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Abstract 

 

 

It is extensively recognized that an enzyme functions through reducing the energy of activation 

of its elemental reaction and the catalytic effect of an enzyme is as a result of change in 

activation free energy obtained relative to a reference reaction in water of the same mechanism. 

In this study, chorismate mutase which is an enzyme that catalyzes biochemical reactions for 

chorismate conversion to prephenate has been used as the model enzyme and its catalytic effect 

was investigated using Empirical Valence Bond method with employment of Density 

Functional theory calculation to obtain its reference state reaction. It was found in this study 

that DFT has been able to produce good activation and reaction free energies compared to 

experimental values that can serve as a reference to investigate enzymatic reaction of 

chorismate mutase and the enzyme’s catalytic effect was well analysed with EVB as the 

method was able to reproduce the enzyme’s activation and reaction free energies. 
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 INTRODUCTION 

 

 

 Enzymes and their functions 

 

Enzymes are macromolecules that act as catalysts in biochemical reactions. In general term, 

they serve as biocatalyst that speed up the rate of metabolic processes.1  

The basic reaction is:  

 

 𝑆 + 𝐸 → [𝐸𝑆] → [𝐸𝑃] → 𝐸 + 𝑃       (1.1) 

 

Where: S = substrate;  E = enzyme catalyzing the reaction; P = product of the reaction.  

Computational modelling of enzymes and simulation of enzymatic reactions have gradually 

become fundamental in drug design. As many three-dimensional structures of enzymes have 

been constructed, one of the central encounters in this is to create and clarify the association 

among enzymes arrangement and catalytic action. The conversion rate of an enzyme can be 

analyzed with different types of methods, and the essential problem is not only about the 

stability of the transition state, but to find the contribution to this stability and in what ways it 

relates to the enzyme structure as well as its catalytic energy.2  

Specificity of the enzymes make them very much important aspect in the field of research and 

diagnostic. There are several factors that can affect their activity, these include substrate 

concentration, enzyme concentration, effect of inhibitors, pH and lastly, temperature effect.1,3 

In addition, enzymes have their known functional characteristics which include lowering the 

activation energy, enhancing biochemical reactions and can be reused and also recycled. 

Furthermore, there are various classification of enzymes based on their functions, some of 

which include oxidoreductases which are enzymes that involve in electron transfer from one 

molecule to another. e.g. dehydrogenases, pyruvate, oxidase etc.; transferases that involve 

transfer of groups like acetyl, amino etc. among acceptors and donors in the biochemical 

reaction for example kinase, deaminase etc.; isomerases are enzymes responsible for 

transferring of functional groups and rearranging of the atoms in any structure and help in 
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changing of the shape of molecules in biochemical reaction for example chorismate mutase. 

Others are hydrolases, lyases and ligases.  

It has been established that the effect of enzyme catalysis can be related to an appropriate 

reference chemical reaction in solution of the same mechanism. Quantitatively, catalytic effect 

of an enzyme is as a result of change in activation free energy relative to a reference reaction, 

this means, catalytic effect of an enzyme is mainly relative to an uncatalyzed reaction. 1,4,5 

 

 Chorismate mutase and its mechanism of catalysis 

 

In enzymology, chorismate mutase is an enzyme that catalyzes chemical reactions for 

chorismate conversion to prephenate, also known as the Shikimate pathway in the construction 

of the two important amino acids, phenylalanine as well as tyrosine in vegetation and living 

organisms.6 The chorismate mutase is found at a subdivision place in the metabolic pathway. 

The enzyme in living cells plays an important role in been responsible for the biosynthesis of 

tyrosine and phenylalanine in order to balance the cell aromatic amino acids.6,7 Chorismate 

mutase is naturally occurring and it has been recommended that inhibitors of bacteria 

containing chorismate mutase may act as antibiotics (e.g. against tuberculosis), the basis is that 

in the occurrence of these inhibitors, the bacteria cannot synthesize phenylalanine. Although it 

is known as a promising antibacterial target based on metabolic role. The common crystallized 

structures of CM are the ones obtained from bacteria Escherichia Coli and Bacillus subtilis and 

sometimes from yeast. CM is among the few common catalyst for biochemical pericyclic 

reactions and it belongs to the family of isomerases which are functional group transferring 

enzymes.6,8,9  

The first step in its mechanism of action is the conversion of the chorismate to prephenate. This 

is done to produce the amino acids - tyrosine and phenylalanine. It has been established that 

reactions catalyzed by CM has only one substrate as the RS which is chorismate and only one 

product which is prephenate. The common study of the  intramolecular rearrangement of the 

enzyme is the one that catalyzes Claisen rearrangement of chorismate to prephenate.6,10 The 

rearrangement process of the enzyme for bond forming and bond breaking start from making 

the substrate to be in a diaxially reactive form, then formation of carbon – carbon bond between 

carbon 1 and carbon 9, then the ether bond breaking between oxygen 7 and carbon 5 of the 

substrate.6 It has been suggested that the rearrangement occurring in the active site of the 
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enzyme with stability of the enzyme might be due to interaction between the two carboxylate 

group in the substrate and two arginine residues in the active site of the enzyme, the sequence 

number of the two arginine residues might be different depending on the source of the 

enzyme.6,9 CM is known to have more affinity towards the TS than the substrate and does not 

transform itself  or and does not have effect on the surrounding solvent during the process of 

isomerization of the substrate to form the product state. But if the catalyst is not present in this 

reaction then it will proceed in a concerted step, and in an asynchronous way. The mechanism 

given below is adapted from Advances in Protein Chemistry and Structural Biology11 

 

 

Figure 1: Mechanism of conversion catalyzed by chorismate mutase.11 

 

 Free Energies   
 

The concept of Gibbs free energy in chemistry is understood to be a change in the energy that 

occurs when all the products and reactants are in the standard conditions along with the pH 

value of 7.12–14 This can be expressed as: 

G = H – TS           (1.2.1) 

where G = Gibbs free energy, H = enthalpy, T = temperature, S = entropy    

At standard temperature and pressure, almost all systems want to attain a minimum of free 

energy. So, this will increase the entropy that reduces the Gibbs energy. Likewise, if the 

availability of heat is excess then it will reduce the free energy by reducing the enthalpy. Hence 

the cells will have to work with the laws of thermodynamics and chemical reactions too. 12–14 
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For the change in energy the equation (1.3.1) above changes to 

 ∆G = ∆H – T∆S         (1.2.2) 

From the above equation, there will be three possibilities:  

• ∆G < 0, this means reaction will proceed 

•  ∆G = 0, equilibrium conditions;  

• ∆G > 0, reverse reaction 

For any reaction, ∆G can be determined using  

 

ΔG=ΔG°+RTln ([
[B]b

[A]a
])        (1.2.3) 

Where [A] and [B] are concentration of reactants and products respectively. 

The above equation can be modified into  

 

ΔG=ΔG°+RTln ([
products

reactants
])        (1.2.4) 

 

For any reaction ΔG° and T are constant, ΔG will always depend on ratio of products and 

reactants. If the ratio of the product and reactant increases, then the value of ΔG also 

increases in positive direction.12,14 

 

 Transition State Theory 

 

Transition state theory gives an insight about the rates of chemical reaction. This theory is used 

to predict the Gibbs free energy of activation, standard enthalpy of activation, and standard 

entropy of activation of the reaction if the constant rate has been evaluated experimentally or 

by quantum mechanical calculation. The main assumption of this theory is that, a chemical 

reaction follows a distinct reaction path that involves breaking and forming of bonds. 

Moreover, energy is needed in breaking and forming of bonds, therefore, a reaction must have 

an activation energy to overcome, this implies that the collision between the reactant molecules 

will result in formation of a product. The occurrence of the activated complex is the point at 

which the reaction potential energy is the highest.4,13 Since the kinetic energy of the colliding 

molecules will have necessary energy and orientation which is now transferred as potential 

energy. Hence the definition of activation free energy is the difference between the transition 
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state of reaction and the ground state of reactants. Transition state theory is widely used in the 

field of computational chemistry where it is mostly used to model the reactions which are 

influenced by the catalyzers.4 

 

 Computational Modelling Tools 

 

 Quantum Mechanics / Molecular Mechanics (QM/MM) 

 

The biochemical system which includes enzymes are very large data, and it is difficult to 

predict their properties and catalytic action with the use of QM technique only. Also, the 

available force fields of the molecular mechanics are not so much flexible to process the model 

that contains the chemical bonds (addition and deletion). In order to overcome the limitation, 

then comes the combination of full QM rules which is at one end and full MM which is at the 

other end, certain other QM/MM methods are also developed which can consider the small part 

of the whole system as minute particle as QM in chemistry and it has to retain the MM part 

which is needed for the computational purpose.15–17 

The purpose of dividing the system into regions might be that some parts are described with 

different theory and have character in a condensed phase. The timescale for the computation is 

also reduced in order to save the time to predict the solution. Hence the QM/MM has a potential 

to lead the chemical reaction to a better understanding. Hence, it can be differentiated in a way 

like reaction center and spectator which are directly responsible for the chemical reaction and 

which are not responsible for the chemical reaction directly. A small region in which a chemical 

reaction occurs and therefore cannot be described with a force field is treated at a sufficiently 

high level of QM part and the remainder of the system is modelled at the MM level. 15–17 

 

 Molecular Mechanics  

 

A branch of classical mechanics which involves application of Newtonian mechanics that are 

used to describe the physical basis of any given model. Any molecule consists of an atom which 

has protons and electrons and are considered as point charge with some mass. 15–19 The 

interaction between the neighboring atoms can be compared to a spring action which tells about 
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the chemical bonds and also about the van der Waal’s forces. The interaction of the atom which 

are due to electrostatic forces can be determined using the equation of Coulomb’s law. The 

velocity at which the atom rotates are inside the molecule and depends upon the temperature, 

and other macroscopic quantity. The potential function that describe a molecular system is 

related to the internal energy and all the thermodynamic quantities. The potential function can 

be defined as: 15–19 

 

 Etotal = Ebonds + Eangle + Edihedral + Enon-bonded    (1.3.3.1) 

 Enon-bonded = Eelectrostatic + Evan-der Waals     (1.3.3.2) 

 

Where E is total energy in the system which is the summation of bonded energy, energy of 

angle, dihedral energy and non-bonded energy. The non-bonded energy is composed of the 

electrostatic energy and Van der Waal’s energy. But these energies which form total energy of 

potential are commonly known as force fields. Different molecular approaches are used to find 

the different mathematical results through the force field.18 

The following are some of the principles which molecular mechanics (MM) are based upon:  

• The bonds present in between the particles are treated as harmonic oscillators.  

• Nuclei and electrons are both treated as single particle like a round structure.  

•  Different potential functions are required to describe the different interactions like 

bond stretching, angle bending, torsional etc.  

• The potential function is mainly dependent upon the empirically derived data like force 

constants of the equilibrium etc. which can tell the user that atom or set of atoms are in 

the ideal state or the natural state.  

• The summation of the particle interaction of the spatial distribution of atoms are equal 

to the measure of the intramolecular strains.19 

The MM approach is used extensively in order to extract the result which has structure, 

dynamics, properties of surface, also the thermodynamics of organic and it extends to 

biological and polymeric systems too. In molecular science, the main activity that has been 

used as MM method is that of protein folding, catalysis of the enzyme, stability of the protein 

and changes which are conformational and associated with the function of the biomolecule 

etc.19 From a figure adapted from Odegard et al, showing the MM interactions between atoms.20  
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Figure 2:  MM different interactions between the atoms.20 

 

The above figure gives an insight about the necessary forces which are present inside the 

molecule and between the atoms which are connected to the single central atom. The potential 

energy of a molecular system is the summation of the individual components which are 

potential enough to get the energy and this includes, bond length, stretching, angle bending, 

torsion, and remaining van der waals interaction forces. And is given by: 16–18,21 

 

𝐸 =∑𝐸𝑠𝑡𝑟𝑒𝑡𝑐ℎ +∑𝐸𝑏𝑒𝑛𝑑 +∑𝐸𝑡𝑜𝑟𝑠𝑖𝑜𝑛 +∑𝐸𝑉𝐷𝑊 + ⋯.  (1.3.3.3) 

 

 Force fields 

 

Force fields are the mathematical expression which describe the energy dependency of a system 

on the coordinates of the constituent particles.18 The interatomic potential energy are written 

in analytical form like U(r1, r2, . . . , rN) and also the parameters along with it. The parameters 

are typically obtained either from ab initio or semi-empirical quantum mechanical calculations 

or it can also be obtained by fitting the data of the experiments such as neutron or X ray etc. 

Force fields are always designed purposefully to describe molecular properties accurately. 

They play fundamental role in molecular modeling and are used to describe all the parameters 

that contribute to potential energy of molecular systems. Molecules can be the atoms which are 

held together by a force like simple elastic and the true potential with a simple model in that 

region are simulated. A typical force field can be expressed as: 16,18 

 

𝑈(𝑟𝑁) = ∑
1

2
𝑘𝑏(𝑙 − 𝑙0)2 +𝑏𝑜𝑛𝑑𝑠 ∑

1

2𝑎𝑛𝑔𝑙𝑒𝑠 𝑘𝑎(𝜃 − 𝜃0)2 + ∑
𝑉

2
𝑛[1 + cos(𝑛∅ −𝑡𝑜𝑟𝑠𝑖𝑜𝑛𝑠

𝛿) + ∑ 𝑉𝑖𝑚𝑝 +𝑖𝑚𝑝𝑟𝑜𝑝𝑒𝑟 ∑ 4𝜖𝑖𝑗𝐿𝐽 (
𝜎𝑖𝑗

12

𝑟𝑖𝑗
12 −

𝜎𝑖𝑗
6

𝑟𝑖𝑗
6 ) + ∑

𝑞𝑖𝑞𝑗

𝑟𝑖𝑗
𝑒𝑙𝑒𝑐𝑡     (1.3.4.1) 
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In the above equation, the first four terms refer to the local contribution of the total energy or 

also called intramolecular forces. This may include bond stretching, angle bending, dihedral 

etc. and last two terms indicate the repulsive and Van der Waal’s interaction forces. 

 

Bond Stretching Energy  

 

Stretching of the atoms takes place between two neighboring atoms. This follows the Hook’s 

law in nature where it says stress is directly proportional to the strain.17,18 In the molecular 

mechanics, the atoms are treated as spheres, and bonds which are present between the atom are 

treated as springs. Hence the hooks law can be applied between them and equation is as follows:  

 

 𝐹 = −𝑘𝑥         (1.3.4.1) 

where k=stiffness and x is the displacement due to force F. 17,18  

 Expressing the above equation further, 

 

 𝑉 = − ∫ 𝐹(𝑥)𝑑𝑥
𝑥2

𝑥1
 = ∫ (𝑘𝑥)𝑑𝑥

𝑥2

𝑥1
 =1/2kx2     (1.3.4.2)  

 

In the above equation (i), V = potential energy and f(x) is displacement function. The limits are 

given from x1 to x2 and that represents the system x1 and x2.  

Hence for the bond stretching the equation above changes to: 

 

 𝑬𝒔𝒕𝒓𝒆𝒕𝒄𝒉 = 1/2ks  (l - l0)
2        (1.3.4.3)  

  

Ks is the force the stretching and is the constant value which are determined empirically, l is 

length of the bond, which is presented in the chemical equation, lo is the natural bond length. 

 

Angle Bending Energy  
 

Energy occurs as a result of change in angle between neighboring atoms that are bonded to the 

same central atom. 17,18 The equation is given as:  
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 𝐸𝑏𝑒𝑛𝑑 = 1/2𝑘𝑏(𝜃 − 𝜃0)2       (1.3.4.4) 

 

In the above equation, kb is the stiffness constant and obtained empirically. θ is the actual bond 

angle and θ0 is the natural bond angle. For example: optimal bond angle for H-Csp2-Csp3 is 

122°, then any change in angle (θ-θ0), either wider or narrower, will increase the energy of the 

molecule. The angle-bending term is summed over all bond angles in the molecule. 17,18 

 

Torsion Energy 
 

There is energy contribution that arises due to angle twisting between rotating atoms which are 

connected to the same central atom. The equation which is required to find the energy is given 

by: 17,18 

 

 𝐸𝑡𝑜𝑟𝑠𝑖𝑜𝑛 = 1/2𝑉0(1 + cos𝑛𝜔)       (1.3.4.5) 

 

In the above equation: 

V0 is the barrier which is responsible for the natural bond to rotate freely, n is the number of 

the period of the rotation or number of cycles for 360-degree turn.  

 

Non-bonded interactions:  

 

The atoms in a molecule which are present as far as two bonds can interact with each other 

through many of the attraction forces like, van der Waal’s force, steric repulsion, electrostatic 

repulsive or attraction which will be depending on the distance between them. For the non-

bonded atoms, which are far away from each other, the interaction followed in order to describe 

is London dispersion force and once it reaches near other atom then it will start to repel each 

other and Van der Waal forces or strain or steric strain is used. 16–18,21 

 

 Molecular Dynamics 
 

The principle of the molecular dynamics (MD) simulation technique is to integrate the equation 

of motion by giving the trajectory for the n number of particles in any molecular system. MD 
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simulations is of pivotal importance for conformational sampling of the chemical reaction 

coordinates in solution and in the active site of the corresponding enzymes. This also uses 

newton’s equation of motion.22–24 To get solution using this approach, it requires the initial 

conditions which includes mainly the position and velocity at which the particles are moving 

along with the position and valid model which represents the force field between the particles 

and the boundary conditions must also be employed. With the Newton’s equation of motion 

(1.6.6.1) and recall that the force acting on a particle is the potential energy, which is related to 

the force field, so the equation can be further expressed as equation (1.6.6.2) 

 

 𝐹 = 𝑚𝑎          (1.4.6.1) 

 

 𝑚𝑖
𝑑2𝑟𝑖

𝑑𝑡2 = 𝑓𝑖 = −
𝜕

𝜕𝑟𝑖
𝑈(𝑟1, 𝑟2, … . , 𝑟𝑁)      (1.4.6.2) 

 

In the above equation, the term U(r1, r2, . . . , rN), refers to the potential energy which are 

written in the analytical form and also it is the dependency of the energy for n particles. The 

above-mentioned equation is a coupled second order differential equation which cannot be 

solved analytically and can take numerous times to extract solution, hence numerical approach 

is followed in order to get the solution. The use of MD techniques such as FEP, EVB and LIE 

to predict properties and energies of biomolecules have been well established.22–24 

 

 Density Functional Theory (DFT) 

 

DFT is a computational simulation method that derives properties of the molecules based on 

determination of the electron density of the molecule.25,26 Practical approach on DFT are coded 

into efficient computer programs and been simulated to assist in solving chemical problems 

and to know the properties of molecules. 

It has been established that, to find a suitable approximate way for solving the Schrödinger 

equation to get information about a molecule, the components of that system are described by 

functions. These functions give all the information of a system.25,27 Solving Schrödinger 

equation to get the functions of a simple system is possible but difficult for molecules having 

more than one atom. Starting from Born-Oppenheimer Approximation which assumes that the 

motion of nuclei and electrons in a molecule can be separated, it is necessary to find 
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approximate solution to solve the equation to get information about molecules. Approximate 

simple representation of the functions as electron density form the basis of DFT.25,27 This 

method was developed from the theorem of Hohenberg-Kohn which describes that all the 

ground-state properties of a system can be determined by the density of that system.25 

Therefore, total energy of a molecule can be obtained from functions of its electron density 

since all ground-state properties are functions of electron density.25,28 In DFT, Functional can 

be defined as the function to the function and here the functional means the energy of the 

molecule to form an electron density. The electron density is the function of three axis and its 

variables are taken as x, y and z position of the electrons.25,26 

There are some forms of approximate corrections to DFT, namely: Local density 

approximation, Gradient corrected and hybrid methods. In LDA, the assumption is that the 

density of the molecule in the local is equal. Gradient corrected takes care about the non-

uniformity of the density in the molecule. The most common method used in the hybrid method 

is B3LYP which means Becke 3-term correlation functional (Lee, Yang, and Parr exchange 

function), others are BPV86, CAM-B3LYP, PBEPBE.28–30 The most important advantage of 

DFT is the more increase in computational accuracy without the additional increase in the run 

time of the tools or package. B3LYP/6-31G(d) are oftentimes considered to be a standard 

model in chemistry for many applications. 28–30 One of the main disadvantages of DFT methods 

is the challenge in determining the most appropriate method for a particular application. The 

practitioner should, prior to choosing a DFT method, consult the literature to determine the 

suitability of that choice for that particular problem or application. As such, DFT usage tends 

to favor the more sophisticated user. 28–30 

 

B3LYP: it is one of the old hybrid theories developed early 80’s. B3 is a function which 

combines three functions of the Hartree-Fock exchange correlation and LYP which is a 

function that recovers the dynamic electron correlation. 28–31 

 

 LDA: a type of hybrid theory of approximation which are for the exchange correlation of the 

energy for the potential function in the DFT and only depend upon the density of the electron 

locally in the molecule.31  

 

CAM-B3LYP: Coulomb-attenuating method-B3LYP is hybrid method which combines the 

B3LYP hybrid qualities present in it with the long range correlation to get desired output.31 
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 Free Energy Perturbation (FEP) 

 

It is an alternative binding free energy extraction approach which are associated with the 

conversion of the two states of QM and MM. These two are used in the thermodynamic 

integration (TI) and the Hamiltonian is represented as interpolation between the states and the 

coupling parameter is taken as λ.32,33 

 

 𝐻(𝑞, 𝑝, λ) = (1 − λ)Ha(q, p) + λ Hb(q, p)      (1.4.6.1) 

 

∆𝐺 = ∫ 〈
𝜕𝐻

𝜕λ
〉 λ

1

0
𝑑λ         (1.4.6.2) 

 

Where “q and p” are position and momentum of the atom which is present in the system. To 

find out the free energy difference between the state A and state B when λ =0 and λ = 1 

respectively, the system must be sampled for the fixed values of λ between 0 and 1 which is 

followed by the integration over a system. 

This method uses application of statistical mechanics to calculate change in binding free energy 

as a relative between two states. This is obtained from Zwanzig formula: 32,33 

 

 ∆𝐺 = −𝐾𝑇𝑙𝑛{𝑒−(𝑈𝐵−𝑈𝐴) 𝐾𝑇⁄ }𝐴       (1.4.6.3) 

 

This method categorises a state as the reference system and the other state as target, therefore 

an intermediate state can be introduced to properly describe these states.34 

 

 𝑈𝑚 = (1 − 𝜆𝑚)𝑈𝐴 + 𝜆𝑚𝑈𝐵 = 𝑈𝐴 + 𝜆𝑚∆𝑈      (1.4.6.4) 

 

Where λm is intermediate state introduced34 

 

 ∆𝑈 = 𝑈𝐴 − 𝑈𝐵         (1.4.6.5) 

 

 ∆𝐺 = 𝐺𝐵 − 𝐺𝐴 = −𝛽−1𝑙𝑛 {𝑒𝑥𝑝(−𝛽∆𝑈)}𝐴      (1.4.6.6) 

 

Since  ∆𝑈 = 𝑈𝐴 − 𝑈𝐵, therefore,   

∆𝐺 = 𝐺𝐵 + 𝐺𝐴 = −𝛽−1 ∑ 𝑙𝑛𝑛−1
𝑚=1 {𝑒𝑥𝑝 [−𝛽(𝑈𝑚+1 − 𝑈𝑚)]}𝑚   (1.4.6.7) 
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Where β = KbT 

 

 

 

Figure 3: The change in binding free energy is explained in the thermodynamics cycle 

below:32,33 

 

 ∆∆𝐺𝑏𝑖𝑛𝑑 = ∆𝐺1 − ∆𝐺2 

  Or ∆∆𝐺𝑏𝑖𝑛𝑑 = ∆𝐺𝐴 − ∆∆𝐵       (1.4.6.8) 

 

 Empirical Valence Bond Theory  

 

EVB is a computational technique based on an approximation that enzymes reaction free 

energy can be determined via a calibrated Hamiltonian which is compared to transfer of 

electrons that occur during chemical reaction in a solution.35 The Empirical-Valence-Bond 

(EVB) technique can deliver consistent predictions about enzymatic action and mutual 

mutations. It is a semi-empirical QM/MM method developed by Warshel to study enzymatic 

reactions energy surface.36 The main and fundamental feature of this procedure is its use of 

exclusive standardization probabilities to insert calibrated realistic examined data into 

Hamiltonians, especially information about relevant solutions that often deliver a method to 

sort out the "errors pertinent to the model".16,21,35,37 Starting with the simple reference reaction 

of the solution, this fragmentation process is required because quantum mechanics approaches 

cannot grasp a phase where the enzymatic reactions calculation can be trusted upon, especially 

in a case of potential reaction. This process follows the example of the transfer of the proton 

followed by the evaluation of the surface free energy.16,21,35,37 
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In combination with classical valence-bond constructions, EVB initiates with resonance states 

(or more exactly diabatic states). These root states are assorted to define the reactive 

arrangement.  

 𝜑 = 𝑐1∅1 + 𝑐2∅2         (1.4.7.1) 

Where ∅1  corresponds to the RS and ∅2  corresponds to the PS and c1 and c2 are linear 

combination balancing coefficient. 

The potential strong suit of the diabatic states and the terminologies are characterized via 

Hamiltonian matrix features.16,21,35,37 

 𝐻𝑖𝑗 = 𝜀𝑖 = 𝛼𝑖 (𝑔𝑎𝑠) + 𝑈𝑖(𝑖𝑛𝑡)(𝑅; 𝑄) + 𝑈𝑖(𝑖𝑛𝑡)(𝑅; 𝑄; 𝑟; 𝑞) + 𝑈𝑖 (𝑠𝑜𝑙𝑣𝑒𝑛𝑡)(𝑟; 𝑞) (1.4.7.2) 

 𝐻𝑖𝑗 = 𝐴 exp(−𝑎|∆𝑅|)        (1.4.7.3) 

 

Here R as well as Q signify the molecular coordinates and  potential charges of the participating 

products as well as reactants ("designated as solutes") respectively, in the diabetic state, and 

the coordination and charge ("solvent") of the water or protein is designated as  r as well as  q. 

𝛼𝑖 (𝑔𝑎𝑠) is the energetic entity of the diabetic stage at the gas level at “ith” stage; Where all 

fragments value is considered as infinite; 𝑈𝑖(𝑖𝑛𝑡) (R; Q) is the intrinsic potential (potential of 

inter molecular particle) of the solvent structure in this state (comparative to the minimum). 

The 𝑈𝑖(𝑖𝑛𝑡)(R; Q; r; q) characterizes the contact among the solvent atom as well as the nearby 

atom of solvent; and 𝑈𝑖(𝑠𝑜𝑙𝑣𝑒𝑛𝑡) (r,q) signify the energy-potential of the solvent.16,21,35,37 

For a two states EVB, the ∆G of moving from the ground state potential in the path of a reaction 

coordinate in which ∆G‡ of the potential energy surface is obtained. 

Eg =
1

2
H11 + H22 − √(H11 − H22)24H12

2 )     (1.4.7.4) 

Where Eg is the ground state potential, H11 and H22 are modelled potentials with force field 

description corresponding to RS and PS valence bond configurations. 

The main feature of the EVB method is the calibration of α and Hij by a reference reaction, 

obtaining the calibrated values as a comparison to transfer of electrons that occur during 
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chemical reaction in water which in turn can be suitable to analyse potential energy surface of 

an enzymatic reaction. 

Additional essential improvement of this method is its capability to afford a diabatic free-

energy surface of the pertinent structure of resonance. This permits anyone to inspect, e.g., the 

infinitesimal length of time of Linear Free Energy Relationships (LFERs) inside the protein. 

In addition to EVB Simulation and experimental study suggests these LFERs may be also 

effective at enzymatic activated locations (if they simply imply the strength of the inner 

structure of resonance relatively than the energy of the products and reactants). Adopting the 

inherent concept of the process of LFERs to protein molecules can, at minimum as an 

approximation, permit one to categorize the effect of catalyst in modest and influential ways.35 

EVB is less time-consuming and allow cost-effective conversion design which is fundamental 

in enzyme study. The shortfall of this method is getting the reference reaction to calibrate its 

Hamiltonian, the reference can be obtained from experimental analysed data, but for some 

reaction which has no available experimental data, then the EVB reference state can be 

obtained from DFT calculation. 

 

 Molecular Docking 

 

Docking is used in ligand binding to detect the binding mode and identify the best binding site 

of a receptor.24 Docking plays an important role in predicting structures of enzymes since the 

binding pocket of protein is completely surrounded by amino acids, suggesting that the protein 

undergoes a significant conformational change in ligand binding and product release change. 

With this scenario, docking has a scoring function that rank poses which are generated. The 

scoring function can be empirical based, force field based obtained from existing sets of 

parameters or a kind of design that recreates structures from experiments. There are different 

established programs used for docking, common among them is GLIDE38 program which is 

grid-based that allows receptor grid generation, this generated grid allows molecules to be 

properly docked. GLIDE docking program has two different precision set which are Standard 

precision (SP) and Extra precision (XP).34,38,39 
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 Aims of the Project 

 

The overall aim of this project is to initiate the development of a small database with calibrated 

EVB Hamiltonians for enzymes catalyzed reactions. The enzyme, chorismate mutase has only 

one substrate which is chorismate and only one product which is prephenate. DFT calculation 

was carried out for the uncatalyzed conversion of chorismate to prephenate and the activation 

and reaction free energies obtained were used as reference for calibrating the EVB Hamiltonian 

for EVB simulation to investigate catalytic effect of chorismate mutase. The calibrated 

Hamiltonian was used in uncatalyzed conversion of chorismate to prephenate in water solution, 

then the calibrated EVB Hamiltonian was tested in the chorismate mutase to verify catalysis. 

The uncatalyzed reactions was carried out at five different temperatures. The EVB simulations 

were also able to give activation and reaction enthalpy and entropy for the reaction. The tasks 

in this project are divided into three parts to analyze free energies of an enzymatic system. The 

first task is the use of a quantum mechanical based technique (DFT) to obtain a reference state 

reaction while the second and third tasks are employment of MD that treats the molecular 

system majorly with MM techniques. For the MD parts, EVB method was first used to 

reproduce the uncatalyzed ∆G‡ and ∆G0 then after protein preparation and docking of the 

substrate and the enzyme, the method was later used to test for catalysis in chorismate mutase 

(enzyme catalyzed reaction). More so, Arrhenius simulation was carried out to construct 

Arrhenius plot that analyze the effect of each temperature on the activation free energy of the 

reaction.  

Finally, carrying out all these procedures make it easier to be more familiarized with state-of-

the-art computational modelling techniques that are used to model the action of biological 

macromolecules and their interactions with inhibitors and substrates. 
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 METHODS 

 

 

 DFT calculation 

 

DFT calculation was carried out to predict free energy of activation and reaction for the 

uncatalyzed conversion of chorismate to prephenate achieving the desired transition state. The 

∆G‡ and ∆G0 obtained served as reference state to calibrate EVB Hamiltonian. The molecular 

structure of the only substrate in chorismate mutase (chorismate) was prepared with few water 

molecules around it, then the relevant bonds were frozen except the bonds that are directly 

involved in the reaction to make a transition state guess. All the DFT calculations were carried 

out using a computational program package called GAUSSIAN 09.40 GAUSSIAN is an 

electronic software which is capable of making prediction of the properties of the atoms like 

molecular energies, structure, electron density, etc. by using incorporated theories like density 

functional theory, semi empirical theory, molecular mechanics and also hybrid methods.40 All 

the DFT calculations were carried out with each of the different functionals of DFT which are 

B3LYP (with empirical dispersion gd3), CAM-B3LYP, and PBEPBE using 6-31g(d,p) as basis 

set except for Single Point Energy calculation of big basis set in which 6-311+G(2d,2p) was 

used. MOLDEN41 application was used for structural visualization throughout the DFT 

calculations. 

 

 Geometry Optimization 

 

Figure 4:  Structure of modelled chorismate 
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Starting from the chorismate structure above, the following were carried out for the DFT 

calculation. All these calculations were done in gas phase. Each of the steps were visualized 

with MOLDEN program to be sure of achieving the desired structures of each of the reactant 

state (RS), product state (PS) and transition state (TS). 

• To get the fair approximation of the transition state, Geometry optimization of TS guess 

was done on the chorismate with all the relevant bonds frozen except the atoms that are 

involved in the chemical reaction coordinate. 

• Then, a TS calculation was done on the molecule with no bond frozen 

• After the TS optimization converges, frequency calculation was carried out to check 

for desired transition state vibrations which must be attained, if not, then must be 

repeated till it is achieved. 

•  To trace the path of the chemical reaction from TS to PS and RS, Intrinsic Reaction 

Coordinate calculation were carried out in two paths (forward and backward) 

respectively. 

• After the IRC calculations have been able to trace PS and RS paths, geometry 

optimizations were carried out on the PS and RS. 

The reaction from RS to PS is shown below in the figure. 

 

  

Figure 5:  Conversion from RS, TS and PS.  
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 Single Point Energy and Free Energies Calculations with 
Corrections 

 

The following calculations were carried out to obtain the ∆𝐺‡ 𝑎𝑛𝑑 ∆𝐺0 values.: 

• Frequency calculations were carried out on each of the geometrically optimized TS, PS 

and RS. The frequency calculations were able to give the values of free energies, 

enthalpy, entropy and the correction to the Gibb’s free energy which is the Zero-point 

energy (∂GZPE). 

• SPE calculation was carried out in gas phase for each of the TS, PS and RS to get the 

electronic energy of each of the state. 

• Then SPE calculation of bigger basis set of 6-311+G(2d,2p) was carried out on each 

RS, TS and PS. 

• In other to correct for solvation effect, solvation energies were also calculated for each 

state using water as solvent with two separate Universal Solvent Models42 (firstly SMD 

model, then with CPCM model). 

To get the activation and reaction free energies, there is need to correct for energies of 

solvation, big basis set and Zero-point energy (ZPE). Corrections to energy from big basis set 

and solvation for each state were obtained in relative to electronic energies in gas phase. All 

the energy values from the TS and PS that correspond to energies of activation and reaction 

respectively were obtained in relative to the RS. 

The ∆𝐺‡ 𝑎𝑛𝑑 ∆𝐺0 values obtained from the B3LYP functional of the DFT were used further 

in this study and served as reference for calibrating EVB Hamiltonian. 

 

 MD Simulation Tool 

 

An MD software package called “Q” was employed for the EVB simulation. Q is used for 

predicting free energies of biomolecules based on the approaches of free energy perturbation, 

empirical valence bond and linear interactions energy calculation of receptor and ligand 

binding properties. The program is being used to predict accurate binding free energies in 

comparison to experimental values.43 
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Figure 6:  Flowchart for calculating free energy in Q adapted from manual for the Q MD 

package44 

 

There are three main steps in order to solve the problem in Q. first is to prepare, then simulate 

and analyze the files. In the preparation step, the force field must be given in the model 

followed by the solvent coordinates which will give the molecular topology. In the simulation 

part, control of the dynamics input has to be given as input followed by the topology or the 

force field as input for the calculation of the free energy. Next step the free energy output 

obtained in the last step must be fed into this step and calculation must be done based on this. 

The force fields are directly available in the software directory. AMBER95, AMBER/OPLS, 

OPLS-AA etc. are some of the available force field in this software which can be used directly. 

The program has PyMOL45 incorporated in it for visualization of modelled structures and also 

uses OPLS200546 force field server to generate force field parameters and library files that are 

missing during the simulation. 

The Q program consists of four functional part which contains all the libraries and essential 

parameters to carry out MD simulations. They are Qprep, Qdyn, Qfep and Qcalc. Qprep part 

is used in the program to prepare the molecule by creating a topology which describes the 

connectivity of the molecules and their interatomic potentials (e.g. bonds, atom types, atomic 
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coordinates, atomic charges) and other force field parameters. The Qdyn part specifies the 

simulation data (steps, step-size, temperature, trajectories, energies) and carries out the 

simulation. The Qfep part analyses and uses the input file created from Qdyn part to make the 

free energies to be calculated. The Qcalc part helps to analyze the structure and give more 

details of the simulation. Q uses Qgui as its graphical user interface.47 

 

 

Figure 7:  Illustration of the Qgui main window47 

 

The Qgui main window contains all the menu for Q to work. Under the prepare menu, topology 

of the molecule to work with can be prepared and parametrization of the force field and library 

files. The setup dropdown menu contains the four methods of calculation which are MD, LIE, 

FEP and EVB in which the user perform transformation of the FEP state and choose PyMOL 

to visualize modelled structure. Under the analyze menu, the user works on parametrizing the 

reference reaction and calibration to give the target free energies, the EVB simulation is 

analyzed to give all the thermodynamic details and their comparison. In this project, the Q 

software has been employed for the EVB simulations. 
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 Uncatalyzed Reaction with EVB 

 

It has been established that EVB method requires a reference state to function, the 

∆𝐺‡ 𝑎𝑛𝑑 ∆𝐺0 values obtained from DFT calculation were used to parametrize the reference 

state of the EVB. In this study, EVB simulation was firstly done to reproduce activation and 

reaction free energies for uncatalyzed and catalyzed conversion of chorismate to prephenate. 

Analyzing the EVB simulated energy files further also give other thermodynamic parameters 

of the reaction. 

 

Preparing Topology 

 

 

Figure 8:  Structure of optimized chorismate 

 

Q program automatically assign Force field parameters and library files, the structure above 

was firstly uploaded in the Q graphical user interface Qgui to assign chorismate force field 

parameters and library files. The generated parameters were set in the relevant section of the 

Qgui setting. For the structure to be readable by the program (Q-atoms), its topology was 

prepared during which the molecule was set to simulation sphere of 15Å, the sphere was 

solvated with water molecules using TIP3P48 solvation model and the total charge of the 

residue was confirmed to be -2 and the coordinate of the molecule was also confirmed. 
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Figure 9: Two EVB states to be defined 

 

EVB Setup for the Uncatalyzed Reaction 

 

The 24 constituent atoms of the chorismate in the water solution were defined, as explained 

under section 1.2 above, the breaking ether bond which occurs between atom O7 and C5 were 

defined and the forming C-C bond between C1 and C9 were defined. For a two state EVB, 

going from one state to another, the ether bond was defined as unbonded in state 2 and the C-

C bond was defined as bonded in state 2 as shown below. 

 

 

Figure 10:  Defining the ether bond between atoms O7 and C5 
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Figure 11:  Defining the C-C bond between C1 and C9 

 

Since Q automatically assign force field parameters such as charges, atom types, bonds, angles, 

Torsions, impropers, couplings etc., all these parameters were properly checked, and the 

missing ones were assigned manually. 

 

EVB Simulation Details 

 

The simulation was done setting the system temperatures 298K, total simulation time was set 

at 0.51ns with a total step of 510000, temperature bath coupling was set to 100fs and SHAKE49 

was used to constrain the solvent. The cut off for non-bonded interaction between solute-solute, 

solute-solvent and solvent-solvent was set at 10 Å each and polarization restraint was used. 

Sequence restraint with a force of 0.5A was added to the 24 Q-atoms in each of the two states 

represented with “i” and “j”. The output recording interval was set at 10 25 for non-bonded list 

with a total energy file of 10 summarized in 5 steps and trajectory of 1000. The simulation was 

carried out in replica of 10 for each of the temperature set. 
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Analyzing EVB Simulation 

 

The energy files from the simulation were analyzed firstly by setting the reference reaction 

followed by calibrating the EVB Hamiltonian. This was done by setting the target 

∆𝐺‡ 𝑎𝑛𝑑 ∆𝐺0 values to be the values obtained from DFT calculation. For a two state EVB, 

Qgui automatically calibrates α and Hij, after the reference reaction has been 

parametrized, then the α and Hij kept adjusting till the target ∆𝐺‡ 𝑎𝑛𝑑 ∆𝐺0  values are 

reproduced. This was done for each replica of the 10 runs. The average values of α and Hij were 

used further to calculate other thermodynamic parameters at different temperatures of the 

reaction system. 

 

Arrhenius Simulation 

 

Arrhenius simulation was carried out on the uncatalyzed conversion of chorismate to 

prephenate at five different temperatures which are 288K, 283K, 298K, 303K and 308K. this 

was done also to construct Arrhenius plot that analyze the effects of the five different 

temperatures on the free energy of activation. The simulation was performed in replica of 5 

runs for each temperature. 

 

Analyzing Thermodynamic Parameters 

 

The average values of α and Hij obtained during calibration of EVB Hamiltonian was used to 

analyze the thermodynamic parameters of the reaction at the five different temperature sets. 

From the analysis of the energy files, Arrhenius plot, Regression parameters which give the 

activation enthalpy and entropy and values of model free energies against the computed values 

and average value of the activation free energy were all obtained.  

 

 Protein Preparation and Docking 

 

The crystal structure of chorismate mutase used in this project was obtained from the protein 

data bank50 with PDB ID: 1COM (CM from Bacillus Subtilis). The structure contains 12 chains 



26 

 

 

of 4 homotrimers complex with prephenate in each homotrimer. Using a computational 

modelling program called PYMOL45, the crystal structure was made simpler by removing 3 

homotrimer chains with their prephenate complexes. With the use of PyMOL, the remaining 

homotrimer structure was aligned with another homotrimer functional structure of chorismate 

mutase (PDB ID: 1DBF)50, this is to compare the structure with a functional protein of the same 

molecule.  

 

Figure 12:  Chorismate mutase from Bacillus subtilis (PDB ID: 1COM)50 

Starting from the trimmed structure of 1COM, the protein was prepared using Protein 

Preparation Wizard in MAESTRO51. The protein was preprocessed by adding hydrogen atoms, 

assigning bond orders and removing water molecules beyond 5Å beyond prephenate molecule 

in the protein. The preprocessed protein was then optimized using JAGUAR52 with B3LYP-

D3/631G**. 
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Figure 13:  Structure of the trimmed chorismate mutase 

Docking of the DFT calculated chorismate (RS) to the CM was carried out using Glide 

Application38, this was achieved by initially generating a receptor grid in the CM. The 

generated grid truncated the prephenate ligand in the CM thereby making the CM ready to 

accept the RS as ligand molecule. XP precision53 was employed in performing the ligand 

docking, the Van der Waals radii scaling factor was at 0.8 with partial cut-off of 0.15, ligand 

sampling was set to flexible with sample ring conformations, bias sampling of torsions was 

made for all predefined functional groups, addition of Epik state penalties54 to docking score 

and post-docking minimization was also performed. The docked protein was used further for 

EVB simulation to obtain free energies for catalyzed conversion of chorismate to prephenate 

in enzymatic reaction. 

 

 Catalyzed Reaction with EVB 

 

EVB simulation was carried on chorismate mutase catalyzed conversion of chorismate to 

prephenate. The calibrated EVB Hamiltonian (α and Hij) obtained from the uncatalyzed 

reaction was then used to parametrize the enzyme catalyzed reaction, this was done in order to 

test for catalysis in the enzyme.  
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Preparing Topology and EVB Setup for Catalyzed Reaction 

 

Starting from the docked protein as explained from section 2.3 above, the protein was uploaded 

in the Q graphical user interface Qgui to assign force field parameters and library files. The 

generated parameters were set in the relevant section of the Qgui setting. For the structure to 

be readable by the program (Q-atoms), its topology was prepared during which only the 

constituting atoms of the protein were selected without water molecules and set to simulation 

sphere of 15Å, the sphere was solvated with water molecules using TIP3P solvation model. 

For the EVB setup, all procedures carried out under section 2.2.1 above on EVB setup for the 

uncatalyzed reaction were followed without adding restraints on the substrate. The EVB 

simulation details were the same for the uncatalyzed reaction except for running the catalyzed 

reaction at a single temperature of 298K. 

 

 

 

Figure 14:  Defining the two EVB states for the catalyzed reaction. 
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 RESULTS AND DISCUSSION 

 

In any research work, modelling and simulation play important roles since the validation of the 

experiments has to do with either numerical or analytical approaches. But in the reality 

analytical method is quite a difficult task compared to numerical analysis. Hence, numerical 

investigation become popular in recent times involving software packages which will have 

definite and set of required tools that can solve the equations and predict the solution. In any 

chemical reaction, each state has a potential free energy, an activation complex is formed going 

from one state to another, this is the transition state of the reaction and this is the point where 

the potential energy is highest. Enzymes catalyzed reactions make biological reaction to occur 

faster by lowering the activation energy. In this project, the first thing was to predict an 

approximate conversion of chorismate (RS) to prephenate (PS) in which the free energies of 

activation and reaction for the conversion then served as reference state for calibrating EVB 

Hamiltonian to calculate the activation and reaction free energies for uncatalyzed conversion 

of chorismate to prephenate in water solution and the calibrated Hamiltonian was used to test 

for catalysis in chorismate mutase. The DFT calculation was firstly employed to predict the 

activation and reaction free energies for the uncatalyzed conversion of chorismate to 

prephenate. A protein preparation was done to obtain a refined crystal structure of the 

chorismate mutase which served as the model enzyme in this project. The EVB simulations 

were run at five different temperatures giving the calculated activation and reaction free 

energies and also the activation enthalpy and entropy were also obtained for the reaction. 

 

 DFT Geometry Optimization 

 

Following all the procedures as explained in section 2.1.1 above, a structure of chorismate was 

built as the starting molecule and a TS guess carried out on the molecule. A geometry 

convergence of the TS guess was attained using the DFT method of computational modelling 

which was able to predict the RS and PS. Then the achieved RS and PS were also geometrically 

optimized. The following figures show geometrically optimized structures obtained from 

B3LYP/d3 functional. 
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Figure 15:  DFT geometry optimized reactant state (chorismate) 

 

Figure 16:  DFT geometry optimized transition state 

 

Figure 17:  DFT Geometry optimized product state (prephenate) 
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Figure 18:  Geometry convergence of the transition state. 

 

TS Vibrational Frequency 

 

The frequency calculation on the TS gave a total of 111 frequencies and attained one true 

vibrational frequency which is -293.53cm-1 with intensity of 14.52. Prediction to RS and PS 

was started from this vibrational frequency. 
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Figure 19:  Spectrum from the frequency calculation of the TS 

 

 Activation and Reaction Energies from DFT Calculation 

 

After obtaining the electronic energies for each of the RS, TS and PS in gas phase, from big 

basis set, from solvation and correction to Gibb’s free energy, the following equations are 

used to obtain the ∆𝐺‡ 𝑎𝑛𝑑 ∆𝐺0 values. 

Correction to energy from big basis set: 

      ∆𝐸‡  =  𝐸𝑏𝑏𝑠
𝑇𝑆 − 𝐸𝑔𝑎𝑠

𝑅𝑆   

      ∆𝐸0  =  𝐸𝑏𝑏𝑠
𝑃𝑆 − 𝐸𝑔𝑎𝑠

𝑅𝑆  

Solvation energies of the RS, TS and PS: 

 ∆𝐸𝑠𝑜𝑙
RS   =  𝐸𝑠𝑜𝑙

𝑅𝑆 − 𝐸𝑔𝑎𝑠
𝑅𝑆  

 ∆𝐸𝑠𝑜𝑙
TS   =  𝐸𝑠𝑜𝑙

𝑇𝑆 − 𝐸𝑔𝑎𝑠
𝑇𝑆  

 ∆𝐸𝑠𝑜𝑙
PS   =  𝐸𝑠𝑜𝑙

𝑃𝑆 − 𝐸𝑔𝑎𝑠
𝑃𝑆  
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Electronic energy from solvation: 

 ∆∆𝐸𝑠𝑜𝑙
‡   =  ∆𝐸𝑠𝑜𝑙

𝑇𝑆 − ∆𝐸𝑔𝑎𝑠
𝑅𝑆  

 ∆∆𝐸𝑏𝑏𝑠
0   =  ∆𝐸𝑏𝑏𝑠

𝑃𝑆 − ∆𝐸𝑔𝑎𝑠
𝑅𝑆  

Correction to energy from solvation:  

 ∆𝐸𝑠𝑜𝑙
‡   =  𝐸𝑠𝑜𝑙

𝑇𝑆 − 𝐸𝑠𝑜𝑙
𝑅𝑆  

 ∆𝐸𝑠𝑜𝑙
0   =  𝐸𝑠𝑜𝑙

𝑃𝑆 − 𝐸𝑠𝑜𝑙
𝑅𝑆  

Thermal correction to Gibb’s free energy: 

 𝜕𝐺𝑍𝑃𝐸
‡   =  𝜕𝐺𝑍𝑃𝐸

𝑇𝑆 − 𝜕𝐺𝑍𝑃𝐸
𝑅𝑆  

 𝜕𝐺𝑍𝑃𝐸
0   =  𝜕𝐺𝑍𝑃𝐸

𝑃𝑆 − 𝜕𝐺𝑍𝑃𝐸
𝑅𝑆  

Correction to ZPE, 

 ∆𝜕𝐺𝑍𝑃𝐸
‡   =  𝜕𝐺𝑍𝑃𝐸

𝑇𝑆 − 𝜕𝐺𝑍𝑃𝐸
𝑅𝑆  

∆𝜕𝐺𝑍𝑃𝐸
0   =  𝜕𝐺𝑍𝑃𝐸

𝑃𝑆 − 𝜕𝐺𝑍𝑃𝐸
𝑅𝑆        

From all the equations above, the activation and reaction free energies equations are given 
below: 

 

 ∆𝐺‡ = 627.5 ∗ ∆𝑬𝒃𝒃𝒔
‡ + ∆∆𝑬𝒔𝒐𝒍

‡ +  ∆𝝏𝑮𝒁𝑷𝑬
‡  

 ∆𝐺0 = 627.5 ∗ ∆𝑬𝒃𝒃𝒔
0 + ∆∆𝑬𝒔𝒐𝒍

0 +  ∆𝝏𝑮𝒁𝑷𝑬
0  

 

Where 627.5 is a conversion factor from Hatree to kcal/mol since all the energy values of the 

application used are given in atomic unit. 
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Table 1: Results from B3LYP functional of the DFT calculation with CPCM solvent 

model. All the values are given in Hatree except values from entropy and ∆S which are given 

in cal/mol/kelvin and also ∆G‡ and ∆G0 values given in kcal/mol. 

 RS TS (‡)  PS (0) 

E (gas) -1219.504 -1219.449 -1219.508 

ZPE σdg (Hatree/particle) 0.235746 0.234369 0.234881 

SMD E(solv) -1219.720 -1219.675 -1219.733 

E(bbs) -1219.979 -1219.928 -1219.989 

∆E (solv) = E(solv)-E(gas) -0.215 -0.226 -0.225 

∆∆E(solv)  Values 

obtained in 

relative to the 

Reactant state 

-0.0105 -0.001 

∆E (bbs) 0.051 -0.001 

∆E (σ∆G) -0.0013 -0.000865 

∆G (kcal/mol) 24.4 -12.6 

 

From the table 3.1 above, ∆𝐺‡ 𝑎𝑛𝑑 ∆𝐺0 are 24.4 kcal/mol and -12.6 kcal/mol respectively. 

 

Table 2: DFT calculated ∆G‡ and ∆G0 with SMD solvent model compared with 

Experimental ∆G‡ 

 ∆𝑮‡ (kcal/mol) ∆𝑮𝟎 (kcal/mol) 

B3LYP 20.6 -15.8 

CAM-B3LYP 30.4 -17.8 

PBEPBE 21.3 -19.2 

Experimental6 24.5  

 

Table 3: DFT calculated ∆𝐺‡ 𝑎𝑛𝑑 ∆𝐺0 with CPCM solvent model. 

 

 ∆𝐺‡ (kcal/mol) ∆𝐺0 (kcal/mol) 

B3LYP 24.4 -12.6 

CAM-B3LYP 35.0 -14.1 

PBEPBE 25.1 -16.4 
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DFT is a central technique in computational chemistry and it is sensitive to the functional used, 

these density functionals give balance between accuracy and speed.  Same chemical reactions 

give different results depending on the functionals used, a suitable result can be obtained in 

comparison with experimental data or known calculated data of smaller models. In this project, 

other density functionals such as LSDA, BPV86, M08HX, M06 and B3PW91 were also tried 

but due to non-convergence of the molecule structure optimization, the functionals were limited 

to three. 

Comparing the experimental  ∆𝐺‡ which is 24.5 kcal/mol with the values obtained from each 

of the DFT functionals above. ∆𝐺‡ 𝑎𝑛𝑑 ∆𝐺0  from B3LYP functional with CPCM solvent 

model which are 24.5 and -12.7 kcal/mol respectively have been used further in this project, 

since the values match the experimental data. These values served as the target free energies 

for calibrating EVB Hamiltonian. 

The difference in the calculated energy barrier for the three functionals show the sensitivity of 

the barrier to functionals of DFT and how the water models vary in allowing explicit of freedom 

water. From the results above, the smaller exchange correlation functional B3LYP gives barrier 

of 20.6 and 24.5 kcal/mol for the two water models used, CAM-B3LYP with long range 

exchange correlation gives 30.5 and 35.0 kcal/mol and the exchange-free functional PBEPBE 

gives 21.3 and 25.1 kcal/mol. The DFT predicted reaction free energies for the two solvent 

models ranges between -12 and -19 kcal/mol. 

To know the most reliable DFT functional to use, a projector-based embedding calculation can 

be employed. The projector-based embedding eliminates the barrier dependence on the density 

functional used.55 

 

 Free Energies of Uncatalyzed Reaction with EVB 

 

 Defined EVB states 

 

Figures 3.6 and 3.7 below show the defined state in water from the reactant state (chorismate) 

to the transition state and finally to the product state (prephenate). 
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Figure 20:  Defined unbounded ether bond in state two (Transition state) 

 

Figure 21:  Defined state one (reactant state) and two (product state) 

 

 EVB Reference Reaction Calibration for the Uncatalyzed reaction 

 

The EVB simulation produced α and Hij values when parametrized with target ∆𝐺‡ 𝑎𝑛𝑑 ∆𝐺0 

values obtained from the DFT calculation and kept adjusting until the target free energies were 

reproduced. 
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Figure 22:  Converged calibration of ∆G‡ towards the target reference activation free 

energy. 

Table 4: α and Hij values for the replica of 10 runs at 298K. 

  

 

𝛼 Hij 

 

-129.248 87.122 

 

-129.182 87.173 

 

-129.191 87.173 

 

-129.189 87.169 

 

-129.187 87.196 

 

-129.248 87.122 

 

-129.248 87.122 

 

-129.248 87.122 

 

-129.182 87.122 

 

-129.248 87.122 

Average 
-129.217 87.144 
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The average values of α and Hij which are -129 and 87 respectively correspond to the EVB 

calibrated Hamiltonian. These values were then used to parametrize the calculation of the 

reaction free energy profiles at five different temperatures and also to test for catalysis in 

chorismate mutase catalyzed reaction. 

 

 

 EVB Computed Free Energies for Uncatalyzed Reaction 

 

 

Table 5: The reproduced values of ∆G‡ and ∆G0 for each of the 10 runs at 298K 

 

∆G‡ ∆G0 

 

24.4 -12.6 

 

24.4 -12.5 

 

24.4 -12.6 

 

24.4 -12.6 

 

24.4 -12.6 

 

24.4 -12.6 

 

24.4 -12.6 

 

24.4 -12.6 

 

24.4 -12.5 

 

24.4 -12.6 

Average 
24.4 -12.6 

 

 

At 298K, the EVB computed activation and reaction free energy are 24.4 kcal/mol and -12.6 

kcal/mol respectively. The computed activation free energy is in accord with the experimental 

estimate which is 24.5 kcal/mol for uncatalyzed conversion of chorismate to prephenate in 

water. 
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The Arrhenius simulation for the conversion of chorismate to prephenate in water solution was 

performed at different temperatures of 288K, 293K, 298K, 303K and 308K. The calibrated 

Hamiltonian values α and Hij were used to parametrize the calculation. The simulation gave the 

reaction free energy profiles at different temperature. The simulation was able to construct 

Arrhenius plot that shows the effect of temperature on the activation free energy. 

 

Figure 23:  Arrhenius plot showing the plot of the activation reaction rate constant ∆𝐺‡/𝑇 

against the reciprocal of each of the reaction temperature. 

 

Table 6: The average free energies at different temperature. 

Temperature, K ∆𝑮‡ +/- ∆𝑮𝟎 +/- 

288 24.6 0.35 -12.9 0.57 

293 24.2 0.18 -12.9 0.29 

298 24.4 0.18 -12.6 0.26 

303 24.7 0.22 -12.5 0.36 

308 24.7 0.09 -12.3 0.2 
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 EVB Activation Enthalpy and Entropy 

 

The EVB computed activation enthalpy and entropy are in excellent agreement with the 

experimental values for uncatalyzed transformation of chorismate to prephenate. 

 

Table 7: From the Arrhenius calculation, the regression parameters gave the activation 

enthalpy and entropy. 

 

 ∆H‡ (kcal/mol) 
T∆S‡ (kcal/mol) at 

298K 

 20.5 -4.1 

Experimental6 20.7 -3.8 

 

 EVB Model vs Computed Activation Thermodynamic Parameters 

 

Table 8: The difference between the model and computed activation free energies at 

different temperatures. 

 

T (K) Computed ∆G‡ 

(kcal/mol) 

∆H‡ T∆S‡ 

(kcal/mol) 

Model ∆G‡ 

(kcal/mol) 

288 24.6 20.5 -3.9 24.4 

293 24.2 20.5 -4.0 24.5 

298 24.4 20.5 -4.1 24.5 

303 24.7 20.5 -4.1 24.6 

308 24.7 20.5 -4.2 24.7 
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 Structure of Chorismate Mutase and Docking Score 
 

The modelled and optimized RS served as the substrate molecule. The enzyme, chorismate 

mutase structure was retrieved from Protein Data bank (PDB) and was refined, then the 

substrate was docked with it. The superposition of the prepared structure of the CM used on 

another structure of a functional protein gave RMSD score of 0.376, this is to ascertain the 

functionality of the structure of the prepared CM.  

 

 

 

Figure 24:  structure of superimposed CM. Structure in green is the prepared CM, red is 

the reference functional CM. 

The RS was docked with the prepared CM as shown in the figure 3.9 below with a docking 

score of -7.4 kcal/mol. 

  

Figure 25:  structure of the docked CM with chorismate 
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 Test for Catalysis with EVB 

 

The energy files from the EVB simulation for the catalyzed reaction were parametrized with 

the calibrated EVB Hamiltonian (α and Hij) from the uncatalyzed conversion of chorismate to 

prephenate. This was done to test for catalysis in chorismate as the calibrated Hamiltonian from 

the uncatalyzed reaction served as reference reaction in water. The value of 18.2 kcal/mol was 

obtained as the activation free energy at 298K. This is a good value compared to experimental 

value of 15.4 kcal/mol for BsCM and 17.2 kcal/mol for EcCM.6 
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 CONCLUSION  

 

 

Clear understanding of the catalytic effect of enzymes has to do with thermodynamic 

parameters obtained from that particular enzymatic reaction. These parameters are the 

activation free energy that must be attained for conversion of a RS to PS and then the reaction 

free energy which is the free energy of the PS obtained in relative to the RS. Moreover, 

enzymatic operation is linked with lowering the activation energy of a biological reaction, this 

makes an enzyme catalyzed reaction to be independent of reaction free energy but solely 

dependent on activation free energy. 

The activation and reaction free energies have been reproduced for uncatalyzed and catalyzed 

conversion of chorismate to prephenate at five different temperatures, also ΔH‡ and ΔS‡ of this 

reaction have been obtained. With the employment of both DFT and EVB method of 

simulation, it is shown that for a reaction lacking experimental data, DFT can be used to predict 

the activation and reaction free energies that will serve as reference state for calibrating EVB 

Hamiltonian. The EVB method can be very suitable for predicting free energies in enzymatic 

reactions for it to have reproduced ∆G‡ of 24.4 kcal/mol at 298K with a reference state ∆G‡ of 

24.4 kcal/mol for uncatalyzed conversion of chorismate to prephenate. From the experimental 

data, ∆G‡ of uncatalyzed conversion of chorismate to prephenate is 24.5 kcal/mol Comparing 

these values, the EVB method has been able to reproduce the reaction free surface of the 

transforming molecules. The activation barrier is reduced to the value of 18.2 kcal/mol from 

the EVB simulation of the catalyzed reaction, which is in accord with experimental value, the 

catalytic effect of the enzyme chorismate mutase has been verified. 

The EVB simulation in this project has also been able to produce respectively activation 

enthalpy and entropy of 20.4 kcal/mol and -4.1 kcal/mol at 298k compared to experimental 

values of 24.5 kcal/mol and -3.8 kcal/mol at 298k. Based on these results, it can be concluded 

that EVB is a powerful method to generate all the thermodynamic properties necessary for 

transforming a reaction from one state to another, this makes the method to reckon with for 

calculating free energy profiles for complex biomolecules. 
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Future Work 

The overall aim of this project is to initiate the development of a small database with calibrated 

EVB Hamiltonians for enzymes catalyzed reactions. Since EVB shortfall is reference reaction 

and to obtain this, DFT can be employed for reactions lacking experimental data. Further work 

can be done on getting the most reliable functionals to use for DFT calculations on other 

molecules with similar mechanism of action. For this project, several functionals have been 

tried and further work on this can lead to deeper understanding on sensitivity of the functionals 

to energy barrier. 

For deeper understanding of reactions in solution and in enzymes, further study on this project 

might be to carry out studies on other enzymes with similar mechanism of action and to check 

for how conformational changes in the active site residue of the enzyme as it catalyzes 

conversion from chorismate to prephenate affect the free energies of conversion and to study 

the effect that arises from change in binding free energies between the enzyme and its RS, PS 

and TS substrates. This can give more insight into the transition state stability of chorismate 

mutase. 
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