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Abstract— The arctic tundra is most sensitive to climate
change. The change can be quantified from observations of the
fauna, flora and weather conditions. To do observations at suffi-
cient spatial and temporal resolution, ground-based observation
nodes with sensors are needed.

However, the arctic tundra is resource-limited with regards to
energy, data networks, and humans. There are also regulatory
and practical obstacles. Consequently, observation nodes must be
small and unobtrusive, have a year or longer operational lifetime
from small batteries, and be able to report results and receive
software updates over scarce back-haul networks.

We describe the architecture, design, and implementation of
prototype observation nodes deployed to the arctic tundra for
the periods August 2019 to July 2020 and August 2020 to July
2021.

For the 2019 deployment, ten nodes were each placed inside
ten existing camera traps. A camera trap is a box with a wild-
life camera taking pictures of rodents when they enter the box
from tunnels under snow and ice. For the 2020 deployment, eight
nodes were located pairwise inside four camera traps.

Each node measures carbon dioxide level and temperature
inside the camera trap during the winter season. A node reports
its state and observational data each night over a commercial
low power IoT telecom back-haul network, if available.

We report on the issues encountered doing actual deployments
of the prototype nodes. For each issue, we describe the reason
for why it happened, relate it to the architecture, design and
implementation, and explain what we did about it.

I. INTRODUCTION

The circumpolar arctic tundra is the Earth’s terrestrial biome
that is the most sensitive to climate change. The extent of pro-
jected warming is so extreme that tundra ecosystems will likely
transform into novel ecological states within a few decades,
potentially leading to loss of important ecological functions
and biodiversity. To be able to reliably predict such transi-
tions and their consequences, climate-ecological models need
data from many observations providing for measurements of
climate and ecosystem state variables. The Climate-ecological
Observatory for Arctic Tundra (COAT) (http://www.coat.no)
is working to make such observations.

Presently, ecological observations are still heavily dependent
on data collected by field personnel traveling to the tundra to
make observations in person, by hand. Technological devel-
opments include automated camera traps, timer- and motion-
activated cameras that photograph wildlife. Such instruments

must still be placed by hand, and they typically do not include
any communications capability. Field personnel must return to
the site in the next fieldwork season (typically a year later)
to collect the captured data and reconfigure the instruments.
This observe-by-travel approach limits the possible number
of observations to a human scale. An observe-by-wire ap-
proach, with many automated sensor nodes that can collect and
transmit data with minimal human intervention, could greatly
increase the spatial and temporal coverage of the observations.

However, the conditions found on the arctic tundra present
multiple challenges to such a system. Energy is scarce in
winter. The sun does not rise, and though wind is plentiful,
it may be inaccessible due to deep snow. Communications
infrastructure is scarce. There is little to no LTE coverage,
and satellite communication is expensive. Roads are scarce.
Travel to the field requires specialized vehicles like ATVs,
snowmobiles, or even helicopters, with the last mile on foot.
Snow and ice are not scarce. Nodes will be buried in snow
and ice during winter, and flooded by snow melt in the spring.
Strategies to address these challenges involve difficult trade-
offs. Large batteries add weight. Aggressive energy-aware task
scheduling complicates systems. Powerful antennas require
more energy. Masts to raise antennas or wind turbines above
snow will add weight and complexity and may be barred by
local regulations against obtrusive installations.

The Distributed Arctic Observatory (DAO) (https://site.uit.
no/dao/) researches ways to overcome these challenges and
build a comprehensive observation system for the arctic tundra.

In this paper, we present a vision for a distributed arctic
observatory architecture, and we present the design and im-
plementation of a prototype observatory system that we built
and deployed to measure carbon dioxide inside existing COAT
camera traps [1]. We report on our experiences deploying a
ten-node system on the tundra in the far north east of Norway
from the summer of 2019 to the summer of 2020. We examine
issues that arose during the deployment period and take an
unflinching look at their causes. For each issue, we locate its
cause within the system and discuss implementation or design
changes that were applied — or could be applied in future
work — to address it. We distill this experience into lessons
learned for future wireless sensor network development.
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The structure of the paper is as follows. Section II presents
related work. Section III describes the observation system
at three abstraction levels: an idealized, abstract architecture
(III-A), the applied CO2 observation system design (III-B),
and actual implementation details (III-C). Section IV describes
the actual deployment, and Section V describes the system’s
operation while deployed. Section VI analyzes different issues
that arose during the deployment period and discusses lessons
learned and how the issues can be avoided. Finally, Section VII
is the conclusion.

II. RELATED WORKS

Ecological research is increasingly embracing technology
for data collection [2]. The field of biologging or biotelemetry
tags animals with GPS devices that record their positions
over time [3], [4]. Ecological research technology is often
in the form of commercial data loggers, which can often be
costly monetarily. The rise of accessible low-cost computer
development kits such as the Raspberry Pi and Arduino is
spurring an interest in do-it-yourself sensors for ecological
research [5]–[7]. However, there are still few attempts to use
DIY sensors for serious ecological work.

Wireless sensor networks (WSNs) are an active and diverse
topic in computer science, with applications such as the
Internet of Things (IoT) [8] and smart cities [9], which flourish
with the ubiquity of modern wireless infrastructure. Further
away from infrastructure are applications like smart agriculture
monitoring [10], [11] which, though rural, are still tied to
human activity and thus still often enjoy some access to
infrastructure. Much further afield is habitat monitoring [12].
ZebraNet [13] notably used incidental contact of wandering
zebras to relay data to base stations with back-haul networks.
Still, even habitat monitoring systems rarely venture into the
arctic.

WSNs have been deployed to demanding environments
such as rivers [14], deserts [15], and even volcanoes [16].
These environments can damage sensor nodes or impact the
measurements for several reasons, including humidity, dust,
and temperatures. Therefore, a node must be built with its
deployment environment in mind. The sensors we describe
are built to be physically isolated and exposed for up to a
year in the arctic tundra with low temperatures, high wind,
heavy snow and ice, and high humidity.

The environment where nodes are deployed can have a
significant impact on the radio propagation properties. Experi-
ences from a system deployed inside caves document that thick
rocks make communication challenging [15]. Sensors on the
tundra will be covered in snow and ice. Physics literature [17]
suggests that the effect of snow and ice on radio waves will
vary with how densely packed the snow is. Soft snow, with a
low relative permittivity (εr = 4), should have little hindering
effect on radio waves. Compact wet snow (εr = 50) should
have more of an effect, but still less than water (εr = 80).

Previous deployments of wireless networks in arctic condi-
tions include ice- and snow-monitoring stations in Antarctica
[18], sensors dropped into boreholes in a glacier in Norway
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Fig. 1. Architecture for a Distributed Arctic Observatory

[19], and a system to deliver internet to Sámi reindeer herders
in northern Sweden [20] using delay-tolerant networking
(DTN) [21]. Each of these employs larger batteries than are
practical for our application, plus some combination of solar
[18], [19], wind [18], or even diesel generators [20] to charge
their batteries. Such charging strategies are not viable for
sensors that are buried under the snow and where regulations
prohibit protruding masts for antennas or wind turbines.

A current trend in sensors systems is ultra-low power,
batteryless, energy-harvesting sensor motes [22]. Energy in
the tundra is difficult to harvest in winter, so our sensor
deployment still uses batteries for now. We also used low-cost
off-the-shelf components for our prototype sensors rather than
advanced systems-on-chip. However, arctic research could
pose an interesting challenge for the batteryless frontier, and
as ultra-low-power system-on-chip technology improves [23],
batteryless arctic operation may become more feasible.

Because of the harsh conditions imposed by the arctic
tundra, it is complicated to cope with current and state of
the art solutions and difficult to decide which design choices
could be the best in our context. To understand and study the
implications for such a system, we decided to design a simple
solution, helping us to keep track of the possible problems that
might arise.

III. CO2 OBSERVATION SYSTEM

We describe the CO2 observation system at three levels
of abstraction: a high-level architecture that describes an
idealized, abstract structure for a distributed arctic observatory
system, an intermediate design that characterizes the specific
CO2 observatory application that we built, and the concrete
implementation details of the CO2 observatory system as built
and deployed.

A. Architecture

Sensor nodes in an arctic observatory must be careful with
energy and must operate on their own without assuming that a
stable network connection is available. The Distributed Arctic
Observatory envisions an arctic observatory made up of smart,
autonomous sensor nodes called observation units (OUs) that
are distributed across the tundra, collecting data that is part
of a greater tundra data set and storing it until some network
becomes available or some messenger arrives to carry the data
away to a more secure location.



We divide the general high-level architecture of these obser-
vation units into eight fundamental abstractions. Six abstrac-
tions constitute a platform that is common to all OUs: runtime,
store, connectivity, updates, and observation of internal state.
The other two are customized to each application: observation
of external state and mission-specific functionality. These
abstract architectural components are visualized in Fig. 1 and
described below.

1) Runtime: The runtime abstraction is the manager of
the other component abstractions. It schedules other func-
tionalities, and in a physical environment where it makes
sense to spend most of the time hibernating, the runtime
decides when to sleep and when to wake. In a sophisticated
observation unit, this may be a full operating system with par-
allel multiprocessing and memory protection. It may schedule
and customize operations dynamically based on the history
of collected internal state. It could make these decisions by
heuristics or even by machine learning. Or, in a minimal OU,
the runtime could be as simple as a sequential task-running
loop: wake, check fixed schedule, run task, go back to sleep.

2) Store: The store abstraction represents the local data
storage of the observation unit. Because an OU cannot rely
on a network connection, data must be stored locally by the
store abstraction until it can be delivered to a more-central
node for safekeeping.

3) Connectivity: An observation unit cannot assume that
a network is available, but it must be ready to make use of
any network that becomes available. This is the responsibility
of the connectivity abstraction: to manage connections to
other nodes across different communications technologies or
different network topologies, to negotiate sleep times, and to
navigate network partitions and failure events.

4) Data Abstraction: Bridging the store and connectivity
abstractions is the data abstraction. The data abstraction links
the data collected by individual observation units into a larger,
distributed data set. It manages the flow of data between avail-
able connections, replicating data across neighboring nodes for
safety and/or routing data towards a back-haul network for
aggregation at a more central node. The form of such a data
abstraction is part of our ongoing research and the properties
of this data set are not the focus of this paper.

5) Updates: Because bugs are inevitable and requirements
change, a remote observation unit must be equipped to receive
and apply remote software updates. This is the responsibility
of the update abstraction. It makes use of the connectivity and
data abstractions to transfer the content of software updates
from a central authority to the local node, and it manages
the details of verifying and applying downloaded software
updates.

6) Observation of Internal State: An autonomous obser-
vation unit must have some degree of self awareness to feed
back into the decision-making of the runtime abstraction. This
awareness comes from the OU’s monitoring and recording of
its own internal state, including such metrics as battery level,
available networks, state of local storage, and error logs. The
purpose is to provide the other abstractions with information

to use to adapt the node’s behavior to changing conditions,
and to supply operators with information needed to diagnose
errors.

7) Observation of External State: The observation of ex-
ternal state is the observatory’s raison d’etre: to observe and
record state variables related to external conditions of the
arctic tundra environment. The external state abstraction en-
compasses the sensors needed to observe these state variables
and the programming responsible for collecting and storing
this data. This can include observations such as atmospheric
data and weather conditions, photos or video of plants or
animals, or audio recordings of e.g. bird songs. All data is
to be stored by the store abstraction and guided by the data
abstraction to become part of the larger data set.

8) Mission-Specific Functionality: The mission-specific
functionality abstraction is for any other functionality required
by the observatory application. This may include edge analyt-
ics such as compression or summarization of observed data
for transmission over constrained networks.

B. Design

Our prototype application of the distributed arctic obser-
vatory architecture is a CO2 observation system that is a
companion to existing under-snow camera traps used by COAT
to photograph small rodents such as lemmings that live under
the tundra snows in winter [1]. The CO2 observation unit is
designed to fit into a hollow space in the wall of the existing
camera trap boxes. It records an external state variable that the
existing cameras do not: carbon dioxide (CO2) levels. It also
records temperature to double-check the camera’s temperature
measurements, and it observes the camera itself by detecting
the infrared light of the camera’s infrared flash. The OU
records CO2 and temperature every 30 minutes, and it attempts
to transmit collected data to a central server over an LTE-M
network each night. It spends the rest of its time in a deep
sleep state. Detections of a camera flash trigger a brief wake-
up state that increments an “observed flashes” counter, which
is then recorded as part of the half-hourly CO2 and temperature
observations.

The CO2 OU design simplifies but does not encompass
all the characteristics of the prescribed architecture. This
simplification was done to meet deployment deadlines. The
nodes must be deployed before the arrival of winter buries the
camera traps with snow and makes further deployment impos-
sible without disturbing the under-snow habitat. In practice,
these simplifications led to node behaviors and failures that
are described later in the paper (Section VI). The design is
visualized in Fig. 2. It compares to the prescribed architecture
as follows.

1) Runtime → Task Runner: The runtime of the CO2 OU is
a simple, sequential task runner that manages the scheduling
of external observations (every 30 minutes) and connectivity
(every night) as its major tasks. The design is made to
be simple to run on a microcontroller without an operating
system. As such, it runs its tasks in sequence as scheduled
subroutines, waking to run the scheduled subroutine and then
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Fig. 2. Design of CO2 observation unit system, integrated with COAT wildlife camera boxes.

going back to sleep until it is time to run the next scheduled
task/subroutine.

The task runner also runs additional subroutines in response
to specific conditions. After booting from a hard power cycle,
it runs a self test subroutine that checks hardware and con-
nectivity and then gives visual feedback to the operator via
an onboard LED. After waking via a camera-flash trigger, it
runs the subroutine to increment the camera-flash counter and
then goes back to sleep. It runs an updates subroutine after
a power cycle (after the self test) and after the connectivity
routine (if updates were downloaded). It also records errors if
any subroutine throws an uncaught exception, and it runs an
error-recovery subroutine if it boots from an unexpected reset.

2) Store → Filesystem: The store in this case is a typical hi-
erarchical filesystem on local storage. Internal and external ob-
servation data is stored in an append-only fashion to local files.
The files are numbered sequentially (e.g. data-0000.csv
or log-0000.txt). When a file grows past a certain thresh-
old (100 KiB), a new file with an incremented name is created
and used. Directories named by date under the updates/
directory, e.g. updates/update-2019-10-11, are mon-
itored by the update abstraction for installation.

3) Connectivity → LTE-M: Connectivity for the CO2 OUs
is simplified to connect to a commercial LTE-M back-haul
network if available. Connection attempts are scheduled each
night. Once an internet connection is established, the OU
makes a direct connection to a central server via a RESTful
HTTP API over TCP. The network topology is a star with the
server at the center. A central server is a single point of failure
that could eventually limit scaling of a large deployment, but
it was a simple starting point for this early experiment.

4) Data Abstraction → Data Push/Pull: The data abstrac-
tion for the CO2 OUs is a simplified push/pull system that is
activated once the connectivity abstraction makes a connection
to the central server. New observation data is pushed to the
server and new updates are pulled from it.

The subroutine for pushing data relies on the fact that the
data is sequential and append-only. It stores a position of the
last data to be transferred to the server (a filename and file

position pair). It sends data in small chunks, starting at the last
position, and only advancing the position after an ACK from
the server. If the OU’s stored position is reset or otherwise
falls out of sync from the data stored on the server, the server
can send a corrected position as part of its ACK, which resets
the OU’s saved position.

Similarly to the pushing of data, the subroutine for pulling
updates relies on a sequential naming scheme. It first asks
the server for the name of the latest update. Then, if that
update does not exist locally, it asks for a list of all files in
the update and then downloads them one by one. It keeps the
incomplete download in a holding area until all files have been
downloaded. Then when the download is complete, it moves
the entire directory from the holding area into the updates
directory that is monitored by the updates abstraction.

On the central server, data from each OU is aggregated into
the complete data set, which is then stored in a distributed
version control system (DVCS). The data from the CO2 OUs
is in text-based file formats and is on the order of megabytes
per year per OU, so a DVCS is a natural fit. Once in version
control, the entire data set can be easily replicated and synced
between user PCs or backups. Updates, once developed and
ready for distribution, are committed to the file hierarchy in
the DVCS. Once these commits make their way to the server,
they are then available to be pulled by the OUs.

5) Updates: The updates abstraction for the CO2 OUs
works by checking the designated updates area on the filesys-
tem for new updates. When a new directory of update files
is detected, it installs them by copying the program code into
the active program area of the microcontroller’s flash memory.
The runtime/task runner runs the update subroutine after a hard
reset to detect updates that are loaded manually via SD card,
and also after a connectivity cycle if new updates have been
downloaded.

6) Observation of Internal State → Diagnostics: Internal
state observed by the CO2 OU is mostly diagnostic information
logged to sequential log-0000.txt files in the store/filesys-
tem. This information is mostly in the form of logged excep-
tions that were thrown by the different subroutines and caught



by the runtime/task runner. Error information is also logged
when the error recovery routine is run after an unexpected
reset. The connectivity routine also records the received signal
strength indicator (RSSI) of the LTE-M signal each time it
makes a connection.

7) Observation of External State → CO2, Temperature, and
Light: The external state recorded by the CO2 observation
units is, of course, the CO2 level inside the camera box.
This measurement is recorded once every 30 min, along
with temperature and the count of camera flashes that were
observed between scheduled wake-ups. These are appended
as a row of comma-separated values to the current sequential
data-0000.csv file on the store/filesystem.

8) Mission-specific Functionality → No-op: The CO2 ob-
servation units have no additional analytics or other mission-
specific functionality.

C. Implementation

The design of the CO2 observation system is concretized
by the implementation.

The CO2 observation unit implementation is based on a
Pycom FiPy microcontroller which includes an onboard LTE
modem for connectivity. The runtime is the FiPy’s MicroPy-
thon runtime environment with a custom sequential task runner
written in MicroPython code. The FiPy was chosen for its
low cost and for its inclusion of multiple radio technologies
that can potentially be used for future expansion of the
connectivity abstraction. The code is sequential, running tasks
and catching exceptions. Execution is monitored by a system-
wide watchdog timer, which resets the system if it is not
“fed” by the task runner or its subroutines after 60 s. The
watchdog timer catches unexpected freezes and acts as a last
resort against unexpected behavior.

Storage is provided by a MicroSD card and the filesystem
is FAT. Connectivity is established via the FiPy’s LTE-M
modem in Cat-M1 mode. The push/pull data abstraction is
implemented as a MicroPython routine in a straightforward
coding of the behavior described in the design section. The
update routine also works as described in the design section.
It checks for downloaded MicroPython module files in the
updates/ directory of the SD card (either Python source or
precompiled bytecode) and installs them into the FiPy’s flash
memory for execution. In terms of observations of internal
state, the task runner writes exceptions that it catches to the
log, as well as unexpected resets. The connectivity routine
also records LTE RSSI as measured by the LTE modem
on each connection. Log entries are timestamped using a
hardware real-time clock (RTC) that is more accurate than
the FiPy’s internal RTC and which is set via NTP after LTE
communication.

The central server is a simple RESTful HTTP server written
in Python using the Flask-RESTful library, running in a Linux
LXC container in our campus network. A cron job commits
the collected data to a Git repository once per day and then
pushes the commits to a local GitLab installation. From there,
users can clone the data and examine it.

(a) (b) (c)

Fig. 3. A CO2 observation unit being deployed. (a) Detail of OU. (b) The OU
is placed in the hollow wall of the camera trap box. (c) The closed camera
box is covered with stones for protection and camouflage.

Physically, all internal logic components of each OU are
encased in a water-resistant enclosure, with leads for external
sensors. A photo of a completed CO2 OU is shown in Fig. 3(a).
Observations of external state are provided by specialized
hardware sensors. CO2 is measured by a Gas Sensing Solu-
tions ExplorIR-W-20 CO2 sensor. It is affixed to the top of the
node enclosure and is protected by a 3D-printed hood. There is
also a 3D-printed stabilizing foot to lift the OU off the ground
to avoid standing water. The temperature sensor is a DFRobot
temperature probe made for outdoor use. It is affixed to the
side of the enclosure. Camera flashes are detected by a generic
IR light sensor. A flat LTE antenna is also attached outside of
the enclosure.

The CO2 OU, like the camera it compliments, is powered
by twelve AA batteries. This arrangement was chosen for
convenience of maintenance, so that only one type of batteries
must be carried to the field. Initial energy use estimates showed
that twelve AAs should be sufficient for a year of operation
with measurements every half hour and up to eight minutes
of LTE radio operation per day. The total hardware cost is
approximately 330 USD per unit.

Complete source files for this CO2 observation system are
available online (https://github.com/arcticobservatory), includ-
ing software source code, hardware parts lists and schematics,
and model files for 3D-printed components.

IV. DEPLOYMENT

COAT camera traps are deployed in clusters of twelve, in
locations chosen to give a sampling of different elevations
and terrain types. The primary terrain types are snow beds,
rocky areas where deep snow accumulates, and hummock
sites, marshier areas characterized by small mounds of soil.
Within clusters, camera boxes are typically between 200 m
and 600 m apart, and clusters are spaced at least 2.5 km apart.
Deployment in the field is as shown in Fig. 3. The CO2
observation unit is placed into the hollow cavity in the walls
of the camera box, and the camera box is covered with stones
found nearby for protection and camouflage. Care is taken

https://github.com/arcticobservatory
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Fig. 4. Timeline of observation unit contact with back-end server during the 2019–2020 deployment.

to place the weight of the “roof” stones onto other stones
rather than on the box itself. This also keeps the weight of
accumulated snow off of the box during the winter.

Ten CO2 observation units were deployed in August of 2019
to selected camera traps in the arctic tundra environment of
Norway’s Varanger peninsula (Varangerhalvøya), at the far
north and east end of the country. The chosen cluster of
camera traps are on the hill Reinhaugen (70°20′N 28°57′E)
in the Vestre Jakobselv region of the peninsula. This cluster
was chosen for the first deployment because mobile coverage
maps [24] indicated that it should have good LTE-M coverage.
Twelve OUs were originally carried into the field to match the
twelve camera traps, but multiple issues (described below in
Section V) reduced the number to ten.

Visiting these sites from the nearest town requires roughly
four hours of travel by car and all-terrain vehicle, with the
last few kilometers on foot due to regulations restricting ATV
driving to designated trails. Consequently, maintenance cannot
be done casually. One trip for in-field maintenance of the OUs
was made in September 2019 to adjust antennas and install
updated software.

During the summer of 2020, all OUs were retrieved and
brought back to the lab. Memory cards were removed, and all
observational data and error logs were saved. The following
section describes the observation system’s operation during
this first year.

The OUs underwent maintenance, receiving new batteries
and updated software, and then eight nodes were redeployed
to Reinhaugen in August 2020. They will be operational from
August 2020 until summer 2021. For this second deployment,
the eight CO2 nodes are placed two per camera trap box in
four camera traps.

V. OPERATION

In this section, we describe the operation of the CO2
observation system during its first year of deployment, from

summer 2019 to summer 2020. The collected CO2 data itself
is erratic and inconclusive, and further analysis beyond the
scope of this paper is needed to determine if it is useful. For
this paper, we focus on the behavior of the CO2 observation
units themselves, leading to the analysis in the next section
(Section VI) of issues encountered.

A timeline of contact from deployed CO2 observation units
during the winter 2019–2020 season is shown in Fig. 4.
The left-hand labels show the site code of the camera box
in which each CO2 observation unit was deployed. These
labels are comprised of region (“vj” for Vestre Jakobselv),
cluster (“re” for Reinhaugen), terrain type (“sn” for snow bed,
“hu” for hummock), and a number (1–6) that comes from the
order in which the sites were initially surveyed and scouted
to be camera trap sites. The sites are listed in descending
alphanumeric order in the figure. This corresponds roughly
to descending elevation above sea level of the camera traps.

Each horizontal line represents a deployed observation unit,
with dashed portions representing periods of transit to and
from the field, and dotted portions representing periods of
testing in the lab. Shaded parts along each line show days when
a node was able to reach the central back-end server, with con-
secutive days of contact becoming a solid bar. Black vertical
lines represent changes in deployment status. These include
the maintenance visit on Sept 26, 2019, and the retrieving of
all OUs in July 2020. Labels on the right-hand side show the
elevation in meters above sea level (MASL). Also shown is the
average received signal strength indicator (RSSI) in decibel-
milliwatts (dBm). The RSSI was measured using the FiPy’s
modem. RSSI readings are included in the average if the initial
contact was successful, regardless of whether observation or
log data was transferred successfully or not.

Starting at the left of the timeline, representing July and
early August 2019, shading shows where the OUs made
contact with the server as they were first tested in the lab
and then in transit towards the Varanger Peninsula. After



Aug 13, site vj_re_hu_1 is empty due to problems with
storage (Section VI-B). From Aug 13 to Sept 26, a lack of
shading shows the connectivity issues (Section VI-C) that
necessitated the maintenance visit on Sept 26. In this period
only one contact was made between OU and server: that from
vj_re_sn_3 on Aug 24. After Sept 26, site vj_re_hu_6 was
also left empty due to problems with batteries (Section VI-B),
while other sites show increased contact with the server.

By the time of pickup in July 2020, all OUs had ceased
communicating. Examination after return to the lab showed
that the OU from vj_re_sn_5 was still running on battery
power and collecting data. It began communicating and trans-
ferring data again after a power cycle, which can be seen in
the shaded region near the right of the figure. Of the others,
3 were damaged by flooding during the spring snow melt in
late May and early June; 2 had drained batteries but were
otherwise operational once connected to a power source; and 4
had drained batteries and were not operational when connected
to power. The brief contact from the two operational OUs
when powered on, vj_re_sn_4 and vj_re_hu_5, can also be
seen in July. The four that were not operational were stuck in
a “crash loop” (Section VI-B), running their watchdog timer
reset routine over and over again.

Two OUs experienced data loss due to damaged SD cards.
Site vj_re_sn_2’s SD card was destroyed by flooding. How-
ever, it managed to transfer all of its collected data up until
May 31, which is presumably the day that it flooded. Site
vj_re_hu_4’s SD card was too corrupted to read. It was only
able to transfer part of its data. Therefore, the date of last
server contact (Feb 10, 2020) is later than timestamp of the
latest data received (Nov 02, 2019).

In the next section, we expand on the operational issues that
arose during the deployment period and extract lessons to be
learned from the experience.

VI. FORENSICS AND LESSONS LEARNED

Here, we describe issues encountered with the CO2 obser-
vation system and lessons learned from it. We examine issues
via the architectural components in which they originated —
runtime, storage, connectivity, data abstraction, updates, or
observation of internal state — and discuss how improved
design and implementation could have avoided the issues.

A. Runtime

A weakness of the CO2 observation unit’s runtime is its
error-handling model: it has a limited ability to respond to code
that stalls during execution. This is because it runs scheduled
routines sequentially, expecting them to either return or to
throw exceptions. Stalls are handled by a global watchdog
timer (WDT) that resets the OU into an error-handling routine
after 60 seconds if the watchdog is not “fed” during forward
progress.

Trouble arose when unanticipated stalls occurred during
deployment. One unexpected stall occurred during the OU’s
power-on self test routine, sending the OU into an infinite self-
test loop. As part of the self test, an NTP request was sent

using a library that set a 1 s socket timeout. If the request
took more than 1 s, it would time out and throw an exception
for the test code to catch. What was unexpected was that this
call also included a DNS lookup that was not governed by the
timeout. Out in the field where signal strength was reduced,
the DNS request packet was lost, and the network code stalled
while waiting for it. The stall triggered the watchdog timer,
and then, because operation had not progressed past the self
test, the OU runtime ran the self test again, causing an infinite
loop. Breaking this loop in the field required improvisation:
temporarily dislodging the LTE SIM card so that the LTE
network refused a connection. This caused the self test to fail
in an expected manner by throwing an exception.

On an implementation level, this bug was fixed by increas-
ing the watchdog timeout from an overly aggressive 10 s to
60 s, giving enough time for the DNS lookup to reach its
implicit internal timeout and throw an exception. Also, the
potential for a loop was disabled by changing the runtime to
only attempt to run the power-on self test once.

However, on a design level, it should not have been possible
for an unexpected failure mode in the self test to lead to an
execution loop. The loop happened because of design mistakes
in scheduling. The first version of the task runner checked
its schedule after running each routine and before going to
sleep. It then set a state variable in nonvolatile RAM for what
routine to run next on wake or reset. Because this next-routine
variable was followed blindly after a reset, and because the
unexpected reset prevented execution from progressing past
the self test, the runtime became stuck re-running the self test
on every reset. To fix this, the runtime was redesigned and
rewritten to instead double-check its power-up/wake reason
and its schedule on every reset or wake-up, before executing
any routines. The new design is more robust in the face of
unexpected resets.

A further improvement to the design of the runtime would
be to use parallelism. This would not only allow the runtime
to be more flexible with scheduling, running multiple routines
at once, but it would also allow a watchdog thread to monitor
execution and recover control from stalled routines without
resorting to a full system reset.

Lessons learned: 1) Incorporate unexpected stalls and
freezes into the system’s failure model. 2) Double-check state
and schedule before running any routines. 3) Simple runtime
environments are under pressure to accumulate more oper-
ating-system like features, such as time-sharing and process
isolation.

B. Storage

The first problem encountered with storage was that during
transit, the SD cards of three separate observation units were
jostled out of their sockets. One SD card could simply be re-
seated, but two cracked in half and were rendered inoperative.
We were carrying a spare OU, but no spare SD cards. Thus,
only 11 of the 12 planned OUs were initially deployed (the
number was later reduced to 10; see Section VI-C below).



Over a year-long deployment, many observation units suf-
fered storage failures that led to mission failure for the
OU. At the root of this issue is the fact that the SD cards
used for storage use a simple FAT filesystem which is not
resilient in the face of dirty shutdowns. Unexpected watchdog
timer resets cause exactly such unsafe shutdowns, and each
reset runs a risk of corrupting the filesystem. Over time this
corruption occurred in at least four of the deployed OUs. The
corruption then led to another unexpected stall in the code.
When attempting to open a file on the corrupt filesystem for
writing, the MicroPython I/O API froze. The freeze triggered
a watchdog timer reset, which then triggered the error routine
to record the error. Attempting to open the error log file for
writing then caused another stall, which in turn caused another
reset, and so on. This is the “crash loop” noted previously in
Section V. Affected OUs became stuck in a loop of trying to
record their own errors, unable to make progress while their
batteries drained completely. This led not only to a complete
failure of these OUs’ missions to observe conditions on the
tundra, but it also led to a lack of diagnostic information.
Without evidence in the log, the diagnosis had to be inferred
post-mortem from each OU’s final data and error timestamps
and then confirmed by manually observing the OU’s behavior
while hooked up to a debugging console.

On an implementation level, this bug has been mitigated
by keeping a counter of consecutive watchdog resets in
non-volatile RAM. If it reaches an arbitrary threshold, e.g.
five consecutive resets, the runtime will not record the error
but will instead try to continue back to normal scheduled
operation. This breaks the loop and prevents unnecessary
battery drain. From here, adding a filesystem check could
repair the filesystem and allow the OU to continue normally.

A simpler alternative that would eliminate this type of
error entirely would be to use a more sophisticated fail-safe
filesystem in the first place. There is a fail-safe filesystem with
atomic writes called littlefs [25] that is created specifically
for embedded flash storage. Current builds of MicroPython
support littlefs on the FiPy’s internal flash storage, but not on
external SD cards. A hybrid storage system design could write
first to littlefs in the FiPy’s internal storage, then sync to the
SD card. Building such a hybrid system is future work.

Lessons learned: 1) Use a fail-safe storage medium. 2) Do
not forget that removable storage like SD cards still use
fragile filesystems like FAT. 3) Storage media can still break
physically. Use replication and redundant storage.

C. Connectivity

The most standout issue with connectivity was a problem
with LTE antenna positioning. When we first deployed the
observation units, we attached the antennas directly to the
top of the metal camera boxes. Later experiments in the lab
showed that this placement attenuated the signal by as much
as 20 dBm compared to a free-standing OU. This attenuation
was not enough to cause problems during development in
the lab, but in the field, it led to the unexpected “self-
test loop” behavior (Section VI-A) and prevented nearly all

communication between the OUs and the server in the first
weeks of deployment (Fig. 4 and Section V). This attenuation
was fixed during the September 2019 maintenance visit by
adding a 1 cm shim between each antenna and its metal box.

At an implementation level, this was a misunderstanding
of the antenna’s intended mounting, but it was also a lack
of internal state observations. Reading the received signal
strength indicator (RSSI) earlier in the development process
would have uncovered the attenuation. This is a reminder that
a quantitative scalar metric gives far more information than a
binary one.

On a software implementation level, many details of data
transfer were left up to the HTTP libraries used to connect
to the server. Optimizations such as reusing TCP connections
might have improved reliability over the challenged networks
by reducing round-trips for handshakes and reusing flow-
control state.

However, an improved design would use protocols such as
MQTT or CoAP [26] that are designed for IoT over challenged
networks, transferring small chunks of data directly with small
packets, rather than building a TCP stream for an HTTP
connection only to send a small chunk of data.

Of course, optimizing the use of a network does not help
if the network is not there at all. An observation unit needs
a robust abstraction for connectivity that will use any and
all links available to it. The FiPy alone includes LTE-M,
Wi-Fi, LoRa, Sigfox, and Bluetooth. A flexible connectivity
abstraction could use the other radios to potentially reach
neighboring nodes (or passing skiers or biologger-equipped
animals) and relay what data it can towards a node that does
have a back-haul connection. Developing such a connectivity
abstraction is part of our group’s ongoing research.

Lessons learned: 1) Do not make assumptions about an-
tenna behavior. Measure and analyze signal strength metrics.
2) Choose protocols that are designed for the application use
case. 3) In challenged networking environments, use every
available networking resource.

D. Data Abstraction

No serious issues originated from the simplified data ab-
straction itself, though it was affected by the issues in storage
and connectivity. In future work, as the observation unit
storage and connectivity become more advanced and data
is replicated across multiple local stores (e.g. internal flash
memory and external SD card) or multiple nodes (e.g. by relay
across neighboring nodes), it will be the responsibility of the
data abstraction to manage the consistency of these replicas.

There was an implementation bug in the pull mechanism
that allowed incomplete updates to be installed. If the down-
load of a multi-file update failed after at least one file was
downloaded successfully, the code to resume the download
would instead mark the whole download as complete and pass
it along to the update abstraction prematurely. This issue was
discovered before any updates were sent, and it was remedied
by first sending a one-file update to fix the bug before sending
any other remote updates.



One design issue is that the hardware ID of the OU’s FiPy
is used to identify that OU’s subset of collected data. This
seems natural at first, but it results in a coupling between the
SD card and the FiPy that can cause duplication if SD cards
and FiPys get mixed up. During deployment, a broken SD
card was replaced with one from a spare unit. This led to
the spare unit’s data up to that point being duplicated as part
of the deployment OU’s data. This duplication of data was
easy to correct manually, but if many such incidents occurred,
the situation would quickly become unmanageable. If the data
subset had an ID of its own that traveled with it, this issue
would not have arisen. Future work on the data abstraction
should include insights from the field of Information-Centric
Networking [27].

Currently, the simplified data abstraction does not consider
security when storing or transporting data, leaving it vulner-
able to man-in-the-middle attacks. Future work to secure the
data abstraction can draw inspiration from the decentralized
social network Secure Scuttlebutt [28], which adds crypto-
graphic signatures and other security considerations to a very
similar data model: single-writer, append-only logs of data that
are propagated via gossip protocol.

Lesson learned: A data subset should have its own ID that
moves with it across devices and storage media.

E. Updates

The updates functionality was briefly affected by the bug
in the data abstraction that allowed incomplete downloads to
be marked as complete. That was an implementation bug in
the data abstraction, but it is also a weakness of design in
the oversimplified updates abstraction. The update mechanism
should independently verify the completeness and integrity
of an update before applying it. This could be as simple as
consulting a manifest file with checksums, but a more secure
design could use cryptographic code signing. Adding these
features is future work, as is adding another key feature: the
ability to roll back faulty updates.

Lessons learned: 1) There will be bugs. Therefore, remote
update capability is a key feature of any remote computer
system. 2) Update files may be incomplete, corrupted, or even
malicious. Therefore, the update mechanism itself must check
the integrity of updates, without leaving it to the download
protocol or storage mediums.

F. Observe Internal State

Limited observation of internal state was intertwined with
other issues recounted above: failure of the runtime to check
run state before running code resulted in a loop of self tests;
failure to measure signal strength metrics led to antenna prob-
lems; and failure to detect and respond to filesystem corruption
resulted in an inability to record any further state. Addressing
these problems involved adding such measurements: checking
run state before running code, measuring and reporting RSSI,
and keeping a count of consecutive resets in nonvolatile RAM.

Another seemingly obvious missing internal state mea-
surement is remaining battery power. The lack of battery

measurement was not an oversight but a cost trade-off. The
lithium-ion batteries used to power the CO2 osbervation units
have a relatively flat discharge voltage curve [29], and the
change in voltage is too slight to be detected accurately by
the FiPy’s onboard analog-to-digital converter pins. Adding
a more sensitive ADC would have added monetary cost and
design complexity to the CO2 OU hardware, and at the time
we chose not to pursue it.

Lessons learned: 1) An autonomous node in a cyber-phys-
ical system must record information about its own internal
state, not only as a text log, but as machine-readable state
variables that can be used for operational decisions. 2) Accu-
rate battery-level measurements may be worth the additional
cost and complexity.

VII. CONCLUSION

Building a robust wireless sensor network is a challenge in
itself, and it is an even greater challenge when building a WSN
for a hard-to-reach environment that is inaccessible for most
of the year, has little-to-no network coverage, and has practical
barriers to energy harvesting. These are the characteristics of
the arctic tundra. The Distributed Arctic Observatory (DAO)
explores, prototypes, and builds autonomous observation units
to be deployed as part of the Climate-ecological Observatory
for Arctic Tundra (COAT) to monitor the arctic tundra at a
large scale.

In this paper we show that even the simplest of observation
systems — with only a few sensors and a single network —
can be surprisingly difficult to build, deploy, and debug in a
demanding environment such as the arctic tundra. We have
pinpointed issues in our early design and implementation and
enumerated lessons learned from the experience to set the
direction for future work. We hope that this experience and
the lessons learned will be enlightening for others as well.

Future work includes analysis of the gathered CO2 data.
We also intend to pursue further research into overcoming the
challenges of the tundra and to develop a robust observatory
platform based on the architecture that we have described. We
intend especially to develop a flexible connectivity abstraction
that can utilize multiple radio technologies and multi-hop
store-and-forward networking to relay messages to units by
any and all available means, along with a robust data abstrac-
tion to manage replication and consistency across unreliable
links in order to treat the scattered data holistically as a single
data set.
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