo. https://www.uv.uio.no/ils/forskning/posjekter/lissi-laring-naturfag/ 

Categories used in the current project are described in English in table 3 at page 40-41. 

https://www.uv.uio.no/ils/forskning/posjekter/lissi-laring-naturfag/
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LISSI OBSERVASJONSMANUAL 
for naturfagsundervisning 

 

 

Observasjonsmanualen ble utviklet av forskere på LISSI-prosjektet, et prosjekt 

med formål å undersøke sammenhengen mellom undervisning i naturfag og 

hvordan elevene lærer og engasjerer seg i faget.  

Prosjektet er finansiert av Utdanningsdirektoratet 

 

 

 

Av: 

Marianne Ødegaard (prosjektleder) 

Marit Kjærnsli 

Solveig Karlsen 

Mai Lill Suhr Lunde 

Eva Kristin Narvhus  

Magne Olufsen 

Johannes Sæleset 

 

 

  



Introduksjon  
En sentral metode i forskningsprosjektet Linking Instruction in Science and Student Impact (LISSI) er analyse av 

videoopptak av naturfagundervisning i norsk skole. Denne observasjonsmanualen ble utviklet med det formål å 

analysere slike videodata. Utgangspunktet for LISSI-prosjektet var å studere utforskende arbeidsmåter i 

naturfag, men observasjonsmanual retter seg også mot generelle undervisningspraksiser i klasserommet. 

Manualen er basert delvis på eksisterende observasjonsmanualer for undervisningskvalitet (Grossman, Loeb, 

Cohen & Wyckoff, 2013; Marshall, Horton & White, 2009; Ødegaard, Haug, Mork & Sørvik, 2016), og 

inneholder kategorier fra disse manualene (referanser er notert til hver kategori). Noen av kategoriene er 

beholdt i sin opprinnelige form, men de fleste er modifisert for å kunne beskrive naturfagundervisning. 

Kategoriene er organisert i fem dimensjoner av undervisning. De fem dimensjonene er utforsking, 

tilrettelegging for elevdeltakelse, faglig fordypning, kognitiv aktivering og klasseledelse. Observasjonsmanualen 

er organisert på følgende måte: 

  

Når undervisning analyseres, gis kategoriene koder som beskriver undervisningskvalitet i hver kategori. Bruk av 

observasjonsmanualen baseres på 15-minutters undervisningssegmenter. Hvert segment vurderes opp mot alle 

kategoriene, som kodes fra 1-4. Kode 1 viser til ingen bevis for den aktuelle praksisen, kode 2 begrensede bevis, 

kode 3 viser bevis, men med noen begrensninger og kode 4 indikerer sterke bevis. Kode 3 og 4 beskriver altså 

en høyere undervisningskvalitet enn kode 1 og 2. Noen kategorier kodes i underkategorier som slås sammen til 

en samlet kode. Siden hver kategori har fokus på enkeltelementer av undervisningskvalitet, er det ikke 

forventet at enhver undervisningstime skal oppnå høy kode i alle kategorier. Vi vil understreke at god 

undervisning kommer i ulike former, som også er avhengig av konteksten. 

 

  



1. Utforsking 
Denne dimensjonen består av fem kategorier: forberedelse, datainnsamling, konsolidering, frihetsgrader og 

naturvitenskapens egenart. De tre første tilsvarer viktige faser i utforskende undervisning. I forberedelsesfasen 

vekkes elevenes undring, det stilles spørsmål og utforskingen planlegges. I datainnsamlingsfasen samler 

elevene data fra primære og sekundære kilder (egne observasjoner eller andres observasjoner/kunnskap). I 

konsolideringsfasen bygger elevene kunnskap på bakgrunn av innsamlede data. Disse kategoriene er utviklet 

spesifikt rettet mot utforskende undervisning i naturfag og for å kunne fange opp naturvitenskapens egenart. 

Kategoriene er egenutviklede med basis i litteraturen. 

 

Forberedelse 

Kategorien fokuserer på forberedelsesfasen i utforskende undervisning. Her legger læreren til rette for utforsking 
ved å vekke undring, og elever eller lærer stiller spørsmål, lager hypotese eller prediksjon. 
 
Undervisning som gis lav kode, kan inneholde undringsaktiviteter, men det blir ikke utviklet en prediksjon, en 
hypotese eller et forskbart spørsmål. Forberedelse gis høy kode dersom lærer eller elever utvikler et forskbart 
spørsmål, en hypotese eller en prediksjon som skal utforskes. 
Ref.: Bybee, Taylor, Gardner, Van Scotter, Powell, Westbrook & Landes (2006), Knain & Kolstø (2011) og Ødegaard 
et al. (2016). 

Kode 1 Undervisningen inneholder ikke undringsaktiviteter, prediksjoner, hypotesedannelse, forskbart 
spørsmål eller aktivering av forkunnskaper. 

Kode 2 Lærer initierer undringsaktiviteter eller aktiverer elevenes forkunnskaper. Det blir ikke utviklet en 
prediksjon, en hypotese eller et forskbart spørsmål. 

Kode 3 Lærer eller elever utvikler et forskbart spørsmål, en hypotese eller en prediksjon. 
Eller 
Elevene planlegger en utforsking basert på et forskbart spørsmål, en hypotese eller en prediksjon som 
er gitt av lærer eller andre. 

Kode 4 Elevene planlegger en utforsking basert på deres egne forskbare spørsmål, hypoteser eller 
prediksjoner. 

 

 

Datainnsamling 

Kategorien fokuserer på datainnsamlingsfasen i utforskende undervisning. Her gjør elevene observasjoner eller 
henter informasjon fa ulike kilder.  
 
Undervisning som gis lav kode, inneholder ikke datainnsamling, eller data samles inn uten et forskbart spørsmål, 
en hypotese eller en prediksjon som grunnlag. Datainnsamling gis høy kode dersom elever samler inn, 
dokumenterer og systematiserer data for å finne svar på et forskbart spørsmål, en hypotese eller en prediksjon. 
Ref.: Bybee et al. (2006), Knain & Kolstø (2011) og Ødegaard et al. (2016). 

Kode 1 Elevene samler ikke inn data. 

Kode 2 Elevene samler inn data. Et forskbart spørsmål, en hypotese eller en prediksjon trenger ikke å være til 
stede. 

Kode 3 Elevene samler inn data for på finne svar på et forskbart spørsmål, en hypotese eller en prediksjon. 
Dataene blir dokumentert. 

Kode 4 Elevene samler inn data for på finne svar på et forskbart spørsmål, en hypotese eller en prediksjon. 
Dataene blir dokumentert og systematisert. 
Eksempel: Å lage en tabell er en form for systematisering eller kategorisering av data. 

 

  



Konsolidering 

Kategorien fokuserer på konsolideringsfasen i utforskende undervisning. Her lager elevene forklaringer og trekker 
slutninger på bakgrunn av innsamlede data, og diskuterer implikasjoner elevene observasjoner eller henter 
informasjon fa ulike kilder.  
 
I undervisning som gis lav kode, diskuterer elevene ikke data, eller lager bare enkle forklaringer. Konsolidering gis 
høy kode dersom elevene trekker konklusjoner fra data, og diskuterer implikasjoner.  
Ref.: Bybee et al. (2006), Knain & Kolstø (2011) og Ødegaard et al. (2016). 

Kode 1 Elevene diskuterer ikke observasjoner eller data. 

Kode 2 Elevene lager enkle beskrivelser basert på observasjoner eller data. 
Eksempel: Bønnene falt av på papiret med vann og salt, men ikke på papiret med mel og vann. 

Kode 3 Elevene trekker konklusjoner fra data. De begrunner ut fra empiriske data. 
Eksempel: Lim av mel og vann fungerer bedre enn lim av salt og vann fordi bønnene ikke faller av mel 
og vann-papiret. 

Kode 4 Elevene trekker konklusjoner fra data og diskuterer disse opp mot naturfaglig kunnskap og/eller 
diskuterer implikasjoner av konklusjonene 
Eksempel: Lim av mel og vann fungerer bedre enn lim av salt og vann på grunn av at glutenet i melet 
gjør limet klissete. 

 

 

Frihetsgrader 

Kategorien fokuserer på graden av frihet i aktiviteten eller utforskingen elevene holder på med. Et sentralt 
element er om elevene har anledning til å planlegge eksperimenter eller finne egne spørsmål å utforske. 
Kategorien omfatter også i hvor stor grad resultatene er gitt på forhånd eller er kjent for læreren.  
 
I undervisning som gis lav kode, tar elevene få valg i undervisningen. I undervisning med høy kode bestemmer 
elevene minst to av følgende momenter: problemstilling eller spørsmål som skal undersøkes, metode som brukes 
for å finne svar og resultat eller svar. 
Ref.: Gyllenpalm, Wickman & Holmgren (2010) og Herron (1971). 

Kode 1 Undervisningen har ikke elementer som innebærer at elevene tar valg (spørsmålsformulering, bruk av 
metoder eller tolkning av resultater). 

Kode 2 Det er én frihetsgrad. Elevene bestemmer selv ett av følgende momenter: 
Problemstilling eller spørsmål som skal undersøkes.  
Metode som brukes for å finne svar. 
Resultat eller svar (elevene vet ikke resultatet på forhånd). 

Kode 3 Det er to frihetsgrader. Elevene bestemmer selv to av følgende momenter: 
Problemstilling eller spørsmål som skal undersøkes.  
Metode som brukes for å finne svar. 
Resultat eller svar (elevene vet ikke resultatet på forhånd) 

Kode 4 Elevene bestemmer selv alle de tre følgende momenter:  
Problemstilling eller spørsmål som skal undersøkes.  
Metode som brukes for å finne svar. 
Resultat eller svar (elevene vet ikke resultatet på forhånd). 

 

  



Naturvitenskapens egenart 

Kategorien fokuserer på om læreren inkluderer aspekter av naturvitenskapens egenart (NOS) i segmentet. Åtte 
aspekter som kan kjennetegne naturvitenskapen er inkludert her. 
 
To aspekter gjelder grunnleggende skiller i naturvitenskapen: Skillet mellom observasjon og slutning og mellom 
teori og lov.  
Fem aspekter gjelder kjennetegn ved naturvitenskapelig kunnskap: 1) slik kunnskap er empirisk begrunnet (basert 
på og/eller avledet fra observasjoner av naturen), 2) naturvitenskap involverer nødvendigvis resonnering, kritisk 
tenkning, fantasi og kreativitet (involverer å komme med nye forklaringer), 3) naturvitenskap er foreløpig (i 
endring), 4) naturvitenskap er subjektivt (teoristyrt), og 5) naturvitenskap er sosialt og kulturelt påvirket 
(naturvitere er påvirket av sosiale strukturer, maktstrukturer, politikk, sosioøkonomiske faktorer, filosofi og 
religion).  
Ett aspekt gjelder enhet mellom de ulike naturfagene (fysikk, kjemi, biologi, geologi etc.). Dette aspektet 
fremhever integrering av kunnskap på tvers av naturfagene (kobler uttrykkelig sammen naturfagdisiplinene utover 
å undervise emner som relaterer til flere disipliner). 
 
I undervisning som gis lav kode for naturvitenskapens egenart inkluderer læreren ingen aspekter av 
naturvitenskapens egenart eksplisitt i undervisningen. Naturvitenskapens egenart gis høy kode dersom læreren 
refererer eksplisitt til minst ett aspekt av naturvitenskapens egenart på en måte som gir elevene forståelse for 
naturvitenskapens egenart.  
Ref.: Lederman, Lederman & Antink (2013). 

Kode 1 Lærer inkluderer ikke aspekter av naturvitenskapens egenart. 

Kode 2 Lærer inkluderer minst ett aspekt av naturvitenskapens egenart i undervisningen. Aspektene er likevel 
ikke referert til eksplisitt.  Likevel, med slik undervisning over tid vil elevene utvikle forståelse av 
naturvitenskapens egenart. 
Eksempel: Utforsking uten at læreren uttrykkelig legger vekt på verdien av datainnsamling  
(empirisk begrunnet). 

Kode 3 Lærer refererer eksplisitt til minst ett aspekt av naturvitenskapens egenart i undervisningen. Koblinger 
mellom naturvitenskapens egenart og dagens time er klar nok til å gi forståelse av naturvitenskapens 
egenart. 
Eksempel: Utforsking med uttrykkelig oppmerksomhet på nødvendigheten av empiriske bevis for å 
konkludere i et argument, og at naturvitenskapens egenart dermed har et subjektivt aspekt. 

Kode 4 Lærer refererer eksplisitt til minst ett aspekt av naturvitenskapens egenart i undervisningen. Koblinger 
mellom naturvitenskapens egenart og dagens time er klar nok til å gi dyp forståelse av 
naturvitenskapens egenart. Elevene viser forståelse av naturvitenskapens egenart. 
Eksempler:  
- Sier noe selv om at de jobber som forskere 
- Viser i prosessen at dette er en forskerprosess 
- Elevene uttrykker forståelse av hvordan de har brukt sine data til å forklare et begrep eller fenomen, 
og sammenligner dette med hvordan naturvitenskaplig utforsking blir utført 
- Læreren legger vekt på behovet for kreative løsninger i introduksjonen til utforsking, og snakker om 
forskere som kreative. 

 

  



2. Tilrettelegging for elevdeltakelse 
Denne dimensjonen består av seks kategorier: bruk av læringsmateriale, lærerrolle, elevdeltakelse, 

tilbakemeldinger, klasseromssamtale og praktisk aktivitet. Disse kategoriene fokuserer på hvordan læreren 

legger til rette for at elevene kan delta aktivt i undervisningen. Det er i hovedsak hvordan læreren 

gjennomfører aktiviteter som spiller inn på kodingen, men i kategorien elevdeltakelse vurderes elevene isolert 

fra læreren. 

 

Bruk av læringsmateriale 

Kategorien fokuserer på om læreren legger til rette for at elevene deltar i aktiviteter og diskusjoner som er 
basert på læringsmateriale. Eksempler på læringsmateriale: objekter, lærebøker, arbeidsark, diagrammer, 
nettsider, videoer, tavle, smarttavle eller annet undervisningsmateriale. 
 
I undervisning som kodes høyt for bruk av læringsmateriale, bruker læreren materialet til å oppnå et større mål: 
at elevene skal få høy naturfaglig kompetanse. Elevene bruker læringsmaterialet aktivt over lenger tid for å 
fordype seg i naturfaglige begreper. I undervisning som kodes lavt for bruk av læringsmateriale, er det ikke 
læringsmateriale til stede, eller det er ikke i bruk. 
Modifisert etter PLATO (Grossman et al., 2013). 

Kode 1 Det er ikke læringsmateriale til stede i klasserommet, eller det er ikke i bruk. 

Kode 2 Det er læringsmateriale til stede i klasserommet. Elevers referanser til materialet fokuserer på 
gjengivelse av spesifikke detaljer.  
Eksempel: Læreren viser en film. Etter at filmen er ferdig, ber læreren elevene om å fortelle 
læringspartner hva de har sett (gjengivelse). 

Kode 3 Læreren legger til rette for undervisningsaktiviteter eller diskusjoner som krever at elever aktivt bruker 
læringsmateriale.  
Elevene må bruke læringsmaterialet til å finne grunnlag for spesifikke faglige momenter, og på denne 
måten bruke materialet til å danne seg en forståelse av naturfaglige begreper og fenomener. 
Eksempel: Læreren viser en film. Etter at filmen er ferdig, ber læreren elevene om å trekke slutninger 
eller forklare det de har sett. 

Kode 4 Læreren legger til rette for undervisningsaktiviteter eller diskusjoner som krever at elever aktivt bruker 
læringsmateriale over en lengre periode (mer enn 7 minutter).  
Elevene må bruke læringsmaterialet til å finne grunnlag for spesifikke faglige momenter, og på denne 
måten bruke materialet til å danne seg en forståelse av naturfaglige begreper og fenomener. 

 

  



Lærerrolle 

Kategorien fokuserer på lærerens tilrettelegging for elevaktiviteter og samtaler mellom elever. 
 
Undervisning der læreren står i fokus kodes lavt. Undervisning gis høy kode dersom læreren ofte legger til rette 
for elevaktivitet eller samtale mellom elever. 
Ref.: EQUIP (Marshall et al., 2009). 

Kode 1 Det er læreren som står i fokus i timen. Det er sjeldent at læreren legger til rette for elevaktiviteter eller 
samtaler mellom elever. 

Kode 2 Det er læreren som står i fokus i timen. Det er av og til at læreren legger til rette for elevaktiviteter eller 
samtaler mellom elever. 

Kode 3 Læreren legger til rette for elevaktiviteter eller samtaler mellom elever i minst tre tilfeller. 

Kode 4 Læreren legger gjennomgående og effektivt til rette for elevaktiviteter eller samtaler mellom elever. 
Halve segmentet inneholder samtaler mellom elever, eller elevene arbeider sammen for å løse en 
oppgave. 

 

 

Elevdeltakelse 

Kategorien fokuserer på elevenes deltakelse i aktiviteter: I hvilken grad elever er aktive eller passive, i hvilken 
grad elever deltar i flere aktiviteter, og hvor mange elever som er aktive. Aktiviteter kan være elevøvelser, 
diskusjoner og andre oppgaver. 
 
Undervisning der elevene stort sett er passive, kodes lavt. Undervisning gis høy kode dersom elevene er aktive i 
sin læring.  
Ref.: EQUIP (Marshall et al., 2009). 

Kode 1 Elever er gjennomgående passive i sin læring (de tar notater, leser). Elever er bare mottakere uten å 
delta aktivt.  

Kode 2 Elever er i liten grad aktive i sin læring. De er aktive i korte stunder eller i liten grad gjennom 
segmentet.  

Kode 3 Elever er aktive i sin læring. De er involvert i diskusjoner, undersøkelser eller andre aktiviteter, men 
ikke gjennomgående og tydelig fokusert. 

Kode 4 Elever er gjennomgående aktive i sin læring. De er svært aktive flere ganger gjennom segmentet og 
tydelig fokusert på oppgaven. 

 

  



Klasseromssamtale 

Kategorien fokuserer på elevenes muligheter for utvidete naturfaglige samtaler med lærer eller med medelever, 
og i hvilken grad lærer og elever plukker opp, bygger videre på og avklarer hverandres ideer.  
 
Klasseromssamtale kodes lavt når læreren snakker mesteparten av tiden. Klasseromssamtale kodes også lavt 
dersom lærer eller elever responder sjelden eller kort på elevinnspill. I slik klasseromssamtale bygger ikke lærer 
og elever på hverandres innspill. Klasseromssamtale kodes på høyt nivå når elevene er engasjert i utdypende, 
sammenhengende og fokuserte diskusjoner hvor lærer og elever bygger på hverandres bidrag og oppfordrer 
hverandre til å forklare og beskrive sine ideer nærmere. 
Ref.: PLATO (Grossman et al., 2013). 

Underkategorier Opptak av elevinnspill Mulighet for elevsamtale 
Kode 1 Lærer eller elever responderer sjelden 

eller aldri på elevers innspill om 
naturfaglig innhold.  

Det er få eller ingen muligheter for elever å ha 
samtaler knyttet til naturfag. Lærer snakker, gir 
en lang introduksjon til en oppgave/aktivitet, 
eller lukket diskusjon i mindre enn 5 minutter. 

Kode 2 Lærer eller elever responderer kort og 
overflatisk på elevers innspill, og 
responsen bidrar ikke til å utdype eller 
utvikle innspillene (f.eks. gjentar uten bruk 
av faglig språk, kun uttalelser som «Jeg er 
enig/uenig», som ikke refererer spesifikt 
til et tidligere innspill). 
Alternativt responderer lærer i hovedsak 
kort og overflatisk på elevinnspill, ispedd 
enkelte tilfeller av opptak på høyere nivå. 

Det finnes enkelte muligheter for korte 
naturfaglige elevsamtaler, men disse er 
lærerstyrte. For eksempel lukket diskusjon i mer 
enn 5 minutter, eller åpen diskusjon (i hel klasse, 
grupper, par) i mindre enn 5 minutter. 

Kode 3 Lærer eller elevers bidrag har likevekt 
mellom korte responser og minimum 2 
tilfeller med opptak på høyt nivå (f.eks. 
gjentagelse med faglig språk, spør etter 
forklaring, utdyping eller bevis). Det er 
mange tilfeller hvor lærer eller elever tar 
opp elevers innspill 
 

Lærer gir mulighet for minst 5 minutter 
naturfaglig samtale mellom lærer og elever 
og/eller mellom elever. Noen elever deltar i 
samtalen og/eller lytter aktivt, men det er kun 2-
3 elever som primært er deltakende. Det kan 
fortsatt være overvekt av lærerstyrt samtale 
med noen åpne spørsmål. 
Elevstyrte samtaler som etter hvert sporer av 
hører også til dette nivået. 

Kode 4 Lærer eller elever gjør gjennomgående 
opptak av elevenes innspill ved å 
respondere på måter som bygger ut 
elevenes ideer, eller legge til rette for at 
elever utvider, forklarer og spesifiserer 
tenkningen sin. 
 

Lærer gir mulighet for minst 5 minutter 
naturfaglig samtale mellom lærer og elever 
og/eller mellom elever. 
Flesteparten av elevene deltar i samtalen 
og/eller lytter aktivt, og elevene responderer på 
hverandres utsagn/ideer, selv om det fortsatt er 
læreren som styrer samtalen. Spørsmålene som 
styrer samtalen er hovedsakelig åpne, og 
samtalen er fokusert og på rett spor.  
 

 

  



Praktisk aktivitet 

Kategorien fokuserer på om undervisningen inneholder praktiske aktiviteter der elevene bruker objekter utover 
materiale til lesing og skriving. Eksempler på praktiske aktiviteter er rollespill og forsøk.  
 
Undervisning gis lav kode dersom elevene kun er involvert i aktiviteter der elevene bruker materiale til lesing og 
skriving, slik som bøker, papir, skrivesaker eller datamaskiner. Praktiske aktiviteter som knyttes eksplisitt til 
læring av naturfaglige begreper, gis en høy kode. 
Ref.: Abrahams & Reiss (2012); Millar (2010).  

Kode 1 Elevene deltar ikke i aktiviteter som inneholder praktiske aktiviteter eller aktivitetene er begrenset til 
bruk av materiale til lesing og skriving.  
Eksempel: Elevene leser på en nettside om biologisk mangfold. 

Kode 2 Elevene deltar i aktiviteter der de bruker objekter utover materiale til lesing og skriving. Aktivitetene 
er imidlertid ikke eksplisitt knyttet til læring av naturfaglige begreper. 
Eksempel: Elevene gjør klart utstyr for et eksperiment, eller henter ut en mineralsamling til pultene 
sine uten å få noen faglige instruksjoner eller diskuterer det de ser. 

Kode 3 Elevene deltar i undervisningsaktiviteter der de bruker objekter utover de som trengs til lesing og 
skriving. Aktivitetene er eksplisitt knyttet opp mot læring av naturfaglige begreper.  
Eksempel: Elevene blir bedt om å hoppe opp og ned for å forbrenne energien i et flak potetgull. 

Kode 4 Elevene er involvert i undervisningsaktiviteter der de bruker objekter utover de som trengs til lesing 
og skriving. 
Aktivitetene er eksplisitt knyttet opp mot læring av naturfaglige begreper og det kommer frem at 
elevene knytter aktiviteten til læringen. 
Eksempel: Elevene blir bedt om å hoppe opp og ned for å forbrenne energien i et flak potetgull og 
diskuterer hvordan potetgullflaket blir forbrennes i kroppen. 

  



3. Faglig fordypning 
Denne dimensjonen består av fire kategorier: presentasjon av fagstoff, faglig dybde, bruk av faglig språk og 

tilbakemelding. Disse kategoriene fokuserer på hvordan læreren formidler kunnskap om faglige begreper til 

elevene. Faglige begreper inkluderer naturfaglige begreper og fenomener, begreper på utstyr og forskerord. 

Kategorien faglig dybde berører også elevenes kunnskap. 

 

Presentasjon av fagstoff 

Kategorien fokuserer på hvordan læreren presenterer det naturfaglige fagstoffet i timen. Fokus er om fagstoffet 
presenteres korrekt og forståelig for elevene. Presentasjon av fagstoff er basert på Lee Shulmans (1987) begrep 
pedagogical content knowledge (PCK), som beskriver læreres kunnskap om hvordan spesifikke tema presenteres 
på en forståelig måte. Dette inkluderer kunnskap om gode representasjoner og hva som gjør temaet lett eller 
vanskelig. Presentasjon av fagstoff omfatter lærerens evne til å formidle fagstoff gjennom hensiktsmessige 
forklaringer, eksempler, illustrasjoner, modeller og analogier. Kun presentasjon som er observerbar skal 
vurderes. (Bøker og arbeidsark som ikke diskuteres skal ikke vurderes.) Både presentasjon for hele klassen og i 
dialog med enkeltelever og grupper er relevant for kodingen.  
 
Presentasjon av fagstoff gis lav kode når læreren ikke presenterer fagstoff, eller presentasjonen har feil eller 
mangler. Når læreren gir nyanserte, klare presentasjoner og hjelper elever til å skille mellom begreper og tema 
som er forskjellige, gis en høy kode. 
Ref.: PLATO (Grossman et al., 2013). 

Kode 1 Læreren presenterer ikke fagstoff, eller presentasjonen er preget av feil og mangler. 

Kode 2 Lærerens presentasjon er ufullstendig eller overfladisk, og går ikke i dybden av fagstoffet. 
Representasjonene fungerer kun delvis for å belyse begrepet.   

Kode 3 Lærerens presentasjon er korrekt og presis, og er tilstrekkelig for å belyse naturfaglige begreper. 
Læreren kan også oppklare eventuelle misforståelser hos elever, men legger ikke vekt på å nyansere 
begreper eller komme med eksempler for å skille mellom ulike sider ved relaterte begreper. 

Kode 4 Lærerens presentasjon er korrekt og presis, og oppklarer elevers misforståelser. Læreren belyser 
nyanser ved ulike begreper og tema, gjerne med ulike eksempler og modeller, eller ved å legge vekt 
på å nyansere begreper eller komme med eksempler for å skille mellom ulike sider ved relaterte 
begreper.  

  



Faglig dybde 

Kategorien er todelt og består av lærerpresentasjon og elevkunnskap. Lærerpresentasjon fokuserer på om læreren 
presenterer fagstoffet med dybde, og om det settes i en større sammenheng. Elevkunnskap fokuserer på hvordan 
elever viser sin kunnskap. 
 
Lærerpresentasjon gis lav kode når fagstoffet presenteres overfladisk. Dersom læreren presenterer fagstoffet med 
dybde og i sammenheng, kan det gis en høy kode. Elevkunnskap gis en lav kode når elevene viser lite eller 
overfladisk kunnskap. Høy kode for elevkunnskap kan gis når elevene vise forståelse for begreper i sammenheng.  
Ref.: EQUIP (Marshall et al., 2009); Bravo, Cervetti, Hiebert & Pearson (2008); Haug & Ødegaard (2014). 

Underkategorier Lærerpresentasjon Elevkunnskap 
Kode 1 Fagstoffet presenteres bare overfladisk. Elevene viser kunnskap om hvordan begreper 

høres eller ser ut. Fagbegreper uttrykkes ikke 
nødvendigvis av elever. 

Kode 2 Læreren presenterer til en viss grad faglig 
dybde, men setter ikke fagstoffet i en større 
sammenheng. 
 

Elevene viser at de kjenner til eller kan 
definere naturfaglige begreper på et generelt 
nivå. Elevene viser liten forståelse for 
begrepenes betydning. 

Kode 3 Læreren presenterer faglig dybde og setter 
fagstoffet delvis i en større sammenheng. 
 

Elevene viser forståelse for sammenhengen 
mellom det aktuelle begrepet og andre ord og 
begreper.  
Eller: 
Elevene er i stand til å velge korrekte begreper 
i en kontekst. De kan bruke fagbegreper i ulike 
setninger. 

Kode 4 Læreren presenterer faglig dybde og setter 
fagstoffet klart og tydelig i en større 
sammenheng. 
 
 

Minst to elever bruker begreper i en kontekst 
når de arbeider utforskende. De setter 
begrepene i sammenheng med empiriske data 
og/eller en større sammenheng.  
Eller:  
Minst to elever bruker fagbegreper som viser 
at de har begynnende forståelser for 
fenomenet det undervises i. De kan løse 
problemer i nye situasjoner ved å ta i bruk 
ervervet kunnskap. 

 

 

Bruk av faglig språk 

Kategorien fokuserer på hvordan læreren bruker naturfagbegreper i segmentet, om begrepene forklares og i 
hvilken grad elever oppfordres til å bruke relevante fagbegreper. 
 
Undervisning gis høy kode dersom lærer gjennomgående bruker og forklarer fagbegreper, og elever får anledning 
til å bruke disse. Undervisning gis lav kode dersom fagspråk ikke blir brukt, eller ikke blir forklart. 
Modifisert etter PLATO (Grossman et al., 2013). 

Kode 1 Læreren verken introduserer, definerer eller ber elever bruke fagbegreper. 

Kode 2 Læreren introduserer/definerer sjelden fagbegreper. Læreren og elevene bruker ikke fagbegreper i 
klasseromsdiskusjonen. 
Eller: 
Læreren bruker fagbegreper uten å forklare hva de betyr. 

Kode 3 Læreren introduserer, fremkaller, inkluderer og understreker fagbegreper ofte. 

Kode 4 Læreren introduserer, fremkaller, inkluderer og understreker fagbegreper regelmessig og 
gjennomgående i timen. Læreren gir elevene mange muligheter til å bruke begrepene. 

 

  



Tilbakemelding 

Kategorien fokuserer på kvaliteten på tilbakemeldinger som elever får når de bruker naturfaglige ferdigheter, 
begreper eller strategier. Tilbakemeldinger inkluderer både kommentarer på kvaliteten på elevarbeid og forslag til 
hvordan elever kan gjøre det bedre.   
 
Tilbakemeldinger som kodes høyt, kjennetegnes ved å være spesifikke og rettet mot sentrale ferdigheter i en 
aktivitet. Tilbakemeldingene hjelper elever til å forstå kvaliteten på eget arbeid, og hjelper elever til å prestere 
siden de får bedre forståelse av hva en aktivitet går ut på. Tilbakemeldinger som kodes lavt kjennetegnes ved at de 
er vage og svakt knyttet til elevarbeid. Forslag til forbedringer er ofte prosessuelle, det vil si fokusert på 
instruksjoner for oppgaven i stedet for ferdigheter og kunnskap som elevene trenger. Disse kommentarene hjelper 
ikke elever til å måle egen fremgang eller blir flinkere til å løse oppgaven. Det kan også hende at svake 
tilbakemeldinger skaper forvirring eller misforståelser.  
Tilbakemeldinger kan gis mens elever jobber med en oppgave eller etter at en oppgave har blitt fullført. Lærere 
kan også rette elevene mot en ny aktivitet ved å gi tilbakemelding på tidligere arbeid. For eksempel "Jeg la merke 
til at mange av dere var flinke til å bruke fagbegreper da dere snakket om magneter, så vi kommer til å bygge 
videre på det ved når vi skal skrive rapporten om magneter." 
Ref.: PLATO (Grossman et al., 2013). 

Kode 1 Læreren gir ikke tilbakemelding til elever. 

Kode 2 Læreren eller elever gir tilbakemelding som er vage, repeterende eller misvisende (f.eks., "bra jobba," 
"riktig," "nei"). 
Forslag til hvordan elever kan bli flinkere fokuserer heller på prosedyrer enn fag. Lærerspørsmål som 
foreslår neste steg eller forbedringer, tilhører denne koden (f.eks. "Har du tenkt å legge til flere 
detaljer?"). 

Kode 3 Læreren eller elever gir tilbakemelding som er knyttet til spesifikke elevarbeider eller idéer.  
Tilbakemeldinger er konstruktive og tydelige. Forbedringsforslag er en blanding av prosessuelle og 
faglige. 

Kode 4 Læreren eller elever gir regelmessig tilbakemelding som er knyttet til spesifikke elevarbeider eller idéer. 
Tilbakemeldinger er konstruktive og tydelige. Forbedringsforslag er hovedsakelig faglige. Læreren gir 
tilbakemelding som hjelper elevene til å oppklare misforståelser/hverdagsforestillinger. 

 

  



4. Kognitiv aktivering 
Denne dimensjonen består av tre kategorier: kobling til tidligere kunnskap, intellektuell utfordring og 

elevrefleksjon. Disse kategoriene fokuserer på i hvilken grad undervisningen utfordrer elevene kognitivt og 

fremmer refleksjon over forkunnskap og egen læring. Kategoriene retter seg mot lærerens aktivitet, og ikke hva 

elevene gjør. 

 

Kobling til tidligere kunnskap 

Kategorien har fokus på i hvilken grad og hvordan læreren knytter elevenes tidligere fagkunnskap og personlige 
erfaringer til ny kunnskap i segmentet. Her er kunnskap og erfaringer både i og utenfor klasserommet inkludert. 
Forskning tyder på at det å knytte sammen ny kunnskap med det elevene tidligere har lært vil øke mulighetene 
for en dypere forståelse av fagstoffet, i tillegg til at elevene selv danner forbindelser mellom ny og tidligere 
kunnskap. 
 
Koblinger til tidligere kunnskap som ikke settes tydelig i sammenheng med dagens undervisningsøkt, gis lav 
kode. Undervisning gis høy kode dersom læreren bygger på tidligere kunnskap for å videreutvikle kunnskaper og 
ferdigheter, i tråd med målet for timen. 
Ref.: PLATO (Grossman et al., 2013). 

Kode 1 Verken lærer eller elever refererer til tidligere undervisning. Læreren fremkaller ikke elevenes 
forkunnskaper. 

Kode 2 Læreren eller elevene kan referere kort eller overfladisk til tidligere undervisning, eller læreren 
forsøker å fremkalle elevenes forkunnskaper. Forbindelser mellom tidligere kunnskap og dagens 
undervisningsøkt er ikke tydelige. 

Kode 3 Læreren fremkaller eller refererer til elevenes tidligere akademiske kunnskap eller personlige 
erfaringer flere ganger. Forbindelser mellom tidligere kunnskap og dagenes økt er tydelige nok til å 
kunne bidra til at elevene forstår det nye fagstoffet. 

Kode 4 Læreren eller elevene refererer eksplisitt til tidligere undervisning og/eller fremkaller elevenes 
tidligere kunnskap (ett eller flere klare eksempler). Forbindelser mellom tidligere kunnskap og nye 
naturfaglige begreper eller oppgaver er tydelige, eksplisitte og spesifikt knyttet til det nye lærestoffet. 

 

  



Intellektuell utfordring 

Kategorien intellektuell utfordring fokuserer på i hvilken grad elevene utfordres kognitivt av aktivitetene de er 
engasjert i. Kognitivt utfordrende aktiviteter bidrar til at elevene tenker analytisk eller slutningsbasert. I 
motsetning krever mindre utfordrende aktiviteter bare at elevene pugger eller kan utenat. Intellektuell utfordring 
er også avhengig av i hvilken grad lærerspørsmål krever analytisk eller slutningsbasert tenkning.  
 
I helklasseundervisning skal koding av intellektuell utfordring baseres på delen av arbeidet som er slutningsbasert 
eller analytisk. Når læreren underviser og spør grupper eller enkeltelever, bestemmes intellektuell utfordring ut fra 
aktivitetene slik de presenteres av læreren. Undervisningen justeres på bakgrunn av kommentarer og spørsmål fra 
elever og lærer.  
 
Kognitivt utfordrende spørsmål kan opprettholde eller heve graden av intellektuell utfordring i undervisningen, og 
skal dermed kodes høyt for intellektuell utfordring. Motsatt vil spørsmål og kommentarer som fokuserer på å 
gjenkjenne og huske begreper, eller fokuserer på prosedyrer i ellers utfordrende oppgaver, bidra til lav kode for 
intellektuell utfordring. 
Ref.: PLATO (Grossman et al., 2013). 

Kode 1 Lærer legger til rette for aktiviteter eller oppgaver der elevene nesten bare trenger å pugge eller kunne 
utenat. Aktiviteter som å lese stille, høre på en forelesning eller se en film uten at elevene har fått 
oppgaver av analytisk eller reflekterende art, kodes på dette nivået. 

Kode 2 Lærer legger til rette for aktiviteter eller oppgaver der elevene nesten bare trenger å pugge eller kunne 
utenat, men en liten del (10-50%) av segmentet oppfordrer til analyse, tolkning, trekke slutninger eller 
komme med ideer. 
Eksempel på at elevene må komme ideer: Lærer spør elevene hvorfor det er kaldt om vinteren og 
varmt om sommeren. Elevene foreslår at det er fordi vi er nærmere solen om sommeren. Læreren viser 
et bilde som illustrerer at dette ikke er tilfellet, og ber elevene om å diskutere og komme med ideer om 
hvorfor det er slik. 

Kode 3 Lærer legger til rette for en blanding av aktiviteter eller oppgaver, som i størstedelen av segmentet 
(mer enn 50%) oppfordrer til analyse, tolkning, trekke slutninger eller komme med ideer, og som 
fokuserer lite på å pugge eller kunne utenat. 

Kode 4 Lærer legger til rette for aktiviteter eller oppgaver som i stor grad fremmer sofistikert eller analytisk og 
slutningsbasert tenkning på høyt nivå, inkludert å komme med og vurdere ideer og informasjon og 
/eller begrunne svar og slutninger. 

 

 

Elevrefleksjon 

Denne kategorien fokuserer på i hvilken grad elevene oppfordres til å reflektere over hva de har lært og hva de har 
forstått om emnet.  
 
Undervisning hvor læreren ikke ber elevene om å tenke over hva de har lært, eller gjengi hva timen har handlet 
om, gis lav kode. I undervisning med høy kode ber læreren eksplisitt elevene om å tenke over hvordan de har lært i 
løpet av timen, og fokus er på forståelse og å se sammenhenger mellom ny og eksisterende kunnskap. 
Ref.: EQUIP (Marshall et al., 2009). 

Kode 1 Lærer oppfordrer ikke eksplisitt elevene til å tenke over hva de har lært. 

Kode 2 Læreren oppfordrer elevene eksplisitt til å fortelle/skrive ned hva denne økta har handlet om. Dette 
holdes på et nivå der elevene kun trenger å gjengi hva timen har handlet om 

Kode 3 Læreren oppfordrer elevene eksplisitt til å forklare hva de har forstått av emnet de har jobbet med. 

Kode 4 Læreren oppfordrer elevene eksplisitt til å fortelle/skrive ned hva de har forstått av emnet de har 
jobbet med, og kan knytte dette til tidligere kunnskap og/eller nye sammenhenger.  
Eller  
Læreren ber elevene eksplisitt om å tenke over hvordan de har lært i løpet av timen. 

 

  



5. Klasseledelse 
Denne dimensjonen består av to kategorier: Atferd og tidsbruk. Disse kategoriene beskriver hvordan læreren 

arbeider med organiseringen av klasserommet og hvordan undervisningstiden benyttes til naturfaglige 

aktiviteter. 

Atferdshåndtering 

Denne kategorien fokuserer på i hvilken grad elevenes atferd er forenlig med hensikten for timen. Det ideelle 
klasserom er ikke nødvendigvis stille og kontrollert, det vil variere for ulike undervisningsformer. Det sentrale er 
om elevenes atferd er passende for oppgaven som er gitt. Et klasserom med god atferdshåndtering vil se 
annerledes ut i en time med oppgavejobbing enn i en time med utforskende arbeid i grupper.  
 
I undervisning som kodes på høyt nivå for atferd, gjør elevene stort sett det de skal og responderer hurtig på 
beskjeder som «stille, vi må høre etter hva Ola sier». Gjentatte beskjeder om atferd kan være bevis for at elever 
ikke responderer.  
Ref.: PLATO (Grossman et al., 2013). 

Kode 1 Klasserommet er uorganisert, og elevenes atferd er et stort hinder for læring. Det er mange tilfeller der 
forstyrrelser distraherer flertallet i klassen fra å lære. Ved eventuell reaksjon er konsekvensene 
ineffektive eller lærer følger dem ikke opp. 

Kode 2 Klasserommet er delvis uorganisert, og elevenes atferd er av og til et hinder for læring. Det kan være 
enkelte tilfeller av forstyrrelser som distraherer flertallet i klassen fra å lære, eller mange avbrytelser 
for å bedre elevenes atferd. Ved eventuell reaksjon er konsekvensene ineffektive eller lærer følger dem 
ikke opp. 

Kode 3 Klasserommet er for det meste godt organisert. Elevenes atferd fremmer læring. Det kan være enkelte 
forstyrrelser som kan hindre læring for enkelte eller noen få elever, men ingen forstyrrelser som 
hindrer læring for flertallet. Ved eventuell reaksjon er konsekvensene klare og konsistente.  

Kode 4 Klasserommet er velorganisert, elevens atferd fremmer læring. Det er ingen eller nesten ingen 
forstyrrelser eller avbrytelser som hindrer læring, og elevene kan i noen tilfeller justere egen og andres 
atferd. Ved eventuell reaksjon er konsekvensene klare og konsistente. 

 

 

Tidsbruk 

Denne kategorien fokuserer på hvor mye av tiden elevene er engasjert i naturfagrelaterte aktiviteter. Det er fokus 
på om lærer organiserer klassen effektivt slik at mest mulig av tiden brukes på fagrelaterte ting. Tidsperioder med 
utenomfaglige aktiviteter kan forekomme på grunn av manglende prosedyrer og rutiner. I tillegg kan problemer 
med atferdshåndtering påvirke tidsbruk. For eksempel vil en lærer som bruker mye av hele klassens tid for å 
irettesette elevers oppførsel, kodes lavt på tidsbruk. 
Ref.: PLATO (Grossman et al., 2013). 

Kode 1 Lærer gir ikke aktiviteter til elevene. Det er lange perioder (omtrent 5 minutter eller mer) med dødtid 
eller forvirring. Lite eller ingenting oppnås. Eventuelle overganger mellom aktiviteter tar mye tid og er 
veldig uorganisert.   

Kode 2 Selv om lærer gir aktiviteter til elevene, er det lange perioder med dødtid (omtrent 2 til 5 minutter). 
Det brukes vesentlig mindre tid på aktivitetene enn planlagt. Eventuelle overganger mellom aktiviteter 
tar tid og er noe uorganisert 

Kode 3 Lærer gir aktiviteter, men det er noen korte perioder (omtrent 1 til 2 minutter) dødtid. Eventuelle 
overganger mellom aktiviteter flyter greit selv om det er noe ineffektivt.  

Kode 4 Undervisningen har god flyt, og det er mindre enn 1 minutt med dødtid.  Lærer observerer elevene og 
justerer tiden på oppgaver deretter. Eventuelle overganger mellom aktiviteter flyter greit og effektivt 
og krever lite tilrettelegging fra lærer.  

 

 



Registreringer fra klasserommet 
Registreringer fra klasserommet 

Helklasseundervisning Det forekommer at elevene er samlet for felles undervisning 

Gruppearbeid Det forekommer at elevene arbeider i grupper 

Individuelt arbeid Det forekommer at elevene arbeider enkeltvis 

Dominerende 
klasseromsorganisering 

Dominerende arbeidsform: helklasseundervisning, gruppearbeid eller individuelt 
arbeid  

Praktisk arbeid Det forekommer at elevene arbeider med en praktisk aktivitet, som for 
eksempel forsøk eller prosjekter. Omfatter ikke arbeid med animasjoner og 
simuleringer eller tekstrelatert arbeid. 
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Quality of beginner pre-service teachers’ science instruction 

Abstract 

Teachers’ instructional quality is important for students’ learning outcomes, but research on 

beginner middle school pre-service teachers’ (PSTs’) instructional quality and development is 

limited. In this case study, we investigated the quality of beginner PSTs’ science instruction. 

All the science lessons of six PSTs (N = 21) during the school practica in their first year in a 

teacher education program were video-recorded. Video data were analyzed using categories 

from the Linking Instruction in Science and Student Impact observation manual. Our analysis 

focused on crucial aspects of quality science instruction: cognitive activation, discourse 

features, instructional clarity, and scientific inquiry. Studied as one case, the six PSTs showed 

surprisingly high scores for categories related to student-centered teaching and implemented 

practical activities with connections to science concept learning. However, the PSTs only 

challenged students intellectually to a moderate degree and rarely performed inquiry teaching. 

Additionally, their representation of science content varied greatly in quality. Results are 

discussed and implications for teacher education are outlined. 

Keywords: Instructional quality, pre-service teachers, teacher education, science 

education 
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Sammendrag 

Læreres undervisningskvalitet er viktig for elevers læringsutbytte, men det finnes lite forsking 

på lærerstudenters undervisning tidlig i utdanningsløpet og utvikling av denne. I denne 

kasusstudien undersøkte vi kvaliteten på lærerstudenters naturfagundervisning tidlig i 

utdanningen. Vi filmet alle naturfagtimene (N=21) til seks lærerstudenter som var i praksis i 

deres første studieår. Videodata ble analysert med kategorier fra LISSI-prosjektets (Linking 

Instruction in Science and Student Impact) observasjonsmanual. Analysene fokuserte på 

undervisningskvalitet i naturfag: kognitiv aktivering, tilrettelegging for diskusjon, tydelig 

undervisning og naturfaglig utforskning. Sett som ett kasus viste de seks lærerstudentene 

overraskende høye skår for kategorier relatert til elevsentrert undervisning, og gjennomførte 

praktiske aktiviteter som var koblet til læring av naturfagbegreper. Lærerstudentene utfordret 

likevel elevene bare i middels grad og gjennomførte sjelden utforskende undervisning. Det 

var også stor variasjon i kvaliteten på representasjoner av fagstoff. I artikkelen er resultatene 

diskutert, og vi drar slutninger for lærerutdanning.  

Stikkord: Undervisningskvalitet, lærerstudenter, lærerutdanning, naturfag    
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Introduction 

Earlier research has suggested that teachers’ instructional practices are of importance 

for school student outcomes, even more than factors like class size, classroom climate, and 

teachers’ years of experience and formal training (Hattie, 2009; Klette et al., 2017). In their 

review of research on teacher effectiveness, Seidel and Shavelson (2007) suggested that 

among different variables related to teaching, student outcomes were most affected by 

execution of learning activities, particularly in science. Pre-service teachers (PSTs) spend 

significant amounts of time on teaching activities in school practica (Cohen et al., 2013), 

which represents opportunities to develop their teaching practices within initial teacher 

education. However, it is notable that a solid research base on PSTs’ early teaching practices 

has yet to be developed. This is partly due to a low number of studies available, and partly 

due to their reliance on low-quality measures and interpretations based on self-reports 

(Lawson et al., 2015; Wilson et al., 2001). Specifically, the field lacks video studies of actual 

classroom teaching (Ratinen et al., 2015). In the current paper, we thus make a needed 

contribution as we report PSTs’ instructional practices using video recordings and an 

evidence-based observation manual. 

Literature review: Pre-service teachers’ instructional practices 

In this section, we review research on pre-service teachers’ (PST) instructional quality. 

We use the term pre-service teacher for a person undergoing teacher education, while student 

refers to a kid in compulsory school. Studies of science instruction in school practica are 

limited in number (Cohen et al., 2013; Lawson et al., 2015). In one of them, Baeten et al. 

(2013) found that PSTs seldom delivered student-centered teaching. That is teaching where 

students are active participants in their learning rather than passive recipients of information. 

Further, studies have found PSTs to focus on themselves when they teach (Juhler, 2017; 

Kagan, 1992; Körkkö et al., 2016). A common concern among PSTs is classroom 
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management, which leads them to design activities that give them more control (Zembal‐Saul 

et al., 2002). When PSTs assume the role of a transmitter of information, it limits their ability 

to consider students and their learning (Brown et al., 2013; Geddis & Roberts, 1998). In a 

small case study, Mellado (1998) found that PSTs were incapable of transferring much of 

their knowledge about science teaching into the classroom. None were able to systematically 

address individual students’ ideas or monitor their learning individually. Similarly, a study of 

20 Finnish PSTs by Ratinen et al. (2015) showed that participants lacked ability to foster 

student thinking. The participating PSTs ignored students’ prior knowledge, although they 

had planned to teach dialogically (Ratinen et al., 2015). In another study, Kang (2017) 

investigated eight PSTs’ lesson planning and enactment. Using plans for and reports from 

instruction, records of teaching, and curricular materials, she found only three of the PSTs to 

increasingly or consistently use cognitively challenging tasks, as they were trained to do. The 

other five PSTs were too focused on content or process, leading them to use low-demand 

tasks.  

In one contrasting study Thompson et al. (2013) identified PSTs’ ability to carry out 

quality teaching including adapting instruction to build on student ideas. They studied 

teachers during university coursework in their initial teacher education, in school practica, and 

in their first year in service. Using classroom observations and teacher interviews, they found 

that eleven of the 26 participating PSTs successfully integrated teaching practices such as 

adapting instruction to build on students’ ideas. The ideas underlying these practices were 

appropriated during methods courses or school practica during initial teacher education and 

enacted early in practicum.  

Theoretical framework: Instructional quality 

Inspired by Shulman (1986), we see quality teaching as not just acting, but enacting a 

knowledge base. Pedagogical content knowledge (PCK), introduced by Shulman (1986) has 
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been found a useful framework for science teacher knowledge (Chan & Hume, 2019). 

Teachers with elaborated PCK provide students with quality instruction (Fauth et al., 2019), 

particularly reform-oriented teaching (Park et al., 2011). In reform-oriented teaching, teachers 

consider students and content rather than delivery of content only, and they implement inquiry 

teaching (Anderson et al., 1994; Sawada et al., 2002). Reform-oriented teaching align with 

constructivist learning theories, by its focus on the students as active learners rather than the 

teacher as supplier of information (Anderson et al., 1994).  

Thus, we view enactment of elaborated PCK, particularly in the form of student-

centered and inquiry-based teaching as quality instruction. We use three central dimensions of 

instructional quality from a framework proposed by Klette et al. (2017): cognitive activation, 

discourse features, and instructional clarity. Further, we include scientific inquiry, 

representing a particularly important dimension of the subject of science (Crawford, 2014). 

Together, the four dimensions of instructional quality presented below cover instructional 

quality in connection with PCK. 

Cognitive activation 

The dimension of cognitive activation concerns whether students are engaged in 

higher-level thinking such as reflection, analysis, and comparison of ideas (Klette et al., 

2017). In less cognitive-activating instruction, students are provided with tasks that merely 

require them to repeat and recall information (Lipowsky et al., 2009). Cognitive activation 

also increases when students’ prior knowledge is activated (Grossman et al., 2013), and they 

are explicitly asked to reflect on their own learning (Lipowsky et al., 2009). Research have 

found cognitive-activating instruction to rise student achievement (Fauth et al., 2019; 

Neumann et al., 2012), and moderate challenging instruction to motivate students (Turner & 

Meyer, 2004).   
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Teachers with well-developed PCK are better able to give cognitively activating 

instruction (Fauth et al., 2019). They use knowledge of students’ misconceptions and 

difficulties with the science content to provide intellectual challenging questions (Förtsch et 

al., 2016). 

Discourse features 

The dimension of discourse features captures discussion formats as well as the quality 

of responses provided to students. In science it is important to allow students to argue and 

justify their ideas. Through this, dialogic classroom discourse eventually increases students’ 

science competency (Neumann et al., 2012; Scott et al., 2006; Treagust & Tsui, 2014). At 

lower levels, discourse might follow the initiation–response–evaluation format, with the 

teacher closing the discussion without prompting further student responses (Scott et al., 2006). 

At higher levels, discourse is dialogic in format, with the teacher offering prompts for further 

elaboration and extending dialogues between the teacher and students or between students 

(Scott et al., 2006).  

The relationship between PCK and dialogic discourse is similar to that with cognitive 

activation. To engage students in discussions about science ideas, teachers need to know these 

ideas (knowledge of students’ understanding of science, a PCK component) as well as 

approaches to initiate meaningful discussions (knowledge of instructional strategies, a PCK 

component). 

Instructional clarity  

This dimension includes the clarity and explicitness of the learning goals, presented 

content, and feedback on students’ work and ideas. It relies upon representations, 

explanations, and precise use of scientific language (Klette et al., 2017). Understood as 

interactions between teachers and students rather than transmissive teaching, explanations are 
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a core element of teaching (Kulgemeyer et al., 2020). Research has documented the 

usefulness of instructional representations in science teaching to improve students’ cognitive 

and affective outcomes (Treagust & Tsui, 2014; Tytler et al., 2013). Constructive feedback is 

an important aspect of supporting students’ construction of knowledge, sensemaking, and 

conceptual change (Fauth et al., 2019; Grossman et al., 2013). 

Finally, instructional clarity in science emphasizes the need for real-life experience 

with science phenomena, as in practical activities. Students engaged in practical activities are 

known to have increased potential for learning science, especially if the practical activities 

involve working in groups and focus on developing scientific ideas (Abrahams & Millar, 

2008; Hofstein & Kind, 2012). 

Knowledge of what makes the content difficult, knowledge of specific 

misconceptions, and knowledge of instructional strategies with explanatory power are central 

elements in PCK (van Driel et al., 2014). Thus, instructional clarity is closely connected to 

PCK. 

Scientific inquiry 

The scientific inquiry dimension concerns the appearance and quality of inquiry 

teaching where teachers engage students in investigations. It is related to scientific reasoning, 

a feature of quality instruction which focuses on inductive and deductive reasoning (Treagust 

& Tsui, 2014). Postman and Weingartner (1969) made the case that students need to develop 

the art and science of inquiring rather than remembering explanations from a teacher or a 

book. 

Three important phases have been emphasized  by researchers of scientific inquiry: 

ask a question and plan an investigation, carry out the investigation and organize data, and 

reason based on the findings to draw conclusions (Bybee et al., 2006; Knain & Kolstø, 2019). 

Through scientific inquiry, students can achieve cognitive gains and increased interest in 
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science (Crawford, 2014). Also, they can develop competence related to the nature of 

scientific knowledge (Lederman & Lederman, 2019).  

Central components of PCK has been found to correlate with reform-oriented inquiry 

teaching (Park et al., 2011). Teachers’ knowledge of students’ understanding of science (a 

PCK component) may facilitate teachers’ use of inquiry (Suh & Park, 2017). 

Aims and research question 

We address the need for studies on school practica science teaching with a video study 

based on complete sets of six beginner PSTs’ science instruction in two three-week school 

practica in grade 6 and 7. Using a standardized video observation manual, we analyze 

beginner PSTs’ instructional quality in the subject of science, which were one of three 

teaching subjects selected by the PSTs themselves. The following research question guided 

the study: “What is the quality of six beginner pre-service middle school teachers’ science 

instruction in school practica?” 

Methods 

This is a qualitative case study of six pre-service teachers’ science teaching. We 

treated the six PSTs as one case and investigated it in the context of school practica in initial 

teacher education. The case study approach acknowledges the close connection between the 

phenomenon and the context (Yin, 2014). We studied PSTs’ instructional practices in science, 

connected to the context of the school practicum. 

Context 

Teacher education programs in Norway were recently extended from four-year 

undergraduate programs to five-year Master of Education programs. The PSTs participating 

in the current study aimed to teach grade 5–10 students. At the time of data collection, they 

were enrolled in courses on pedagogy and student knowledge, research and development in 
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education, and specialized content courses for teachers in two subjects of their choice. All six 

PSTs chose science as their main subject. First-year specialized science courses intertwined 

content knowledge and pedagogy in the following topics: basic geology, chemistry, and 

physics, biology in the intertidal zone, sexual health, waves and sound, the solar system, and 

technology and design. Other courses included students’ learning, classroom leadership, 

additional teaching methods, educational research, and the nature of science. All PSTs’ 

courses maintained a focus on students and student learning. For example, in their pedagogy 

and student knowledge course, PSTs discussed the Piagetian theory of learning in connection 

to lesson design, and the specialized science courses used student-centered instructional 

strategies. The first author was a specialized science course instructor before and between the 

school practica. To avoid conflicts of interest with the research study, the first author did not 

participate in formal assessment of the PSTs in these two units. The first year of the program 

also included two school practica, one in the fall semester and one in the spring semester. 

These involved approximately three weeks of mentored teaching activities and group 

discussion about the teaching. 

Participants  

At the start of their first semester in the first year, all PSTs in one teacher education 

program cohort with science as their main subject were invited to participate in the study. At 

the same time, two experienced schoolteachers from two different schools were recruited as 

mentor teachers among those engaged to mentor PSTs in the cohort. PSTs worked in groups 

of three, which were organized by the program administration, during the school practica. The 

program administrators assigned the groups mentor teachers and schools. Two full groups 

were available for this study. These were the only ones consisting exclusively of PSTs that 

gave consent to participate in the study, and whose choice of second and third school subject 

somehow matched with the two selected mentor teachers’ expertise. Thus, the six PSTs in 
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these groups, aged 19-24 years, were chosen as participants in the study. Three of them had 

no science specialization from high school, while the other three had two years or more of 

biology, chemistry, and/or geology courses. Likewise, the participants’ teaching-related 

experience varied greatly. One participant had no such experience, three had experience 

leading leisure activities for kids, and two had experience from classrooms. The PSTs’ exam 

results in specialized science courses in the first year of the program ranged from A to F, with 

C as the average, similar to the rest of the cohort. 

Three PSTs’ practica took place in a grade 7 classroom with 32 students. These were 

two females and one male. Their female mentor teacher had more than 10 years of experience. 

Although she was not a certified science teacher, she enjoyed teaching science. The other 

three PSTs, also two females and one male, were placed in another school in a grade 6 

classroom with 20 students. Their male mentor teacher had more than 10 years of experience 

and was a certified science teacher. 

Data collection 

In total, the participating PSTs taught 21 science lessons during the two cycles of 

three-week school practica. All lessons were recorded. Two small wide-angle cameras 

captured the classroom teaching, and the PSTs carried a microphone. The primary camera 

overviewed the classroom, facing the PST. The secondary camera captured the same events 

but faced the students. In addition to video data, reflections and observations of the context 

were gathered in an unstructured log. 

We benefited from rich and less selective observations made possible with video 

recordings compared to direct observation (Erickson, 2006). The use of two cameras 

strengthened the reliability of analyses, as events of interest could be viewed from two angles. 

The first and second author analyzed the material together, increasing inter-rater reliability 

(Blikstad-Balas, 2017). 
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Video recording in classrooms raise ethical issues. First, the presence of cameras and a 

researcher obviously affected the social settings of the classrooms. To handle this issue, the 

PSTs were asked to give advice regarding when video recordings would be suitable. As in 

earlier classroom studies (Blikstad-Balas, 2017), students seemed to forget the video cameras 

were there and became used to the presence of the researcher. In two lessons on sexual health, 

we collected only audio recordings without the researcher present, as advised by the PST. 

Prior to the recordings, we retrieved written and informed consent from all participating PSTs, 

the mentor teachers, and the students’ parents.  

Data analysis 

We analyzed the data using categories from the Linking Instruction in Science and 

Student Impact (LISSI) video observation manual (Ødegaard, Kjærnsli, Karlsen, Lunde, et al., 

2020). The LISSI manual was based on the Protocol for Language Arts Teaching Observation 

(PLATO; Grossman et al., 2013) and inspired by the Electronic Quality of Inquiry Protocol 

(EQUIP; Marshall et al., 2010) and the video manual used in the Budding Science and 

Literacy project (Ødegaard et al., 2014). The LISSI manual was refined through several 

rounds of review of research and analysis of classroom teaching, ensuring valid measure of 

critical dimensions of science teaching practice. Inter-rater reliability was found to be 

satisfactory (Ødegaard, Kjærnsli, Karlsen, Kersting, et al., 2020). Twelve out of the 19 

categories in the LISSI manual were used in our analysis due to their relevance to our 

theoretical framework (Table 1). In the coding procedure, the science lessons were divided 

into 15-minute segments (N = 71). Each segment was scored from 1–4 based on the evidence 

in the video and criteria in the manual. A score of 1 indicated almost no evidence of the 

targeted practice, 2 indicated limited evidence, 3 indicated evidence with some weaknesses, 

and 4 indicated consistent strong evidence. Clear descriptions of observable characteristics for 
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each score contributed to trustworthy analysis of instruction. Topics varied across lessons. In 

the results, we include descriptions of the teachings, to ensure transparency around this issue.  

Table 1 

Categories in video coding guide with descriptions of evidence indicating low-end and high-

end scores 

Evidence for low-end scores (1–2) Evidence for high-end scores (3–4) 

Cognitive activation: Activation of student thinking. 

Connections to Prior Knowledge1 

If students’ prior knowledge or experiences are 
referred to, it is done briefly or superficially and is 
not sufficiently connected to the day’s lesson. 

Students’ prior knowledge or experiences are 
elicited or referred to multiple times and are 
connected to the day’s lesson. 

Intellectual Challenge 1 

Students spend most of their time on activities or 
assignments that are rote or recall. 

Students spend most of their time on activities or 
assignments with high academic rigor that promote 
analysis, interpretation, inferencing, idea 
generation, or high-level analytical and inferential 
thinking. 

Student Reflection 2 

If students are encouraged to reflect on their 
learning, it is only at the level of remembering what 
the lesson was about. 

Students are encouraged to reflect on their 
understanding of the lesson or to think at higher 
levels. 

Discourse features: Facilitation of science discourse. 

Teacher Role 2 

The teacher is the center of the lesson or only 
occasionally facilitates student–student talk. 

Rather than being the center of the lesson, the 
teacher facilitates student–student talk. 

Classroom Discourse 1 
a) Opportunities for student talk:  
If they arise, opportunities for science-related 
discussions are short or characterized by recitation.  
b) Uptake of student responses: Responses by the 
teacher and students responses usually do not 
elaborate on or help develop students’ ideas. 

a) Opportunities for student talk: Open-ended 
science-related questions are discussed at some 
length. 
b) Uptake of student responses: The teacher and 
students carefully listen to each other and elaborate 
on or help develop science ideas. 

Instructional clarity: Strategies for teaching new content. 

Representation of Content 1 
If provided, the teacher’s explanations, examples, 
illustrations, models, and analogies are incomplete, 
perfunctory, weak, or incorrect. 

The teacher presents accurate and clear 
explanations, examples, illustrations, models, or 
analogies. Nuances of concepts and student 
misunderstandings may be addressed. 

Use of Academic Language 1 
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Evidence for low-end scores (1–2) Evidence for high-end scores (3–4) 
The teacher rarely or never uses any scientific 
language, or it is used but not explained. 

The teacher uses and explains scientific language, 
and students have opportunities to use it. 

Feedback 1 

If the teacher or students provide feedback on 
students’ work or ideas, it is mainly vague, 
repetitive, perfunctory, or misleading. Suggestions 
for how to improve performance are procedural 
rather than substantive. 

The teacher or students provide constructive 
feedback that specifically addresses students’ work 
or ideas. 

Practical Activities 4 
If students interact with objects beyond materials for 
reading or writing, these practical activities are not 
tied to learning science concepts. 

Students interact with objects beyond materials for 
reading or writing. Practical activities are connected 
to learning science concepts. 

Scientific Inquiry: Phases of inquiry teaching. 

Preparation for inquiry 3,4 
No researchable questions, hypotheses, or 
predictions are developed. However, the teacher 
may activate students’ prior knowledge or invite 
them to wonder about science. 

A researchable question, hypothesis, or prediction 
is developed. Further inquiry may be planned by the 
teacher or students. 

Data Collection 3,4 
Students may perform observations or 
investigations with or without addressing a 
researchable question, hypothesis, or prediction. 
Data are not documented. 

Students perform investigations to address a 
researchable question, hypothesis, or prediction. 
Data are documented and may be systemized. 

Consolidation 3,4 
Students may discuss observations or data. 
However, while they may draw simple descriptions 
from them, no conclusions are made. 

Students draw conclusions from observations or 
data. They may connect these to scientific 
theoretical knowledge and discuss the implications. 

Note. The selected categories from the LISSI manual. Literature bases for the categories: 1 Grossman 
et al. (2013). 2 Marshall et al. (2010). 3 Ødegaard et. al. (2014). 4 A new category in the LISSI manual 
(Ødegaard, Kjærnsli, Karlsen, Lunde, et al., 2020). 

The authors were certified as reliable raters of the PLATO categories. To ensure the 

manual was valid, the categories were discussed and found to correspond with observed 

classroom practices. The first and second author co-coded 20% of the material. In three 

cycles, the first and second author coded identical segments, discussed and revised any 

differing scores, and clarified the video observation manual to ensure reliable analysis of 

science teaching practices. Of the 14 segments coded in this process, 90.5% of them were 

scored identical or within 1 score point by both raters. The first author coded all 71 segments 

based on the clarified observation manual.  
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The results were more characterized by similarities among PSTs than by the detected 

differences. We calculated variance on the PSTs’ average scores. Across all categories, the 

average variance was 0,16. This supported a focus on the PSTs as one case rather than 

separate cases. To look for patterns in frequencies of high- and low-end as well as average 

segment scores for each of the 12 video coding categories, we grouped the segments based on 

school practicum 1 or 2, lesson, location of segment within lesson, and depth of the lesson. In-

depth lessons were characterized by explicit learning goals related to conceptually difficult 

concepts (defined as abstract and dynamic; Chi, 2000), and a sustained attention to these 

concepts during the instruction.   

Results 

Scoring results are showed in supplemental Table S1. The six participating PSTs each 

taught 3–4 science lessons during the two school practica. Some topics were covered in a 

single lesson, others were taught over several lessons. Each lesson included two to nine 15-

minute segments, with a total of 71 segments. Table 2 provides an overview of the recorded 

lessons, including their topic, depth, and duration. 

Table 2 

Overview of recorded lessons 

Lesson Topic In-depth lesson Duration in 15-minute 
segments 

1 Nutrients Yes 2 

2 Sexual health No 2 

3 Sexual health No 4 

4 The eye No 2 

5 The eye No 4 

6 Animals, nutrition No 3 
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Lesson Topic In-depth lesson Duration in 15-minute 
segments 

7 Drugs No 5 

8 Energy content in 
food 

Yes 2 

9 Sexual health No 2 

10 Sexual health No 4 

11 Male puberty No 3 

12 Energy Yes 3 

13 Energy and fuel Yes 4 

14 Energy sources Yes 3 

15 Female puberty No 2 

16 Renewable energy Yes 4 

17 Fossil fuels Yes 5 

18 Puberty No 3 

19 Energy Yes 2 

20 Technology and 
design 

Yes 9 

21 Technology and 
design 

Yes 3 

TOTAL  71 

Note. Six different PSTs taught the lessons. The last segment in a lesson varied from 6–20 minutes. 

The class organization (whole-class, group, and/or individual) was recorded for each 15-

minute segment. Figure 1 shows class organization across all segments.  
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Figure 1 

Class organization across segments 

 

Note. Organization of class codes in all segments for all six PSTs (N = 71). Segments with more than 
one class organization could be assigned multiple codes. 

In a typical segment, the PSTs shifted between whole-class and group work. Both these 

categories were assigned to more than half the segments. Occasionally, students worked 

individually.  

Instructional quality 

We analyzed instructional quality of all segments. We present results for all PSTs 

together to reveal main findings related to the four dimensions of instructional quality. Scores 

are given from 1 (low) to 4 (high). 

PSTs activated students’ prior knowledge, but intellectually challenged students to only 

a moderate degree 

We identified multiple high-end scores (3-4) for the category connections to prior 

knowledge (39% of the segments; Fig. 2). These scores were spread across 90% of the 

lessons, indicating that PSTs usually referred to students’ prior knowledge and experiences, 
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and connected it to the current lesson. In the following example from lesson 16, the PST 

connected students’ prior knowledge and experiences to the topic of renewable energy. First, 

students were asked to share their prior knowledge. Then, the PST connected their 

experiences and knowledge to the instruction: 

Student: ‘In Turkey, when I was there two times ago, there was only one windmill. But 

when we returned this summer, there were like 10 windmills.’ PST: ‘More and more 

windmills are built, is that what you try to say? Yes! That is the intention in Norway too, 

as you might read about in the textbook.’ 

In this segment, the PST connected a student’s holiday experience with the situation in 

Norway, before this experience was later explicitly connected to the function of windmills. 

The segment was therefore scored 4 in the connections to prior knowledge category. 

Results on intellectual challenge and student reflection (Fig. 2) indicate that PSTs 

struggled to make the instruction intellectually challenging, and prompt students to reflect 

upon their learning. In just 10% of the segments, PSTs initiated student reflection. The 

category intellectual challenge measures whether PSTs provided activities, assignments, and 

questions with high academic rigor. In one-third of the segments, more than 90% of the time 

was dominated by rote or recall activities, resulting in a score of 1 (Fig. 2). In half of the 

segments, PSTs promoted analysis, interpretation, inferences, or idea generation 10–50% of 

the time, resulting in a score of 2. This was the case for a segment on nutrition from lesson 6. 

The PST challenged students to analyze their prior knowledge and infer the role of proteins in 

a diet. However, students answered superficially, and for the rest of the segment, they were 

asked to match cards with explanations given earlier in the lesson. Therefore, this segment 

received a score of 2 for intellectual challenge.  
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Figure 2 

Cognitive activation, activation of student thinking 

 
Note. The coding for categories within the dimension cognitive activation across all segments (N = 71). 
1 = lowest score, 4 = highest score. Each column represents the percentage of the score across all 
segments. Avg: average score across all segments.  

Scores for intellectual challenge increased from the first to the second school practicum, 

when there were also more in-depth lessons. High-end scores were awarded to 6% of the first 

practicum segments but 25% of the second practicum segments (Table 3). The increase in 

scores for intellectual challenge was evident for all six PSTs.  

Table 3 

Scores for the category intellectual challenge per school practicum 

School practicum Number of segments High-end scores Low-end scores 

1 18 6% 94% 

2 53 25% 75% 
 

Segments with high-end scores for intellectual challenge were never in the start of lessons. 
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Discourse in the classrooms was dialogic, and PSTs facilitated student-student talk 

PSTs frequently facilitated activities or discussions that required students to take an 

active role. They picked up on students’ contributions, and, to varying degrees, kept 

individual students’ contributions in focus during their lessons. This was indicated by high 

scores for teacher role and classroom discourse. Their instruction was not dominated by the 

transmission of science content to a group of passive receivers.  

In regard to teacher role (Fig. 3), 34% of the segments achieved high-end scores, as 

the PST did not orient the lesson around herself as center of the lesson. These segments were 

dominated by student-student talk and cooperative solving of tasks. Student–student talk was 

facilitated in both group work and whole-class settings. As an example, in lesson 17 on fossil 

fuels, students were talking together most of the second segment as they cooperated in making 

a poster with as many oil-based products as possible. This segment was therefore scored 4 on 

teacher role. Also, 27% of the segments were scored 2, making a total of more than half the 

segments characterized with presence of students’ internal discussions or solving problems. 

To achieve a high-end score for classroom discourse, communication patterns should 

involve students and teacher carefully listening to each other, and the teacher should tailor the 

dialogue to fit students’ emerging understanding. In total, 66% of the segments achieved high-

end scores (Fig. 3), including the conversation about windmills cited above. In this segment, 

the PST built upon a student’s contribution in the form of the experience from Turkey, 

making the student an important contributor to the lesson. However, the discourse in this 

segment was mainly directed by the PST, which resulted in a score of 3. A score of 4 was 

reached in 23% of the segments (Fig. 3), including a segment from lesson 14 focusing on 

energy sources. In the segment, students were asked to discuss whether a system with a light 

bulb connected to a solar panel would work inside a dark room. This conversation took place 

in the whole-class part of the discussion: 
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Student 1: ‘We believe the solar panel is able to get the bulb to light up.’ PST: ‘So it will 

work?’ Student 2: ‘Not eternally, because the solar panel needs sunlight to produce 

electricity.’ Student 3: ‘Or strong enough light.’ PST: ‘But we found out that it works. 

This bulb is strong enough [to make the solar panel produce electricity].’ 

In this conversation, multiple students discussed an open question while the teacher acted as a 

facilitator. Contributions from students were picked up by the PST, which furthered the 

conversation. The PST guided the conversation towards energy loss to heat, and then the 

group concluded that the system would not work.  

Figure 3 

Discourse features, facilitation of science discourse 

 
Note. The coding for categories within the dimension discourse features across all segments (N = 71). 
1 = lowest score, 4 = highest score. Each column represents the percentage of the score across all 
segments. Avg: average score across all segments. 
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PSTs sometimes struggled to present science content with clarity, but they effectively 

used practical activities 

Illustrations, examples, models, analogies, and explanations were often absent, 

incomplete, or perfunctory in the lessons. When the PSTs used academic terms, they seldom 

explained them. This resulted in low scores for representation of content and use of academic 

language. High-end scores for representation of content were awarded to just 17% of the 

segments. In order to score at high-end for use of academic language, PSTs had to use and 

explain academic terms. One example of high-level use of academic language was found in 

lesson 1 on nutrients, where the PST explained and used the concept of proteins and prompted 

students to use and explain this and other concepts in a card-sorting group activity. Such use 

and explanation of academic language characterized just 31% of the segments (Fig. 4). In 

many lessons, PSTs provided hardly any accurate and clear representations, and academic 

terms were either not used or not explained. Rather than taking opportunities to clarify 

students’ misconceptions, those were sometimes reinforced. In lesson 20, which focused on 

technology and design, the PST erroneously guided students to think that the direction of a 

DC current is important for lighting an incandescent bulb; when a student asked, ‘Which way 

should the battery be?’ the PST replied, ‘Good question, we will sort that out [...]. The longest 

[points at battery terminal] is minus, so it should be this way.’ Later, the PST repeated this 

incorrect guidance to another group: ‘Turn it [the battery] the other way. This is plus and this 

is minus. You need to keep an eye on that’ (Lesson 20). This segment included no use of 

academic language (score 1), and representation of content was scored 1 due to the incorrect 

communication about light bulbs and current in the conversations above. 
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Figure 4 

Instructional clarity, communication of science content knowledge 

 
Note. The coding for categories within the dimension instructional clarity across all segments (N = 71). 
1 = lowest score, 4 = highest score. Each column represents the percentage of the score across all 
segments. Avg: average score across all segments. 

 

The quality of representations depended on the depth of the lesson. Incomplete and 

perfunctory representations were more frequent in in-depth lessons (Fig. 5). In lessons that did 

not go into depth, the PSTs provided more accurate and clear representations. One example of 

this was in lesson 15 where the PST taught about female puberty without going into depth on 

abstract or dynamic features of puberty, or even teaching about the central hormone estrogen. 

However, the representations she did use were often accurate and clear. In the second 

segment, scored 4 for representation of content, she explained the menstruation cycle with 

nuances regarding the duration of a cycle. She addressed a misconception about menstrual 

blood being different than other blood by viewing an effectful TV commercial for sanitary 

pads.  
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Figure 5 

Scores for representation of content in lessons classified as in-depth and not in-depth 

 

Note. The coding represents all PSTs’ instruction across all segments (N = 71). 

Further, we also noted for representation of content that high-end scores indicating 

accurate and clear representations typically took place when students were organized in 

whole-class instruction, and the PST was at the center of the lesson (low-end scores for 

teacher role). The above example from lesson 15 also illustrates this. The accurate and clear 

representations about female puberty were provided while the PST was leading the classroom 

conversation (low score for teacher role). In other words, PSTs were able to provide more 

accurate and clear representations during planned presentations. When they had to engage in 

unplanned interactions, their instruction sometimes indicated they had limited CK, and scored 

lower on representation of content. 

The category feedback focuses on the quality of feedback provided in response to 

students’ application of science skills, concepts, or strategies. To achieve a high-end score for 

feedback, PSTs or students should provide specific feedback on students’ work or ideas that 
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challenged them to further develop their thinking. In total, 59% of the segments scored 2 in 

this category (Fig. 4), indicating that the feedback provided to students was vague (e.g., “good 

job,” “right,” “no”). 

41% of all segments included students interacting with objects other than materials for 

reading and writing and were coded more than 1 on practical activities (Fig 4). 76% of the 

segments with practical activities received high-end scores, as they were focused on science 

concept learning. Practical activities were enacted in all phases of lessons, but typically 

towards the end. One example is the last segment of lesson 8, which concerned the energy 

content in food. In this segment, the students had to choose between eating a portion of potato 

chips or carrot and later burn the equivalent energy by jumping on their chairs. The PST 

analogized the activity to everyday knowledge about cars requiring refueling to drive. By 

linking the activity to this explanation, the PST helped students to learn the concept of energy 

content in food. 

Inquiry teaching was seldom or poorly implemented 

Preparation for inquiry, data collection and consolidation (Fig. 6) represent significant 

phases of inquiry teaching (Knain & Kolstø, 2019; Ødegaard et al., 2014). As inquiry 

teaching typically spans over a period of time, and not always follow a fixed order, the results 

for these categories are discussed at the lesson level (N = 21). For the preparation phase, a 

score of 2 indicated that PSTs activated students’ prior knowledge or initiated activities where 

students wondered about science. This had the potential to initiate inquiry work. A score of 2 

for preparation for inquiry was awarded in 76% of the lessons. Higher scores, which required 

formulation of researchable questions, hypotheses, or predictions, were awarded to only 10% 

of the lessons. In regard to the two other categories, just three lessons (14%) included data 

collection (score of 2–3), and in one lesson, students made simple descriptions based on 
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collected data (score of 2 on consolidation). This means that, according to the definitions and 

standards we have used, we found little evidence for inquiry teaching.  

Figure 6 

Scientific inquiry, phases of inquiry teaching 

 
Note. The coding for categories within the dimension cognitive activation. The coding represents the 
maximum score per lesson (N=21). Max 1 = percentage of lessons with 1 as the highest score, Max 4 
= percentage of lessons with 4 as the highest score. Avg. max: average maximum score across all 
lessons. 

Discussion 

With this study, we contribute to the field with a video study of pre-service teachers’ 

(PSTs) science instruction in school practica. An evidence-based manual was useful in 

analysis of targeted classroom actions. Chan and Hume (2019, p. 20) described that 

pedagogical content knowledge (PCK) may be studied as embedded in teaching practice. In 

the current study, the dimensions of quality instruction under study are grounded in PCK 

(Park et al., 2011). Thus, our case study may be viewed as an investigation of PCK embedded 

in teaching practice. For example, the category feedback represents practices that build on 

knowledge about students’ understanding (PCK component) on which to give feedback, and 



PSTs’ SCIENCE INSTRUCTION         

154 
 

which strategy of feedback would best facilitate the student’s learning (PCK component). In 

the following, we discuss the coding results along the four dimensions of instructional quality. 

Cognitive activation 

We found that students were seldom provided challenging tasks that prompted them to 

improve their thinking. A beginning increase in cognitive activation from first to second 

round of data collection indicate PSTs’ ability to develop, and impact from teacher education 

between the two school practica. From our data, quality classroom discourse seemed to 

facilitate intellectually demanding instruction. All the segments that achieved high-end scores 

for intellectual challenge (N=14) also received high-end scores for classroom discourse (Avg. 

3,6). Cognitively activating discourse is known to be particularly important for students’ 

cognitive engagement, since students get the opportunity to explain and justify their thinking 

(Smart & Marshall, 2013). Based on the finding of little intellectual challenging instruction in 

the current study, together with earlier studies on PSTs (Todorova et al., 2017) and in-service 

teachers (Turner & Meyer, 2004), we call on teacher educators to model for PSTs the difficult 

practice of giving demanding tasks. Particularly, beginning lessons with demanding tasks is 

found to deepen students’ engagement in science (Kang et al., 2016). 

Discourse features 

Students were given a central role in the classroom discourse. In more than half of the 

lessons, the PSTs did not orient the lessons mainly around themselves. And in more than one 

of four segments the PSTs consistently acted as facilitators. In a dialogic, interactive approach 

to classroom discourse, student contributions are prompted, and an open conversation is 

facilitated (Scott et al., 2006). Results from the classroom discourse category describe more 

evidence for dialogic classroom discourse. Across all segments, the average score was 2.8 of 



PSTs’ SCIENCE INSTRUCTION         

155 
 

4. This represents a contrast to a video study of experienced teachers, being scored at 2.2 out 

of 7 on a similar category (Gamlem, 2019).  

Instructional clarity 

The PSTs struggled to communicate science content knowledge accurate and clear 

through representations, implementation of scientific language, and specific feedback on 

students’ work or ideas. In many segments, the PSTs provided no, inaccurate, or even 

misleading representations of science content. This was especially true for in-depth lessons, 

for which only 6% of segments received high-end scores for representation of content, and in 

unplanned interactions. Although exemplary representations were also identified, these 

seemed to be concentrated in lessons that were not classified as in-depth, and during planned 

presentations. Further, use of academic knowledge received low-end scores in 69% of the 

segments, indicating that PSTs failed to either use or explain scientific terms. We identified 

misconceptions being passed on to students, which aligns with prior research on PSTs 

misconceptions (Kind, 2014; van Driel et al., 2014). The PSTs’ poor presentation of content is 

likely related to their status as beginner PSTs with no prior higher science education. We 

suggest that teacher education course instructors give priority to teaching difficult topics 

relevant for school practica. Teachers need domain specific knowledge in the forms of content 

knowledge and pedagogical content knowledge (PCK) is necessary to support students’ 

learning (Seidel & Shavelson, 2007). Further, our case study indicates the need for mentor 

teachers to focus on instructional clarity also in unplanned interactions in science classes. 

The PSTs contributed to instructional clarity with their use of practical activities in 

teaching science concepts. This indicates that the participating PSTs avoided a common 

mistake of science teachers: initiating hands-on-activities without simultaneous connection to 

science ideas (Abrahams & Millar, 2008; Hofstein & Kind, 2012). Our results also contrast a 
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Norwegian video study (Ødegaard & Arnesen, 2010) that found in-service teachers use few 

practical activities and miss opportunities for scientific discussions during practical work. 

Inquiry teaching 

Inquiry teaching have significant potential in regards to student learning of science 

content knowledge, enculturation in to scientific practices, and is central in science education 

reforms (Crawford, 2014; Norwegian Directorate for Education and Training, 2020). The near 

absence of it in participants’ school practica is notable. We did observe potential for scientific 

inquiry as students were prompted to share prior knowledge and to wonder about science, but 

the potential was not exploited by the PSTs. This finding is similar to studies of in-service 

science teachers, reporting that students in general seldom work to investigate researchable 

questions (Crawford, 2014; Ødegaard, Kjærnsli, Karlsen, Kersting, et al., 2020), and 

specifically with the consolidation phase (Ødegaard et al., 2014). There seems to be a need for 

further studies and debate on why a potential for inquiry is difficult to exploit in science 

classrooms. 

Conclusion and implications 

We have described characteristics of science teaching along the four dimensions of 

instructional quality, for all six participating PSTs. Looking across the results, the PSTs’ 

instruction has certain characteristics of quality teaching, while other areas are weaker. 

Teacher education reform bring about a change from teacher-centered to student-centered 

teaching (Anderson et al., 1994; Sawada et al., 2002). One overarching quality of the teaching 

observed in this study was the PSTs’ centering of instruction around students’ ideas and 

interests rather than around the teacher. This was evident as the participating PSTs (a) 

organized their classes with frequent group work as well as whole-class discussions, (b) 

facilitated student–student talk, (c) elicited and connected to students’ prior knowledge or 
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experiences, and (d) facilitated high-quality discourse in which students’ contributions were 

valued. These indicators of student-centered teaching surprised us since many studies on 

beginner PSTs highlight their lack of ability to focus on student learning (Kagan, 1992; 

Körkkö et al., 2016; Mellado, 1998) and activate students’ thinking (Ratinen et al., 2015). 

Along with student-centered teaching, the positive finding of these six PSTs targeted use of 

practical activities should remind teacher educators about the potential for PSTs to carry our 

quality science instruction. The PSTs participating in the current study, and possibly others, 

should not be treated as blank slates that need to be filled with knowledge and formed to 

teachers from scratch by teacher educators. Future research should further investigate sources 

of PSTs’ development of quality instructional practices. 

We also identified specific challenges faced by the participating PSTs when teaching 

science. Many of these challenges may be related to limited science content knowledge or 

knowledge of instructional strategies (PCK). Students were not sufficiently challenged 

intellectually, PSTs hardly enacted any inquiry teaching, scientific language was poorly 

explained, and representation of content varied too much in quality. One possible implication 

is to target efforts in teacher education programs towards the topics to be taught in school 

practica. This may provide PSTs with opportunities to both gain and make use of knowledge 

related to teaching specific science topics, leading to quality learning opportunities for 

students in practicum classrooms. The increase in cognitive activation from first to second 

school practicum indicates that the participating PSTs made use of the specialized science 

courses. Finally, if the intention is to orient science learning around inquiry, an increased 

focus across all teacher education components seems necessary.  
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Supplemental material A 

Table S1: Average scores for all segments per PST 

Category PST1 PST2 PST3 PST4 PST5 PST6 

Number of segments 8 14 8 13 11 17 

Cognitive activation 

Connections to prior 
knowledge 2.4 (4) 2.3 (4) 1.9 (3) 1.8 (4) 3.6 (4) 1.9 (4) 

Intellectual challenge 1.8 (4) 1.8 (3) 2.4 (4) 1.9 (4) 2.3 (4) 1.8 (3) 

 Student reflection 1.3 (3) 1.1 (3) 1.0 (1) 1.2 (2) 1.4 (3) 1.0 (1) 

Discourse features 

Teacher role 1.9 (4) 2.2 (4) 1.9 (4) 1.5 (4) 1.9 (4) 3.3 (4) 

Classroom discourse 2.5 (4) 2.6 (4) 3.0 (4) 2.8 (4) 3.3 (4) 2.5 (3) 

Instructional clarity 

Representation of content 1.6 (2) 2.1 (4) 1.5 (2) 2.2 (3) 2.5 (4) 1.4 (3) 

Use of academic language 2.8 (4) 2.1 (3) 2.3 (4) 2.6 (4) 2.7 (4) 2.2 (4) 

Practical activities 2.1 (4) 1.8 (4) 2.4 (4) 1.5 (4) 1.0 (1) 2.6 (4) 

Feedback 2.0 (3) 2.4 (3) 2.0 (4) 2.2 (3) 2.5 (3) 2.2 (3) 

Scientific inquiry 

Preparation for inquiry 1.5 (2) 1.6 (2) 1.1 (2) 1.5 (3) 1.6 (2) 1.4 (3) 

Data collection 1.0 (1) 1.4 (2) 1.0 (1) 1.0 (1) 1.0 (1) 1.6 (3) 

Consolidation 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.1 (2) 

Average for all categories 1.8 1.9 1.8 1.8 2.1 1.9 

Note. The table presents average scores across all segments for each PST, with maximum 

scores in parentheses. The total number of segments is 71. 
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Abstract 
In the current study, we address calls for research on the complex nature of integrations of 
pedagogical content knowledge (PCK) components. This is a multiple case study of six middle-
school pre-service teachers (PSTs) as they taught science in their school practicum. We 
investigated the nature of PSTs’ integration between knowledge of students’ understanding (KSU) 
and instructional strategies (KIS), and their sources of these integrations. The primary data sources 
were two video stimulated recall interviews during which each PST viewed video recordings of 
their instruction, and shared reflections on their teaching. Results were represented as PCK maps. 
The PSTs frequently demonstrated integration of KSU and KIS, often developing topic-specific 
strategies. Instructional strategies served a variety of goals in response to students’ needs. PSTs 
referred to specialized science content courses, peer PSTs, learning experiences, and mentor 
teachers as sources that contributed to the integrations. Implications for research and teacher 
education are included. 

Keywords: instructional strategies, knowledge of students, pedagogical content knowledge, pre-
service teachers, science education, teacher education 

 

INTRODUCTION 
Pedagogical content knowledge (PCK) is a useful 

framework for unpacking the complexities of science 
teachers’ knowledge (Shulman, 1986) as evidenced in its 
use in a wide range of teacher research, including science 
teacher learning progressions (Friedrichsen & Berry, 
2015; Schneider & Plasman, 2011), sources of teachers’ 
professional knowledge (Kind, 2009; Nilsson, 2008), and 
the role of beliefs in teacher knowledge and practice 
(Friedrichsen et al., 2011). PCK consists of multiple 
components that inform each other, making PCK more 
than the sum of its components (Abell, 2008; Magnusson 
et al., 1999). Researchers have explored the integration 
among PCK components and found knowledge of 
students’ understanding of science and instructional 
strategies to be the most central and frequently occurring 
integration, critical to teacher knowledge development 
(Akin & Uzuntiryaki-Kondakci, 2018; Chan & Hume, 
2019; Park & Chen, 2012; van Driel et al., 2002, 2014). 

This study addresses calls for research on the 
complex nature of integrations among PCK components 
(Akin & Uzuntiryaki-Kondakci, 2018; Brown et al., 2013), 
particularly how teacher education programs facilitate 
the development of PCK integration (Aydin et al., 2015). 
In this study, we investigated six pre-service teachers’ 
(PSTs) PCK integration of knowledge of students’ 
understanding in science (KSU) and knowledge of 
instructional strategies (KIS).  

Through a fine-grained analysis of PSTs’ reflections 
on their teaching, this study extends prior insights into 
integration of KSU and KIS. Our study was closely 
connected to teachers’ practice through the use of 
stimulated recall interviews (SRI) where video 
recordings of their instruction were used to prompt 
PSTs’ reflections. Further, we address the call for 
research on the role of teacher education programs 
through analysis of PSTs’ sources of integrated PCK.  

The following research questions guided the study: 1) 
What is the frequency and nature of PSTs’ integration of 

https://doi.org/10.29333/ejmste/10859
http://creativecommons.org/licenses/by/4.0/
mailto:johannes.saleset@uit.no
mailto:friedrichsenp@missouri.edu
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the PCK components KSU and KIS? 2) What are the 
sources that contribute to their PCK integration? 

Theoretical Framework 

PCK, originally defined broadly as specialized 
knowledge for teaching, serves as a conceptual 
framework for this study (Shulman, 1987). Recently, 
PCK has been defined as:  

What teachers know about how their students 
learn specific subject matter or topics and the 
difficulties or misconceptions students may have 
regarding this topic related to the variety of 
representations (e.g., models, metaphors) and 
activities (e.g., explications, experiments) teachers 
know to teach this specific topic (van Driel et al., 
2014, p. 849).  

The assumption we build on is that teacher cognition is 
reflected in teaching practice; reciprocity exists between 
teacher cognition and teaching activities (van Driel et al., 
2014). 

In science education, Magnusson et al. (1999) 
conceptualized PCK as consisting of four components: 
knowledge of science curricula, knowledge of students’ 
understanding in science, knowledge of instructional 
strategies, and knowledge of assessment of scientific 
literacy. Each of these four components is influenced by 
the teachers’ science teaching orientation. The Refined 
Consensus Model (RCM) (Figure 1) situates PCK within 
other knowledge bases, and presents three realms of 
PCK: enacted PCK (ePCK), personal (pPCK), and 
collective (cPCK) (Carlson et al., 2019). Personal PCK 
(pPCK) is ´specialized knowledge and set of skills for 
teaching particular science topics for particular students 
in particular learning contexts´ (Carlson et al., 2019, p. 

Contribution to the literature 
• In this study, pedagogical content knowledge (PCK) maps (Park & Chen, 2012) are used to investigate 

integration of knowledge of students’ understanding and instructional strategies at a new level of detail. 
• Contradicting the few prior studies on pre-service teachers’ PCK integrations, we show empirical 

evidence of their frequent and complex integrations. 
• Few other studies have investigated the sources of integrations between knowledge of students’ 

understanding and instructional strategies. The current study addresses the little investigated question 
regarding which sources PSTs draw on when integrating KSU and KIS. 

 
Figure 1. The Refined Consensus Model (RCM). Reprinted by permission from Springer Nature Repositioning Pedagogical 
Content Knowledge in Teachers’ Knowledge for Teaching Science by Hume, A., Cooper, R., & Borowski, A. (Eds.) COPYRIGHT 
2019 
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86). Enacted PCK (ePCK) is pPCK in action in a 
particular situation. Both these realms exist within the 
context of the educational climate, classroom 
environment, and individual student attributes. 
Collective PCK (cPCK) is the amalgam of the education 
community’s knowledge across contexts, and is located 
across a continuum of groups, from teachers working in 
a professional learning community to canonical PCK 
accessible in the research literature. Arrows connecting 
the circles represent knowledge exchange. This 
exchange is amplified or filtered through teachers’ 
attitudes and beliefs including beliefs about students, the 
nature of science knowledge, or the role of the teacher 
(Carlson et al., 2019). In the current study, PSTs’ ePCK 
occurred in their field practicum, and was observed by 
the first author. All three realms can be viewed at 
different levels, i.e., discipline-specific, topic-specific, or 
concept-specific PCK. From the RCM, we use the 
distinctions of ePCK, pPCK and cPCK. We draw upon 
the Magnusson et al. (1999) model for PCK components, 
focusing on KSU and KIS. We focus on integration of 
PCK components as this is a hallmark of high quality 
PCK and a key to effective science teaching (Abell, 2008; 
Chan & Hume, 2019). 

Literature Review: Integration of PCK Components 

We summarize key research on teachers and PCK 
integration, and how teacher education programs can 
support the development of PCK integration. Generally, 
researchers have reported that PSTs have little PCK 
(Kind, 2009; Schneider & Plasman, 2011; van Driel et al., 
1998). However, a few studies have found initial PCK of 
PSTs, mainly KSU. In a Swedish study of PSTs’ 
conceptions about students’ topic-specific difficulties, 32 
PSTs did a lesson preparation task (Kellner et al., 2011). 
Collectively, they were able to identify many student 
difficulties. In another study of 12 pre-service chemistry 
teachers in a postgraduate program, de Jong et al. (2005) 
reported initial PCK of learner difficulties, formed by 
experiences from school, university, teaching 
experience, and textbook study. After a course module 
connecting authentic teaching experiences with 
university-based workshops, all PSTs demonstrated a 
deeper understanding of students’ learning difficulties.  

As integration of PCK components is a key to 
effective science teaching, PCK components should be 
integrated in planning and enactment of instruction 
(Chan & Hume, 2019; Park & Chen, 2012). An example 
of PCK integration would be a teacher choosing a 
particular instructional strategy (e.g., demonstrating 
meiosis using multiple pairs of socks) because he is 
aware of particular student learning difficulties (e.g. 
students have difficulty distinguishing between 
homologs and replicated chromosomes). Developing 
PCK integrations includes increasing frequency of 
integrations between specific components, or increasing 
types of integration of PCK components. Researchers 

reported relationships between the development of 
separate components and integration among 
components (van Driel et al., 2014). As they generally 
lack PCK, it follows that PSTs also lack integration of 
PCK components (Akin & Uzuntiryaki-Kondakci, 2018; 
Kind, 2009; Sickel & Friedrichsen, 2018).  

In contrast to PSTs, research has found experienced, 
exemplary teachers to have highly integrated PCK (Park 
& Chen, 2012). Timmerman (2009) found Dutch 
experienced biology teachers used their knowledge of 
students as the primary source of information in their 
sex education lessons. KSU and KIS were also integrated 
during lessons, as instruction was adjusted based on 
what they learned about students’ conceptions. In a 
recent study, Akin and Uzuntiryaki-Kondakci (2018) 
found experienced teachers to have more integrated 
PCK than novice teachers. They analysed one novice and 
two experienced teachers’ instruction of the same lesson 
plan on reaction rate and chemical equilibrium. Their 
findings indicated the PCK maps of the novice teacher 
had fewer connections among PCK components, while 
the experienced teachers integrated all PCK 
components. The experienced teacher’s knowledge 
about students and instructional strategies seemed to 
foster the integration of these components. The 
experienced teachers were also better able to enact their 
integrated PCK (Akin & Uzuntiryaki-Kondakci, 2018). 
Further, West (2011) found that the three experienced, 
physics teachers in his study integrated all components 
of their PCK in selecting representations.  

However, there are a few studies that show that PSTs 
can begin to integrate PCK components. Schneider 
(2015) found that PSTs frequently think about 
instructional strategies and student thinking together in 
planning, enactment, and reflection upon instruction. 
Also, Kaya (2009) analysed survey data on 75 PSTs’ PCK 
for the topic ozone layer depletion. He identified 
relationships among PCK components, specifically 
among knowledge of science curricula, instructional 
strategies, and student understanding. Recently, 
Mavhunga (2020) studied PSTs’ content representations 
(CoRes) and lesson outlines for the topic chemical 
equilibrium. The 15 participating PSTs were in their latter 
part of a teacher education program, and used multiple 
components of topic-specific PCK in connection when 
planning for teaching chemical equilibrium. However, it 
should be noted that neither Kaya (2009) or Mavhunga 
(2020) studied enacted PCK across the whole 
pedagogical cycle. 

In regard to development of PCK integration during 
teacher education programs, studies are limited. 
However, available research indicates that teaching 
experience and reflection are essential. In a qualitative 
in-depth study of PSTs, van Driel et al. (2002) reported 
KSU and KIS developed through classroom experiences, 
discussions with a mentor teacher, and PCK-specific 
university-based workshops. Brown et al. (2013) carried 
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out a study of four pre-service biology teachers in an 
alternative post-baccalaureate teacher education 
program. The authors reported that the PSTs’ KSU and 
KIS, specifically the use of the 5-E instructional model 
(Bybee et al., 2006), became more integrated during the 
program. This study suggests that the development of 
PCK components and integration develop 
simultaneously during student teaching. In another 
study, researchers found that pedagogical instruction 
framed by PCK for Nature of Science (NOS) to some 
degree enhanced PSTs’ readiness to integrate 
components of PCK. PSTs with integrated PCK were 
better able to design instruction that addressed students’ 
misconceptions about NOS (Demirdöğen et al., 2016). 
Moreover, in a recent study Barendsen and Henze (2019, 
March 31–April 3) studied the interplay among elements 
of PK and PCK in pre-service chemistry teacher 
education. They found that complex pedagogical 
reasoning involving KSU and KIS seemed to appear in 
combination with strong pPCK development. In a 
qualitative study of three PSTs, Aydin et al. (2015) 
reported increased integration of PCK components 
through a PCK-enriched 14 week practicum course. 
Connections between knowledge of science curriculum 
and the other components were rare in the beginning of 
the program, but integration of knowledge of science 
curriculum developed more than other integrations in 
the course of the program which the authors attribute to 
a focus on curriculum in the practicum.  

Teaching experience can contribute to development 
of PCK (Grossman, 1990; Sorge et al., 2019). Norville and 
Park (2019, March 31–April 3) investigated PSTs’ 
development of PCK during a student teaching 
experience. From integrating little PCK of KSU and KIS 
at the beginning of the semester, this integration 
increased for each of the four PSTs at the end of the 
semester. Sickel and Friedrichsen (2018) examined early-
career biology teachers’ nature and integration of PCK 
components across two years for the topic of natural 
selection; they identified the teachers developed more 
integrated PCK for this topic over time. In their study of 
the role of teaching experience in the absence of teacher 
education, Friedrichsen et al. (2009) compared two pairs 

of teachers at the beginning of a teacher education 
program. One pair had prior teaching experience as 
uncertified teachers (1-2 years) while the other pair 
lacked any teaching experience. Neither of the pairs had 
topic-specific PCK for heritable variation. When the 
authors analysed the teacher’s pedagogical knowledge 
(PK), using the same Magnusson et al. (1999) 
components, they found that teaching experience did 
result in more PK integration, but not PCK development 
in the absence of teacher education. For example, the 
participants with teaching experience knew that 
students struggled in general with science (KSU), so they 
often had students work in pairs (KIS). 

The current study addresses calls from Akin and 
Uzuntiryaki-Kondakci (2018) and Aydin et al. (2015) for 
more research investigating the strength and quality of 
PCK component integrations. In their literature review, 
van Driel et al. (2014, p. 859) concluded that ´questions 
related to what PSTs do with their PCK and how practice 
interacts with PCK so far remain largely unexplored.´ 
The RCM model acknowledge teachers’ actions as a 
realm of PCK (ePCK), and underline a need for research 
connected to actual teaching practice (Carlson et al., 
2019). Specifically, a better understanding of PCK 
development is needed to inform the design of effective 
teacher education programs that facilitate PCK 
integration (Jong et al., 2005). By including lessons on 
sexual health, we add to the few studies of PCK for 
teaching sexual health (Timmerman, 2009). Our study 
addresses these gaps by mapping out the nature of 
integrations and analysing sources of integrated PCK. 
Such a methodology using complementing quantitative 
and qualitative analysis has seldom been used in PCK 
research (Krepf et al., 2018). 

METHODS 

Research Design 

This is a qualitative multiple case study (Yin, 2014) of 
six PSTs in the context of their school practicum as part 
of a teacher education program. Multiple case studies 
examine the cases with a broader goal to provide insight 

Table 1. Differences between current study and Park & Chen (2012) 
Difference Park & Chen (2012)  Current study  
PCK model Pentagon model (Park & Oliver, 2008) Magnusson et al. (1999) 
Participants Four in-service high school teachers Six pre-service middle school teachers 
Data sources Observations, pre- and post-interviews, 

documents 
Stimulated recall interviews based on video recordings of 
classroom teaching 

Unit of analysis PCK episode constituted by enactment of 
instructional strategy with PCK integration 

Instructional segment constituted by enactment of 
instructional strategy 

Analysis Overview of integrations among KSU, KIS, 
KAs, KSC and OTS 

Detailed analysis of integration of KSU and KIS, including 
the rationale for enacting the instructional strategy 

Selected findings KSU and KIS were central in the 
integration  

Identified mechanisms and sources of KSU-KIS 
integrations 

Abbreviations from Magnusson et al. (1999). KSU: Knowledge of students’ understanding in science, KIS:  Knowledge of instructional 
strategies, KAs: Knowledge of assessment of scientific literacy, KSC: Knowledge of science curricula, OTS: Orientation to teaching science 
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into an issue or redraw a generalization (Stake, 2005). In 
the current study, we examine how integration of KSU 
and KIS occurred in their enacted PCK, and how this 
integration developed in their personal PCK. The 
research design was informed by the PCK integration 
research of Park and Chen (2012) (Table 1). 

Context 

In Norway, many teacher education programs have 
recently shifted from four-year undergraduate programs 
to five-year Master of Education programs. The longer 
programs were initiated to provide PSTs with greater 
depth of content knowledge, teaching methods, and 
research with the goals of increasing student learning 
outcomes and giving more status to the teaching 
profession (Ministry of Education and Research, 2009; 
Olufsen et al., 2017). In this study, the specific teacher 
education program certified middle school teachers 
(grade 5-10, ages 10-16). In each year of the program, 
PSTs completed specialized content courses focusing on 
both content and pedagogy of three school subjects of 
choice (Subject 1, 2, and 3, see Table 2). The specialized 
content courses focused on content knowledge, while 
PCK was addressed through course instructors’ 
modeling of reform-oriented instructional practices, and 
by explicitly focusing on K-12 students’ common 
misconceptions related to the topic. Subject 1 was the 
main subject and included a 45 ECTS master thesis (In 
European Credit Transfer and Accumulation System, 60 
ECTS is equivalent to one-year full-time study). 
Alongside these subject-specific courses, all PSTs took 
courses in Pedagogy and Student Knowledge (P&S) and 
Research and Development in education (R&D). These 
courses covered general pedagogical knowledge, 
additional teaching methods, and educational research. 
Each year included six weeks of field practicum, 
approximately three weeks of full school days in each of 
the fall and spring semesters. Table 2 provides an 
overview of the program. Specialized science course 
curricula were aligned with the national science 
curriculum for Norwegian primary and lower secondary 
schools, including chemistry, physics, geology, biology, 
health, and Technology & Design (UiT Norges Arktiske 

Universitet, 2016). Health, including sexual health, is 
included science curricula in some countries, such as in 
the Netherlands (Timmerman, 2009), New Zealand 
(Diorio & Munro, 2000), England (Department for 
Education, 2014), Finland (Mullis et al., 2015), and 
Norway (Norwegian Directorate for Education and 
Training, 2013). Sexual health education relates to 
biological aspects as well as socio-emotional and 
relational aspects (Timmerman, 2009), and is therefore 
covered in science lessons, among others. Central topics 
such as biological changes during puberty and the 
menstrual cycle are based on biology. During the first 
year in the teacher education program, participants’ 
specialized science courses focused on biology in the 
intertidal zone, basic geology, waves and sound, the 
solar system, sexual health, technology & design, and 
science pedagogy. The first author taught two units (the 
solar system, waves and sound) for a total of 12 hours. 
To avoid conflicts of interest with the research study, the 
first author did not participate in formal assessment of 
the PSTs in these two units. In their Research and 
Development course (R&D), the PSTs learned about the 
nature of science, educational research, and classroom 
leadership. Their Pedagogy and Students course (P&S) 
provided the PSTs with an overview of educational law 
and curricula, insight into how students aged 10-16 
learn, and experience in planning, enactment, and 
assessment of instruction (UiT Norges Arktiske 
Universitet, 2016).  

Participants 

From one cohort entering the middle school teacher 
education program, all PSTs who had chosen science as 
their subject 1 (16 PSTs) were invited to participate in the 
study; 12 of the PSTs gave their consent. The cohort was 
organized in field practicum groups by university 
administration. In order to be able to be present in the 
PSTs classrooms as much as possible, we wanted to 
study a few PSTs concentrated in a few field practicum 
groups. We requested that the administrator organize 
some of the groups with three PSTs who had given 
consent to participate in the study and had chosen 
science as their subject 1. The administrator, restricted by 

Table 2. Teacher Education Program Grade 5-10 
Year 15 ECTS 15 ECTS 15 ECTS 15 ECTS Practicum 
Year 1 Science (joint elementary 

and middle school PSTs) 
Science Subject 3 P&S (10) R&D (5) Field practicum,  

3+3 weeks 
Year 2 Subject 2 (joint elementary 

and middle school PSTs) 
Subject 2 Subject 3 P&S (10) R&D (5) Field practicum,  

3+3 weeks 
Year 3 Science (20) Subject 2 (20) R&D (5) R&D thesis Field practicum,  

3+3 weeks 
Year 4 P&S P&S Science, 

master course 
Science, master course Field practicum,  

4+2 weeks 
Year 5 Research methods Master thesis in science pedagogy — 
Science = Subject 1. P&S: Pedagogy and students. R&D: Research and Development. 60 ECTS = one-year full-time study. ECTS in brackets 
when differing from columns 
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various factors, was able to organize two such groups. 
These six PSTs, aged from 19-24 years, were the 
participants in the study (See Table 3). As Table 2 
indicated, PSTs focused on science and subject 3 in Year 
1 of the program. The administrator aspired to recruit 
mentor teachers teaching science and some of the other 
subjects which PSTs in the two practicum groups had 
chosen as their subject 3. In cooperation with the school 
practicum administrator, two of the experienced local 
mentor teachers with the preferred teaching subjects 
were recruited. 

Three of the PSTs, Ingvild, Jens, and Sanna 
(pseudonyms), were placed at school 1, in a grade 7 
classroom (11-12 years old). Out of the 32 students, 69% 
were Norwegians and 31% from the East, Middle East, 
or Africa. The mentor teacher was a female with more 
than 10 years of experience. She was not certified in 
science but enjoyed teaching science. The other PSTs, 
Jakob, Pia, and Lena (pseudonyms), were placed at 
school 2, in a grade 6 classroom with 20 students (aged 
10-11 years) of which all were Norwegians. The male 
mentor teacher had more than 10 years of experience and 
had science as a part of his initial teacher education. 
Within both groups, PSTs and their mentor teacher 
discussed lesson plans and issues regarding instruction, 
and they observed each other’s instruction. Both mentor 
teachers focused at issues regarding general pedagogy 
and taking account of the diversity of students. Selecting 
science topics for PSTs to teach was mentor teachers’ 
responsibility. PSTs were allowed to make their own 
choices on how to teach those topics. The school contexts 
and topics taught by each PST are described in Table 4. 

Data Sources 

The primary data source was two video stimulated 
recall interviews (SRI) from each of the six participants, 
revealing both reflection-in-action and reflection-on-
action (Meade & McMeniman, 1992). Using SRIs is a 
purposeful strategy to understand not only what 
teachers do (the what), but also their rationale for doing 
so (the why) (Gess-Newsome, 2015; Henderson & Tall-
man, 2006). Each PST was interviewed within three 
hours after two of their lessons in their school practicum. 
These lessons were selected by matching the researchers’ 
and PSTs’ schedules and identifying two available 
science lessons which also allowed for a SRI shortly 
afterwards. In the SRIs, the first 20 minutes of instruction 
were viewed in its entirety and the PST was instructed 
to pause the video every time she recalled any thoughts 
or feelings from the lesson. The first author then 
advanced the video to selected lesson events which 
related to students (e.g., when a student comment 
reveals a misconception) or instructional strategies (e.g., 
when PST assign students a specific task). As a response 
to PSTs sharing of reflections, the first author asked 
follow-up questions, which included both general 
prompts like ‘Tell me more about what happened here,’ 
and specific questions like ‘What did you think the 
student thought here’ or ‘Tell me why you chose to use 
this activity.’ Sources were elicited through asking ‘From 
where have you got knowledge about this?’ Each 
interview lasted 60-90 minutes. 

Data Analysis 

The data analysis process examined integrations of 
KSU and KIS at the levels of topic-specific PCK, 
discipline-specific PCK, as well as general PK. General 
PK, while separate from PCK, was included to give a 
more complete picture and more detailed analysis of the 

Table 3. Participants 
Pseudonym Years of high school specialized science  Teaching-related experience 
Ingvild 2 years biology, 2 years chemistry, and 2 

years technology and research 
Leader of leisure activities for 9-10 year old kids 

Jens None None 
Sanna 1 year advanced mathematics, 2 years 

chemistry, and 2 years geology 
Leader of leisure activities for 15-18 year old kids 

Jakob 2 years biology Leader of leisure activities for 5-17 year old kids 
Pia None Substitute teacher, immigrant language training 
Lena  None Children and youth worker. Practicum in lower secondary 

school for 6 months, in kindergarten 1.5 years 
 

Table 4. Science topics taught in school practica 
PST Field practicum school Topics field practicum 1, fall semester Topics field practicum 2, spring semester 
Ingvild School 1 

 
 

Nutrition Sexual health* 
Jens The eye Animals, nutrition, drugs 
Sanna Energy content in food Sexual health* 
Jakob School 2 Male puberty* Energy, energy and fuel, energy sources 
Pia Female puberty* Renewable energy, fossil fuels 
Lena Puberty* Energy, Technology & Design* 
* = Taught at the University prior to the lesson in field practicum. Topics in bold: Lessons followed up by interviews 
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knowledge PSTs drew on. For simplicity in showing 
integration, all the levels are located within the 
categories of KSU and KIS. SRIs were transcribed using 
QSR International’s NVivo 12 Plus software (2018). The 
interviews, along with the corresponding audio of the 
video-recordings of the lesson, were transcribed. The 
data analysis description is organized by research 
question. 

Research Question 1 

Step One. The SRI transcripts were divided into 
instructional segments. An instructional segment is 
defined as a section of the interview and video lesson 
transcripts related to a particular instructional strategy 
(e.g., PST verbally explains electric current to a student) 
or other distinct phase in instruction such as specific 
example within the use of an instructional strategy (e.g., 
answering one of several anonymous questions from the 
students about puberty) or changing focus to a different 
student. Instructional segments had an average length of 
approximately four minutes.  

Step Two. Instructional segments were analysed and 
assigned one or both of the codes KIS and/or KSU. 
Coding with KIS indicated that the segment included 
reflections about an instructional strategy. Coding with 
KSU indicated PST’s reflections on individuals or groups 
of students in the segment. Reflections included in the 
coding could stem from lesson planning or enactment. 
Instructional segments coded to both KIS and KSU 
(hereafter called integrated segments) were re-read to 
ensure the components were integrated, and not just 
mentioned in the same segment. We also analysed 
whether KSU informed KIS in the segment. The 
integrated segments were analysed further in order to 
represent the diversity within the KIS — KSU 
integration, as described below in Step Three. 

Step Three. First, integrated segments were assigned 
one or more subcodes in the category KSU, (i.e., 
requirements for learning and areas of difficulty) 
(Magnusson et al., 1999), as well as emerging inductive 
codes on student characteristics. Student characteristics 
included science-specific student characteristics, related to 
requirements for learning within PCK, and general 
student characteristics, related to PK. Both were essential 
parts of PSTs’ knowledge of students critical to science 
instruction, and therefore included in our coding. 
Second, integrated segments were assigned one subcode 
within the category KIS, organized by topic-specific and 
science-specific strategies (Magnusson et al., 1999) as well 
as general pedagogical strategies. We define topic-specific 
strategies as developed and/or adapted for a specific 
science topic, while science-specific strategies are 
suitable across science topics. General pedagogical 
strategies are suitable across school subjects and were 
included in our coding to represent the full repertoire of 
instructional strategies implemented by the PSTs. 

Step Four. Next, all integrated segments were 
inductively coded for rationale, which is the inferred 
reason for the instructional strategy used in the segment. 
For example, student participation was one subcode 
within the rationale category, and it was assigned when 
an instructional strategy seemed to be enacted to engage 
students. Another subcode was application, assigned 
when a strategy was used to apply scientific knowledge 
to students’ lives. The first author coded all of the 
material, while both authors coded some transcripts to 
ensure accurate coding. When in doubt, both authors 
discussed the coding to reach agreement. In online 
Supplemental Table S1, we illustrate coding of an 
integrated segment. 

Step Five. After all integrated segments were 
assigned subcodes from the three categories: KSU, KIS 
and rationale, the subcodes in both SRIs for each PST 
were summed up and represented as PCK maps. In prior 
research, PCK maps have been used to show integration 
at the category level (i.e., KSU, KIS) (Akin & 
Uzuntiryaki-Kondakci, 2018; Park & Chen, 2012; Park & 
Suh, 2019). Our maps differ in grain size and focus on 
integration at the subcode level. Regardless of length of 
the integrated segment, and whether double coding was 
based on larger parts of the segment or a single sentence, 
every double coding counted as one. The example map 
(Figure 2) shows for the case of Sanna, 20% or more of 
the total of 21 integrated segments were coded to prior 
knowledge (KSU), and topic-specific representations (KIS). 
The integration of prior knowledge and topic-specific 
representations is represented with a thin, continuous 
arrow indicating that 10-14% of the 21 integrated 
segments were double coded to these subcodes. 

Step Six. To complete the analysis of integrations, the 
PCK maps were analysed individually and across cases, 
similar to Park and Chen (2012). The authors visually 
identified common patterns and differences across the 
six PCK maps. 

Research Question 2 

To identify PSTs’ sources of integration of KSU and 
KIS, each integrated segment was analysed for 
references to specific sources of the evident KSU or KIS, 
and the integrations of those. Codes for this analysis 
emerged from the data; some example codes include 
personal learning experience, mentor teacher, and specialized 
science courses. See online supplemental Table S2 for an 
example of how sources are coded to an integrated 
segment. 

RESULTS 
We present our results as four cross-case assertions. 

The first three assertions unpack the nature of the 
integrations of KSU and KIS based on the PCK maps. 
The final assertion relates to the identified sources 
contributing to the PSTs’ integrations.  
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Assertion 1: The PSTs Held Highly Integrated 
Knowledge of Students with Knowledge of 
Instructional Strategies 

Among the 192 instructional segments identified 
across all the PSTs’ interviews, 91% were integrated 
segments (Table 5). The PSTs were quite similar in this 
regard, with the individual percentages of integrated 
segments ranging from 88-93%. In the majority of the 
integrated segments (range of 52-86%), the PSTs were 
using their KSU to inform their instructional decisions. 
The decisions were at the topic specific PCK, science-
PCK, and general PK levels. This indicates that they, 
despite being beginner PSTs, made efforts to tailor the 
science instruction based on the knowledge of students 
in general and their specific students. 

 

Within the KSU category, one of the subcodes was 
conceptual difficulties. In one of Jakob’s segments, he 
integrated knowledge of conceptual difficulties with KIS. 
He had searched online for proper illustrations of 
pimples, but the one he found was too complex for his 
purpose. He explained, ‘It showed lots of skin layers, 

and I thought it would be too much [Category: KSU, 
subcode: conceptual difficulties]. I just want to limit it, just 
want them to focus on this (pimples) [Category: KIS, 
subcode: topic-specific representations]’ (Jakob, SRI1). Jakob 
knew that his students would have difficulty 
understanding how pimples develop if he used a 
complex illustration. Therefore, he chose to draw his 
own simple illustration of skin with one hair follicle to 
show how pimples develop. In another integrated 
segment, Pia reflects on how her knowledge of student’s 
prior knowledge (KSU) informed her choice to initiate a 
topic-specific discussion (KIS) about similarities between 
formation of peat and petroleum: ‘Aud (student) clearly 
remembered peat as a renewable energy source, and all 
the others remember peat was built of multiple layers. 
We have to draw on that and compare to formation of oil 
and gas’ (Pia, SRI2). In this example, Pia’s knowledge of 
prior knowledge informed her initiative for a whole class 
topic-specific discussion, which next uncovered more prior 
knowledge.  

The participant examples show integration of KSU 
and instructional strategies in which PSTs’ KSU 

 
Figure 2. All integrated segment coding for Sanna, represented in a PCK map 

Table 5. Instructional segments and integrated segments 
Segments Ingvild Jens Sanna Jakob Pia Lena All PSTs 
Instructional segments 40 33 23 42 29 25 192 
Percentage of integrated segments  93% 88% 91% 90% 93% 88% 91% 
Percentage of integrated segments with KSU 
informing instructional decisions (KIS) 

70% 52% 74% 69% 86% 72% 70% 
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informed their instructional decisions; this occurred in 
70% of the transcribed instructional segments. Some of 
the integrations occurred during lesson planning, while 
other integrations occurred during enactment of the 
lesson. 
Assertion 2: In the Integrated Segments, the PSTs 
Varied in their Emphasis within the Category of KSU. 
Some of the PSTs Focused on Requirements for 
Learning and Areas of Difficulty, while Others 
Focused on Student Characteristics 

Within the integrated segments, PSTs reflected on a 
variety of aspects of KSU, represented by the emergent 
subcodes: prior knowledge, current understanding, 
conceptual difficulties, misconceptions, science-specific 
(PCK), and general student characteristics (PK). Integrated 
segments were often assigned multiple subcodes, 
indicating that the PST reflected on several subcodes of 
KSU within one instructional segment. PSTs’ reflections 
were based on their knowledge of students in general 
and their specific students in the practicum classroom. 
Table 6 shows the percentage of their reflections for each 
subcode within KSU. Jens, Jakob and Lena reflected 
more than the other PSTs on students’ conceptual 
difficulties and misconceptions (21% of their integrated 
segments on average, compared to Ingvild, Sanna, and 
Pia with 8% average). On the other hand, Ingvild, Sanna, 
and Pia reflected more than the other PSTs on student 
characteristics (40 % of their integrated segments on 
average, compared to Jens, Jakob and Lena with 28% on 
average). Examples of different foci within KSU follows. 

First, a focus on conceptual difficulties and 
misconceptions is exemplified with reflections from 
Jens. In his instruction about the eye, he noted that a 
student misunderstood how the pupil responds to light. 
´She did a mistake about when the pupil contracts and 
expands . . .. I don’t think she really understood it´ 
(SRI1). The student believed the pupil expands with 
exposure to light. Jens recognized that this particular 
student held a misconception of how the pupil works. 
Jens focused on student misconceptions in 14% of his 
integrated segments. Second, a focus on student 
characteristics is exemplified with reflections from 
Ingvild. During her instruction about nutrients in food, 
she thought of how students would perceive that fish 
was the only source of unsaturated fat she used during 
instruction.  

I just mentioned salmon and fish. I thought I 
should mention, because I am not sure if there 
might be vegetarians among the students. Just to 
mention that you might find it [unsaturated fat] in 
avocado. Or if someone might not like fish, and I 
am sure there is, it is present in fruits and 
vegetables, too (Ingvild, SRI1).  

By this example, Ingvild showed that she had topic-
specific student characteristics in mind while teaching. 
In summary, data analysis revealed that the PSTs 
identified a broad range of students’ requirements for 
learning, areas of difficulty and student characteristics. 
All categories of KSU were frequently discussed in 
integrated segments. This indicates their broad attention 
to students, rather than focusing on themselves and their 
teaching delivery. 

Assertion 3: In the Integrated Segments, the Major of 
the Instructional Strategies were Topic-Specific; 
These Strategies were Used to Either Clarify the 
Science Content, Apply it to a Familiar Setting, or 
Engage Students 

Instructional strategies are the teacher moves enacted 
in instructional segments. The participating PSTs 
demonstrated a limited range of instructional strategies. 
Overall, their instruction was discussion-based. Further, 
experiments were almost absent. In this study, however, 
our focus was to investigate integrations between KSU 
and KIS. We define topic-specific strategies as developed 
and/or adapted for a specific science topic, while 
science-specific strategies are suitable across science 
topics. General pedagogical strategies are suitable across 
school subjects and belong in the knowledge domain of 
PK. Percentages of integrated segments with each 
subcode of KIS are presented in Table 7. On average, 88% 
of instructional strategies in the integrated segments 
were topic-specific, 2% science-specific, and 10% general 
pedagogical strategies (Table 7). The emphasis on topic-
specific instructional strategies applied to all the PSTs. 
Topic-specific activities were discussed in 20% of the 
integrated segments on average. These are tasks, 
demonstrations, simulations, enquiries, and 
experiments about specific science concepts or topics. 
The rationale for an instructional strategy is the inferred 
reason describing why the instructional strategy was 

Table 6. Coding to subcodes in the category of KSU. Percentages of PSTs’ integrated segments  
KSU subcodes Ingvild Sanna Pia Jens Jakob Lena 
CK subcodes 
 Prior knowledge 19 % 29 % 22 % 14 % 16 % 5 % 
 Current understanding 22 % 29 % 15 % 48 % 32 % 32 % 
 Conceptual difficulties 11 % 19 % 4 % 31 % 24 % 32 % 
 Misconceptions 3 % 0 % 11 % 14 % 13 % 14 % 
 Science-specific student characteristics 46 % 24 % 48 % 14 % 39 % 32 % 
PK subcodes 
 General student characteristics 24 % 52 % 48 % 17 % 18 % 50 % 
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used. Each PST integrated at least one topic-specific 
strategy with each of the following rationales: 
clarification, application, and student participation. In his 
instruction about the eye, Jens used a topic-specific 
activity with student participation as rationale. He asked 
students to extend their arms more than 90o to the sides 
and observe that they could still see their arms. ´Video 
Lesson Transcript: If you hold your hands out like this, 
(both hands extended to the sides) you can see that you 
have side vision, slightly more than 180o actually´ (SRI1). 
Through this topic-specific activity, Jens helped students 
understand the concept of peripheral vision by actively 
involving the students. 

Topic-specific representations were used in 40% of all 
PSTs’ integrated segments. Topic-specific 
representations are illustrations, examples, models, and 
analogies about specific science concepts or topics. Jakob 
discussed topic-specific representations in 71% of his 
integrated segments, the highest percentage among the 
PSTs. In Jakob’s instruction about male puberty, he 
projected a road construction sign on the screen as an 
analogy to illustrate that the human brain is reorganized 
during puberty. The rationale for using this 
representation was application. He wanted to apply the 
concept of changes in the brain during puberty to a 
familiar example, road signs. In this reflection, he 
explains why he used a sign as a representation. 

When they see (the road construction sign), they 
have something visual to connect to. It is not just 
words, but I talk about the brain and they see the 
roadworks sign. Then they can “OK, it is closed 
for the moment”. Because I could almost talk 
about a road and pipes being moved around and 
stuff. They see that “Yes, things are remodelled 
here” (Jakob, SRI1).  

The road construction sign served as a topic-specific 
representation (i.e., analogy) for puberty. 

Topic-specific discussions are discussions of specific 
science content or topics. These include student-student 
talk and student-teacher talk about topic-specific issues. 
Topic-specific discussions were used in 28% of all 
integrated segments. Sanna used a topic-specific 
discussion in her instruction about sexual health with 
student participation as rationale. Students were asked to 

discuss which rules they thought would be necessary to 
have for the further classroom talk about sexuality. 
Sanna explained her use of this strategy: 

I think it is important to put into words, that we 
make sure we stay respectful in this topic. There is 
so much talking about personal and perhaps 
slightly vulnerable topics. So, it is completely clear 
that this is how we behave (Sanna, SRI2).  

Sanna wanted students to be involved in designing rules 
for the classroom discussions about the sensitive topic of 
sexuality. This topic-specific discussion resulted in rules 
like ‘We don’t share personal experiences.’ 

Science-specific strategies are suitable across science 
topics. There was little evidence of science-specific 
strategies in the interviews (2% of the integrated 
segments). In one example, Lena reflected on the 
sequence of her instruction in technology and design. 
She started out with theory about electric circuits. Then 
students got a worksheet with different wiring diagrams 
and predicted if the bulb would light in each diagram. 
Finally, students tested their predictions with a battery, 
wires, and a bulb. She shared this reflection about the 
structure: ´I started out with theory and closed with the 
practical´ (SRI2). Lena saw this pattern as natural for 
various topics within science and used it to teach 
electricity in her technology and design lesson. 

All PSTs used primarily topic-specific activities, 
representations, and discussions. The purposes of 
clarification, application, and student participation were 
often integrated with these strategies. The above 
examples show that instructional strategies were diverse 
and uniquely designed by the PSTs themselves. Rather 
than relying on PK, the participating beginner PSTs used 
their PCK to design their lessons and choose 
instructional strategies. 

Assertion 4: The PSTs Referred Specialized Science 
Courses, Peer PSTs, Personal Learning Experiences, 
and Mentor Teachers as the Sources of their KSU, 
KIS, and Integration of Those 

Table 8 shows the frequency of integrated segments 
with references to sources for each PST. Note that PSTs 

Table 7. Coding to subcodes in the category of KIS. Percentages of PSTs’ integrated segments 
KIS subcodes Ingvild 

N=37 
Jens 

N=29 
Sanna 
N=21 

Jakob 
N=38 

Pia 
N=27 

Lena 
N=22 

All PSTs 
N=174 

General pedagogical strategies (PK) 22 % 3 % 14 % 8 % 7 % 0 % 10 % 
PCK instructional strategies 
 Science-specific strategies 3 % 0 % 0 % 0 % 0 % 14 % 2 % 
 Topic-specific strategies 76 % 97 % 86 % 92 % 93 % 86 % 88 % 
Subcodes of topic-specific strategies 
 Topic-specific activities 19 % 31 % 24 % 8 % 15 % 32 % 20 % 
 Topic-specific representations 16 % 52 % 29 % 71 % 30 % 36 % 40 % 
 Topic-specific discussions 40 % 14 % 33 % 13 % 48 % 18 % 28 % 
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referred to more than one source in some of the 
integrated segments. 

Specialized science courses for PSTs at the university 
were the most frequently cited source for KSU, KIS, and 
integrations. Sexual health was taught in a specialized 
science course a short time before Lena’s first field 
practicum. She used a puberty video shown in the 
specialized science course as an introduction to her 
lesson. ́ We discussed this video, because it was included 
in the campus instruction, where some used that video´ 
(SRI1). She chose to use this video after first discussing 
its appropriateness with her PST peers. Jakob reflected 
on his instruction about renewable fuels and attributed 
the specialized science course as being highly influential. 
‘We have had many examples of what you can do (in 
science instruction) and much more knowledge about. 
Unlike math which I have not had any (courses in before 
teaching it in field practicum)’ (SRI2). Jakob stated that 
specialized science courses were an important source for 
his own practice as a PST. 

Peer PSTs was the second most frequently mentioned 
source. Jakob borrowed an instructional strategy 
designed by Lena for his instruction about renewable 
fuels. She wanted to illustrate that a time span of several 
thousand years is considered a relatively short time span 
in comparison to the millions of years it takes to form 
fossil fuels. Students were asked to put on their ´physics 
glasses´ by forming circles with their fingers and holding 
them up to the eyes. 

Lena has taken this up with them, with the physics 
glasses. And then I think we’ve used it here before 
with them. There is something they know, then I 
think then we can continue to use it as a concept 
of thought (Jakob, SRI2). 

Jakob used Lena’s successful strategy to help students 
think in a geological time scale. Peer PSTs were a 
frequently mentioned source for integrations of KSU and 
KIS. In Ingvild’s lesson on sexual health, peer PSTs 
supported her by anticipating that students in the group 
would pose few anonymous questions about sexuality 
when asked (KSU). So, they agreed to write some 
questions as inspiration, making the instructional 
strategy of answering anonymous questions more 
effective in the specific group (KIS) (Ingvild, SRI2). 

In eight integrated segments, PSTs referred to their 
own personal learning experiences as a source; these were 

experiences from their former schooling. Ingvild 
reflected upon her use of online videos in her nutrition 
lesson. She had experiences from school that videos in 
science instruction often had connected to elements in 
her own life as a child. This led to her use of videos in 
her own instruction. Therefore, personal learning 
experience was a source of KSU-KIS integration. In 
Sanna’s instruction about energy content in food, she 
had students eat either a piece of potato chip or carrot 
and later burn the equivalent of the energy in the portion 
by jumping on their chairs. Her personal learning 
experience was the source of this instructional strategy. 

I remember it (the chip and carrot activity) from 
lower secondary school. That it was fun, and we 
realized the difference in that it is very much 
energy in a small amount of potato chips, and 
intermediate or little energy in a small carrot. 
Moreover, they got to feel on the body what 
energy in food is (Sanna, SRI1). 

Here, Sanna shared how she made use of a topic-specific 
instructional activity from her experience as a student in 
lower secondary school to teach how foods vary in 
calories. 

Mentor teachers were the final source identified by the 
PSTs. Each group of three PSTs was mentored by a 
teacher at their practicum school. Ingvild talked to the 
mentor teacher before her instruction about sexual 
health. She received information about how the students 
usually responded to talking about sexuality, which 
informed her use of a task where all students handed in 
anonymous questions  

The student group is quite mixed both with 
background from different cultures and it is not 
everyone who is equally open about this at home. 
Therefore, we also consulted with the mentor 
teacher, which had consulted with the mother 
tongue teacher (Ingvild, SRI2). 

Ingvild’s mentor teacher reminded her to consider 
cultural differences among the students, and thereby 
integrate KSU and KIS. Pia also consulted with her 
mentor teacher before teaching female puberty. The 
mentor teacher shared thoughts about the students’ 
attitudes towards sensitive topics, and provided advice 
regarding whether the boys should participate in the 
instruction about tampons. The mentor teachers was 

Table 8. Integrated segments with references to sources of KIS, KSU, and integrations 
Source KSU KIS Integrated KSU—KIS Sum KSU, KIS, and integrations 
Specialized science courses 0% (0) 24% (9) 10.5% (4) 34.5% (13) 
Peer PSTs 8% (3) 8% (3) 13% (5) 29% (11) 
Personal learning experience 0% (0) 8% (3) 13% (5) 21% (8) 
Mentor teacher 5% (2) 0% (0) 10.5% (4) 15.5% (6) 
Total 13% (5) 40% (15) 47% (18) 100% (38) 
Number is parenthesis refers to actual frequency. 
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identified as a minor source. They selected the topic to 
be taught, but allowed the PSTs to choose how they 
would teach the topic. 

Specialized science courses, peer PSTs, personal learning 
experiences, and mentor teachers were sources for PSTs’ 
KSU, KIS and integrations of those categories. However, 
instructional strategies were not implemented in an 
uncritical way. The PSTs’ use of sources was 
characterized by acknowledging the uniqueness of the 
current context and reflection of each instructional 
strategy’s appropriateness.  

DISCUSSION 
This study addresses a gap in the literature regarding 

teachers’ enacted PCK and the nature of integration 
among the PCK components KSU and KIS. Research 
indicates that expert teachers integrate all five PCK 
components (Park & Chen, 2012; West, 2011), while 
novice teachers show less complex integration (Akin & 
Uzuntiryaki-Kondakci, 2018). Although the two 
components, knowledge of students’ understanding and 
instructional strategies has been a focus in PCK research 
(Brown et al., 2013; Chan & Hume, 2019; van Driel et al., 
2002); the specific nature of integration between these 
components remains unexplored. Building on Park and 
Chen’s (2012) PCK mapping approach, we did a fine-
grained analysis of six beginning PSTs’ integrations of 
knowledge of students and instructional strategies based 
on reflections on their instruction. We took a 
comprehensive approach by looking at integration at the 
PK, science-PCK, and topic-specific PCK levels. We 
discuss the integration of knowledge of students with 
knowledge of instructional strategies, primarily topic-
specific strategies; and the sources contributing to these 
integrations. 

KSU was Integrated with KIS, Primarily Topic-
Specific Strategies 

Researchers have reported that beginning teachers 
lack integrated PCK for specific topics (Akin & 
Uzuntiryaki-Kondakci, 2018; Aydin et al., 2015; Brown et 
al., 2013; Sickel & Friedrichsen, 2018). The current study 
contributes to the literature by reporting a contrasting 
finding in that the six PSTs did show integration of these 
two PCK components at the topic level. Further, we add 
to the literature by unpacking the mechanisms of this 
PCK integration. We show empirical evidence of their 
frequent and complex integration between KSU and KIS 
in the realm of ePCK. The PSTs frequently identified 
students’ prior knowledge and current science 
understandings. Across the material, we discovered 
PSTs’ awareness of students’ foundational knowledge 
suitable to build on, not just their misconceptions. This 
indicates progress in science teachers’ PCK development 
(Schneider & Plasman, 2011). The PSTs used this 
knowledge and other elements of KSU to inform 

instructional decisions. Five of the lessons we studied 
were about sexual health. Timmerman (2009) showed 
that teachers typically emphasize students’ conceptions 
during sex education, including for example knowledge 
about youth’s lifestyle. Thus, the topic itself may have 
led PSTs in the current study to considering students 
more. However, Timmerman (2009) also showed that 
teachers may remain focused on the impersonal aspects 
of sexual health, such as the menstrual cycle and 
contraception. PSTs in our study chose to include and 
focus on aspects relevant for students such as the socio-
emotional and relational aspects, strengthening their 
KSU – KIS integration. All PSTs in the study integrated 
these two PCK components, seen as important for 
effective teaching (Akin & Uzuntiryaki-Kondakci, 2018; 
Park & Chen, 2012). Friedrichsen et al. (2009) reported 
that beginning teachers who lacked a teacher education 
background did not develop PCK from teaching 
experience alone. Our finding of PCK integrations in the 
realm of ePCK aligns with and deepens insights from 
prior research indicating significant intra-relationships 
between knowledge of students and knowledge of 
instructional strategies for PSTs (Kaya, 2009) and 
identification of instructional strategies and student 
thinking as PCK components linked by PSTs (Schneider, 
2015). 

In regard to various forms of KSU, we add to current 
understanding of PSTs’ attention to students in that Jens, 
Jakob, and Lena focused on students’ difficulties, while 
Ingvild, Sanna, and Pia focused on student 
characteristics. We conjecture that when teachers focus 
on students’ learning difficulties, this indicates an 
emphasis on the science content, while teachers focusing 
on student characteristics indicates their emphasis on 
students in general. Lidstone and Hollingsworth (1992) 
found that some teachers focused on classroom 
management and content knowledge, while other 
teachers focused on students. As Lidstone and 
Hollingsworth (1992) suggested, we also think that 
teachers who focus on students (e.g., Ingvild, Sanna and 
Pia) benefit from working with teachers focused on 
content (e.g., Jens, Jakob, and Lena). Within the field 
practicum groups, PSTs did this as they planned lessons 
together and discussed their instruction. Careful 
grouping of PSTs in field practica, as well as supportive 
mentoring, can broaden the PSTs’ focus of attention. 

This study contributes evidence of PSTs’ use of topic-
specific instructional strategies. Topic-specific 
representations, activities, and discussions dominated in 
the PSTs’ instruction. These were strategies developed 
for teaching specific science topics, or general 
pedagogical strategies adapted or applied to the specific 
topic. For example, Jakob taught about pimples by 
making a representation with the essential components 
of the skin only. Jens initiated a topic-specific activity 
where students looked at their thumbs with one eye, 
discovering that the thumbnail seemed to disappear 
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when in the blind spot. And Ingvild initiated a topic-
specific discussion with the student groups on etiquette 
while discussing the sensitive topic of sexuality. The 
frequent topic-specific strategies contradicts earlier 
research indicating beginning teachers enact mostly 
general pedagogical strategies (Friedrichsen et al., 2009). 
Rather than implementing existing unit plans, the PSTs 
in the current study planned each lesson they taught, 
reasoning about the students’ needs, what was 
important to cover in the topic, learning goals in the 
national science curriculum, and different instructional 
resources. When no suitable instructional strategy for 
teaching a specific topic was available, PSTs were 
creative and adapted existing general pedagogical 
strategies to the topic at hand, or invented new topic-
specific instructional strategies. Because the PSTs were 
required to plan their own lesson, rather than rely on 
existing lesson plans, this may have contributed to their 
integration of KSU and KIS. 

Although inquiry-based teaching is seen as 
important in science education (Crawford, 2014; 
Lederman & Lederman, 2019), it was largely absent from 
our material. One of few examples of experiments were 
enacted by Jakob in his lesson about energy and fuel. He 
demonstrated burning of washcloths made of different 
materials, after students suggested hypothesises on 
which cloth would burn more easily. However, the 
experiment was loosely connected to the topic of the 
lesson. This finding suggests that PSTs need strong 
support to teach science as inquiry. 

The rationale for PSTs’ instruction varied. Rationale 
is the inferred reason describing why the instructional 
strategy in a segment was used. Each PST integrated at 
least one topic-specific strategy with each of the 
following rationales: clarification, application, and student 
participation. This finding shows complexity of PCK 
integrations not described in the literature. It is evidence 
that PSTs not only used suitable instructional strategies 
to transform their content knowledge for teaching, but 
instructional strategies were used to serve a variety of 
goals in response to students’ needs. For instance, Jakob 
used a topic-specific representation to apply the concept 
of emotional confusion during puberty to the students’ 
lives. 

Sources Contributing to Integration of KSU and KIS 

The PSTs referred to specialized science content 
courses, peer PSTs, personal learning experiences, and 
mentor teachers as sources contributing to their KSU, 
KIS, and KSU-KIS integrations. 

Most of the PSTs identified the specialized science 
courses as a source of KSU, KIS and integrations. Ingvild 
referred to specialized science courses as the source 
when using a topic-specific discussion to help students 
think about healthy food (Ingvild, SRI1). Jakob stated 
that participating in specialized science courses boosted 

his confidence for teaching. Compared to teaching 
mathematics, in which he had no university courses, he 
had higher confidence when teaching science. He 
explains that in science, ‘We have had lots of examples 
of what to do and much more knowledge’ (Jakob, SRI2). 
Integration of KSU and KIS was supported directly by 
specialized science courses. For example, Lena brought 
a heightened attention to issues of homophobia and 
ways to work with this in classes from a specialized 
science course (Lena, SRI1). Grossman (1990) pointed 
towards subject-specific teacher education as facilitating 
PCK development. Our findings show that specialized 
science courses were useful sources for PSTs in 
developing their PCK. Specialized science courses 
presented science content in a practical way, aiming to 
prepare teachers for school science teaching in topics 
relevant for primary and lower secondary school. 
Course instructors emphasized common 
misconceptions, and how to address them in a school 
setting. It seems likely that specialized science courses 
was a major cause to the PCK integrations we have 
identified. The relationship between specialized science 
courses and PSTs’ PCK development should be a subject 
for further investigation. 

Each PST worked closely with peers and a classroom 
mentor during field practica. Peer PSTs was the second 
most frequently mentioned source, while classroom 
mentors were occasionally referred. All PSTs discussed 
lesson plans and issues regarding instruction with peer 
PSTs and the classroom mentor, and they observed each 
other’s instruction. In some lessons, peer PSTs helped 
each other during instruction. For example, when Sanna 
viewed video recordings of her explanations about kids 
with ambiguous sex, she came up with this reflection 
‘[Here I am] looking at Ingvild. This was something we 
had discussed. To be sure it was right, I had to look at 
her’ (Sanna, SRI2). Also, Sanna was inspired by her 
classroom mentor to build on the prior lesson, she stated 
‘[When observing her instruction], she was good at that’ 
(Sanna, SRI1). Our findings indicate the value of placing 
PSTs in groups for field practica, mentored by a 
classroom teacher. In the Refined Consensus Model of 
PCK (Carlson et al., 2019), collective PCK (cPCK) is 
represented as the realm of PCK outside of the specific 
learning context, e.g., the PCK available in a team of 
teachers. In the current study, PSTs referring to each 
other represents personal PCK (pPCK) developing from 
cPCK available in the group, which is a contribution of 
the study. 

Experience as learners in school was a source for 
PSTs’ KIS and integrated KSU and KIS. For instance, Jens 
reflected that he had always been a knowledgeable 
student who often explained concepts to others; he used 
this experience as a resource when using a topic-specific 
representation to clarify for the students why we see 
colours (Jens, SRI1). Ingvild used a topic-specific 
instructional strategy for teaching concepts in her lesson 
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on nutrients, inspired by her high school biology 
teacher’s lesson. Developing PCK from earlier 
experiences as ‘apprenticeship of observation’ is known 
to be a complex affair for PSTs (Juhler, 2017). Many years 
of observing instruction of specific content is a resource 
of instructional strategies for PSTs, but drawing upon 
this experience can also conserve teaching (Grossman, 
1990). Interestingly, PSTs generally did not seem to 
adopt instructional strategies they had experienced as 
learners without first reflecting upon them from a 
teachers’ point of view. Personal learning experiences 
also helped PSTs integrate KSU and KIS. For example, 
Sanna’s experience with eating a piece of potato chips 
and later burning the equivalent of the energy in the 
portion by jumping on her chair in middle school 
inspired her acknowledging that students learn better by 
being active, and implemented the same activity in her 
own instruction (Sanna, SRI1). When inspired by her 
former high school biology teacher to use the picture-
concept instructional strategy, Ingvild reasoned that 
students could ‘make connections and get to talk about 
it, discuss the words. And I got the opportunity to see ... 
particular issues which several struggled with’ (Ingvild, 
SRI1). This way, Ingvild used prior learning experience 
as a source of KSU-KIS integration. Rather than adopting 
practices uncritically, the PSTs seemed to select from 
their most productive learning experiences as they 
planned their lessons. This finding provides evidence 
that the PSTs were working to overcome the challenges 
of ‘apprenticeship of observation’. 

IMPLICATIONS 

For Teacher Education 

Our findings indicate that an early emphasis on 
knowledge of students’ understandings in pedagogy 
courses and specialized science courses facilitates PCK 
integration. The PSTs participating in the current study 
had topic-specific PCK for the topics in the studied 
lessons, and they showed a reflective use of prior 
learning experiences. Therefore, PSTs should not be 
treated like blank slates to be filled with knowledge for 
teaching by teacher educators. In regard to additional 
sources of knowledge, PSTs should be encouraged to 
collaborate with each other, to draw upon and critically 
examine their emerging cPCK. 

For Future Research 

Our analysis introduces a new level of detail to the 
PCK maps designed by Park and Chen (2012). Through 
fine-grained analysis, we unpacked the details in 
instructional segments with regard to integration of 
knowledge of students’ understanding and instructional 
strategies. Detailed PCK maps based on stimulated recall 
interviews can benefit PCK research by providing access 
to individual teachers’ ePCK. There is need for a closer 

look at integration among the remaining PCK 
components. Further, the surprisingly positive findings 
from the current study of PSTs invites a detailed 
comparison of beginner and experienced teachers’ PCK 
integration to understand the factors of effective 
teaching. Lastly, specialized content courses’ impact on 
PSTs’ development of integrated PCK should be a case 
for further investigation. 
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APPENDIX 

Supplemental Material A 

In Table S1, we illustrate coding of an integrated segment from Jakob’s instruction about male puberty. At the 
start of the video lesson transcript, Jakob reflected on how students approach talking about sex. Therefore, the 
integrated segment was coded to science student characteristics (KSU). As an illustration of how kids change attitude 
towards sex throughout puberty, Jakob chose to act as if he virtually ‘moved’ sex from the category of ‘nasty words’ 
in a kid’s brain to the category of ‘interesting words’. This was coded to topic-specific representations (KIS). The 
representation was enacted in order to apply knowledge about pubertal change in the brain to the students’ own 
lives. The integrated segment was therefore coded to application (rationale). 
Table S1. Coding of integrated segment 
Integrated segment from Jakob, SRI1 Topic for instruction: Male puberty Coding of the 

integrated segment 
Video Lesson Transcript:  
Jakob: Because right now, if I say “sex” for example, and all that, I see all, I see just Jenna (student) just 
“tchhh”. You think I am a bit nasty, just. Love and everything like that is a bit disgusting. Like “No, no, no, 
let’s not talk about that”.  
And that is a little inconvenient if humanity is to carry on. Because it has to turn to something “mm, this was 
not that bad”. And that is what happens inside the brain right now. One goes into the brain and take a big box 
like “yuck” and a box thinking “not so bad”, and one take “hm, it has to go over in that one” (Jakob is acting 
as if he move something from an imagined “yuck” box to a “not so bad” box). So then much is rearranged. 
And this gets fixed with hormones.  

 
 
Category: KSU,  
subcode: science 
student 
characteristics 
 
 
Category: KIS,  
subcode: topic-
specific 
representations 
 
 
 
Category: rationale,  
subcode: application 
 

SRI Transcript: 
First author: You use a model here, an illustration here now (referring to another illustration). Can you 
say something about what you thought there and then? 
Jakob: (Answering about the moving of sex to another box.) That one was not planned at all. It was in 
the very second that thought “I can do that”  

First author: What did you say? 
Jakob: It was not planned to take that way there you have a box and then it will be moved over. That was in 
the moment-planning. So it was. So, I have had quite a lot of such a church and devotionals there. And then it 
is a lot of comparison. So I feel I have quite good control of finding things similar to what I’m just talking 
about. Because that’s a parable. Because you explain a parable of taking a new parable. So I feel I’ve got control 
of that.  

 

Supplemental Material B 

Table S2. Example of coding sources of instructional strategies 
One of Ingvild’s integrated segments, SRI2 Topic for instruction: Sexual orientation and gender 
identity 

Coding: Sources 

SRI Transcript:  
First author: Please tell me more about where you got inspiration for this lesson. 

 
 

Source of KIS: 
Specialized science 
courses 

Ingvild: There are really a lot from ‘Week Sex’ (curricular material used in their specialized science 
course). Both the rule activity and ‘four corners,’ coming after the break. That one is from grade 8-10 
actually, but it is also mentioned for grade 5-7. I experienced the ‘anonymous questions’ activity in 
the science instruction, and it is mentioned in ‘Oppdag naturen’ 
First author: Yes, your textbook at the university?  
Ingvild: Yes, within biology. 

 

 
 
 
 

 

http://www.ejmste.com 
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Abstract  

Specialized science courses (SSCs) integrate content knowledge (CK) with 

pedagogical content knowledge (PCK) and prepare pre-service teachers (PSTs) 

for reform-oriented teaching. Studies of individual SSCs report positive short-

term outcomes, including an increase in self-efficacy and CK. However, few 

studies explore the longer-term impact of SSCs on classroom teaching. We 

carried out an exploratory case study of three PSTs from a Norwegian teacher 

education program that included SSCs. In the context of their field practicum, 

we compared PSTs’ teaching of topics taught in SSCs (aligned lessons) with 

topics not taught in SSCs (unaligned lessons). Data collection consisted of field 

observations of one aligned and one unaligned lesson as well as stimulated recall 

interviews based on video recordings. In our analyses, we compared PSTs use of 

instructional strategies in aligned and unaligned lessons and how their 

knowledge for teaching informed these instructional decisions. We found that 

SSCs supported PSTs in using more topic-specific instructional strategies when 

teaching aligned lessons. In the aligned lessons, their teaching was better 

informed by knowledge of students’ understandings in science. We also 

examined PSTs’ perceptions of how they drew upon SSCs in their classroom 

teaching. They reported that SSCs had a major impact on their CK, PCK and 

self-efficacy for science teaching. Through this study, we provide unique 

insights into how PSTs draw on SSCs in their classroom teaching. We include 

implications for further research and the design of SSCs. 

Keywords: Pedagogical content knowledge, instructional strategies, pre-service 

teachers, science education, specialized content courses, self-efficacy  
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Overcoming the gap between theory and practice is a major challenge for pre-service 

teachers (Allsopp et al., 2006; Grossman et al., 2009). The challenge is evident in the Nordic 

context (Rasmussen & Dorf, 2010), and for the subject of science (Thompson et al., 2013). In 

reform-oriented science teaching, teachers consider students and content rather than delivery 

of content only, and they implement inquiry teaching (Anderson et al., 1994; Sawada et al., 

2002). One challenge for teacher educators is to develop pre-service teacher’s (PSTs) 

theoretical and practical knowledge to prepare them to teach this way (Cochran-Smith & 

Villegas, 2016; McDonald et al., 2013). Another challenge occurs when PSTs attempt to 

introduce reform-oriented teaching practices in schools that may not be familiar with such 

practices (Crawford, 2007; Thompson et al., 2013).  

To address these challenges, researchers and policymakers call for teacher education 

programs to shift toward a focus on teaching practices rather than theoretical knowledge about 

teaching (Blue Ribbon Panel, 2010; Darling-Hammond et al., 2017; Jenset, 2018). This 

movement provides a rationale for the inclusion of specialized science courses (SSCs) in 

teacher education programs. SSCs are science content courses, designed specifically for PSTs, 

in which instructors model reform-oriented teaching of science topics aligned with the grade 

levels that PSTs will teach. PSTs learn science content while also engaging in pedagogical 

discussions. These courses are built on the assumption that teachers tend to teach in the ways 

that they have been taught (Cochran-Smith & Villegas, 2016).  

Teacher education programs can be an important starting point for developing science 

teachers’ pedagogical content knowledge (PCK) (Friedrichsen et al., 2009). However, we 

have scarce evidence about the effects of teacher education coursework on developing 

reform-oriented teaching practices (Jenset, 2018; Stroupe & Gotwals, 2018). SSCs aim to 

support PSTs’ development of PCK for reform-oriented science teaching. Many Nordic 

science teacher education programs for primary and middle school levels include SSCs. These 
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programs focus on the development of teaching experts rather than content experts 

(Rasmussen & Dorf, 2010). However, separate science content and methods courses tend to 

be the international norm (Etkina, 2010; Fones et al., 1999). In this study, we addressed a gap 

in the literature on whether and how PSTs use what they have learned in their teacher 

education program (Cochran-Smith & Villegas, 2016; Jenset, 2018), specifically the influence 

of SSCs on PSTs’ practice. We carried out an exploratory case study of three PSTs from a 

Norwegian teacher education program that included SSCs. The study takes place within a 

subsequent field practica in a local school. We contrasted the PSTs’ teaching of topics that 

were taught in prior SSCs (aligned lessons) with topics not taught in their SSCs (unaligned 

lessons). Moon phases and seasons are an example of an aligned lesson; the PSTs learned 

about moon phases in a SSC and later taught this topic in their school practicum. An 

unaligned lesson is a lesson taught by the PST (e.g., animal cells and oxygenation); however, 

the PST had not learned the topic in a SSC. Specifically, we aimed to explore two questions: 

(1) In three Norwegian science PSTs’ practica in lower secondary school (ages 10-16), what 

were the differences, if any, between lessons aligned and unaligned with specialized science 

courses? (2) What were these PSTs’ perceptions of how they drew upon specialized science 

courses? 

Theoretical framework 

Shulman (1986) proposed pedagogical content knowledge (PCK) as an important part 

of a teacher’s knowledge base. Teachers have specialized knowledge for teaching specific 

topics to specific students (Shulman, 1986). In the current study, PCK serves as the theoretical 

framework as we are examining PSTs’ specialized knowledge for teaching specific science 

topics. Some PCK researchers view PCK as topic-specific knowledge for teaching (e.g., how 

to teach a specific topic such as photosynthesis) (Gess-Newsome, 2015; Mavhunga, 2020), 

while others view PCK as specialized knowledge at the discipline level (e.g., how to teach 
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argumentation in science courses) (Davis & Krajcik, 2005). In this study, we examine both 

topic-specific and science-specific PCK. Magnusson et al. (1999) conceptualized topic-

specific PCK as consisting of four components comprised of knowledge of science curricula, 

students’ understanding in science, instructional strategies, and assessment of scientific 

literacy. To examine science-specific PCK, we use the same Magnusson categories 

(Friedrichsen et al., 2009).  

The most recent PCK model in science education (Fig. 1) distinguishes between three 

realms of PCK: enacted PCK, personal PCK, and collective PCK (Carlson et al., 2020).  

Figure 1 

The Refined Consensus Model of PCK 

 

Note. Reprinted with permission from Springer Nature, Repositioning pedagogical content 
knowledge in teachers’ knowledge for teaching science, by A. Hume, R. Cooper, & A. 
Borowski (Eds.) COPYRIGHT 2020 
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Each realm refers to the context in which PCK is manifested: in the classroom during 

enactment, in the individual teacher’s knowledge base, and collective knowledge held among 

colleagues or published in the field. The model weaves together knowledge (personal and 

collective PCK) and skills (enacted PCK) for science teaching. In this study, we researched 

personal and enacted PCK as we conducted stimulated recall interviews and related this to 

collective PCK from SSCs. High quality PCK is characterized by integration of PCK 

components (Abell, 2008; Chan & Hume, 2019). Integration between knowledge of students' 

understanding of science and knowledge of instructional strategies is a critical step in 

developing highly integrated PCK (Akin & Uzuntiryaki-Kondakci, 2018; Park & Chen, 

2012). In the current paper, this integration is studied in the realm of enacted PCK. 

Literature review 

SSCs are university courses designed specifically for education majors to support the 

development of science content knowledge (CK) and PCK. The main goal of the courses is to 

develop CK, while PCK is addressed through course instructors’ modeling of reform-oriented 

instructional practices, and by explicitly focusing on K-12 students’ common misconceptions 

related to the topic. In contrast, science teacher education programs are often based on content 

courses characterized by lectures in a science discipline, lab sessions, and separate science 

methods courses (Etkina, 2010; Fones et al., 1999). Such programs, though cost-effective, 

often provide PSTs with poorly taught CK of limited relevance for their future career and 

limited PCK for specific topics (Bergman & Morphew, 2015; Fones et al., 1999). Grossman 

et al. (2009) called for teacher education to undo divisions between university and K-12 

schools. One should not assume that learning about teaching practices through reading articles 

or writing papers is enough to prepare PSTs for classroom teaching, particularly student-

centered or reform-oriented teaching (Horn & Campbell, 2015; Sun & van Es, 2015). In line 

with this, SSCs integrate CK and PCK in some of the following ways:  
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• using a constructivist epistemology, requiring that learners are active in the 

knowledge-building process (McLoughlin & Dana, 1999). 

• being student-centered by engaging PSTs in their own learning process and connecting 

the course to science classroom teaching at relevant levels (Etkina, 2015). 

• implicitly learning about instructional strategies, such as through implementing 

scientific practices like inquiry (Bergman & Morphew, 2015; Cochran-Smith & 

Villegas, 2016; Knaggs & Sondergeld, 2015).  

• explicitly presenting instructional strategies and addressing issues regarding different 

approaches to teaching (McLoughlin & Dana, 1999). 

• using a variety of ways, building on the premise that teachers tend to teach in the same 

way in which they learned the content. (Avard, 2009; Bergman & Morphew, 2015; 

Cochran-Smith & Villegas, 2016).  

Case studies of courses or programs using pre/post-tests of content knowledge, beliefs, 

or teaching practices were often used in evaluating SSC outcomes. One outcome of SSCs was 

an increase in PSTs’ content knowledge. Studies of specialized physics courses (Etkina, 2010; 

Menon & Sadler, 2016) and a specialized astronomy course (Bell & Trundle, 2008) reported 

an increase in content knowledge test scores at the end of the courses. Additionally, PSTs 

have highlighted group work and discussion in specialized physics courses as helpful in their 

concept learning (Doster et al., 1997). PSTs with more prior knowledge in the topic were 

most comfortable with the reformed teaching model used in the SSC (Doster et al., 1997).   

A second outcome is that reform-oriented learning in SSCs supported the development 

of PSTs’ knowledge of and approaches to teaching science. Cochran-Smith and Villegas 

(2016) reported how PSTs adopted constructivist views of teaching and learning through 

experiences like problem-based learning, role playing, analyzing video cases, and performing 

collaborative research. Similarly, Varelas et al. (2008) reported on four SSCs for elementary 

PSTs characterized by a focus on student understanding and a balance between attention to 

key concepts and science as inquiry. Participating PSTs noticed how constructivist 

instructional tools (i.e., concept maps, group work and projects) facilitated meaning and 
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connection making. Although the main goal of the courses was CK learning, PSTs noticed 

curricular, instructional and assessment features and made connections to future classroom 

practice. Only one longitudinal study traced PSTs’ knowledge and practices from SSCs into 

classrooms. Etkina (2010) evaluated a physics teacher education program featuring 

interactive-engagement pedagogy and frequent opportunities to practice instruction. Using an 

observation protocol (RTOP) over three years, she found the program supported PSTs in 

enacting reformed teaching practices in school practica.  

A third outcome of SSCs was the development of self-efficacy for science teaching. 

Research has documented critical links between self-efficacy beliefs and teaching practices 

(Menon & Sadler, 2016). Several studies utilized the Science Teaching Efficacy Belief 

Instrument (STEBI-B) (Enochs & Riggs, 1990) as pre/post-tests of PSTs’ self-efficacy. The 

studies reported gains in self-efficacy for teaching science from specialized courses in physics 

(Menon & Sadler, 2016), geoscience (Posnanski, 2007), and an integrated science course 

(Knaggs & Sondergeld, 2015). These gains in self-efficacy were attributed to implementation 

of constructivist instructional methods in the SSCs (Posnanski, 2007), such as using activity-

based curriculum, pedagogically oriented assignments, and having opportunities to 

collaborate with both instructors and peers (McLoughlin & Dana, 1999). All of the studies 

reviewed above report PSTs’ self-efficacy gains at the completion of the SCCs; there were no 

longitudinal studies that studied PSTs’ self-efficacy as they taught in classrooms. 

Need for follow-up classroom research of PSTs’ practice  

Jenset (2018) reported overall thin evidence of the effects of teacher education 

coursework due to the lack of longitudinal research on actual teaching practice. We identified 

only one study (Etkina, 2010) evaluating the influence of SSCs on PSTs’ teaching practice in 

actual classrooms. However, this study looked at teaching practices at a general level and did 

not compare classroom lessons to topics taught in the SSCs, and PSTs were not interviewed to 
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capture a nuanced picture of the impact from the SSCs. By studying the impact of SSCs on 

classroom teaching in a field practicum setting, the current study addresses these gaps. The 

current study also is a response to calls for research on what aspects of science teacher 

preparation matter in terms of PSTs’ perspectives and teaching practices (Wilson et al., 2001; 

Zeichner, 2010).  

Context 

The current study was undertaken in a Norwegian five-year teacher education program 

for primary and lower secondary school teachers (grade 5-10, ages 10-16). At the end of the 

program, PSTs earned an undergraduate and master’s degree. In each year of the program, 

PSTs enrolled in specialized content courses for teachers in three subjects of choice. PSTs 

chose one subject as their main subject. The program align with the Nordic teacher education 

model due to its focus on teaching methods rather advanced CK in the subject. PSTs do not 

earn a degree in a subject, but they complete a 45 ECTS master thesis in teaching methods for 

the subject (European Credit Transfer and Accumulation System, 60 ECTS is equivalent to 

one-year full-time study). Alongside with their specialized content courses, the PSTs 

completed courses in Pedagogy and Student Knowledge as well as Research and 

Development in Education. These courses covered general pedagogical knowledge, additional 

teaching methods, and educational research. Each year included six weeks of mentored field 

practicum, approximately three weeks of full school days in each of the fall and spring 

semesters. Some of the PSTs’ lessons would be on topics in which the PSTs had received 

instruction in the SSCs (aligned lessons), and some which they had not (unaligned lessons). In 

the aligned lessons, topics aligned with main topics taught in SSCs. This study focus on the 

contrast between aligned and unaligned lessons. 
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Participants 

Jakob, Pia, and Tina (pseudonyms) were PSTs with an emphasis on science and they 

agreed to participate in the study. They were assigned to two mentor teachers at the same 

lower secondary school (grade 8-10), and they were able to teach at least one unaligned and 

one aligned lesson. Another two PSTs mentored by the same mentor teachers were not able to 

teach two such contrasting lessons and were omitted from the study. Table 1 shows the 

characteristics of Jakob, Pia, and Tina and the unaligned and aligned lessons in this study. 

  



Table 1 

Participants and their science lessons 

PST Jakob Pia Tina 

Age 20 25 30 

Science specialization from high 
school 

Biology, two years None Biology, two years 

Teaching-related experience Leader of leisure activities for 5-
17-year-old kids 

Substitute teacher, immigrant 
language training 

Parenting 

Unaligned lesson Alcohols Animal cells 
 

Animal cells and oxygenation 

 Focus Alcohols as a group of 
hydrocarbons, solubility in water, 
flame color 
 

Comparison of plant- and animal 
cell structure, metabolism, forms 
of animal cells 
 

Structure of cells, structure of 
lungs, diffusion of oxygen, 
distribution of oxygen 

 Instructional strategies Lecture with use of molecule 
model, discussions and tasks in 
whole-class and pairs, burning of 
alcohols at the lab, quick posters 
from the lab 

Whole-class discussion, 
individual drawing, textbook 
tasks, lecture with use of 
illustrations, video, matching of 
concepts with definitions 

Discussions in whole-class and 
pairs, videos, lecture, individual 
textbook tasks 

 PSTs’ preparation Self-studied hydrocarbon using 
multiple resources 

Self-studied the topic using 
multiple resources 

Self-studied the topic using 
multiple resources. Experience 
from teaching about human lungs 



and heart from first-year school 
practicum 

Aligned lesson Oil The stars, the sun, and northern 
lights 

Seasons and moon phases 

 Focus Fractions of oil, products based 
on oil 

The sun as a star, distance to 
stars, surface of the sun in 
relation to northern lights 

Cause of moon phases, seasons, 
solar- and lunar eclipses 

 Instructional strategies Lecture with use of illustrations, 
distillation of crude oil at the lab, 
discussions in groups and whole-
class 

Discussion in whole-class and 
pairs, lecture with use of 
illustrations, videos, thought 
experiment, and textbook tasks 

Discussions in whole-class and 
pairs, lecture with physical model 
of seasons, practical activity with 
physical model of lunar phases 

 How SSCs were relevant to 
aligned lesson 

Petroleum was recently taught in 
a SSC lesson. The SSC instructor 
demonstrated the distillation 
experiment. SSCs did not focus 
on oil-based products. 

SSC included lectures on the sun, 
life of stars, and northern lights; 
activities about distances in the 
solar system, source of northern 
lights, models of the solar 
system, and an assignment where 
PSTs made a northern light 
forecast. 

SSC included lectures on the sun, 
activities about distances in the 
solar system, and models of the 
solar system. 

 

Note. Each lesson was 60 minutes long 
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Practica contexts: Mentor teachers 

Prior to school practica in the third year of the program, two mentor teachers were 

recruited for the current study. These were invited because they each had 20+ years of 

teaching experience, more than five years of experience mentoring PSTs, were enthusiastic 

about school science, and agreed to facilitate opportunities for the PSTs to teach science 

during their practicum. The mentor teachers were asked by the first author to organize school 

practica so that every PST in their group would teach at least two 60-minute science lessons; 

one aligned lesson and one unaligned lesson. Pia and Tina taught a grade 8 class with 25 

students, while Jakob taught a grade 10 class with 21 students. Within the groups, the PSTs 

cooperated in planning the lessons. The PSTs viewed the school culture as focused on 

following the textbook in the same pace as parallel classes, rather than providing student-

centered and reform-oriented instruction. Pia and Tina were mentored by a male biologist 

with additional teacher education. He was not involved in the PSTs’ lesson planning. After 

the PSTs taught lessons, he gave feedback on CK rather than pedagogy. Jakob’s mentor 

teacher was educated as science teachers and gave specific teaching recommendations for his 

lesson plans, including the experiments to include.  

Methods 

This is an exploratory case study (Yin, 2014) of three PSTs who completed SSCs prior 

to their teaching practicum. This qualitative design was appropriate, as one purpose of the 

study was to identify themes for further investigation of classroom impact from SSCs. The 

study also has characteristics of a descriptive case study as we describe the impact from SSCs 

in the real-world context of classroom teaching (Yin, 2014). The case focuses on comparing a 

PST’s lesson that was aligned with the topics in the SSC to a lesson that was not aligned. The 

cases are bounded by the three PSTs teaching of aligned and unaligned science lessons.  
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Data collection 

Stimulated recall interviews 

The main data source was stimulated recall interviews (SRI). SRIs are suitable to 

reveal both reflection-in-action and reflection-on-action (Meade & McMeniman, 1992). 

Through the use of SRIs, we were able to gain insights into the PSTs’ rationale for their 

teaching practice (Gess-Newsome, 2015; Henderson & Tallman, 2006). The first author 

observed the entire 60-minute lesson and took field notes as a secondary data source. SRIs 

were conducted within a few hours after the lesson, in one case the following day. Pia and 

Tina were interviewed after two aligned lessons. In these cases, we selected one of the two, 

the one with clearest topical alignment with a prior SSC lesson. In the SRIs, the first author 

displayed segments of video from the lesson to the PST. Based on researcher’s field notes, 

video segments including the most significant instructional strategies enacted in the lesson 

were selected. Due to time constraints, not every strategy enacted in the lessons was viewed, 

strategies for classroom management and communication with individual students were not 

viewed. Based on the video, the PSTs were prompted to share thoughts from planning and 

enactment of the instructional strategy. Follow-up questions from the researcher included, 

“Why did you do this?” and “From where did you get knowledge of such instruction?” A few 

general questions concluded the first of the two SRIs, e.g., “How has your knowledge for 

science teaching changed throughout the teacher education program?” Each interview lasted 

45-55 minutes. SRIs were transcribed using QSR International's NVivo 12 Pro software 

(2019). The interviews, along with the corresponding audio of the video-recordings of the 

lesson, were transcribed. 
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Lesson plans 

The PSTs’ lesson plans included descriptions of the instructional strategies planned for 

the lesson, and the PST’s short rationales for each strategy. Lesson plans were collected to get 

an overview of the lesson structure and triangulate PSTs’ reflections shared in the SRIs. 

Video recordings 

The first author recorded the classroom teaching with a video camera and a 

microphone carried by the PST. The camera overviewed the classroom, facing the PST. 

Before recording in classrooms, we considered ethical aspects. All recorded persons provided 

informed consent to participate. The study was conducted with approval from the Norwegian 

Centre for Research Data, project number 54397. The lesson plans and video recordings were 

secondary data sources and served to triangulate the data.  

Analysis 

In the following, we explain the steps in analysis of the lesson plans, SRI transcripts, 

and video recordings. With this analysis, we aimed to answer the first research question 

describing any differences between aligned and unaligned lessons. First, SRI transcripts were 

divided into instructional segments. Every instructional segment was defined by enactment of 

a new instructional strategy, which was also discussed in the SRI. For example, one segment 

included initiation of a specific whole-class discussion about the cause of the seasons, while a 

second segment consisted of an explanation of a specific feature of the model of the sun, earth 

and moon. The segmentation facilitated a focused analysis of significant parts of the PSTs’ 

pedagogical reasoning. Next, data from lesson plans and video recordings related to a specific 

instructional segment were added to the instructional segment data. For example, from the 

lesson plan, an additional rationale for an enacted instructional strategy was added to a 

specific instructional segment in the SRI transcript.  
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Second, we classified the enacted strategies as topic-specific, science-specific or 

general pedagogical strategies using protocol coding (Miles et al., 2014). In the protocol 

coding we used the subcodes topic-specific activities and topic-specific representations from 

the Magnusson PCK model (Magnusson et al., 1999). Table 2 shows the codes with 

definitions and examples of coding.  

Table 2 

Codes for classification of instructional strategies 

Codes Definitions Examples 

Topic-specific strategies Developed and/or adopted 
for a specific science topic 

 

 Topic-specific 
representations 

Illustrations, examples, 
models and analogies about 
specific science topics 

Presenting a model to 
explain the process of 
distillation 

 Topic-specific activities Tasks, demonstrations, 
simulations, inquiries and 
experiments about specific 
science topics 

Students are engaged in 
distilling crude oil in the 
laboratory 

 Topic-specific 
discussions 

Discussions of topic-specific 
issues 

Whole-class discussion on 
what components of plant 
cells are also found in 
animal cells 

Science-specific strategies Suitable across science 
topics 

Students are assigned to 
write a standard lab report 
from an experiment 

General pedagogical 
strategies 

Suitable across school 
subjects 

Students match concepts 
with correct definitions 

 

Third, we coded PSTs’ rationales for enacting instructional strategies. Rationale is 

defined as the reasons PSTs gave for enacting an instructional strategy. PSTs usually provided 

multiple rationales for enacting a single instructional strategy. We used provisional coding 

(Miles et al., 2014) based on a starting list of assumed rationales, to which we added emerging 

rationales. Rationales for PSTs’ enactment of instructional strategies were grouped in topic-
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specific PCK rationales, science-specific PCK rationales, and general PK rationales. Table 3 

shows the rationales with definitions and examples. The codebook was revised, and the 

material was re-coded several times until 100% agreement was reached between the authors. 

Table 3 

Codes for rationales, the reasons PSTs gave for enacting an instructional strategy 

Rationales Definitions Examples 

Topic-specific PCK 
rationales 

  

 Build on prior knowledge Activate students’ prior 
knowledge and connect it to 
the topic at hand 

Using a whole-class 
discussion to help students 
transfer what they know 
about plant cells to animal 
cells 

 Focus on key aspects Ensure students understand 
important concepts and 
phenomena 

Explaining moon phases 
because it is a central 
concept in the lesson  

 Address misconceptions Instruction targeted to 
address known 
misconceptions 

Directing a classroom 
discussion to address a 
misconception about the sun 
not being a star 

Science-specific PCK 
rationales 

  

 Use models Student get experience with 
physical models or 
conceptual representations 
of scientific phenomena 

To represent seasons, a 
physical model of the sun, 
earth and moon is presented 
in the classroom  

 Engage in inquiry Students interpret 
data/observations to answer 
science-related questions 

Students investigating how 
moon phases occur using a 
flashlight and a white ball in 
a darkened room 

General PK rationales   
 Engage students Students participate in the 

lesson 
Students discussing in pairs 
why some stars appear to be 
brighter than others, giving 
everyone the opportunity to 
formulate an answer 

 Variation Change in instructional 
strategy to avoid boring 
students 

Burning of alcohols at the 
lab to contrast the previous 
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lesson which was heavy on 
theory 

 Use technology Technology is used to make 
science content more 
interesting  

Students matching concepts 
and definitions at the 
interactive board 

 Follow curriculum or 
mentor teacher 

An instructional strategy is 
motivated by suggestions 
from curricular material or 
mentor teacher 

Based on mentor teacher 
suggestion, students are 
writing a lab report as 
homework 

 

Fourth, sources of PCK and PCK integrations were analyzed using causation coding 

(Miles et al., 2014). PCK integration refers to teachers simultaneously drawing on multiple 

components of PCK in planning and enactment of instruction. We focused on integration of 

knowledge of students' understanding of science and knowledge of instructional strategies. 

This is the most central and frequently occurring PCK integration, critical to teacher 

knowledge development (Akin & Uzuntiryaki-Kondakci, 2018; Park & Chen, 2012; van Driel 

et al., 2014). In this analysis, we used causation coding (Miles et al., 2014), as we extracted 

not just what happened, but which sources caused the PSTs to enact instructional strategies 

the way they did. For example, in her aligned lesson Tina engaged students in an activity 

where they used a flashlight and a white ball in a darkened room to demonstrate moon phases. 

In the following SRI, she referred to experience with this instructional strategy in a SSC 

lesson as the source for her use of it. When in doubt about the analysis, we contacted the PST 

and asked for elaborated responses on the specific issue. Later, we did a member check where 

participating PSTs commented on interpretations in this manuscript. Overall, the PSTs agreed 

with the findings. 

To answer the second research question about the PSTs’ perceptions of how they drew 

upon SSCs experiences in their instruction, we analyzed responses to the general question 

concluding the first SRI and other relevant PST statements. We did a cross-case analysis to 

identify themes representing how PSTs benefited from SSCs in their classroom teaching. 
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Codes were defined inductively from reading the transcripts (e.g., the participants stated their 

self-efficacy for science teaching increased through SSCs) and deductively from the PCK 

components (Magnusson et al., 1999). Self-efficacy for science teaching was included in the 

codes as PSTs talked about how SSCs facilitated this, while knowledge of topic-specific 

instructional strategies was one of the codes from literature. With the cross-case analysis, we 

identified themes of SSCs’ impact on classroom teaching across the cases.  

Results 

RQ1: In three Norwegian science PSTs’ practica in lower secondary school, what 

were the differences, if any, between lessons aligned and unaligned with specialized 

science courses?  

We present three assertions across the cases, with reference to data from the three 

PSTs’ lessons.  

Assertion 1: In the aligned lessons, PSTs enacted more science- and topic-specific 

strategies. 

When comparing unaligned and aligned lessons, we found that science-specific and 

topic-specific strategies were enacted more often in the aligned lessons (Fig. 2).  
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Figure 2 

Instructional strategies in percentages of strategies reviewed in SRIs. 

 
Note. Number of strategies in parentheses. 

 

In a majority of the instructional segments, especially in aligned lessons, PSTs drew 

on their PCK to enact science- or topic-specific strategies. Ninety-four percent (16 of 17) of 

instructional strategies in aligned lessons were science- or topic-specific strategies, compared 

to 80% (16 of 20) of strategies in unaligned lessons. Differences among individual PSTs were 

small. Pia and Tina enacted more topic-specific strategies and Jakob enacted more science-

specific strategies in the aligned lessons. In Tina’s aligned lesson on moon phases and 

seasons, all strategies in the instructional segments were topic-specific. She introduced the 

lesson with a topic-specific whole class discussion on the causes of seasons on earth. She used 

a Tellurium, a physical model of the sun, earth and moon, to explain seasons. She also used 

another topic-specific representation, a video explaining how moon phases occur. Later, 

students were engaged in a topic-specific activity as they used a flashlight and a white ball in 
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a darkened room to demonstrate moon phases. In Pia’s aligned astronomy lesson, she enacted 

a topic-specific discussion about why some stars appear to be brighter than others. In his 

aligned lesson on oil, Jakob had students do an experiment with distillation of crude oil, 

which is a topic-specific activity. Afterwards, he had students write a formal lab report as 

homework which is a science-specific strategy. 

General pedagogical strategies were used slightly more often in unaligned lessons, 

four times in unaligned lessons compared to once in aligned lessons. One example was Pia 

assigning students to do textbook tasks such as answering the key questions at the end of the 

textbook chapter. In Jakob’s unaligned lesson on alcohols, he had students make posters 

summarizing the flame-color experiment, which is a general pedagogical strategy, suitable 

across subjects.  

Assertion 2: In the aligned lessons, the PSTs used more topic- and science-specific PCK 

rationales for their instructional decisions. 

In their lesson plans and during the SRIs, the PSTs provided rationales for the 

instructional strategies they enacted in their lessons. In the aligned lessons, the rationales were 

more often grounded in PCK (Fig 3). Three groups of rationales emerged: topic-specific PCK 

rationales, science-specific PCK rationales, and PK rationales. Topic-specific PCK rationales 

included PSTs enacting instructional strategies to build on students’ prior science knowledge, 

focusing on key aspects of the topic, or addressing misconceptions. For example, in Tina’s 

rationale for using a Tellurium in her aligned lesson, she emphasized she wanted to address 

the misconception of seasons being caused by earth’s distance from the sun. Science-specific 

PCK rationales included PSTs enacting instructional strategies to use scientific models or to 

engage students in inquiry. For example, in her aligned lesson, Tina emphasized the 

importance of students getting to experience the phenomena of moon phases in her rationale 

for using an activity with flashlights and white balls. PK rationales included PSTs enacting 
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instructional strategies to engage students, add variation to the instruction, make use of 

technology, or to follow the curriculum or mentor teacher’s advice. An example of a PK 

rationale was found in Pia’s reasoning for her use of a topic-specific activity in her unaligned 

lesson where students drew an animal cell and put names on the components. Pia emphasized 

the usefulness of every student having to think through what they had learned about the 

animal cell by drawing and labelling, and thereby engaging all the students.  

Topic-specific rationales were described in the greatest frequency, and increased from 

43% of rationales in unaligned lessons to 54% of rationales in aligned lessons. Within the 

topic-specific rationales, focusing on key aspects and addressing misconceptions increased the 

most from unaligned to aligned lessons. As PSTs were more aware of the key aspects and 

misconceptions in the topics which was taught in SSCs, they designed their aligned lessons to 

address those key aspects and challenge misconceptions. For example, in her aligned lesson, 

Tina used a video to address a common misconception that we have a full moon when the 

moon is on the other side of earth. The PSTs’ focus on misconceptions indicate that their 

instructional decisions were more firmly grounded in PCK (i.e., knowledge of common 

misconceptions in a topic and knowledge of topic-specific instructional strategies) in the 

lessons when the topic was previously taught in a SSC. 
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Figure 3 

Rationales for enacting instructional strategies in percentages of strategies reviewed in SRIs. 

 
Note. Number of rationales in parentheses. 

Differences were noted among the PSTs; Pia and Tina showed a greater percentage of PCK 

rationales in their aligned lessons in comparison to their unaligned lessons. For example, Pia 

emphasized variation as a PK rationale for using a video on metabolism in plants and animals 

in her unaligned lesson; she stated: “You got things explained in a different way …. variation 

pretty much.” In her aligned lesson on astronomy, she used another video about distances in 

space. This time, she emphasized, “It is important to understand distances in space” as a 

topic-specific PCK rationale for using the specific video.  

Jakob’s teaching showed the opposite development. He had a slightly higher use of 

PK rationales in his aligned lesson. This indicates that lessons aligned with SSC topics made a 

greater difference for Pia and Tina’s instruction than for Jakob’s. Although, the difference 

could be attributed to the restrictions set by Jakob’s mentor teacher. In his aligned lesson on 
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oil, he had students distill crude oil. He explained his choice of strategy, “The experiment was 

scheduled. We were to do a distillation. I managed to fight through this that we did this with 

real oil.” The primary reason he enacted this topic-specific activity was the curriculum and the 

mentor teacher’s directive (PK rationale). Although, he modified the investigation by 

borrowing crude oil from the SSC instructor at the university instead of distilling Coke as 

described in the curriculum (Topic-specific rationale).  

Assertion 3: Instructional strategies in the aligned lessons were more often informed by 

knowledge of students’ understanding of the topic. 

In SRIs and lesson plans, we identified the instructional segments that included 

integration of knowledge of students’ understanding of science and knowledge of 

instructional strategies, two central components of PCK (Park & Chen, 2012). Such 

integration occurred more often in aligned lessons, as PSTs’ knowledge of students was more 

likely to inform their instruction. In contrast, instructional strategies in unaligned lessons were 

less often informed by PSTs’ knowledge of students’ understanding of the specific topic (Fig 

4).  
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Figure 4 

Knowledge of students informed instruction, in percentages of instructional segments. 

Note. Number of segments in parentheses. 

For example, topic-specific activities were more often informed by knowledge of students in 

aligned compared to unaligned lessons. Both Pia and Tina asked their students to draw 

representations of the topic but differed in their use of knowledge of students’ understanding 

of science. In Pia’s unaligned lesson she did not ground the task of drawing an animal cell in 

her knowledge of students’ understanding of animal cells. In Tina’s aligned lesson, the task of 

drawing an illustration of seasons on earth was clearly informed by her knowledge of 

students’ understanding of space. She knew that students’ drawings would have the potential 

to expose students’ disregard of the earth’s tilt as the explanation of seasons. In aligned 

lessons, topic-specific representations were also more often informed by knowledge of 

students’ understanding of the topic. Jakob introduced both his unaligned and aligned lessons 

with lectures. In the unaligned lesson about alcohols, he lectured on alcohols as a functional 

group on hydrocarbon chains. This choice was made without referring to his students’ prior 
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knowledge, and the segment did not include integration of knowledge of students’ 

understanding of science and knowledge of instructional strategies. In contrast, such 

integration was evident in the first segment in his aligned lesson, where the opening lecture 

was grounded in students’ prior knowledge of the topic. He designed the lecture to build on 

students’ prior knowledge of oil, and he addressed a misconception about distillation towers 

becoming cooler towards the top.  

For Pia and Tina, we also see the contrasting integration at the lesson level. During 

planning of their unaligned lessons about animal cells and oxygenation, they drew on prior 

knowledge from high school biology, practitioner literature, and the student textbook. 

Although this led to reasonable structuring of the lessons, the PSTs had limited support for 

planning student-centered instruction. In contrast, Pia’s and Tina’s aligned lessons on 

astronomy were based on their knowledge of students’ understanding of the topic. Their 

decisions were grounded in knowledge of what aspects of the topic were central, though 

difficult to understand for students, and common misconceptions held by students. Much of 

this knowledge was drawn from SSC lectures and course readings. We did not see a contrast 

on the lesson level of Jakob’s lessons. Both his unaligned and aligned lessons were built 

around laboratory experiments scheduled by the mentor teacher.  

RQ2: What were these PSTs’ perceptions of how they drew upon specialized science 

courses? 

The PSTs highlighted SSCs as an important influence in developing their knowledge 

and skills for teaching science. First, this was visible in PSTs’ references to sources when 

reflecting on instructional segments in the SRIs. Fifteen of a total of 26 references to 

instructional strategies, knowledge of students, and integrations of these PCK components 

were related back to the PSTs’ SSC experiences. Topic-specific instructional strategies, in 

particular, were drawn from SSCs. In the SRIs, there were ten occurrences where PSTs 
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referred to SSCs as a source of topic-specific instructional strategies or integrations of such 

strategies with knowledge of students. The other sources were mentioned only two or three 

times each: student textbook, mentor teacher, peer PSTs, university courses other than SSCs, 

and personal learning experiences. Second, when looking at PSTs’ responses to the general 

SRI questions related to the development of their science teaching knowledge, we found that 

SSCs were valued as sources of relevant CK, PCK, and self-efficacy in teaching science. 

Within PCK, the components most frequently discussed were knowledge of students’ 

understanding of science, topic-specific instructional strategies, and science-specific 

instructional strategies. In the following sections, we give more detail on each of these 

aspects. 

Relevant CK 

The PSTs drew on CK from SSCs in their aligned lessons. For example, Tina learned 

about moon phases in a SSC astronomy lesson two years earlier, when she took part in a 

demonstration of the phenomena. In Tina’s perception, CK learning through engagement in 

practical strategies enhanced her science CK. Pia also discussed ways that SSCs increased her 

learning of science CK. She expressed that the most useful lessons in SSCs were limited to 

the content level of the students they were learning to teach (age 10-16), and not focused on 

“knowing very much advanced physics and chemistry which I think we have focused a lot on 

but which I, at least until now, have had no use for.” Through the first three years in the 

teacher education program, she had not seen the value of learning CK beyond what her future 

students were to learn. For example, the topic of stars’ lives was taught in a first year SSC. 

When Pia taught this topic in her aligned lesson, she viewed the CK and PCK from this SSC 

lesson as less useful, since it was taught with a fairly high level of detail. She made more use 

of the students’ textbook and online videos in planning the lesson. Pia thought she benefited 

little from advanced CK in SSCs. Pia provided an example of the kind of instruction she 
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benefited from: “Like ‘let's learn about transitions between states of matter.’ And we had the 

same illustration as they [school kids] have in their textbook and we learned how we can work 

with it in a practical way.” In Pia’s opinion, the useful components of the SSCs were those 

directly applicable to the science content level of the classrooms she was preparing to teach. 

Knowledge of students’ understanding of science 

For Pia and Tina, knowledge of lower secondary students gained from SSCs played a 

critical role in the design of their aligned lessons on astronomy. A SSC instructor had 

highlighted a book chapter that stated astronomy is a topic that is often interesting for both 

genders. This knowledge, accompanied with knowledge of common misconceptions about the 

universe, guided their lesson design. Pia read about student misconceptions on why we have 

seasons in SSC literature, which greatly informed her lesson design. She stated, “Many 

science textbooks state that 15-year-olds do not understand why we have seasons. They 

believe it is about us being closer to or further from the sun, and not that it is the angle.” Tina 

had also participated in an SSC activity challenging her own misconception of the cause of 

seasons. She stated, “That is a typical misconception. I could agree with that [misconception] 

too if it was not illustrated to me.” This shows that a SSC focus on student misconceptions 

also improved the PSTs’ own CK. Tina clearly stated what difference SSCs made to her 

knowledge for teaching when reflecting upon her unaligned lesson on animal cells, “Some 

topics are well presented to us and some are not. We have talked about student 

misconceptions in almost everything we went through [in SSCs]. In this [animal cells], we 

have not received instruction, and therefore nothing about misconceptions.” Here, she 

emphasized the value of discussing common student misconceptions in SSCs as a major 

component that made a difference to her professional development.  
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Knowledge of topic-specific instructional strategies 

Several of the instructional strategies enacted in PSTs’ aligned lessons were drawn 

from SSCs. For example, Jakob learned how to distill crude oil from his SSC instructor. This 

included knowledge about safety issues related to the specific experiment: “The only risk here 

was getting hot oil over oneself. The temperature would be too high in the first distillation, 

but the second could be a little bit high.”  Pia and Tina’s aligned lessons were largely built on 

knowledge of topic-specific strategies from SSCs. Pia used her notes from SSC lessons about 

stars as a rationale for emphasizing the fusion of hydrogen to become helium in her 

instruction on the birth of stars. For Tina, two of the main strategies in her lesson on moon 

phases and seasons were from a SSC astronomy lesson. She used a moon phase demonstration 

that was shown in a SSC. She also used a Tellurium, a model of the sun, moon, and earth, 

about which she stated: 

It's an extremely funny thing. I was so fascinated when we had that in teacher education. 

You get it so clear and visual without having to show a video where you afterwards must 

explain what happened. Because films often require a recap or summary. We can talk 

while looking at this. 

The PSTs readily made use of the instructional strategies for specific topics that they 

experienced in SSC lessons.   

Knowledge of science-specific instructional strategies 

In both aligned and unaligned lessons, the PSTs benefited from knowledge of 

instructional strategies from SSCs. Such knowledge was transferred across science topics. 

PSTs benefited from use of models, practical work, and inquiry implemented as a way of 

learning in SSCs, and not just presented as a toolbox for future use in classrooms. Jakob 

stated that practical work in SSCs made the greatest impact on his knowledge for teaching 

science. He stated: 
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I have understood a lot more about how to perform practical work, which kinds of 

practical work there are, and the importance of doing and focusing on the work 

afterwards. That the final part is where students learn. Earlier, I did not know the 

importance of that part. And through the program we have actually seen various 

kinds of practical work. 

As shown in this example, SSCs facilitated PSTs in selecting instructional strategies suitable 

across science topics.  

Self-efficacy for science teaching 

PSTs perceived that the SSCs gave them increased self-efficacy for teaching science 

which was related to learning CK and PCK. Conversely, the participants described a lack of 

confidence in teaching topics not covered by prior SSCs, particularly if they had no 

experience with the topic since their own compulsory school. Despite spending hours 

researching and learning about hydrocarbons and alcohols before teaching his unaligned 

lesson, Jakob stated “I do not feel that I am much ahead of students in this topic [alcohols] … 

I miss the certainty. … Since I am uncertain, I am influenced towards following the 

textbook.” Jakob’s lack of CK restricted his ability to deliver a pedagogically sound lesson 

about alcohols. In the SRI reflecting on her unaligned lesson on animal cells, Pia stated: “I 

feel seen through because I am very conscious that I am not confident in this. I never had 

biology myself. Last time I learned this was when I had their [students’] textbook myself at 

school.” On the positive side, experience with laboratory experiments from SSCs increased 

Jakob’s self-efficacy in carrying out experiments in his aligned and unaligned lessons. He 

stated: “We did quite a lot of laboratory stuff in teacher education. So, one become more 

confident at the lab.” Self-efficacy was partly transferred to new topics, but also gained as 

knowledge and experience accumulated throughout the teacher education experience. Despite 

uncertainty on the topic in his unaligned lesson, Jakob stated, “I have got more self-
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confidence in teaching. If this was the first year, I would have been more nervous.” Jakob felt 

that the combination of SSCs and school practica helped him develop his self-efficacy as a 

science teacher. 

Lastly, PSTs’ self-efficacy was evident during observations of the lessons. Jakob 

enacted experiments in both lessons, as suggested by his mentor teacher. In the unaligned 

lesson, he had students burn alcohols and observe differences in flame color, although he 

thought the experiment was of little relevance to the topic at hand. In his aligned lesson, he 

had enough confidence to replace the suggested distilling of Coke with the more relevant 

distilling of crude oil. In Tina’s aligned lesson, she got a question about whether the South 

Pole gets midnight sun or not. She did not know the answer, but instead of turning to her peer 

PSTs and mentor teacher for answers (as she had in the unaligned lesson), she carried out a 

quick inquiry using the Tellurium. She did not arrive at a final answer to the question but 

appeared more confident in exploring the question in comparison to a student question she 

had in her unaligned lesson. This provided evidence that SSCs contributed to PSTs’ self-

efficacy for exploring questions rather than quickly giving a correct answer.  

Discussion 

In this study, we look at the effects of SSCs up to two years later as three PSTs plan 

and teach lessons in their practica. Through the comparison of aligned and unaligned lessons, 

we show how SSCs had an impact on the PSTs’ science teaching practice and perceptions of 

self-efficacy. This study contributes to the literature as earlier SSC-related studies were 

limited to showing CK and self-efficacy gains based on tests and interviews conducted at the 

end of a SSC. One exception is Etkina (2010), who followed PSTs into classrooms after they 

completed SSCs, and reported an increased ability to notice students’ understandings and 

engage them in active learning of physics. However, Etkina (2010) did not compare the 

teachers’ SSC-aligned lessons with unaligned lessons, as we did in the current study. From 
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our comparisons, we add to her findings of the impact from SSCs; PSTs enacted more 

instructional strategies that were informed by knowledge of students’ understandings in 

lessons aligned with SSC lessons. Further, we extend her work by adding nuance to research 

on classroom impact from SSCs. Through video recordings, lesson plans, and SRIs with 

PSTs, we identified they used more instructional strategies and rationales based on science- 

and topic-specific PCK in lessons aligned with SSCs compared to the unaligned lessons. 

Lastly, our study contributes PSTs’ perceptions on how they drew on SSCs in their teaching 

practice. In summary, our study addresses a knowledge gap about whether and how PSTs use 

what they learn in teacher education in classrooms (Cochran-Smith & Villegas, 2016; Jenset, 

2018).  

The study also responds to the call for research on how science PCK develops and 

transforms in classroom practice (Alonzo et al., 2012). From our study, we identified the 

transformation of collective PCK from SSCs, via PSTs development of their own personal 

PCK, to enactment in classrooms. This transformation represents the potential of SSCs 

supporting PSTs in connecting theory and practice — a major challenge in teacher 

development (Grossman et al., 2009; Thompson et al., 2013). The clearest connections were 

from SSC lessons where course instructors went into depth discussing PCK for teaching 

specific topics for grade 5-10 classrooms, including a focus on students’ understanding of the 

topic and modeling of student-centered instructional strategies. In SSCs, PSTs became aware 

of common misconceptions and strategies to challenge these misconceptions. Consequently, 

some of the aligned school practicum lessons were designed to address specific students’ 

misconceptions. Pia and Tina’s reasoning for their lessons on space are clear examples of the 

impact SSCs can have on teaching and learning. In an SSC, Pia and Tina learned about 

common misconceptions related to space. They used this information as they designed and 

taught their lessons. Such responsive teaching is known to be challenging for PSTs (Sun & 
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van Es, 2015). The contrast between unaligned and aligned lessons indicates that building on 

students’ prior knowledge was influenced by SSC experiences rather than mentor teacher 

advice. Our findings also add to PCK integration literature as we show that SSCs can support 

PSTs in adapting instruction based on student ideas. While all three PSTs used more reform-

oriented teaching practices in their aligned lessons, SSCs made a greater difference in Pia and 

Tina’s teaching. This could be explained by Jakob’s mentor teacher’s instructions for his 

lesson planning. In stimulated recall interviews, Jakob explained how he would have designed 

the lessons from his own pPCK if not constrained by the mentor teacher.  

Beyond describing their rationale for their instruction, PSTs shared perceptions on 

how their instruction was supported by SSCs. All three of them stated that SSCs made an 

impact on their teaching. PSTs mentioned learning CK in SSCs as useful, but they 

emphasized their PCK learning. They highlighted opportunities to learn PCK from SSC 

instructors teaching science content at the level of the students they planned to teach (grade 5-

10). This finding responds to calls that teacher education should be oriented towards 

classroom practice (Cochran-Smith & Villegas, 2016; Darling-Hammond et al., 2017; Menon 

& Sadler, 2016).  

Our findings indicate that developing teachers’ self-efficacy for teaching science is 

possible through SSCs. The PSTs reported and demonstrated a higher self-efficacy in science 

teaching as a result of SSC experiences. Jakob, while constrained in his enactment of PCK, 

was the PST with the strongest statements on SSCs strengthening his self-efficacy. He 

highlighted inquiry-based teaching in SSCs as beneficial to his self-efficacy for teaching 

science. His competency and self-efficacy for leading lab sessions was transferred across 

topics. Menon and Sadler (2016) highlighted the importance of gaining self-efficacy early in 

teacher education programs and also found PST’s increased self-efficacy at the end of a 

physics SSC. In the current study, we added to this knowledge as we explored how alignment 
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between SSCs and school practica helped PSTs increase their self-efficacy for science 

teaching. 

Limitations 

Findings from the current study cannot be generalized, as it is a case study with a 

limited number of three participants. We originally planned to have a larger number of 

participants, but in the end, only three participants taught both an aligned and unaligned 

lesson. Although the data was rich and from multiple sources, the study is also limited to the 

comparison of one aligned and one unaligned lesson taught in the practicum. Also, the two 

mentor teachers differed in their input on the lesson plans and their feedback on the PSTs’ 

teaching, as described in the context section. 

Conclusion 

The current study adds to the scant research base on the impact of SSCs on classroom 

teaching as we have found these courses contribute to the development of PSTs’ knowledge 

and practices for science teaching. In the SSCs, the PSTs benefited from learning CK while 

engaging in reform-oriented strategies. Based on what we observed in classrooms, PSTs’ 

reflections from SRIs, and their own perceptions, we conclude that SSCs can support more 

integrated PCK found to support students in learning (Coetzee et al., 2020; Kirschner et al., 

2015). The study shows the process of connecting theory and practice as the three 

participating PSTs’ transformed collective PCK from SSCs to their own personal PCK and 

enacted PCK in their practica. We show some ways SSCs support PSTs not only in learning 

about science and science teaching, but also enacting teaching practices. This is a needed 

competency (Grossman et al., 2009; Thompson et al., 2013), and Nordic teacher education 

programs have the potential to better support this linking of theory and practice with their use 

of SSCs (Rasmussen & Dorf, 2010).  
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Implications for research and practice 

The current exploratory case study has the potential to stimulate research interest in 

SSCs for teachers. More studies are needed using larger numbers of PSTs, a greater number 

of observed lessons, and a wider variety of classroom contexts and mentor teachers. These 

studies should aim to see if PCK is transferred from aligned topics to new topics. 

Furthermore, the specific designs of different SSCs should be studied to understand their 

impact. In this study, we found that SSC lessons aligned with the target grade level were 

valued more highly by the PSTs. Finally, longitudinal studies tracing experiences from SSCs 

into the beginning years of teaching are needed. We are aware of the additional resources 

required to develop and teach SSCs. However, SSCs appear to be a good investment in 

teacher education as this exploratory study shows that SSCs make a difference in supporting 

PSTs learning to teach.  
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