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Preface 
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Arctic University of Norway), between October 2015 and August 2021. The project was financed by 
the Research Council of Norway through its Centre of Excellence funding scheme grant no. 223259, 
the NORCUST project, The Loeblich and Tappan Student Research Award, and a Travel grant from The 
Norwegian Research School in Climate Dynamics (ResClim). The candidate wishes to thank the 
supervisors of the first part of the PhD study and who supervised the study for the first paper:  J. 
Bernhard, G. Panieri and M. Hald. The candidate also thanks supervisors J. Bernhard and M. Hald, who 
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also thanks the supervisors for the second part of the PhD study: T.L. Rasmussen, T. Treude and M. 
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3. Melaniuk, K., Sztybor, K., Treude, T., Sommer, S., Rasmussen, T.L. Evidence for influence of 

methane seepage on isotopic signatures in living deep-sea foraminifera, 79 °N. Manuscript in 

revision in Scientific Reports. 

4. Melaniuk, K., Sztybor, K., Treude, T., Sommer, S., Zajączkowski, M., Rasmussen, T.L.  

Response of benthic foraminifera to ecological succession in cold seeps from Vestnesa Ridge; 

implications for interpretations of paleo-seepage environments. Manuscript in preparation. 
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1 MOTIVATION AND OBJECTIVES 

Methane is a powerful greenhouse gas, produced in marine sediments either by exposing deep 

complex organic molecules to high temperatures or by microbial transformation of organic and 

inorganic carbon at more shallow depths (Reeburgh, 2007; Strąpoć et al., 2020). At temperatures lower 

than 25oC and a moderate pressure greater than 3–5 MPa, corresponding to a combined water and 

sediment depth of 300–400 m, methane forms ice-like structures called methane hydrates (Reeburgh 

et al., 2007; Ruppel and Kessler, 2017). Deposits of methane hydrates are widespread in marine 

sediments on continental margins and are known to be sensitive to environmental changes, such as 

for example temperature increases and/or changes in pressure or sediment movements (e.g., Archer 

et al.,  2009; Maslin et al., 2010). Past massive methane releases from sub-seabed reservoirs have been 

linked to changes in climatic conditions, with an increase in temperature recorded during Quaternary 

and the Paleocene (Wefer et al., 1994; Smith et al., 2001), Late Paleocene (Kennett and Stott, 1991; 

Dickens et al., 1997; Katz et al., 1999), and Cretaceous (Jahren et al., 2001). As large amounts of 

methane are stored on Arctic continental margins in the form of gas hydrates, concern has increased 

that ongoing ocean warming will trigger destabilization of the gas hydrate reservoirs and cause further 

release of methane in the future (IPCC, 2007; Phrampus and Hornbach, 2012). 

 Several studies have proposed that the negative carbon isotope signature (δ13C up to -40‰) 

measured in carbonate tests of fossil foraminifera might reflect past methane seepages, and that fossil 

foraminifera have a high potential as a tool in tracking past methane releases (Millo et al., 2005; Martin 

et al., 2010; Consolaro et al., 2015; Sztybor and Rasmussen, 2017; Schneider et al., 2017). The δ13C 

levels in calcium carbonate of some fossil foraminifera can be lower than -10‰ (Hill et al., 2003; 

Schneider et al., 2017) and δ13C measured in calcite of 'live' (Rose Bengal stained) foraminifera 

generally do not exceed -7.5‰ (Mackensen et al., 2006; Wollenburg et al., 2015). Thus, it still remains 

unclear whether (and to what extent) living foraminifera incorporate methane-derived carbon during 

their biomineralization, and/or if the isotopic signatures in their shells are mostly a result of authigenic 

overgrowth from precipitation of carbonates by diagenetic processes. It has also been suggested that 

the 13C-depleted carbon from methane might be incorporated by the benthic foraminifera from the 

dissolved inorganic carbon (DIC) pool from the ambient seawater and porewater. Alternatively, 

foraminifera might feed on (Panieri, 2006), or live in symbiosis with, methane-oxidizing bacteria, which 

carry a  13C-depleted carbon signal as suggested by Hill et al. (2004). Remarkably negative δ13C values 

(up to -40‰) in foraminiferal tests have been shown to derive mainly from overgrowth by methane-

derived authigenic carbonates (MDAC; Torres et al., 2003; Consolaro et al., 2015; Sztybor and 

Rasmussen, 2017; Schneider et al., 2017). 
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At cold seeps, the biogeochemical processes involving methane, such as aerobic and anaerobic 

methane oxidation, affect the properties of pore water in which the benthic foraminifera live. The 

venting of methane from sub-seabed deposits supports growth of methane-oxidizing bacteria that 

may serve as food for foraminifera, but simultaneously, microbial activity causes a decrease in the 

surrounding oxygen concentration, leading to hypoxia or even anoxia, release of hydrogen sulfide H2S, 

and an increase in the partial pressure of carbon dioxide (pCO2). For many foraminiferal species, 

oxygen is crucial for an efficient generation of cellular energy (Heinz and Geslin, 2012) and changes in 

water chemistry, such as increase in pCO2, might affect the process of calcification (Allison et al., 2010). 

For these reasons, some studies assert that despite the abundance of food (e.g., methanotrophic 

bacteria) due to the local environmental conditions, cold seeps are hostile environments for 

foraminifera, and that foraminifera do not calcify during active methane seepage (Torres et al., 2003; 

Herguera et al., 2014), and the foraminifera which inhabit cold seeps should be adapted to organic-

rich and reducing environments  (Rathburn et al., 2000, 2003; Bernhard et al., 2001; Torres et al., 2003; 

Fontanier et al., 2014). Modern cold seeps provide a good analogue for past methane-rich 

environments and offer an opportunity to investigate possible effects of methane seepage on isotopic 

signatures and distribution patterns of living benthic foraminifera, which can be further used as an 

analogue in interpretation of palaeoceanography and intensity of paleo-methane seepage.  

 

The main objectives of this doctoral thesis are to: 

• study the ability of foraminifera to survive under low oxygen (hypoxia) conditions, elevated 

pCO2, and a combined effect of both in conjunction with diet (methanotroph vs algal) by 

experiments with juvenile benthic foraminifera in Biospherix C-Chambers; Article 1 

• testing the effectiveness of fluorescent viability assays in studies of living cold seep 

foraminifera; Article 2 

• compare the carbon isotopic signature (δ13C and δ18O) in tests of metabolically active 

(CellTracker™ Green CMFDA and CellHunt Green labelled) foraminifera (Article 2) and Rose 

Bengal stained (Article 3) to determine whether methane seepage has any effect on the 

isotopic signatures of the calcite of living benthic foraminifera.  

• investigate modern foraminiferal assemblages from the Arctic cold seeps; Articles 3 and 4 

• investigate the impact of methane-related biological processes (MOx and AOM) on the 

benthic foraminiferal communities; Article 4
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2 BACKGROUND 

2.1 Methane cold seeps 

Cold seeps are chemosynthetic ecosystems, in which hydrocarbon-rich fluids seep from the 

sub-seabed gas hydrate deposits or from other petroleum reservoirs providing a carbon and/or energy 

source (e.g., Sloan 1990; Barry et al., 1997; Olu et al., 1997; Coleman and Ballard 2001; Sahling et al., 

2003; Levin, 2005). These ecosystems are commonly found in continental margin environments, both 

tectonically active and passive, and in terrestrial lake areas (Fig. 1).  

 

Figure 1. Distribution of modern and fossil cold seeps, blue square indicate the study area (Figure from Levin, 
2005, modified from Campbell et al. 2002). 

The hydrocarbon-rich fluids originate from decaying organic matter (e.g., sapropel), from thermogenic 

degradation of organic matter of marine or terrestrial origin, or biogenic processes (Strąpoć, 2020). 

Gas seepage can manifest itself in form of gas bubbles escaping from the seabed observable by eye, 

or evident as acoustical plumes recorded through echo sounding. Other signs are pockmarks (i.e. 

shallow seabed depressions) or other topographic and geomorphological structures, such as pingos or 

mud volcanoes. Concentration and strength of flow of methane varies between seeps, and within the 

same seep site creating different microhabitats. The supply of methane can fluctuate over time, so 

that the methane flux determines the ephemeral nature of cold seep environments. Heterogeneity in 

permeability and methane flux results in a spatial heterogeneity in the flux rates and environments. 

This in turn results in a patchy distribution of biological communities (Tryon and Brown 2001; Levin, 

2005). For example, vesicomyid clams hosting endosymbiotic chemoautotrophic bacteria are 

commonly associated with downward directed flows (inflow) and oscillatory flows (Tryon and Brown 
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2001; Levin, 2005). Bacterial mats are dominated by large, filamentous, sulphide-oxidizing bacteria: 

Beggiatoa, Thioploca, Arcobacter, and Thiothrix that indicate a more consistent and high methane flux 

(Tryon and Brown 2001; Tryon et al., 2002). Cold-seep biota largely relies on oxidation of sulphur and 

methane reduced by microorganisms for nutrition, and possibly even on nitrogen fixation (Levin, 

2005). Within a cold seep, gas emission from the sub-seabed reservoirs are controlled by aerobic 

methane oxidation (MOx) or, in a lack of oxygen, by anaerobic methane oxidation (AOM) coupled with 

sulphate reduction (Knittel and Boetius, 2009; Treude et al., 2007; Orphan et al., 2001). The process of 

AOM is conducted by anaerobic methanotrophic archaea (ANME; Milucka et al. 2012) or by microbial 

consortia of ANME and sulphate-reducing bacteria found within the sulphate-methane transition zone 

(SMTZ; Boetius et al., 2000; Knittel et al., 2005). The carbon isotopic signature (δ13C) of methane 

depends on the origin of the methane, with the result that the δ13C from microbial methane have much 

lighter 13C signatures (from -110‰ to -60‰) than the thermogenic methane (from -50‰ to -20‰; 

Whiticar, 1999; Valentine, 2002). As a product of microbial activity, the light 13C carbon isotope is 

released in the form of carbon dioxide gas (CO2) or bicarbonate ions (HCO3
2) into the sediment and/or 

ambient water, leading to changes in the water chemistry and isotopic signature of the ambient 

seawater and pore water (Whiticar, 1999; Treude et al., 2007). Bicarbonate produced during AOM 

enables carbonate precipitation, which provides a secondary hard-bottom for tubeworms to grow on. 

Additionally, in anoxic conditions hydrogen sulphide (H2S) is produced. The compound is highly toxic 

for marine organisms; it inhibits ATP (Adenozyno-5ʹ-trifosforan) production by binding to cytochrome 

c oxidase (CytOx; Somero et al., 1989).  

2.2 Modern cold-seep benthic foraminifera 
 

Studies on 'live' benthic foraminifera (Rose Bengal-stained) inhabiting hydrocarbon seeps were 

previously conducted at several locations worldwide, including Oregon Hydrate Ridge (Torres et al., 

2003; Hill et al., 2004), Monterey Bay (Rathburn et al., 2003), northern Adriatic Sea (Panieri, 2006), 

Gulf of Guinea (Fontanier et al., 2014), Blake Ridge (Panieri and Sen Gupta, 2008), Barents Sea 

(Mackensen et al., 2006; Wollenburg and Mackensen, 2009; Dessandier et al.,  2019), and New Zealand 

(Martin et al., 2010). Several studies have shown that the abundance of foraminifera increases near 

active fluid discharge spots, indicating that benthic foraminifera may potentially be attracted by the 

availability of food, for example microbial mats (see e.g., Rathburn et al., 2000; Torres et al.,  2003; 

Heinz et al., 2005; Panieri, 2006; Panieri and Sen Gupta, 2008). However, this may not hold true for all 

seeps. In Monterey Bay, for example, the abundance of foraminifera is lower at seep sites than at non-

seep sites (Bernhard et al., 2001). The distribution of foraminifera might be uneven within one seep, 



 

 5 

and is most likely conditioned by variation in microhabitats e.g., presence of bacterial mats or clam 

beds (e.g., Rathburn et al., 2000; Torres et al., 2003; Panieri and Sen Gupta, 2008, Wollenburg and 

Mackensen, 2009; Dessandier et al., 2019).  

So far, the results of different studies of species compositions of benthic foraminiferal faunas 

have been consistent and show that there are no endemic species associated with cold seep 

ecosystems (e.g., Sztybor and Rasmussen, 2017 and references therein). Species which are usually 

present within seep sites have been documented in non-seep marine environments (e.g., Rathburn et 

al., 2000; Bernhard et al., 2001; Hill et al., 2003; Panieri, 2006; Etiope et al., 2014; Herguera et al., 

2014). With a majority of foraminiferal species being aerobic, individuals present at cold seep sites 

should be able to survive the local geochemical constraints, such as for example low oxygen levels 

(including temporary anoxia) or presence of toxic hydrogen sulfide (H2S; Herguera et al., 2014). The 

most common species observed at cold seeps belong to several genera, such as Bolivina, Bulimina, 

Nonionella and Uvigerina, which are adapted to organic-rich and reducing environments (e.g., Akimoto 

et al., 1994, Rathburn et al., 2000, 2003, Bernhard et al., 2001, Torres et al., 2003, Fontanier et al., 

2014). Studies from the Gulf of Mexico show that some species, such as Bolivina albatrossi, Cassidulina 

neocarinata and Trifarina bradyi, are facultative anaerobes able to survive temporary anoxic 

conditions below bacterial mats (Beggiatoa sp.) and show some H2S tolerance (Sen Gupta et al., 1997). 

Epifaunal species, for example Cibicidoides wuellerstorfi or Cibicides lobatulus, show very specific 

adaptations, where individuals tend to colonize the outer surface of Siboglinidae tubeworms in order 

to escape H2S and/or anoxic conditions (Sen Gupta et al., 2007; Wollenburg et al., 2009). 

 

2.3 Stable isotope signatures in modern benthic foraminifera from cold 
seeps 

 

Opinions are divided on whether the carbon isotopic signatures (δ13C) of living calcareous 

foraminiferal tests from methane seeps reflect any sort of incorporation of methane-derived carbon. 

Some studies show that the δ13C measured in tests of living foraminifera collected from active seeps 

are not markedly lower than those from non-seep sites, indicating that living foraminifera might not 

be able to record the episodes of methane release (e.g., Torres et al., 2003, Rathburn et al., 2003, 

Etiope et al., 2014; Melaniuk, 2021). A shift of approximately 0–4‰ towards a more negative δ13C was 

shown to have an origin from a local organic matter degradation (e.g., Torres et al., 2003, Martin et 

al., 2004). Hostile conditions, such as low oxygen or anoxia combined with high carbon dioxide 

concentration (pCO2), most likely inhibit calcification during methane seepage (Herguera et al., 2014). 

Thus, it has been proposed that foraminifera do not calcify during active methane discharges, but 
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instead build tests during no or reduced methane flux (Torres at al., 2003). Alternatively, in case of lack 

of oxygen the foraminifera might migrate to other more oxygenated locations (Bernhard et al., 2010).  

Several studies indicate that methane has an effect on isotopic signatures of 'live' benthic 

foraminifera (i.e. Rose Bengal-stained). For example, the δ13C of  tests of Uvigerina peregrina was found 

to be as low as -5.64‰ at cold seeps, while at the control site the value was not lower than -0.81‰ 

(Hill et al., 2004), and the isotopic signature of Cassidulina neoteretis was as low as -7.5‰ (Mackensen 

et al., 2006), thus indicating that both species were potencially affected by methane. Similarly, the 

negative δ13C value in tests of epifaunal species, such as Cibicioides sp., can be explained by the 

incorporation of light carbon isotope from the ambient seawater (i.e. pore water or bottom water in 

which the foraminifera calcified) which was transported from deeper sediments by tubeworms 

inhabiting the methane seeps (Mackensen et al., 2006; Wollenburg et al., 2009). In most cases, the 

δ13C measured on foraminiferal tests from cold seeps has shown larger degrees of variations when 

compared to non-seep sites (e.g., Rathburn et al., 2003; Bernhard et al., 2010). Addtionally, individuals 

collected from sites covered with bacterial mats show more negative δ13C both in tests and cytoplasm 

when compared to individuals from non-seep sites (e.g., Hill et al., 2005; Panieri, 2006). This implies 

that isotopically lighter food, such as for example methanotrophic bacteria, and/or presence of 

symbionts contribute to the isotopic signatures of foraminifera from cold seeps (Hill et al., 2004; 

Bernhard et al., 2010). 

2.4 Fossil foraminifera from cold seeps 
 

Both planktic and benthic foraminifera preserved in the methane influenced sediments can be 

affected by precipitation of Methane-Derived Authigenic Carbonates (MDAC) (Torres et al., 2003; 

Uchida et al., 2004; Martin et al., 2010). Bicarbonate ions (HCO3
2) are products of anaerobic oxidation 

of methane (AOM) and enable MDAC formation (see above; chapter 2.1). As a result, the tests of fossil 

foraminifera from cold seeps are characterized by strongly depleted δ13C values and high Mg content 

from overgrowth of their shells by MDAC. Eventual primary signals in foraminiferal tests can thus be 

overprinted by the diagenetic alterations from coatings of both the outsite and/or inside of the tests 

(Schneider et al., 2017) and consist of up to 60% of the total volume of the tests (Torres et al., 2003). 

Overprinting results in shift in the δ13C of the primary signal of about 15–29‰ and results in δ13C values 

lower that -10‰ as it was suggested by Schneider et al. (2017) and up to -34.1‰ (Panieri et al., 2017). 

It is believed that those highly negative values recorded in tests are evidence of increase in methane 

flux, particulary the past migrations of the sulphate-methane transition zone (SMTZ; Consolaro et al., 

2015; Sztybor and Rasmussen., 2017; Schneider et al., 2017). Methane seepage events are recorded 
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in the isotopic signature of foraminiferal tests, but because of the coating of MDAC the foraminifera 

may date (based on AMS14C dating) significantly older than the foraminiferal tests itself. Distinction 

between the primary and the sedondary isotopic signals in fossil foraminifera is a large challenge, thus 

signals cannot be used to determine a precise stratigraphic history and timing of the seepage (Torres 

et al., 2003; Martin et al., 2004). Abnormal depletions in δ13C can only provide qualitative information 

about presence of cold seeps (Martin et al., 2004).  

3 BACKGROUND 

3.1 Laboratory experiment 
Propagule Method 

The Propagule Method is an experimental tool for testing the ecology of benthic 

foraminifera, and the response of multi-species assemblages to selected environmental parameters 

(Alve and Goldstein, 2014; Article 1). Propagules are small juvenile foraminifera approximately 10 µm 

in size, stored in the sediment in form of a “propagule bank”. Propagules are able to delay growth 

(from months to years) until the environmental conditions become favorable (Alve and Goldstein, 

2010). Propagules are isolated from adult foraminifera by sieving the sediment on mesh-size <53 µm.  

Advantages using the Propagule Method: (from Alve and Goldstein 2014). 

- both live and dead individuals harvested at the end of the experiments have responded 

positively to the treatment, 

- focuses on the critical, juvenile developmental stages,  

- simple experimental set-up, design to test the effects of changing environmental conditions 

at assemblage level under controlled conditions (i.e., different assemblages grown from the 

same propagule bank), 

- both small and large foraminiferal species can be studied, 

- use the original sediments, which helps to optimally mimic their natural conditions, 

 

Experimental set-up 

For the purpose of the experiment (Article 1), foraminifera-bearing sediments were collected 

from the Barents Sea and the Norwegian Sea using a box corer (Fig. 2). Samples were processed 

according to the propagule method (Goldstein and Alve, 2011). The <53 µm-sediment fraction was 

divided between four experimental treatments I, II, III, IV, and incubated inside Biospherix C-Chambers 
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(Parish, New York, USA) for 5 months. Four experimental treatments were designed to simulate 

different environmental conditions, including oxygen-saturated to hypoxic conditions, modern-day 

pCO2 to elevated pCO2, and dual-stress conditions (hypoxia and elevated pCO2; Fig. 5; Table 2). To 

investigate whether diet can affect the growth of foraminifera, once a week the foraminifera were fed 

by either a mix of algae (Dunaliella tertiolecta, Butcher, and Isochrysis galbana, Parke) or by a 

methanotrophic bacterium (Methyloprofundus sedimenti PKF-14).  

Table. 2. Experimental treatments (I, II, III, IV), O2 (ml/L) and CO2 (ppm) concentration, gas sources (400-ppm 
CO2, 1% CO2 /99% N2, and N2), gas sensors and controllers used for the experiment.  

Treatment O2 (ml/L) pCO2 (ppm) Gas source Gas sensors and 
controllers 

Imitated 
environmental 

conditions 
I saturated 400 400-ppm CO2 No controllers Modern atmospheric 

conditions 
II 0.7 400 1% CO2 in N2; N2 ProCO2, ProOx Hypoxia, modern pCO2 

concentration 
III saturated 2000 1% CO2 in N2 ProCO2  Oxygenated, elevated-

pCO2 concentration  
IV 0.7 2000 1% CO2 in N2; N2 ProCO2, ProOx Dual-stress  

 

 

Figure. 5. Schematic of experiment.  
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3.2 Benthic foraminiferal faunas and isotopic signatures 

3.2.1 Study areas 

Vestnesa Ridge:  

Vestnesa Ridge is a deep-sea cold seep area (>1000 m), located in the Fram Strait (~ 1200 m 

depth), northwest of Svalbard in the Arctic Ocean (79oN, 5–7oE; Fig. 2). The ridge is characterized by a 

series of perforations called pockmarks (i.e., shallow seabed depressions) where methane-rich fluids 

are found seeping from gas hydrates and other free-gas reservoirs (Bünz et al., 2012; Plaza Faverola et 

al., 2015). Of these, the two most active pockmarks have been informally called ‘Lomvi’ and ‘Lunde’ 

(Bünz et al., 2012). The presence of methane (mostly of thermogenic origin) has been documented 

both in the sediment and water column and by the recovery of methane hydrates in sediment cores. 

Sediment core analyses have shown presence of fossil seep-related macrofaunal communities at 

Vestnesa Ridge (Ambrose et al., 2015; Sztybor and Rasmussen, 2017; Hansen et al., 2017; Thomsen et 

al., 2019) and diagenetic alterations in isotopic signatures (δ13C) of fossil foraminiferal tests caused by 

MDAC precipitation (Schneider et al., 2017; Sztybor and Rasmussen, 2017). Several seafloor 

observations revealed presence of megafaunas (Åström et al., 2016, 2017) and carbonate outcrops 

(Sztybor and Rasmussen, 2017; Himmler et al., 2018) associated with methane emission.  

 

Storfjordrenna pingos: 

Storfjordrenna is located at the SW Svalbard continental shelf, in the north-western Barents 

Sea (76oN, 16oE), at an approximate water depth of 400 m (Fig. 2). The area is characterized by five gas 

hydrate mounds (pingo-like features) spread within a 2 km2 area. Gas hydrates pingos (GHP) are known 

to be 8–12 m high, with diameters ranging from 280–450 m. Georeferenced seabed imagery indicates 

the presence of chemosynthetic macrofaunas associated with cold seeps (Åström et al., 2016; Sen et 

al., 2018). Four out of five GHPs show active methane seepage in the form of gas flares around 

summits, where one is mostly in a “post-active stage” (no visible flare on echo sounder recordings) 

(Serov et al., 2017; Sen et al., 2018;  Hong et al., 2018). Elevated concentrations of methane mostly of 

thermogenic origin have been detected in both sediments and bottom water and gas hydrates were 

also discovered from several sediment cores (Hong et al., 2018).  
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Figure 2. Map showing sampling locations for Article 1 indicated by pink dots: BSA-Barents Sea A, BSB- Barents 

Sea B, NSA- Norwegian Sea A, NSB- Norwegian Sea B. Sampling locations for Articles 2, 3, and 4 are indicated by 

dots: yellow - Vestnesa Ridge (2, 3, 4); orange - control site (2); green - Storfjordrenna pingo site (2).  

 

3.2.2 Sampling and samples treatments 
The sediment samples used in Article 2 were collected from Lomvi and Lunde pockmarks at 

the Vestnesa Ridge during the CAGE 15-2 cruise and from the Storfjordrenna pingos during the CAGE 

17-2 cruise (Fig. 2; Table 1), both onboard R.V Helmer Hanssen using combined Towed Digital Camera 

and Multicoring System (TowCam) developed at the Woods Hole Oceanographic Institution’s (WHOI) 

Multidisciplinary Instrumentation in Support of Oceanographic (MISO) Facility. The live-stream feed 

from TowCam system were used to describe the seafloor conditions and locate active methane vents, 

authigenic carbonates and bacterial mats, which then enabled an accurate guide of different sampling 

locations. Cores collected from the Vestnesa Ridge were subsampled onboard into 1-cm thick (10 cm 

in diameter) horizontal intervals (0–1cm, 1–2 cm, 2–3 cm) using a flat spatula and transferred into 

plastic containers (HDPE bottles). The sediment was divided on the basis of different treatments: 
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CellTracker™ Green CMFDA (Thermo Fisher Scientific) with final concentration of CellTracker™ Green 

CMFDA 1µM in a sample (Bernhard et al., 2006), and Rose Bengal (2g/L; Schönfeld et al., 2007), 

preserved with formalin and stored at 4°C until further laboratory processing. Cores collected from 

Storfjordrenna were processed following a similar protocol, except that the whole sediment was 

labelled with CellHunt Green and preserved in 96% ethanol.  

The sediment used for Article 3 and 4 was collected during the POS419 expedition of the R.V 

Poseidon from the Lunde pockmark (Table 1). Selected multicores were processed on board, and 

subsampled into 1-cm thick horizontal slices down to 5 cm core depth. The samples were transferred 

into plastic containers, and stained with Rose Bengal-ethanol solution following the FOBIMO protocol 

(2 g\L; Schönfeld et al., 2007). Samples were kept onboard in a dark, cool room at +4 °C until further 

processing. Additional subcores were sampled for sediment pore water analyses, sediment methane 

analyses and for the determination of methane concentration, methane oxidation, and sulfate 

reduction. All sediment sampling procedures were conducted at +4 °C inside a cooled laboratory. 

 

Table 1. Sampling sites locations, coordinates, water depth, date of sampling, and environmental characteristics 
at site of multicores used in from Article 2, 3, and 4.  
 

Core 
number 

Location Coordinates Water 
depth 
(m) 

Date Environmental 
characteristics 

Article 2 
MC 893A 
MC 893B 

Vestnesa Ridge 
(Lomvi pockmark) 

79.18N, 
00.44E 

1200 20 May 2015 bacterial mats 

MC 886 Vestnesa Ridge 
(Lunde pockmark) 

79.38N, 
00.04E 

1200 20 May 2015 black mud, Siboglinidae 
tubeworms 

MC 880A 
MC 880B 

Site 7808 
(Control site) 

78.44N, 
00.50E 

889 19 May 2015 grey homogeneous mud 

MC 884 Site 7808 
(Control site) 

78.30N, 
00.82E 

900 19 May 2015 grey homogeneous mud 

MC 902 Storfjordrenna 
Pingo (GHP1) 

76.91N, 
16.08E 

377 22 June 2017 strong flares, anemones, 
Siboglinidae tube worms 

MC 917 Storfjordrenna 
Pingo (GHP1) 

76.93N, 
16.02E 

377 23 June 2017 trawl marks, muddy 
sediment, anemones, 
Siboglinidae tubeworms, 
sea spider, patches of 
bacterial mats 

MC 919 Storfjordrenna 
Pingo (GHP1) 

76.96N, 
15.98E 

378 23 June 2017 trawl mark, Siboglinidae 
tubeworms, bacterial 
mats, anemones, 
carbonates 

MC 920 Storfjordrenna 
Pingo (GHP5) 

76.70N, 
16.00E 

379 23 June 2017 trawl marks, anemones, 
hard substrate 
(carbonates) 

MC 921 Storfjordrenna 
Pingo (GHP5) 

76.72N, 
16.40E 

380 23 June 2017 trawl marks, anemones, 
hard substrate 
(carbonates) 
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MC 922 Storfjordrenna 
Pingo (GHP5) 

76.74N, 
16.37E 

386 23 June 2017 trawl marks, muddy 
sediment, Siboglinidae 
tube worms, anemones, 
seastars, shrimps 

Article 3 and 4 
MUC 10 Vestnesa Ridge 

(Lunde pockmark) 
79.46N 
06.27E  

1241 25.08.2011 Siboglinidae tubeworms 

MUC 8 Vestnesa Ridge 
(Lunde pockmark) 

79. 60N 
06.09E 

1204 25.08.2011 Siboglinidae tubeworms 

MUC 12 Vestnesa Ridge  
(Lunde pockmark) 

79.41N 
06.13E 

1235 29.08.2011 bacterial mats 

MUC 11 Control site 78,77N 
06,06E 

1191 28.08. 2011 grey homogeneous mud 

 
 

 

Figure 3. Comparison between Rose Bengal staining method and CellTracker™ Green/ CellHunt Green labelling. 
Rose Bengal reacts with cytoplasm of foraminiferal tests giving the pink colorization (panel on the left). 
Fluorescent assays enter a cell and non-fluorescent form is converted into the fluorescent form which further 
can react with thiols on proteins and peptides, giving green colours in fluorescent light (right panel). 

 

Rose Bengal was designed to detect the presence of cytoplasm; thus, this staining method is 

known to colour both live and recently dead foraminiferal cytoplasm. The stain can also adhere to the 

organic lining of foraminiferal tests as well as to the bacteria that can be found attached or located 

inside these tests (Bernhard et al., 2001, 2006). Rose Bengal staining of recently dead specimens may 
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occur from several weeks to months after an individual's death, especially in colder, low oxygenated 

waters as decomposition of cytoplasm is relatively slower (Jorissen et al., 1995; Bernhard et al., 2001). 

Consequently, already dead, or recently dead foraminifera appear as live individuals (Bernhard et al., 

2006). In contrast, CellTracker™ Green CMFDA (5-chloromethyl fluorescein diacetate; Thermo Fisher 

Scientific) and CellHunt Green (SETAREH biotech, LLC) are vital non-toxic fluorescent dyes (the same 

compounds) which react with internal cell components, resulting in green-fluorescent adducts (Fig. 3). 

Probes react with metabolically active cells only.  

 

3.2.3 Benthic foraminiferal faunas 
In Article 2, the live benthic foraminifera were identified and quantified in wet samples of 

material >63µm. Both CellTracker™ Green and CellHunt Green labelled organisms were examined 

using an epifluorescence-equipped stereomicroscope (485-nm excitation; 520-nm emission). All 

individuals that fluoresced brightly in at least half of their chambers were considered as live individuals, 

picked wet and placed on micropalaeontological slides (Fig. 4). Additionally, after selecting all green 

individuals from CellHunt Green labelled sediments, the residue was subsequently stained with Rose 

Bengal for approximately 24h. Samples stained with Rose Bengal were examined using reflected-light 

microscopy (Fig. 4). Foraminifera which stained dark magenta in at least half of their chambers were 

picked and mounted on micropaleontological slides. All collected foraminifera were identified, 

counted and sorted by species.  

In Article 3 and 4, the Rose-Bengal stained foraminifera from the >100-µm fraction were 

examined under reflected-light microscopy. All benthic foraminiferal individuals that stained dark 

magenta and were fully filled with cytoplasm were considered to be ‘living’ foraminifera i.e., live + 

recently dead individuals, still containing cytoplasm, and individuals showing no colorization were 

considered as unstained, empty (dead) individuals. Specimens of the planktic foraminiferal species 

Neogloboquadrina pachyderma from each core were picked and investigated using Scanning Electron 

Microscopy (SEM) to detect presence of authigenic overgrowth on the outer surface of the test. 
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Figure 4. Onboard and laboratory processing of the sediment collected by multicorer from Vestnesa Ridge and 
from Storfjordrenna pingos. 

3.2.4 Stable isotope analysis (δ13C and δ18O) 
For stable isotope measurements (Article 2), the most frequently occurring species such as 

Melonis barleeanus, Cassidulina neoteretis, Nonionellina labradorica and planktic foraminiferal species 

Neogloboquadrina pachyderma were picked, selecting approximately 10 CellTracker™ Green/ 

CellHunt Green labelled, Rose Bengal and empty specimens. Carbon-13 compositions of calcium 

carbonate tests of benthic foraminifera were determined on a MAT 253 Isotope Ratio Mass 

Spectrometer (Department of Geoscience, UiT) with analytical precision estimated to be better than 

0.07 ‰ for δ13C by measuring a certified standard NBS-19. For Article 3, stable isotope analyses were 

performed on both Rose Bengal stained and empty specimens of M. barleeanus, C. neoteretis, C. 

wuellerstorfi, and N. pachyderma in separate analyses. When present, approximately 10 specimens of 

each species were taken from each sample. Isotopic measurements were performed at Woods Hole 

Oceanographic Institution (WHOI). Data are reported in standard notation (δ13C, δ18O), according to 

the Pee Dee Belemnite (PDB) standard. In both cases isotopic values were expressed as conventional 

δ notation against the Vienna Pee Dee Belemnite (V-PDB) standard (1.96‰, -10.21‰ and -48.95‰ for 

δ13C) and reported in parts per thousand (per mil, ‰).  
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4 SUMMARY OF MANUSCRIPTS/ ARTICLES 

Article 1 

Katarzyna Melaniuk, Joan M. Bernhard, Morten Hald, Giuliana Panieri. Impact of hypoxia and high 

pCO2 and diet on benthic foraminiferal growth: experiment with propagules. 

In this manuscript, we present the results of the laboratory experiment. The experimental set- 

up was designed to investigate the impact of environmental parameters, such as oxygen and pCO2, 

and diet (methanotrophs vs algal diet) on benthic foraminiferal growth. To establish natural 

assemblages, sediments were collected from the western Barents Sea and the North Norwegian 

continental margin and further processed following the propagule method (Goldstein and Alve, 2011). 

The method is used to treat experimental assemblages in their original sediments, which helps to 

optimally mimic their natural conditions (Goldstein and Alve, 2011). To test the response of juvenile 

foraminifera to different environmental conditions, foraminifera-bearing sediment was split into 64 

microcosms (translucent plastic containers), and evenly divided between the four experimental 

treatments, hosted in Biospherix C-Chambers. Each of the treatments represented different 

environmental parameters, including saturated oxygen to hypoxia (0.7 ml/L), modern-day pCO2 (400 

ppm) to elevated pCO2 (2000 ppm), and dual stressors of hypoxia and elevated pCO2. Once a week, 

half of each treatment was fed methanotrophic bacterium (Methyloprofundus sedimenti PKF-14), 

while the other half was fed a mix of marine microalgae (Dunaliella tertiolecta and Isochrysis galbana). 

Results of the experiment imply that, at least to some extent, that the benthic foraminifera 

are able to calcify during exposure to hypoxia and/or elevated pCO2 conditions. However, the 

responses of the foraminifera were different depending on the source of the sediment. Overall, dual- 

stress treatment (IV) had the strongest effect on the foraminifera. The dietary comparison shows that 

the methanotrophic bacteria diet did neither promote nor inhibit foraminiferal growth in the 

experimental conditions. To confidently conclude about an eventual impact of methanotrophs diet on 

foraminifera further dedicated studies are required.  
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Article 2 

Katarzyna Melaniuk. Effectiveness of fluorescent viability assays in studies of cold seep foraminifera. 

Article 2 presents the results of a study on live benthic foraminifera from two active methane 

seepage sites in the Lomvi pockmark at the Vestnesa Ridge, and from shallow cold-seep sites in 

Storfjordrenna, SW Svalbard on the western Barents Sea shelf (Fig. 2). Storfjordrenna hosts the so-

called ‘pingo’ sites, where methane is released from pingo-like mounds on the seafloor, many of which 

contain gas hydrates. One of the investigated gas hydrate pingos (GHPs) is active (GHP1), while the 

other is presently inactive (GHP5) and considered ‘post-active’. In order to distinguish live foraminifera, 

as an alternative to the commonly used Rose Bengal staining method, we used CellTracker™ Green 

CMFDA or CellHunt Green green-fluorescent probes, thus indicating only metabolically active 

foraminifera. To determine whether methane seepage has any effects on the carbon isotopic 

signatures of primary calcite of live benthic foraminifera, the δ13C measured in CellTracker™ Green or 

CellHunt Green labelled (metabolically active), Rose Bengal stained (recently dead + dead individuals 

from Vestnesa Ridge, or recently dead foraminifera from Storfjordrenna), and unstained (‘certified’ 

dead) have been compared. The study showed a presence of metabolically active foraminifera in 

methane affected sediment from both Vestnesa Ridge and Storfjordrenna.  

The results confirmed that Rose Bengal overestimated the number of live foraminifera when 

compared to the numbers obtained with fluorescent probes. The dominant calcareous species were 

Melonis barleeanus and Cassidulina neoteretis at Vestnesa Ridge and M. barleeanus and Nonionelina 

labradorica at Storfjordrenna. No endemic species were observed in this study. Except, for the 

foraminifera from the core MC 919 (Storfjordrenna) there is no clear evidence that δ13C in tests of live 

foraminifera has been significantly affected by methane-derived carbon during biomineralization in 

any of the investigated sites. The combined use of the fluorogenic probe and the conventional Rose 

Bengal staining revealed minor shifts in species compositions and differences in ratios between live 

and recently dead foraminifera from the investigated pingo sites (active versus inactive).  
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Article 3 

Katarzyna Melaniuk, Kamila Sztybor, Tina Treude, Stefan Sommer, Tine L. Rasmussen. Evidence for 

influence of methane seepage on isotopic signatures in living deep-sea foraminifera, 79 °N.   

 

Article 3 reports on a study of isotopic signatures (δ13C and δ18O) measured in of benthic 

foraminifera, together with biogeochemical data from sediments at Arctic seep sites from Vestnesa 

Ridge (79°N, Fram Strait) at c. 1200 m water depth. Here, we studied the informally named ‘Lunde’ 

pockmark focusing on three benthic species: Melonis barleeanus (intermediate to deep-infaunal 

species), Cassidulina neoteretis (shallow infaunal species) and Cibicidoides wuellerstorfi (epibenthic, 

suspension-feeding species) and their isotope signals. The upper 5 cm of the sediment of multicores 

from three different types of seep environments (bacterial mat, Siboglinidae worm field and non-seep 

control sites) were sliced into 1-cm think samples and stained. Stable isotopes were measured in both 

tests of Rose Bengal stained specimens and empty tests of the three species. Also, specimens the 

planktic foraminiferal species Neogloboquadrina pachyderma (dead specimens) were measured. Our 

study confirms that living benthic foraminifera are able to incorporate methane-derived carbon into 

their shells during their lifespan, most likely via feeding on methanotrophic bacteria. Methane-derived 

carbon can shift the δ13C signature of living (Rose Bengal-stained) foraminifera towards lower δ13C 

values. We observed that the δ13C signature of foraminiferal tests is linked to methane-related 

processes, such as aerobic (MOx) and anaerobic methane oxidation (AOM). The δ13C recorded in tests 

of RB -stained M. barleeanus was as low as -5.21‰ from the Siboglinidae field (the site dominated by 

MOx) indicating methane influence on the signature in the primary calcite of the foraminifera. Under 

other conditions, at the sediment dominated by AOM and covered by bacterial mats, the δ13C signature 

of empty tests were influenced by methane-derived authigenic carbonates (MDAC).  The δ13C reach 

values as low as -6.48‰ (M. barleeanus), and even -6.17‰ for the epibenthic species C. wuellerstorfi. 

Because, AOM is a strong contributor to authigenic carbonate overgrowth, MDAC precipitation may 

severely overprint the initial isotopic signature of foraminiferal tests, even at shallow depth such a 3–

4 cm (in this study). Additionally, we show a connection between the presence of overgrowth of MDAC 

and high δ18O values in tests of dead specimens of benthic foraminiferal species C. neoteretis. 
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Article 4 

Katarzyna Melaniuk, Kamila Sztybor, Tina Treude, Stefan Sommer, Marek Zajączkowski, Tine L. 

Rasmussen.  Response of benthic foraminifera to ecological succession in cold seeps from Vestnesa 

Ridge; implications for interpretations of paleo-seepage environments 

Manuscript 4 presents the result of a study on the response of living benthic 

foraminifera to progressing ecological succession in the development of a cold seep 

environment. Sediment samples used herein are the same as for Articles 2 and 3, with a 

greater focus on the samples from Vestnesa Ridge: the ‘Lomvi’ and ‘Lunde’ pockmarks. The 

distribution and species composition of metabolically active (CellTracker™Green labelled) and 

live (Rose Bengal-stained) foraminifera were analyzed in relation to the geochemical 

properties of the pore water, presence of bacterial mats, and distribution of macrofaunas 

(e.g., Siboglinidae tubeworms) in comparison to non-seep environments. 

Ecological succession is a term used to describe the natural process of change in the 

faunal structures of an ecological community over time.  At cold seeps, ecological succession 

refers to the duration of methane seepage and is linked to changes in biochemistry of the 

sediment and benthic faunal communities. Bergquist et al. (2003) suggest a general pattern 

of ecological successions in the seep environments i.e., stages 1, 2, and 3: from a patchy 

distribution of bacterial mats and initial seepage at stage 1, to dense microbial mats with H2S 

production at stage 2, to authigenic rock formation and increasing tubeworms aggregations 

at stage 3, and eventually formation of long-lasting coral reefs after the seepage declines, as 

an eventual stage 4. The results of the study show that the distribution patterns of benthic 

foraminifera change accordingly to the progressing ecological succession of the seep 

environment. For example, at the initial stage (stage 1), oxygen is still available to the 

foraminifera, and as a result the species composition is similar to control sites, the main 

species being Melonis barleeanus and Cassidulina neoteretis. At stage 2 (with maximum 

seepage), high concentrations of H2S create hostile conditions for benthic foraminifera. As a 

result, the samples were almost barren of foraminifera. At stage 3, moderate methane 

seepage supports a foraminiferal community of both calcareous and agglutinated species. The 

presence of chemosynthetic Siboglinidae tube worms may potentially support 

epibenthic Cibicidoides wuellerstorfi communities by generating a secondary hard bottom. 
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Despite the differences between each stage of faunal and environmental successions, 

none of the faunal characteristics can be used as an exclusive indicator of methane emission 

or stages of its environments in palaeoceanographic interpretations. 

 

5 SYNTHESIS AND FUTURE WORK 

The emphasis of this thesis is on improving the understanding of the distribution of living benthic 

foraminifera and carbon isotopic signatures in their tests in relation to methane seepage in the Fram 

Strait and Storfjordrenna (Barents Sea). This work consists of four research articles. In Article 1, the 

results of a laboratory experiment are presented. The second and fourth articles show the results of 

an analysis of modern foraminifera assemblages from surface sediments collected from two Arctic 

locations: pockmarks Lunde and Lomvi at Vestnesa Ridge (~1200m depth), and active and post-active 

gas hydrate pingos at a relatively shallow methane seep in Storfjordrenna (~400m depth; western 

Barents Sea; Fig. 2). The articles 2 and 3 show the result of isotopic analyses (δ13C and δ18O) of cold 

seep associated foraminifera. The main conclusions based on the results of this work are presented 

below: 

5.1 Laboratory experiment 
The experiment was an approach to study the response of benthic foraminifera to 

environmental stress and dual-stress conditions (combined low oxygen and high pCO2), as well as the 

first study in which foraminifera were fed with a methanotroph bacterium Methyloprofundus 

sedimenti PKF-14 in controlled laboratory conditions, using natural sediment from the Nordic Seas and 

Barents Sea. This experiment demonstrates, the ability of benthic foraminifera to both grow and 

calcify, at least to some extent, under potentially challenging conditions of hypoxia (O2, 0.7ml/L) and 

elevated-pCO2 (2000 ppm) showing that foraminifera are very much adaptable to temporary stress 

conditions. 

Depending on the sources of sediment the response of the benthic foraminifera was different. 

Overall, the dual-stress treatment had the most significant impact on the foraminifera reducing the 

yield size by about 50% compared to modern-day treatments (I) or inhibiting the calcification 

completely, which was manifested by barren replicates. The most notable exception was the 

foraminiferal yield from Norwegian Sea B sediments where individuals seemed to be more resistant to 

the combined effect of both stressors. Analogously to the experiment, we can expect that the response 

of a benthic foraminiferal population to the same stressors will depend on the original species 

composition (pre-seep species composition) within the given methane seep. Some of the species, 
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particularly those adapted to high organic content (e.g., Akimoto et al., 1994, Rathburn et al., 2000, 

2003, Bernhard et al., 2001) are also pre-adapted to cold-seep conditions and have the potential to 

thrive while other species might completely die out. Overall, environmental conditions seem to impact 

the growth of foraminifera more than the type of food offered. This means that within cold seeps, 

even when food is available, geochemical properties of the sediment might put limits on the 

distribution of the foraminifera. However, further dedicated studies are required to confidently 

conclude the impact of the methanotroph diet on foraminifera.  

The results of the experiment highlight the importance of multi-factor laboratory experiments 

in studies on foraminiferal ecology. Should the experiment be repeated in the future, I suggest some 

improvements be made. First of all, the propagule method worked quite well as a set up to study the 

response of the foraminifera to environmental parameters, but it is not a suitable approach to study 

the dietary preferences of these organisms. The natural sediments used as a source of propagules 

(small/juvenile foraminifera) was not sterile and was thus contaminated by pre-experimental organic 

matter, which could potentially have served as a food source for some of the foraminifera. Therefore, 

to avoid such contamination, a future feeding experiment should either use pre-labelled microbes to 

facilitate the recognition of the experimental source of carbon, or the foraminifera should be picked 

from the sediment and transferred to a sterile environment. In addition, it would be beneficial to use 

for example Calcein (a cell-permeant dye) in order to mark experimental calcite (i.e., part of the tests 

built during the experiment).  

5.2 Foraminiferal faunas 
The study presented in Article 2 and 4 show that the distribution patterns of benthic 

foraminiferal species are influenced by seepage of methane, and results in uneven distribution of 

specimens within in the same seep. At Storfjordrenna pingos the density of metabolically active (Cell 

Tracker Green™ labelled) foraminifera gradually decreases from 12/10cc at the edge of the active gas 

hydrate pingo 1 (GHP1) with moderate influence of methane to almost barren sediment at the top of 

the pingo where the gas seeps out (Article 2). Similarly, at Vestnesa Ridge the distribution patterns and 

the species composition of the benthic foraminiferal faunas change according to the intensity of 

methane seepage and follow the progressing ecological succession model suggested by Bergquist et 

al., 2003 (Article 4). 

In both cases it seems that foraminifera are indeed attracted to bacterial mats as a potential 

food source, as suggested earlier (Hill et al., 2005; Bernhard et al., 2010), but only when methane 

seepage is moderate or low and aerobic methane oxidation (MOx) is the dominant process e.g., 

ecological succession stage 1 or 3 (Article 4), and as at the edge of the active GHP1 (Storfjordrenna; 

Article 2). In sediments affected by AOM, with strong methane seepage (stage 2) or top of the GHP1, 
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even when potential food is available (i.e., bacterial mats are present), geochemistry of the sediment 

e.g., low oxygen concentration and presence of hydrogen sulfide, as well as sediment movements (in 

case of the top of GHP1), create unstable and hostile conditions for benthic foraminifera.  

Both investigated sites are characterized by a comparable faunal pattern, with no endemic 

species and the observed species are similar to those from other nearby non-seep locations. No 

particular species or group of species potentially could indicate methane seepage. The foraminiferal 

fauna was dominated by species adapted to high organic content and low oxygen conditions. At 

Storfjordrenna, the main species were Melonis barleeanus and Nonionellina labradorica, and at 

Vestnesa Ridge Melonis barleeanus, Cassidulina neoteretis, and Reophax spp., predominated. All of 

the species are common in the Arctic. Especially, the higher abundance of opportunistic species at 

Storfjordrenna pingos can reflect both methane seepage and/or the Arctic spring bloom. Interestingly, 

it seems that at Vestnesa Ridge presence of Siboglinidae tube aggregations promotes Cibicidoides 

wuellerstorfi communities by generating secondary hard bottom. 

Based on results of this thesis is it difficult if not impossible to find the link between methane 

seepage and distribution patterns of benthic foraminiferal species that could be further utilised as a 

template in reconstructions of the strength of past methane emissions. Cold seeps are ephemeral 

environments that can change rapidly over time, thus more high-resolution studies, preferably by 

seasonal sampling, in combination with analysis of the geochemistry of the sediment and pore water 

is recommended in order to obtain a detailed picture of the ecology of modern foraminiferal faunas 

within methane seeps. Such measures are thus recommended in order to further elucidate the link 

between methane seepage and foraminiferal distribution patterns. 

5.3 Fluorescence viability in the study of living foraminiferal 
assemblages 
This study confirmed that Rose Bengal staining overestimates the number of live benthic 

foraminifera in a sample. Rose Bengal always indicates a higher number of 'live' foraminifera when 

compared to CellTracker™ Green or CellHunt Green labelling (Article 2). Studies of benthic 

foraminiferal assemblages from Vestnesa Ridge show that a) there significantly less live (CellTracker™ 

Green labelled) foraminifera when compared to live + recently dead (Rose Bengal- stained) individuals; 

b) in some of the samples, despite the lack of live foraminifera, Rose Bengal still indicated the presence 

of cytoplasm, which would normally be considered as a ‘live’ individual; c) there is no significant 

difference between the δ13C measured in the CellTracker™ Green labelled and the Rose Bengal stained 

foraminifera.  

Samples from the Storfjordrenna pingos site were processed differently. Collected sediment was 

first labelled with CellHunt Green, live foraminifera were selected, and only afterwards the residue 
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was stained with a Rose Bengal solution. This approach allowed a) to distinguish metabolically active 

(CellHunt Green labelled) foraminifera from recently dead individuals (Rose Bengal- stained); b) 

observe minor changes in foraminiferal populations, which would otherwise be overlooked, c) observe 

a variation in the ratio between live and recently dead foraminifera. In geochemically active habitats 

(the active GHP1), approximately 40% of picked foraminifera were actually alive at the time of 

collection, whereas the other 60% were recently dead individuals. In the post-active GHP5, this 

percentage is the opposite. This difference in populations might indeed reflect a more unstable and 

variable habitat, probably associated with methane seepage. Alternatively, because of lower 

decomposition rates in cold low-oxygen environments, the Rose Bengal stained individuals may have 

been dead for a relatively longer period of time at the active GHP1 (e.g., Jorissen et al., 1995; Bernhard 

et al., 2001), which could explain their over-abundance compared to non-seep sites. A notable surprise 

is the presence of a high abundance of fluorescent labelled Buccella frigida in samples from the active 

GHP1 with lack of Rose Bengal-stained individuals. This implies that the presence of live B. frigida might 

actually reflect a relatively recent appearance of bacterial mats associated with methane seepage. 

Our current understanding of ecology of foraminifera from cold seeps is based on studies that 

have applied the Rose Bengal staining method. As mentioned above, not all Rose Bengal-stained 

foraminifera are actually alive during the sampling. It was documented that staining of recently dead 

specimens may occur several weeks after their death (e.g., Jorissen et al., 1995; Bernhard et al., 2001). 

Thus, it is controversial if, in earlier published papers, foraminifera indicated as living were actually 

metabolically active or that Rose Bengal indicated dead cytoplasm as well. From the 

palaeoceanographically perspective, poor understanding of the ecology of foraminifera might result in 

inaccurate interpretations. For example, individuals that recently died out due to methane seepage 

could potentially still be stained by Rose Bengal, while simultaneously due to partly decomposed 

cytoplasm, the exposed surface of the tests have been affected by Methane-Derived Authigenic 

Carbonates (MDAC) precipitation (Mackensen et al., 2006). As a result, a depleted δ13C signal can be 

misinterpreted as the incorporation of methane derived carbon during biomineralization, when in fact 

it was the result of post-mortem deposition in methane-charged sediment. Fossil assemblages that 

represent a wide time range of foraminifera may thus reflect a mix of several smaller methane seepage 

events and/or changes in foraminiferal populations due to local environmental variations.   

Despite the more time-consuming protocol and higher costs compared to Rose Bengal, both 

CellHunt Green and CellTracker™ Green are valuable tools in studies of the ecology of benthic 

foraminiferal species. In order to obtain a better picture of the modern fauna, it is recommended to 

use fluorescence viability assays in studies of foraminiferal assemblages. CellHunt Green and 

CellTracker™ Green are equally good indicators, with the former being the more affordable option. 
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5.4 Carbon isotope signatures in tests of live foraminifera 
Results reported in Article 2 show no substantial influence of methane-derived carbon on primary 

calcite in metabolically active foraminifera. This is most likely because the ambient pore water 

(microhabitat in which foraminifera lives) was not saturated enough in depleted C-13 to influence the 

isotopic signature of the benthic foraminifera.  There were also no signs of methane-derived authigenic 

carbonates (MDAC) precipitation on empty foraminiferal tests. This supports the hypothesis previously 

reported from other studies that low δ13C values measured in fossil foraminiferal tests are due to 

authigenic overgrowth and reflect processes that took place after foraminiferal tests have been 

deposited in the methane charged sediment. 

Nevertheless, since the δ13C was measured on pools of specimens (N=10), it is possible that at 

least some of the live individuals had more negative δ13C signatures than others, or that some 

chambers indeed incorporated methane-derived carbon. To obtain more accurate δ13C values and to 

draw a more robust conclusion, analysis of single CellTracker™ Green or CellHunt Green labelled 

foraminifera, or more advanced techniques, such as for example secondary-ion mass spectrometry 

(SIMS), are recommended.  

Contrasting results are presented in Article 3, were data shows that, at the Siboglinidae field with 

moderate seepage of methane, dominance of MOx, and low concentrations of sulfide, the live benthic 

foraminifera (RB-stained) incorporate methane-derived carbon, most likely by feeding on methane-

oxidizing bacteria or by direct intake of 12CO2 produced during MOx. Additionally, primary signals 

measured in empty foraminiferal tests of benthic and planktic foraminifera from bacterial mats 

(MUC12) were overprinted by MDAC precipitation. MDAC represents strong methane seepage, and 

indicate sediment oversaturated in HCO3- derived from sulfate-reducing and methane-oxidizing 

microbial consortiums in the sulfate-methane stability zone (SMTZ). Overgrowth starts coating the 

tests at relatively shallow depth 2–3 cm in the multicores from bacterial mats, causing a δ13C signature 

shifts of tests towards low values down to -6.48‰ for fossil Melonis barleeanus, 6.18‰ for Cassidulina 

neoteretis, and -6.17‰ for Cibicides wuellerstorfi. 

MDAC overprints seem to affect the δ18O signature of fossil C. neoteretis. The δ18O have a 

relatively heavy signature, and reach up to 5.17‰. It was already suggested that high δ18O measured 

in fossil records indicated gas hydrate dissociation. Nevertheless, considering that the sediment 

collected was in a deep-sea Arctic setting and represents modern sediment, the presence of high δ18O 

is due to gas hydrate dynamics (dissipation, production as well as an AOM activity), it may not result 

exclusively from gas hydrate dissociation due to the present climate change and warming of deep 

waters. Which has to be considered while interpreting fossil data. 
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Similar to the species distribution, the carbon isotopic signature measured in both living and 

empty foraminiferal tests depend on intensity of MOx and AOM and it changes depending on methane 

flux (i.e., methane seep intensity). Fossil records reflect the cumulative history of methane seepage 

which took place during the lifespan of the benthic foraminifera as well as post mortem processes 

affecting it shell. Therefore, in context of palaeoceanographic studies it seems that depletions in δ13C 

measured in fossil foraminiferal records can only provide qualitative information about presence of 

seepage as it was suggested by Martin et al., (2004). Additionally, under certain geochemical 

conditions, the cold seep environment is hostile for benthic foraminifera i.e., there are no foraminifera 

for isotopic measurements at all. It is however, promising that the SMTZ-zone is close to sediment 

surface when methane seepage is strong (Borowski et al., 1996) (2–3 cm at the bacterial mat site); 

which depending on the sedimentation rates at the time will allow at least timing of when paleo-

methane seepage was at its strongest at a given site. 
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Highly negative δ13C values in fossil foraminifera from methane cold seeps have been
proposed to reflect episodes of methane release from gas hydrate dissociation or free
gas reservoirs triggered by climatic changes in the past. Because most studies on
live foraminifera are based on the presence of Rose Bengal staining, that colors the
cytoplasm of both live and recently dead individuals it remains unclear if, and to what
extent live foraminifera incorporate methane-derived carbon during biomineralization,
or whether the isotopic signature is mostly affected by authigenic overgrowth. In this
paper, modern foraminiferal assemblages from a gas hydrate province Vestnesa Ridge
(∼1,200 m water depth, northeastern Fram Strait) and from Storfjordrenna (∼400 m
water depth in the western Barents Sea) is presented. By using the fluorescent
viability assays CellTrackerTM Green (CTG) CMFDA and CellHunt Green (CHG) together
with conventional Rose Bengal, it was possible to examine live and recently dead
foraminifera separately. Metabolically active foraminifera were shown to inhabit methane-
enriched sediments at both investigated locations. The benthic foraminiferal faunas
were dominated by common Arctic species such as Melonis barleeanus, Cassidulina
neoteretis, and Nonionellina labradorica. The combined usage of the fluorescence probe
and Rose Bengal revealed only minor shifts in species compositions and differences in
ratios between live and recently dead foraminifera from Storfjordrenna. There was no
clear evidence that methane significantly affected the δ13C signature of the calcite of
living specimens.

Keywords: CellTrackerTM Green CMFDA, Rose Bengal, gas hydrate, Vestnesa Ridge, Storfjordrenna, cold seep,
Arctic

INTRODUCTION

Due to the present climate warming, the Arctic region is undergoing remarkably rapid
environmental changes, termed the Arctic amplification (IPCC, 2013; Box et al., 2019). The increase
in global temperature and atmospheric CO2 has severe consequences for the Arctic Ocean, causing
among others ocean acidification (Amap Assessment, 2018), loss of sea ice (Stroeve et al., 2012),
and increase in primary production (Arrigo and van Dijken, 2011). The ocean warming also impose
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a high risk of release of methane from geological reservoirs
(IPCC, 2007; Phrampus and Hornbach, 2012) as large amounts
of methane are stored on Arctic continental margins in the
form of pressure-temperature sensitive gas hydrates (e.g., Maslin
et al., 2010; Ruppel and Kessler, 2017). Gas hydrate is a
widespread, ice-like substance formed when water and methane
or other hydrocarbon gases combine in marine sediments
under high pressure (3–5 MPa) and temperatures below ∼25◦C
(e.g., Kvenvolden, 1993). Pressure release and/or increase in
temperature can cause destabilization of gas hydrate reservoirs,
resulting in a release of free methane gas into the sediment
and/or water column (e.g., Archer et al., 2009; Maslin et al.,
2010). Several studies have implied a link between the release
of methane from geological reservoirs and climate change
during the Quaternary and the Paleocene periods (e.g., Wefer
et al., 1994; Dickens et al., 1997; Smith et al., 2001). It is
feared that ongoing climate change can trigger destabilization
of gas hydrate reservoirs and methane release into the water
column and eventually to atmosphere (Ruppel and Kessler,
2017). Therefore, it is crucial to understand the fate of
methane in marine sediments in order to understand the
potential impact of methane release to future climate and
Arctic ecosystems.

For the last decades, the carbon isotopic signature δ13C of
benthic foraminifera has been commonly used as a proxy in
the reconstruction of productivity and origin and ventilation
of water masses in the past (e.g., Gooday, 1994, 2003; Smart
et al., 1994; Rohling and Cooke, 1999; Murray, 2006; Ravelo
and Hillaire-Marcel, 2007). Recent studies have shown that the
δ13C incorporated into the calcareous (CaCO3) tests of benthic
foraminifera can record episodes of release of methane in the
past (e.g., Torres et al., 2003; Millo et al., 2005; Martin et al.,
2010; Schneider et al., 2017; Sztybor and Rasmussen, 2017). The
δ13C in the shells of some fossil benthic foraminifera can be
lower than −10h (e.g., Hill et al., 2004; Schneider et al., 2017;
Sztybor and Rasmussen, 2017), while the signature of calcite of
living foraminifera generally do not exceed −7.5h (Mackensen
et al., 2006; Wollenburg et al., 2015), it remains unclear if, and
to what extent live benthic foraminifera incorporate methane-
derived carbon during biomineralization, or whether the isotopic
signature is mostly affected by authigenic overgrowth from
carbonate precipitation.

Modern methane cold seeps can provide valuable information
about changes in seepage intensity and the possible effects of
methane seepage on the distribution patterns of live foraminifera
and the isotopic composition of their tests. The δ13C of calcareous
benthic foraminifera is determined by species-specific vital
effects (i.e., intracellular metabolic processes; e.g., Grossman,
1987; McCorkle et al., 1990; Mackensen et al., 2006) and
their microhabitat (e.g., sedimentary organic matter, dissolved
inorganic carbon content, temperature, and re-mineralization;
e.g., McCorkle et al., 1985; Fontanier et al., 2006). Within cold
seeps, the release of methane from the seafloor is partly controlled
by sulfate-dependent anaerobic oxidation of methane (AOM)
and aerobic methane oxidation (MOx; Treude et al., 2007;
Knittel and Boetius, 2009). Thus, as a product of these microbial
activities, 13C-depleted carbon is released in the form of carbon

dioxide (CO2) or bicarbonate (HCO3
2−), causing changes in

the carbon isotopic signature of pore water i.e., changes in the
microhabitat (e.g., Whiticar, 1999; Rathburn et al., 2003; Treude
et al., 2007).

Since benthic foraminifera construct their tests by
incorporating carbon from the surrounding pore water or
bottom water and from the intracellular storage of inorganic
carbon (e.g., de Nooijer et al., 2009; Toyofuku et al., 2017), the
foraminiferal calcite supposedly records the isotopic signal of
ambient waters (i.e., pore water or interstitial water in which
the foraminifera live) at the time of calcification (e.g., Rathburn
et al., 2003; Panieri and Sen Gupta, 2008). Alternatively,
foraminifera might absorb the 13C-depleted carbon via the food
web (Panieri, 2006) or by feeding on, or living in symbiosis
with, methanotrophic bacteria, as suggested by Hill et al. (2004).
Some studies show that the δ13C measured in tests of living
foraminifera collected from active seeps are not markedly
lower than those from non-seep sites, indicating that living
foraminifera might not be able to record the episodes of methane
release (e.g., Rathburn et al., 2003; Torres et al., 2003; Etiope
et al., 2014; Herguera et al., 2014; Dessandier et al., 2020).
Simultaneously, numerous other studies indicate that methane
has an effect on isotopic signatures of “live” foraminifera
(Rose Bengal stained; e.g., Hill et al., 2004; Mackensen
et al., 2006; Panieri, 2006; Wollenburg and Mackensen, 2009;
Wollenburg et al., 2015).

Studies of live foraminiferal assemblages are commonly
based on Rose Bengal staining, presumably marking specimens
that were alive at the sampling time. Stained specimens can
include both live and recently dead individuals (Bernhard
et al., 2006; Figueira et al., 2012) thus, it is still not
clear if live foraminifera have recorded the 13C signal that
comes from incorporation of carbon from methane in their
shells during calcification. Compared to the conventional
Rose Bengal, the CellTrackerTM Green (CTG) CMFDA (5-
chloromethylfluorescein diacetate; Thermo Fisher Scientific) and
CellHunt Green (CHG) (SETAREH biotech, LLC) probes are
reactive with internal cell components and gives a green-
fluorescent coloring of the cytoplasm, indicating metabolically
active foraminiferal specimens. The combined usage of the
fluorogenic probes together with the Rose Bengal staining
can be used to separate live foraminifera from recently dead
individuals, and thus be a useful tool to build up a more
detailed picture of benthic foraminiferal distribution patterns and
ecology. It might be especially useful in studies of heterogeneous
and variable environments such as cold seeps, which depend
on the highly variable flux of methane and can evolve and
change rapidly over time (Levin, 2005; Cordes et al., 2006;
Åström et al., 2020).

This paper presents results of a study of live benthic
foraminifera from a gas hydrate province on Vestnesa Ridge
(∼1,200 m water depth; western Svalbard margin) and from gas
hydrate “pingo” structures from Storfjordrenna (∼400 m water
depth) in the western Barents Sea (Figure 1). The aims of the
study are to (1) identify species compositions of the benthic
foraminiferal faunas in these Arctic methane seeps and (2) to
compare the carbon isotopic signature (δ13C) in the tests of
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metabolically active (CTG or CHG labeled) foraminifera, with
Rose Bengal stained and with unstained tests (empty tests), to
determine if methane seepage has any significant effects on the
isotopic signatures of calcite of live benthic foraminifera.

MATERIALS AND METHODS

Study Area
Vestnesa Ridge is located northwest of Svalbard in the eastern
Fram Strait and is an approximately 100 km long sediment
drift at water depths of ∼1,200–1,300 m. The Fram Strait forms

the gateway between the North Atlantic Ocean and the Arctic
Ocean. This region is characterized by large annual fluctuations
in sea-ice cover. Relatively warm (3–6◦C), saline (S < 35.4 psu),
and nutrient-rich Atlantic water pass through the Fram Strait
into the Arctic Ocean carried by the West Spitzbergen Current
(WSC) (e.g., Manley, 1995; Rudels et al., 2000; Walczowski
et al., 2005). The southwestern part of the Vestnesa Ridge is
characterized by the presence of several active pockmarks (i.e.,
shallow seabed depressions) where methane-rich fluids seep
from gas hydrate and free gas reservoirs (Bünz et al., 2012;
Figure 1B). The most active pockmarks, “Lomvi” and “Lunde,”
are approximately 10–15 m deep depressions with diameters

FIGURE 1 | Maps showing (A) sampling location, indicated by stars: yellow- Vestnesa Ridge; green- Control site 7,808; orange- Storfjordrenna pingos; (B)
bathymetry of Vestnesa Ridge (swath bathymetry from Hustoft et al., 2009); control site (C) and bathymetry of Storfjordrenna pingos [(D); swath bathymetry from
Serov et al. (2017)].
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FIGURE 2 | Seafloor images from the Vestnesa Ridge MC886 Lunde
pockmark, MC893 Lomvi pockmark showing gray bacterial mats (A) and
authigenic carbonates (B), and from Storfjordrenna pingos site from active site
gas hydrate pingo 1 (GHP1; MC902—MC919) showing tubeworms (D), gray
bacterial mats (E) and sea anemones (C), and from the inactive site GHP 5
(MC920—MC922) showing sea anemones (G,H). Distance between laser
dots (green dots) = 20 cm. (F) regular marine sediment.

of 400–600 m. The TowCam−guided multicore investigation
of the Vestnesa Ridge shows heterogeneity of the site and
presence of macrofauna and seafloor structures associated
with the occurrence of methane seepage. These include, e.g.,
bacterial mats and tubeworm fields (Siboglinidae) within the
Lunde pockmark, and Methane-Derived Authigenic Carbonate
(MDAC) outcrops at the seafloor within the Lomvi pockmark
(e.g., Sztybor and Rasmussen, 2017; Åström et al., 2018; Figure 2).
The δ13CDIC values of pore water for the Lomvi pockmark have
been reported to range between −25.1 and −37.7h and for
the Lunde pockmark −22.4h to −39.4h in surface sediments
(Dessandier et al., 2019).

The Storfjordrenna hydrate mound “pingo” area is located
∼400 m water depth on the Arctic continental shelf, south
of the Svalbard archipelago in the north-western Barents Sea
(Figure 1D). Similar to the Vestnesa Ridge, Storfjordrenna
is under influence of relatively warm Atlantic water (Loeng,
1991). The area is characterized by five gas hydrates mounds
(pingo-like features) spread within an area of 2 km2. The gas
hydrate pingos (GHPs) are between 8 and 12 m high, with
diameters between 280 and 450 m. Four of the five GHPs

are presently active and show active methane seepage in the
form of acoustically detected gas/bubble streams (i.e., acoustic
flares) around the summits and one is in a “post-active stage”
and presently inactive (Hong et al., 2017; Serov et al., 2017).
Elevated concentrations of methane (mostly of thermogenic
origin) have been detected in both sediments and bottom
waters at GHP1, and gas hydrates were recovered in sediment
cores (Hong et al., 2017; Carrier et al., 2020). The δ13CDIC
values of pore water for the top of GHP1 (MC902) reached
−24.2h (Dessandier et al., 2020). Seabed images acquired with
a Multicorer-TowCam during the CAGE17-2 cruise revealed the
presence of white and gray bacterial mats as well as sediments
colonized by chemosynthetic Siboglinidae tubeworms, biota well
known to indicate active hydrocarbon seepage (Niemann et al.,
2006; Treude et al., 2007; Figure 2). The megafauna community
associated with cold seeps has been previously documented
at the Storfjordrenna by Åström et al. (2016) and Sen et al.
(2018).

Sampling
Sediment samples were collected during the CAGE 15-2 cruise
in May 2015 to Vestnesa Ridge from the sites of active methane
emission, the Lomvi and Lunde pockmarks, and at site 7,808
located south-east from the Vestnesa Ridge as a control site where
no methane seepage occurs (Figures 1B,C). During CAGE cruise
17-2 in June 2017 to Storfjordrenna pingo area, several samples
were taken from the active gas hydrates pingo (GHP1) along a
transect from the top the pingo toward its edge (Figure 1D).
For comparison, the inactive GHP5 was sampled in a similar
manner (Figure 1D).

The samples from both Vestnesa Ridge and the pingo area
in Storfjordrenna (Table 1 and Figure 1) were collected with
a multicorer equipped with six tubes (10 cm diameter) and
combined with a Towed Digital Camera (TowCam) developed
at the Woods Hole Oceanographic Institution’s Multidisciplinary
Instrumentation in Support of Oceanographic (MISO) Facility
onboard the R/V Helmer Hanssen. The live-stream feed from
the TowCam system were used to identify the different seafloor
environments and to locate active methane vents, authigenic
carbonates, and bacterial mats for targeted accurate sampling
locations (Figure 2).

After recovery, undisturbed cores were selected for this
study. The uppermost core section of each selected core was
subsampled using a flat spatula slicing the sediment into 1-cm
thick, horizontal intervals (0–1, 1–2, and 2–3 cm). Sediment
samples from Vestnesa Ridge were processed as follows: One-
third of each slice designated for different treatments, (1) labeling
with CTG, (2) staining with Rose Bengal, and (3) extraction
of dissolved inorganic carbon (DIC) from pore waters. Each
sample was transferred into plastic containers (125-ml HDPE).
The CTG solution was prepared beforehand as follows: 1.4 ml of
DMSO (dimethyl sulfoxide; not anhydrous) was added to 1 mg
CTG, mixed gently, and kept in the original plastic vial from
the supplier at −20◦C. The solution was thawed approximately
20 min before the sampling. CTG was added to 20 ml of seawater
sampled in the multicore tube and added to the sediment
immediately after sampling and giving a final concentration of
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TABLE 1 | Core numbers, location, coordinates, water depths, and dates of sampling.

Core number Location Coordinates Water depth (m) Sampling date

MC893A and MC893B Vestnesa Ridge 79.18N, 00.44E 1200 20 May 2015

(Lomvi pockmark)

MC886 Vestnesa Ridge 79.38N, 00.04E 1200 20 May 2015

(Lunde pockmark)

MC880A and MC880B Site 7808 78.44N, 00.50E 889 19 May 2015

(Control site)

MC884 Site 7808 78.30N, 00.82E 900 19 May 2015

(Control site)

MC902 Storfjordrenna 76.91N, 16.08E 377 22 June 2017

Active GHP1

MC917 Storfjordrenna 76.93N, 16.02E 377 23 June 2017

Active GHP1

MC919 Storfjordrenna 76.96N, 15.98E 378 23 June 2017

Active GHP1

MC920 Storfjordrenna 76.70N, 16.00E 379 23 June 2017

Inactive GHP5

MC921 Storfjordrenna 76.72N, 16.40E 380 23 June 2017

Inactive GHP5

MC922 Storfjordrenna 76.74N, 16.37E 386 23 June 2017

Inactive GHP5

GHP, gas hydrates pingo.

CTG of 1 µM in seawater (Bernhard et al., 2006). Samples
were incubated in a temperature-controlled room at 4◦C for
approximately 12 h. Rose Bengal solution was made prior to
sampling by dissolving Rose Bengal powder in distilled water
(2 g/L). The solution was added to the designated sediment
samples, agitated gently, and kept in plastic containers (250 ml).
Sediment labeled with CTG and stained with Rose Bengal was
preserved with 36% formaldehyde (to final concentration 5.5%)
and kept at 4◦C.

The sediment collected from Storfjordrenna pingo area was
treated differently when compared to samples from the Vestnesa
Ridge. Each 1-cm slice of sediment taken from GHP multicores
was directly transferred into a 125 ml HDPE bottle. The whole
sediment was treated with the CHG solution. The CHG solution
was prepared beforehand (following the protocol for CTG).
Samples were incubated in CHG onboard in a dark, temperature-
controlled room at 4◦C for approximately 12 h. Hereafter, the
samples were preserved in ethanol with final concentration 70%.

Foraminiferal Fauna Analysis
Rose Bengal stained and CTG labeled (i.e., fluorescently
labeled) samples from Vestnesa Ridge were washed over a
63-µm sieve using filtered seawater (0.45 µm); the >63 µm
fraction was kept in filtered seawater and further analyzed.
The fluorescently labeled samples were examined using an
epifluorescence-equipped stereomicroscope (Leica MZ FLIII;
485 nm excitation; 520 nm emission). All individuals that
fluoresced brightly in at least half of their chambers were
considered as live (Figure 6). They were picked wet and placed
on micropaleontology slides. The Rose Bengal stained samples
were examined with reflected-light microscopy using a Zeiss
Stemi SV6. All foraminifera that stained dark magenta in at

least half of their chambers were picked and mounted on
micropaleontology slides (Figure 3). All collected foraminifera
were sorted by species and counted and identified to species level
(Tables 2, 3).

The CHG labeled (i.e., fluorescently labeled) sediment samples
from GHPs were processed in the same manner as CTG labeled,
except that individuals that did not show any green coloration
were subsequently incubated in a Rose Bengal-ethanol solution
(2 g/L). After approximately 24 h, samples were re-sieved over
a 63-µm sieve. Obtained Rose Bengal stained foraminifera were
wet picked (Figure 3). Unstained tests have been omitted and not
counted in this study.

The density of foraminifera was normalized per unit volume
at the number of specimens per 10 cm3. The Shannon index
S(H) of diversity, Evenness index, and Chao1 index (Tables 2, 3)
was calculated for each sample. The number of CTG labeled and
Rose Bengal stained foraminifera, as well as the CHG labeled
and Rose Bengal stained foraminifera, were compared by chi-
square testing. Assuming that CHG foraminifera would have
stained with Rose Bengal, the number of Rose Bengal stained
foraminifera was determined as a sum of CHG labeled (living)
and Rose Bengal stained (recently dead) individuals. For our chi-
square test, the Rose Bengal stained individuals were treated as
the expected values, whereas the CTG or CHG labeled individuals
were treated as the observed values; this approach is adapted from
Bernhard et al. (2006). The percentage of CHG labeled (living)
faunal assemblages from GHP sites were calculated relative to
total foraminiferal abundance (CHG labeled + Rose Bengal
stained, i.e., foraminifera containing cytoplasm; Figure 7). Due
to similar properties, further in the text CTG and CHG labeled
foraminifera are interchangeably referred to as “fluorescently
labeled.”
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FIGURE 3 | On-board and laboratory processing of the sediment from Vestnesa Ridge (A) and from Storfjordrenna (B).

Stable Isotopes Analyses
For carbon (δ13C) stable isotope analyses of Vestnesa Ridge
samples, the most numerous individuals of species indicated
as a metabolically active (CTG labeled; live) and individuals
“live + recently dead” (Rose Bengal stained) were selected. Due
to the small size of most specimens, between 8 and 10 specimens
of Melonis barleeanus and Cassidulina neoteretis (when present)
and 10 unstained tests of the planktonic foraminiferal species
Neogloboquadrina pachyderma were picked from each sample.
In case of foraminifera from GHPs, δ13C measurements were
performed on metabolically active (CHG labeled) foraminifera
and recently dead (Rose Bengal stained) foraminifera of the
two most numerous species M. barleeanus and Nonionellina
labradorica (between eight and 10 specimens). Some “dead”
(unstained tests) were picked for isotope analyses for comparison.
Whenever possible, replicates were processed and analyzed.

Isotopic measurements were performed on a MAT 253 Isotope
Ratio Mass Spectrometer (Department of Geosciences, UiT The
Arctic University of Norway). Carbon isotopic compositions are
expressed in conventional δ notation against the Vienna Pee Dee
Belemnite (V-PDB) standard (1.96, −10.21, and −48.95h for
δ13C) and reported in parts per thousand (per mil, h). Analytical
precision was estimated to be better than 0.07h for δ13C by
measuring the certified standard NBS-19.

RESULTS

Foraminiferal Assemblages
Vestnesa Ridge
Fluorescently labeled (living) individuals were present in the
sediment from core MC893A (Lomvi pockmark) at 0–1 cm and
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TABLE 2 | Direct counts of CellTrackerTM Green labeled foraminifera from all samples.

Control site Vestnesa Ridge

Core number MC880A MC880B MC884 MC886 MC893A MC893B

Depth (cm) 0–1 1–2 2–3 0–1 1–2 2–3 0–1 1–2 2–3 0–1 1–2 2–3 0–1 1–2 2–3 0–1 1–2 2–3

Cassidulina laevigata 4 1

Cassidulina neoteretis 22 1 21 7 4 1 13 2

Cassidulina reniforme 3 1 4 2

Cibicides lobatulus 3 1 1

Melonis barleeanus 4 3 6 7 8 7 10 9

Nonionellina labradorica 3 1

Pullenia bulloides 1 4 2 5 2

Total number/sample 31 4 37 15 19 16 29 12

SD 9,60 1,41 7,7 3,46 2,68 2,584 5,26 4,35

Number/10 cm3 11.9 1.5 14.2 5.7 7.7 6.2 11.15 5

#Taxa 4 2 5 3 5 4 6 3

Shannon’s H index 0.88 0.56 1.03 1.22 1.41 1.21 1.33 0.72

Evenness index 0.60 0.87 0.70 0.81 0.82 0.84 0.62 0.58

Chao1 index 4 2 5 3 5 4 6.3 3
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TABLE 3 | Direct counts of Rose Bengal stained foraminifera from all samples.

Control site Vestnesa Ridge

Core number MC880A MC880B MC884 MC886 MC893A MC893B

Depth (cm) 0–1 1–2 2–3 0–1 1–2 2–3 0–1 1–2 2–3 0–1 1–2 2–3 0–1 1–2 2–3 0–1 1–2 2–3

Adercotryma glomeratum 3

Buccella frigida 7 5 1 14 6

Cassidulina laevigata 1 1 1 1

Cassidulina neoteretis 44 24 11 12 17 9 13 3 9 2

Cassidulina reniforme 3 1 1 3 1 8 1 1

Cibicides lobatulus 4 2 2 2

Elphidium excavatum 1 3

Fissurina sp. 2

Labrospira crassimargo 7

Lagena sp. 1 1 1

Lagena sp. 2 1 1 1

Melonis barleeanus 16 10 31 23 8 28 12 1 52 16 5 16 14 3

Nonionellina labradorica 1 3 1 1 1

Pullenia bulloides 4 3 2 2 2 8 3 1 1 1 2

Reophax guttifer 3 4 2 1

Reophax fusiformis 2 12

Reophax sp. 2 5 1 1 1 2 7

Stainforthia loeblichi 1 2 1

Spiroplectammina earlandi 1 4 1

Trifarina angulosa 1 2 2

Triloculina sp. 1 1 2

Total number/sample 70 46 35 52 46 29 62 27 15 102 29 6 28 14 3

SD 17.83 7.32 3.95 11.70 10.10 3.06 8.34 3.36 2.5 15 5.52 2.82 6.37 0 0

Number/10 cm3 27 18 13 >4 20 17.6 11.2 23.8 10.4 5.8 39.2 11.2 2.3 10.7 5.4 1.2

#Taxa 6 9 9 6 5 8 11 10 6 11 7 2 4 1 1

Shannon’s H index 1.08 1.55 1.79 1.15 1.04 1.80 1.62 1.75 1.43 1.6 1.37 0.45 1.09 0 0

Evenness index 0.55 0.54 0.66 0.52 0.60 0.76 0.48 0.63 0.69 0.44 0.56 0.78 0.74 1 1

Chao1 index 5 12 9.75 6.5 5 8 14.33 13.33 12 16 8 2 4 1 1
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1–2 cm core depths, but not in the 2–3 cm interval. None of
the individuals in cores MC886 and MC893B were metabolically
active. At the control site, fluorescently labeled foraminifera
were found in all samples from 0–1 cm and 1–2 cm intervals,
while again no living foraminifera were observed in the 2–3 cm
interval (Figure 4 and Table 2). Rose Bengal stained aliquots
indicated presence of foraminifera (live + recently dead) in
cores MC893A, MC893B, MC884, MC880A, and MC880B in
all sampling intervals. No Rose Bengal stained individuals were
observed in the 1–2 cm and 2–3 cm samples at site MC886
(Figure 4 and Table 3). Both the chi-square (p = 1, α = 0.05)

and Student’s t-test (p = 0.44, α = 0.05) test show significant
differences between number of fluorescently labeled and Rose
Bengal stained specimens, within any given sediment interval. In
general, there was a lower number of foraminifera in the cold-
seep samples than in the control samples. Density of fluorescently
labeled foraminifera at Vestnesa Ridge ranged from 0 to 11.1
individuals per 10 m3 in the 0–1 cm intervals, and from zero to
five individuals per 10 cm3 in the 1–2 cm intervals. Density of live
foraminifera at control sites ranged from 7.7 to 14.2 individuals
per 10 cm3 in the 0–1 cm intervals, and from 1.5 to 6.1 in the
1–2 cm intervals (Figure 4). The number of Rose Bengal stained

FIGURE 4 | Plots presenting the number (per 10 cm3) of CellTrackerTM Green CMFDA labeled (live) and Rose Bengal stained (live + recently dead) foraminifera from
aliquots of Vestnesa Ridge and the nearby control site. Numbers 0–1, 1–2, and 2–3 next to the core number refer to the depth: 0–1, 1–2, and 2-3 cm respectively.
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FIGURE 5 | Foraminiferal species composition at Lomvi pockmark (Vestnesa Ridge) and control site using CellTrackerTMGreen (live) and Rose Bengal (live + recently
dead). Plots are based on direct counts (Tables 2, 3).

foraminifera in samples from Vestnesa Ridge active sites ranged
from 5.8 to 39.2 individuals per 10 cm3 in the 0–1 cm interval,
from 0 to 11.2 in the 1–2 cm interval, and from 0 to 2.3 in the
2–3 cm interval (Figure 4). In the sediment from the control
site, the abundance of Rose Bengal stained (live + recently dead)
foraminifera ranged from 11.3 to 27 specimens per 10 cm3 in the
0–1 cm interval, from 20 to 46 foraminifera in the 1–2 cm interval
and from 0 to 17.2 in the 2–3 cm interval (Figure 4).

CTG and Rose Bengal show that dominant and most common
species were the same in the assemblages from active seep sites
at Vestnesa Ridge (Tables 2, 3 and Figure 5). The S(H) index in
CTG labeled samples from Vestnesa Ridge range from 0 (empty
samples) to 1.33, and from 0.56 to 1.41 in samples from the
control site. The S(H) index in Rose Bengal stained samples from
Vestnesa Ridge range from 0 (empty sample) to 1.33, and from
1.04 to 1.8 in control site. The Pielou evenness index in CTG
labeled samples from Vestnesa Ridge range from 0.58 to 0.88 and
from 0.60 to 0.87 in samples from the control site (Table 2). In
Rose Bengal stained samples the same index varies from 0.44 to
0.78 for Vestnesa Ridge and from 0.48 to 0.76 for the control
site (Table 3).

In the fluorescently labeled samples from Vestnesa Ridge the
foraminiferal faunas are dominated by M. barleeanus (34% of
total fauna in the 0–1 cm interval and 69% in the 1–2 cm
interval) and C. neoteretis (45% of total fauna in the 0–1 cm
interval and 15% in the 1–2 cm interval) (Table 2). Similarly,
in Rose Bengal-stained samples the most abundant species were
M. barleeanus (51% of total fauna in the 0–1 cm interval and
55% in the 1–2 cm interval), C. neoteretis (9% of total fauna
in the 0–1 cm interval and 7% in the 1–2 cm interval) and

Buccella frigida (14% of the total fauna in the 0–1 cm interval
and 6% in the 1–2 cm interval) (Table 3). No apparent endemic
foraminiferal species were observed in the Vestnesa Ridge seep
sediment samples (Tables 2, 3).

Storfjordrenna Pingos
Metabolically active (fluorescently labeled) benthic foraminifera
were present in both the active GHP1 and the inactive GHP5,
except at site MC902 taken at the top of the active GHP1
(Table 4). In addition to live, metabolically active foraminifera,
Rose Bengal staining shows presence of recently dead individuals,
i.e., foraminiferal tests that still contain cytoplasm, but were not
metabolically active at the time of collection, which could lead to
a significant overestimation of the number of live foraminifera
(p = 0.01, α = 0.05; chi-square test) (Figure 7).

The ratio between fluorescently labeled and Rose Bengal-
stained foraminifera differed between the active and inactive
GHP1 and GHP5. A higher proportion of live to recently dead
individuals was found in the inactive GHP5, and in GHP1
(except for the sample MC902, which appeared to be barren;
Figure 7). The ratio between live vs. recently dead foraminifera
was approximately 2:3 in the active GHP1, and 3:2 in the inactive
GHP5 (Figure 7).

At GHP1, the density of live individuals increased along the
transect from 0 individuals at the top of GHP1 to 11.84 (per
10 cm3) at the edge of the pingo. At GHP5 (the non-active site),
the foraminifera were relatively evenly distributed compared to
the active GHP1. Similarly, to GHP1, the lowest density 3.43 (per
10 cm3) of metabolically active foraminifera was observed in the
sediment from the summit of GHP5 (Table 4). The S(H) index
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TABLE 4 | Number per sample of CellHunt Green labeled (CHG) and Rose Bengal stained (RB) foraminifera (direct count), and Shannon diversity index from active GHP1 and inactive GHP5.

MC902 MC917 MC919 MC920 MC921 MC922

CHG RB CHG RB CHG RB CHG RB CHG RB CHG RB

Buccella frigida 4 6 14 2 2 3

Cassidulina laevigata 2 1 1 1 1

Cassidulina neoteretis 2 37 5 5 9

Cassidulina reniforme 4 1 6 3

Cibicides lobatulus 3 14 1 4 1 13 1 10

Elphidium excavatum 1 8 3 8

Globobulimina turgida 2 1 4 4 5 2 1 1 2

Melonis barleeanus 8 8 22 31 9 12 30 22 24 2

Nonionellina labradorica 6 3 18 18 10 5 1 3

Pullenia bulloides 2 5 1 1 3 2 3

Stainforthia loeblichi 1

Triloculina sp. 1 1

Uvigerina sp. 1 3 2 1

Total number/sample 24 36 62 122 27 43 39 42 42 20

#Taxa 6 9 9 10 6 8 6 6 7 6

Shannon index 1.53 1.75 1.3 1.08 1.26

Evenness index 0.83 0.65 0.59 0.63 0.71 0.70 0.40 0.61 0.54 0.77

Chao1 index 6 10 10.5 10 6.5 11 6.3 7 7.5 6
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FIGURE 6 | Reflected light (A–D) and corresponding epifluorescence (green coloration from CellTrackerTM Green) (E–H) micrographs of foraminifera collected at
Vestnesa Ridge (core 893A); (A,E) Nonionellina labradorica; (B,C,G,F) Melonis barleeanus; (D,H) Cassidulina neoteretis. Scales: panels (A–D) = 30 µm; panels
(B,C,F,G) = 25 µm.

in samples from GHP1 ranged from 0 closer to the center to 1.75
at the edge, and in GHP5 from 1.08 to 1.26 (Table 4). The Pielou
evenness index in CHG labeled samples from GHP1 varies from
0.59 to 0.83 and between 0.40 and 0.71 in GHP5 (Table 4).

Both the active and the post-active pingo were characterized
by presence of the same dominant CHG labeled species:
M. barleeanus (35% of total living fauna in GHP1, and 52%
in GHP5), N. labradorica (28% in GHP1, and 11% in GHP5),
Elphidium excavatum (11% in GHP1, and 9% in GHP5) and,
to some extent, B. frigida (12% in GHP1; Figure 8). In the
Rose Bengal-stained (i.e., recently dead) samples, the dominant
species were M. barleeanus (25% of the total living fauna in
GHP1, and 34% in GHP5), C. neoteretis (23% in GHP1, and
18% in GHP5), C. lobatulus (22% in GHP5), and to some extent
N. labradorica (13% in GHP1, and 6% in GHP5) (Figure 8). No
endemic species were found in any of the samples from GHP1 or
GHP5 (Figure 8).

Isotopic Signatures
CellTrackerTM Green labeled foraminifera tend to have less
negative δ13C signatures compared to Rose Bengal stained pools
and empty tests of their conspecifics, both at Vestnesa Ridge
(core MC893A) and at the control site (core MC880A and
MC880B; Figure 9). The difference between δ13C measured in
CTG labeled individuals and Rose Bengal-stained specimens is

0.22h in samples from Vestnesa Ridge, whereas in samples from
the control site the difference is 0.41 and 0.15h. The difference
between δ13C measured in CTG labeled and empty tests is 0.29
and 0.22h at Vestnesa Ridge, and between 0.04 and 0.27h at
the control site (Table 5).

In contrast, in both GHP1 and GHP5 the δ13C values
measured in CHG labeled pools are always considerably more
depleted compared to values measured in Rose Bengal-stained
specimens (Figure 8). The difference in δ13C values in CHG
labeled foraminifera is 0.08h (at GHP1) and 0.20 and 0.49h (at
GHP5; Table 5). The difference between δ13C values measured in
CHG labeled foraminifera and unstained tests is 0.88 and 1.46h
at GHP1 and range between 0.14 and 0.58h at GHP5. The most
pronounced difference is found in samples from the active GHP1
(MC919), where the isotopic signature of live M. barleeanus is
more depleted compared to the signature of dead individuals
(about 1.46h; Table 5 and Figure 8).

DISCUSSION

Foraminiferal Fauna
The study shows presence of living foraminifera in sediments
from active methane emission sites from pockmarks at Vestnesa
Ridge and from hydrate mounds (“pingos”) in Storfjordrenna.
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FIGURE 7 | Percentages of benthic foraminifera labeled with CellHunt Green (CHG) = live, and individuals subsequently stained with Rose Bengal (RB) = recently
dead (direct count) from Storfjordrenna pingo. The number of foraminifera represents the sum of CHG (dark gray) and RB (light gray) individuals. Plot based on direct
counts.

Results imply that, despite the hostile conditions (e.g., low
oxygen, high carbon dioxide concentrations and potentially also
hydrogen sulfide), which are a result of anaerobic methane
oxidation (Herguera et al., 2014), the benthic foraminifera
were metabolically active. Furthermore, the results confirmed a
previous observation that Rose Bengal staining overestimated
the number of live foraminifera (Bernhard et al., 2006). This
is manifested for example by the presence of Rose Bengal
stained foraminifera in samples with no fluorescently labeled
individuals, or by a higher number of Rose Bengal stained
foraminifera compared to fluorescently labeled individuals (see
samples MC917 and MC919 from Storfjordrenna; Figure 7).

Considering the sampling location and previously published
studies from Vestnesa Ridge (e.g., Panieri et al., 2017; Sztybor
and Rasmussen, 2017; Åström et al., 2018; Dessandier et al.,
2019, 2020; Yao et al., 2019), the uneven distribution of
foraminifera is most likely a result of the horizontal distribution
of geochemically diverse microhabitats within the Vestnesa
sediments. The TowCam imaging survey during the sampling
campaign revealed a patchy distribution of organisms, such
as white and gray bacterial mats and tubeworms (Figure 2),
which correspond to geochemically different microhabitats (e.g.,

Niemann et al., 2006; Treude et al., 2007). For example,
gray bacterial mats (Arcobacter spp., Thiomargarita spp.) are
common in unstable environments, whereas white bacterial mats
(Beggiatoa spp.) and tubeworms fields indicate stable sulfide
conditions (e.g., Sahling et al., 2002; Niemann et al., 2006; Treude
et al., 2007). It has been previously observed that in response to a
heterogeneous distribution of methane-dependent microbial and
macrofaunal biota, the foraminiferal species composition and
absolute abundance (density) may show great variability within
the same seep area (e.g., Rathburn et al., 2000; Wollenburg and
Mackensen, 2009; Dessandier et al., 2019).

In this study, CTG shows the lowest number or absence of
metabolically active foraminifera in some of the assemblages
from Vestnesa Ridge, which indeed can be interpreted as an
environment being inhospitable for foraminifera. At the same
time, in the samples from the MC886 site with no fluorescently
labeled individuals, Rose Bengal stained foraminifera (mostly
agglutinated taxa) are still present. This observation suggests
that “inhospitable” conditions are temporary variations rather
than permanent constraints. Instability/variability of the
environment can be related to the ephemeral nature of
methane seeps, which are strongly dependent on methane
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FIGURE 8 | Foraminiferal species composition within the active GHP1 (MC917 and MC919) and post- active GHP5 (MC920, MC921, and MC922). CellHunt Green
labeled samples (upper panel) and Rose Bengal stained (lower panel).

FIGURE 9 | The δ13C values measured in CellTrackerTM Green labeled (CTG), CellHunt Green labeled (CHG), Rose Bengal stained (RB), and empty tests of Melonis
barleeanus.

flux (Levin, 2005; Åström et al., 2020). As shown by Yao et al.
(2019), the Lomvi (MC893) and Lunde (MC886) pockmarks
are characterized by two different types of methane transport:
advective and dominated by methane diffusion (Lomvi and

Lunde, respectively). Additionally, sulfate and methane profiles
within the MC886 core indicate non-steady-state conditions
(Yao et al., 2019). Those unstable conditions could explain
the lack of metabolically active foraminifera with a presence
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of Rose Bengal stained specimens in the samples from Lunde
pockmark (MC886) at the time of sampling. Similar observations
were made by Dessandier et al. (2019): the authors suggested a
correlation between low density of foraminifera and methane-
diffusive areas due to high sulfide concentration, and decreased
or lack of agglutinated foraminifera in cold seep assamblagdes
as a result of an increase in organic matter content due to
methane related microbial mass, and stronger competition from
calcareous species.

Similarly to Vestnesa Ridge, the benthic foraminiferal
distribution pattern within the active GHP1 shows a greater
variability along the analyzed transect compared to the transect
along the inactive GHP5. The highest density of foraminifera is
observed at the edge of GHP1, where white and gray bacterial
mats are present, with a small difference in density toward the
center of GHP1, and reaching zero individuals approximately
at the top, where most of the methane flares are located (Serov
et al., 2017; Carrier et al., 2020). The δ13CDIC value at the top
of the active GHP reached −24.2h, which can be linked to
methane-related microbial activity (Dessandier et al., 2019). The
absence of foraminifera at the summit is thus most likely due
to the combined effect of disturbance caused by gas bubbles
passing though the sediment and geochemical constraints related
to microbial activity (e.g., low oxygen or presence of hydrogen
sulfide; Herguera et al., 2014; Carrier et al., 2020). The Shannon
index shows that the suite of samples from GHP 5 has less
variability compared to the samples from GHP1. The highest
density and diversity are observed at the edge of GHP1 (MC919),
in bacterial mats. Similarly to other methane cold seeps, the
microbial community at the active GHP1 might serve as a
food source and support benthic foraminiferal growth (e.g.,
Rathburn et al., 2000; Panieri, 2006; Fontanier et al., 2014;
Herguera et al., 2014).

It is widely accepted that the distribution of benthic
foraminiferal faunas at cold seeps is mainly controlled by oxygen
levels and organic content, and that species preferring organic-
rich environments and reduced oxygen are well adapted to live
in the environmental conditions of seep sites (e.g., Akimoto
et al., 1994; Rathburn et al., 2000, 2003; Bernhard et al., 2001;
Fontanier et al., 2014). In fact, the living foraminiferal fauna at
Vestnesa Ridge is dominated by M. barleeanus and C. neoteretis,
and by M. barleeanus and N. labradorica at the active GHP1.
M. barleeanus is described as an intermediate to deep infaunal
species associated with high-nutrient conditions and resistant
to environmental stress due to organic matter degradation (e.g.,
Wollenburg and Mackensen, 1998; Alve et al., 2016). Both
M. barleeanus and C. neoteretis have been previously observed
as the most abundant species in methane-charged sediments at
Vestnesa Ridge (Dessandier et al., 2019). Additionally, the TEM
(transmission electron microscopy) analyses of M. barleeanus
from Lomvi pockmark (MC893) at Vestnesa Ridge revealed
presence of methanotrophic-like bacteria located outside the test,
but very close to their apertural region (Bernhard and Panieri,
2018). Although a possible symbiosis between M. barleeanus and
methanotrophs remains unconfirmed, the potential influence
of seep-related bacteria on M. barleeanus cannot be excluded.
Similarly, to M. barleeanus, C. neoteretis (Rose Bengal stained)

was found to be dominant in the top layers of the dysoxic
(low oxygen) sediments of the Håkon Mosby Mud Volcano
(Wollenburg and Mackensen, 2009) and was one of the most
numerous species at Vestnesa Ridge (Dessandier et al., 2019).
As in other investigated methane seep sites, to date, there are
no endemic species found at Vestnesa Ridge and Storfjordrenna
pingos, but only well-known species represented in a wide range
of environments (e.g., Rathburn et al., 2000; Bernhard et al., 2001;
Herguera et al., 2014; Dessandier et al., 2019).

The combined use of CHG and Rose Bengal allows to
distinguish live and recently dead foraminifera from the
Storfjordrenna area, which reveals major shifts in species
compositions in both the active GHP1 and the inactive GHP5.
In live foraminiferal assemblages, the most common species after
M. barleeanus are N. labradorica and E. excavatum, whereas
in Rose Bengal stained samples C. neoteretis and C. lobatulus
are of high relative abundance. Because species which tolerate
high organic concentration and low oxygen conditions are
associated both with spring bloom and methane seepage, it is
challenging to distinguish precisely to what extent the switch
in population is due to methane availability. Particularly, the
relatively high number of live N. labradorica both in the
active GHP1 and inactive GHP5, as well as appearance of
E. excavatum, might indicate the influence of the seasonal algae
bloom. E. excavatum is an opportunistic species, with the ability
to respond rapidly to deposition of food (pulsed food supply;
Corliss, 1991; Altenbach, 1992) and colonize harsh environments
(Korsun and Hald, 2000). It almost completely replaces other
species, such as C. lobatulus, which is an epifaunal species that
prefers low food supply and high oxygen concentration (e.g.,
Hald and Steinsund, 1996; Klitgaard-Kristensen et al., 2002).
The significant number of N. labradorica and B. frigida in
samples MC919 from GHP1 is puzzling. Although N. labradorica
is known to feed on fresh phytodetritus, and is an indicator
species of high primary productivity as a result of the retreating
summer sea-ice margin or Arctic Front (Cedhagen, 1991;
Corliss, 1991), this species also has a potential to thrive at
methane seepage sites. N. labradorica (Rose Bengal stained)
have been found previously in the sediment from the top of
the GHP1 (Dessandier et al., 2020). Kleptoplasts present in cell
of N. labradorica might be involved in ammonium or sulfate
assimilation pathways and might potentially support life under
adverse conditions (Jauffrais et al., 2019). Alike N. labradorica,
the distribution of B. frigida is related to seasonal sea-ice retreat
and appearance of fresh algae (Seidenkrantz, 2013). From all
investigated samples from Storfjordrenna, B. frigida occurs most
frequently in the MC919 samples, where bacterial mats are
present. In previous studies from Vestnesa Ridge, it was suggested
that the species potentially can feed on microbial food sources,
i.e., methane related bacterial mats (Dessandier et al., 2019).
Interestingly, in this study B. frigida occur in CTG labeled
samples, but there were no Rose Bengal stained individuals.
This suggests that presence of live B. frigida might reflect a
relatively recent appearance of bacterial mats associated with
methane seepage.

Additionally, the use of both CHG and Rose Bengal reveals
a difference in the percentage of living vs. recently dead
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TABLE 5 | Carbon isotope values (δ13C; h V-PDB) of Melonis barleeanus, Cassidulina neoteretis, and Neogloboquadrina pachyderma, and dissolved inorganic carbon (DIC; *Bernhard and Panieri, 2018) from
Vestnesa Ridge and control site; and Melonis barleeanus and Nonionellina labradorica from Storfjordrenna pingo from active GHP1 and inactive GHP5; CellTrackerTM Green CMFDA (CTG), CellHunt Green (CHG), Rose
Bengal (RB) individuals, and empty tests.

M. barleeanus C. neoteretis N. pachyderma N. labradorica DIC*

Core
number

Depth
(cm)

CTG/CHG
δ 13C

RB δ
13C

Empty δ 13C CTG δ 13C RB δ 13C Empty δ 13C Empty δ 13C CHG δ 13C RB δ 13C Empty δ 13C δ 13C

Vestnesa Ridge MC893A 0–1 −1.73 −1.95 −2.02 −0.26 −0.63

−2.14 −0.22

1–2 −2.06 −2.28 −0.66

MC893B 0–1 −2.24 −3.34

1–2 −2.08 −14.25

Control site MC880A 0–1 −1.38 −1.79 −1.65 −0.33

1–2 −1.57 −1.72 −0.79

MC880B 0–1 −1.70 −1.77 −0.38

1–2 −1.52 −1.67 −1.78 −0.35 −0.64

MC884 0–1 −1.66 −1.70 −0.84

1–2 −1.54 −1.70

GHP 1 MC917 0–1 −2.68 −1.80

MC919 0–1 −2.89 −2.81 −1.43 −4.34 −4.34

GHP5 MC920 0–1 −2.61 −2.41 −2.03 −4.21 −3.38

MC921 0–1 −2.89 −2.92 −2.43 −3.38

MC922 0–1 −2.51 −2.37
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foraminifera within each of the investigated GHP types. The
active GHP1 is characterized by a greater percentage of recently
dead (Rose Bengal stained) individuals, compared to living
(CHG labeled) specimens, whereas in the inactive GHP5 pingo
this ratio is reversed with more live than dead foraminifera.
This difference between the active GHP1 and inactive GHP5
implies more unstable and variable environmental conditions
at GHP1, potentially related to methane emissions, rather than
general seasonal environmental changes (Carrier et al., 2020). On
average, CHG labeling showed that approximately 40% of the
benthic foraminifera in GHP1 and approximately 54% in GHP5
were alive at the time of collection.

Interestingly, despite the highest number of living
foraminifera in GHP5 the Pielou evenness index in CHG
labeled samples shows fairly low values (from 0.40 to 0.71)
compared to samples from GHP1 (from 0.59 to 0.83) (Table 4).
It indicates the presence of dominant, well-adapted species in
the foraminiferal population within the post-active GHP, most
likely due to the recent environmental changes. Because, the
Pielou evenness index is relatively low in the post-active GHP5
compared to GHP1, we can exclude methane influence. It is
possible the evenness index decreased due to the influence
of the spring bloom. In the literature methane cold seeps
are described as a biological oasis in the high−Arctic deep
sea (Åström et al., 2018) due to the presence of microbial
communities seeps provide enough food to sustain foraminiferal
populations (e.g., Rathburn et al., 2000; Torres et al., 2003;
Heinz et al., 2005; Panieri, 2006; Panieri and Sen Gupta,2008).
In contrast, sediments outside the seeps are impoverished
in organic substrates for most of the year and depend on
benthic-pelagic coupling (Gooday, 1988). Thus, the benthic
communities in the Arctic, which experience low food are likely
more sensitive to food input from primary production (e.g.,
Gooday, 1988, 1993; Sander and van der Zwaan, 2004; Nomaki
et al., 2005; Schönfeld and Numberger, 2007; Braeckman et al.,
2018). After the episode of strong food pulses, a population
of specific opportunistic species increased, which can quickly
utilize large amounts of detritus (e.g., Gooday, 1988; Nomaki
et al., 2005; Braeckman et al., 2018). In fact, samples from
GHP5 are dominated by M. barleeanus, an opportunistic species
well adapted to high organic content (e.g., Wollenburg and
Mackensen, 1998; Alve et al., 2016) and shows a relatively
high number of E. excavatum. A ” bloom-feeding” behavior
of E. excavatum was previously described by Schönfeld
and Numberger (2007). In comparison, the foraminiferal
fauna from the active GHP consists mainly of species such
as B. frigida and N. labradorica, species that thrive in cold
seeps and can feed on bacteria (e.g., Dessandier et al., 2019;
Jauffrais et al., 2019).

The δ13C Signature in Foraminiferal Tests
Within methane cold seeps, the geochemistry of pore water
is influenced by aerobic and/or anaerobic methane oxidation
(Treude et al., 2007). Because methane-derived carbon is
characterized by very low carbon isotopic signatures (from −50
to −20h for thermogenic methane, and from −110h to −60h
for microbial methane) (Whiticar, 1999), the ambient DIC pool

is enriched in isotopically light carbon in the form of either
carbon dioxide (CO2) or bicarbonate (HCO3

−) resulting from
microbial activity. If foraminifera incorporate methane-derived
carbon from the ambient seawater during biomineralization,
we would expect to see more negative δ13C values in their
tests compared to δ13C values in tests of foraminifera from the
non-seep sites. At Lomvi pockmark (Vestnesa Ridge), the δ13C
measured on CTG labeled, Rose Bengal stained, and unstained
tests of M. barleeanus have values within the same range as of its
conspecifics in “normal” (non-seep) marine environments, i.e.,
approximately −2h (e.g., Wollenburg et al., 2001; Dessandier
et al., 2020). Likewise, the δ13C measured on live C. neoteretis
showed values within the expected range for specimens from
non-seep environments, i.e., approximately −0.3h to −1h
(Wollenburg et al., 2001), and was not as depleted as previously
reported values (−7.5h δ13C) measured on Rose Bengal stained
C. neoteretis from Håkon Mosby Mud Volcano (Mackensen
et al., 2006). Therefore, the data provide no clear evidence that
M. barleeanus and C. neoteretis from Vestnesa Ridge incorporate
significant amounts of methane-derived carbon during test
formation that would markedly affect the isotopic signature of
their carbonate tests. The difference between δ13C signatures
of M. barleeanus and C. neoteretis most likely reflects different
microhabitat preferences of these species. Infaunal species, such
as M. barleeanus, tend to have more negative δ13C compared
to, for example, epifaunal or shallow infaunal species, such
as C. neoteretis (e.g., Grossman, 1984; McCorkle et al., 1985;
Fontanier et al., 2006).

The δ13C measured in both metabolically active (CHG
labeled) and recently dead (Rose Bengal stained) foraminifera
from Storfjordrenna pingos is not straightforward to interpret.
Although the δ13C in tests of fluorescently labeled foraminifera
from the active GHP1 have values slightly more depleted than
the values exhibited by the same species in the post-active
GHP5, still the δ13C values measure in M. barleeanus from both
GHPs are not much more depleted compared to Rose Bengal
stained conspecific from near non-seep site (i.e., lower than
−2.1h; Dessandier et al., 2019). Overall, the δ13C measured in
M. barleeanus from Storfjordrenna are not significantly depleted
compared to isotopic signatures of other seep-site foraminifera,
e.g., Uvigerina peregrina with measured δ13C values down to
−5.64h (Hill et al., 2004), or C. neoteretis with δ13C values
of −7.5h (Mackensen et al., 2006). Storfjordrenna is at a
relatively shallow water depth (∼400 m) and the sediment
samples were collected in June. Thus, the negative δ13C signature
in foraminiferal tests could originate from a greater flux of
particulate organic matter produced during the spring bloom
and only potentially partly from methane seepage. A shift of
approximately 0–4h toward a more negative δ13C is shown to
have an origin in local organic matter degradation (e.g., Torres
et al., 2003; Martin et al., 2004).

It is generally believed that more negative δ13C signatures
in unstained and/or fossil foraminifera compared to those
of “living” (Rose Bengal stained) specimens result from an
authigenic overgrowth layer covering the tests. Foraminiferal
tests deposited in methane-charged sediments might be coated
by precipitates from highly 13C-depleted pore water or
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bacterially mediated methane oxidation and associated carbonate
precipitation (e.g., Rathburn et al., 2003; Torres et al., 2003;
Schneider et al., 2017; Sztybor and Rasmussen, 2017). A similar
interpretation can be applied to explain the offset in δ13C
values between Rose Bengal stained and fluorescently labeled
M. barleeanus from Vestnesa Ridge. Since Rose Bengal stained
foraminifera represent both live and recently dead individuals, it
is possible that in some of the specimens the organic lining was
already partially decomposed, and that this surface of the tests
had authigenic carbonate overgrowths (Mackensen et al., 2006).
Considering the fact that isotopic offset occurred both in samples
from Lomvi and the control site, and the isotopic variation is
relatively low (∼0.20h Vestnesa Ridge, 0.15 and 0.41h at the
control site), the offset could be due to dissolution of biogenic
calcite and re-precipitation of inorganic calcite (overgrowth
and recrystallization) or other early diagenetic processes that
occur in normal non-seep sediments (Ravelo and Hillaire-Marcel,
2007), and as such not necessarily the effect of Methane-Derived
Authigenic Carbonates (MDAC) overgrowth. Additionally, δ13C
values recorded in unstained tests of the planktonic foraminifera
N. pachyderma from Vestnesa Ridge are close to the expected
δ13C values for normal “Holocene” marine environments (−0.5
to 0.5h; Zamelczyk et al., 2014; Werner et al., 2016). Because
planktic foraminifera live and calcify in the water column,
significantly depleted δ13C signature (−7h or higher; Torres
et al., 2003) in their unstained tests results from diagenetic
overgrowth by authigenic carbonates associated with aerobic
methane oxidation (AOM; Torres et al., 2003; Uchida et al., 2004;
Martin et al., 2010; Schneider et al., 2017). Values obtained for
N. pachyderma from Vestnesa Ridge support the inference that
benthic foraminiferal assemblages have not been significantly
overprinted by MDAC.

Unlike Vestnesa Ridge, in GHP1 and GPH 5 the δ13C values
in the fluorescently labeled M. barleeanus are always more
negative compared to the δ13C in Rose Bengal stained and
unstained tests. This could suggest that living foraminifera did
incorporate methane-derived carbon during biomineralization.
Mackensen et al. (2006) suggested that more depleted isotopic
δ13C signatures in living (Rose Bengal stained) foraminifera
compared to unstained tests can be interpreted as a result of
methane influence. In sample MC919 the difference between
δ13C measured in live M. barleeanum compared to value in
empty tests is pronounced (about 1.55h), whereas the difference
between δ13C in live foraminifera and empty tests in the post-
active GHP5 does not exceed 0.4h. Most likely, foraminifera
absorbed methane-derived carbon via the food web by feeding
on methanotrophic bacteria (see section “Foraminiferal Fauna”).

Although the δ13C signatures in tests of live foraminifera
from the study areas are not significantly depleted to determine
the influence of methane, it should be noted that the δ13C
are measured on pools of specimens (N = ∼10). It is possible
that at least some of the individuals had more negative
δ13C signatures than others, or that some chambers indeed
incorporated methane-derived carbon, as suggested by Bernhard
et al. (2010). However, even if the foraminifera calcified during
episodes of high methane flux, it is likely that only parts of the
tests were constructed under intense seepage conditions, while

the major part of the tests had a pre-seep or post-seep signatures
(i.e., carbon isotopes incorporated before or after a seepage
event). Methane is only one of the potential carbon sources
at cold seeps. In surface sediments, the biological degradation
of marine snow contributes to the local DIC pool and might
explain the negative signature of the δ13CDIC (e.g„ Alldredge and
Silver, 1988; Bauer and Druffel, 1998; Torres et al., 2003). As an
example, a previous study of the δ13CTOC values for Vestnesa
Ridge showed presence of both classical marine δ13CTOC and
depleted δ13CTOC related to methane seepage (Dessandier et al.,
2019). Thus, if the foraminifera use carbon both from ambient
water and intracellular storage (i.e., resulting from respiration
and diet; de Nooijer et al., 2009; Toyofuku et al., 2017), it seems
unlikely that the isotopic signature of foraminifera only reflects
the methane-derived carbon; rather, it may be a result of both
non-seep and seep carbon. To obtain more accurate δ13C values,
analysis of single specimens, or more advanced techniques, e.g.,
secondary-ion mass spectrometry (SIMS) is recommended.

CONCLUSION

1. Labeling with fluorescence probes showed that
metabolically active foraminifera were present in
methane-influenced sediments both at Vestnesa Ridge
and Storfjordrenna. Both sites were characterized by
comparable faunal patterns, with no endemic species,
and the observed species were similar to those from
other non-seep locations within the Arctic Ocean. At
Vestnesa Ridge, and at the non-seep control site off
Vestnesa Ridge, the most abundant calcareous species
were M. barleeanus and C. neoteretis. In Storfjordrenna in
both GHP environments, the foraminiferal faunas were
dominated by M. barleeanus and N. labradorica.

2. Methane seepage did not markedly affect the isotopic
signature (δ13C) of primary calcite in metabolically active
foraminifera. One exception was sample MC919, where a
more negative isotopic signature of M. barleeanus could
potentially reflect methane influence.

3. The results of this study show the effectiveness of
fluorescent probes in ecological studies. At Vestnesa
Ridge, Rose Bengal staining overestimated the number of
living foraminifera, indicating a higher number of live
foraminifera compared to the CTG labeled specimens (23%
of foraminifera were live at Vestnesa Ridge and 34% at
the control site).

4. The is no significant difference between δ13C measured in
fluorescent labeled foraminifera and Rose Bengal stained.

5. At Storfjordrenna, the combined use of CHG and
Rose Bengal allowed to distinguish between living and
recently dead benthic foraminifera. This demonstrated
a marked change in the foraminiferal population from
a C. neoteretis/Cibicides lobatulus dominated assemblage
to an assemblage dominated by M. barleeanus and
N. labradorica, which otherwise would have been
overlooked. Despite the more time-consuming protocol
compared to Rose Bengal staining, the fluorescent viability
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assays such as CHG and CTG CMFDA have a great advantage
and it is advised that they be applied more often in studies of
the ecology of benthic foraminifera.
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