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Abstract: Environmental conditions in Arctic waters pose challenges to various offshore industrial
activities. In this regard, better prediction of meteorological and oceanographic conditions contributes
to addressing the challenges by developing economic plans and adopting safe strategies. This study
revolved around simulation of meteorological and oceanographic conditions. To this aim, the
applications of Bayesian inference, as well as Monte Carlo simulation (MCS) methods including
sequential importance sampling (SIS) and Markov Chain Monte Carlo (MCMC) were studied. Three-
hourly reanalysis data from the NOrwegian ReAnalysis 10 km (NORA10) for 33 years were used
to evaluate the performance of the suggested simulation approaches. The data corresponding to
the first 32 years were used to predict the meteorological and oceanographic conditions, and the
data corresponding to the following year were used to model verification on a daily basis. The
predicted meteorological and oceanographic conditions were then considered as inputs for the newly
introduced icing model, namely Marine-Icing model for the Norwegian Coast Guard (MINCOG), to
estimate sea spray icing in some regions of the Arctic Ocean, particularly in the sea area between
Northern Norway and Svalbard archipelago. The results indicate that the monthly average absolute
deviation (AAD) from reanalysis values for the MINCOG estimations with Bayesian, SIS, and MCMC
inputs is not greater than 0.13, 0.22, and 0.41 cm/h, respectively.

Keywords: Arctic offshore; Barents Sea; meteorology; oceanography; marine icing; simulation;
Bayesian approach; sequential importance sampling; Markov chain Monte Carlo

1. Introduction

As a matter of global warming and ice melting in the Arctic, more waters are being
opened and consequently, the marine traffic for both industrial and leisure purposes has
largely been increasing. The Arctic regions encompass potential resources of oil and
gas condensate, natural gas, diamond, timber, non-ferrous and rare metals, gold, and
platinum. China and Japan have recently shown an increased interest in the development
of transportation in the Northern Sea Route (NSR) since it is almost two times shorter than
other sea routes from Europe to the Far East. During the past two decades, the flow of
tourists to the Arctic has increased by more than 18 times, exceeding the population of
Inuit and Danes, the indigenous residents of the area [1].

However, neglecting the predictions of the environmental hazardous condition, such
as sea spray icing, in preparing plans for offshore industrial activities and sea voyages
in the Arctic might cause long delays, extra expenses, additional energy consumption
and CO2 emission, serious injuries, and fatalities. Icing may impact offshore operations,
reduce safety, operational tempo and productivity, cause malfunction of the operational
and communication equipment, slippery handrails, ladders or decks, unusable fire and
rescue equipment, and the blocking of air vents [2,3]. The icing on vessels may also lead to
severe accidents and capsizing [4,5]. Ice accumulation also influences the operability of
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vessels as well as offshore production structures and facilities by increasing power losses,
failure rate, and frequency of need for inspection and repair. Additionally, it reduces
the useful lifetime of the equipment and imposes safety hazards [6]. Furthermore, ice
accretion on vessels can significantly increase the load as well as the energy that is required
for de-icing purposes. Consequently, the fuel consumption will be raised that leads to
additional CO2 emissions.

Wide varieties of anti-icing and de-icing techniques and technologies are available to
enhance icing safety and protection such as chemicals, coatings, heat, and high-velocity
fluids, air, and steam [7]. Moreover, forecasting the amount and the frequency of ice
formation aids the selection of safety-enhancing strategies and ice protection technologies.
Forecasting, also, can aid in tactical preparation before an icing event [2]. Nevertheless,
forecasting icing events and rate is a complicated task due to the chaotic nature of icing and
its correlation with a large number of parameters. Extensive works have been conducted on
historical icing data to predict icing events [8]. Accordingly, the data have been examined
from different perspectives such as the influence of meteorological and oceanographic
conditions on icing rate from the statistical point of view [9], and introducing sea spray
algorithms based on the collision of ship and waves considering the environmental data as
input parameters [8,10]. The history and development of sea spray icing predictive models
have been reviewed in [3,11].

Icing is mainly from two sources including sea spray caused by the collision of the
ship and waves, and atmospheric icing caused by fog, Arctic sea smoke, high-velocity
wind, and rain/drizzle or snow [7]. Sea spray is generated during the collision of vessel
and waves, and by strong winds ripping off small droplets from the crest of breaking
waves. However, the amount of water generated by wind is much smaller compared to
sea spray generated during the collision of vessel and waves. The collision of waves and
vessels leads to the formation of a spray-cloud, which its droplets will be transported by
air and settled onto different surfaces of the vessel. In this regard, waves, vessel, seawater,
and air contribute to ice generation. Accordingly, the characteristic of each factor such as
height and period of the wave, speed and direction of the vessel, the salinity of seawater,
wind speed, temperature, relative humidity, and pressure of air are influential [8,12].

ICEMOD [13,14] and RIGICE04 [15] are two commonly used simulation models for
estimating the icing rates on a vessel. However, the newly developed model, Marine-Icing
model for the Norwegian Coast Guard (MINCOG), provides higher verification scores (i.e.,
lower errors from the observations) than previously applied vessel-icing models, particu-
larly using the data obtained in the Norwegian Arctic waters [8,16]. The MINCOG model
has been developed based on the modelling of sea spray from wave-vessel interaction,
which is considered as the main water source in vessel-icing events [16].

To estimate the sea spray icing for the future, the required input parameters of the
MINCOG model should be predicted and plugged into the model. This study proposes
methods for long-term prediction of meteorological and oceanographic conditions includ-
ing wave height, wind speed, temperature, relative humidity, atmospheric pressure, and
wave period, which are used as inputs in the MINCOG model to simulate sea spray icing.
More details about the MINCOG model can be found in [8]. The area of this study is the sea
area between Northern Norway and Svalbard archipelago, bounded to the latitudes 69◦ N
to 78◦ N and longitudes 8◦ E to 36◦ E. However, the methodologies can be applied for
the simulation of meteorological and oceanographic conditions in other locations. In this
regard, the applications of Bayesian inference, as well as Monte Carlo simulation (MCS)
methods comprising sequential importance sampling (SIS) and Markov Chain Monte Carlo
(MCMC) in the prediction of meteorological and oceanographic conditions are studied and
relevant approaches are proposed. 3-hourly reanalysis data from NOrwegian ReAnalysis
10 km (NORA10) [17] for 33 years are used to evaluate the performance of the suggested
simulation approaches. To this aim, the data corresponding to the first 32 years are used to
predict the meteorological and oceanographic conditions. The data corresponding to the
following year are then used to model verification on a daily basis.



J. Mar. Sci. Eng. 2021, 9, 539 3 of 24

2. Methods

In attempting to anticipate future patterns of meteorology and oceanography, the
behavior of the system can be modelled based on the available information on the move-
ments of different parameters among their possible states and their interactions, although
no model can fit the reality in all details. A large amount of numerical data are produced
by meteorological observation systems and computer models, whilst obtaining insights
about batches of numbers is a critical task. To this aim, statistical inference draws conclu-
sions about the characteristics of a “population” based on a data sample by extracting its
underlying generating process. In this context, statisticians use the Bayesian inference,
according to which a parametric distribution is assumed to characterize the nature of
the data-generating process where the parameter (s) of the distribution is the subject of
uncertainty. Accordingly, prior information about the parameter of interest is quantified
by a probability distribution, which may or may not be of a familiar parametric form.
This prior information is then modified by combining it with the information provided by
the data sample, in an optimal way [18,19]. Consequently, Bayesian inference provides a
proper understanding of the stochastic nature of the parameter. Therefore, and given the
credibility and ease in the model development procedure, the Bayesian inference has been
recognized as a promising analysis technique to tackle events with chaotic nature [20].

Alternatively, the MCS method is the other powerful modelling tool dealing with
complex and chaotic events to achieve a closer adherence to reality. MCS is generally
defined as a methodology to estimate the solution of mathematical problems using random
numbers. Taking advantage of the present powerful computers, the MCS method is
continuously improving and becoming more practicable in modelling complex systems
and problems in a variety of scientific domains. SIS and MCMC are known as two strong
MCS-based techniques based on which conditional samples are drawn according to a
Markov chain [21,22]. These techniques are discussed in this study since they seem to
be relevant to the purpose of the study which is the simulation of the future behavior of
meteorological and oceanographic conditions given past evidence.

2.1. Bayesian Inference

As mentioned above, the Bayesian inference is a parametric view of probability in
which the parameters of probability distributions are the subject of inference. A para-
metric distribution quantitatively characterizes the dependency of the nature of the data-
generating process on the parameter about which inferences are being drawn. For instance,
if the data have been achieved through n identical and independent Bernoulli trials, the
binomial distribution can be considered the data-generating model and the binomial pa-
rameter, p, is the target of statistical inference, which can fully describe the nature of the
data-generating process [19].

Regardless of the variable of interest is discrete or continuous the parameter that is the
subject of inference is generally continuous and can be presented by a probability density
function (PDF). Accordingly, Bayes’ theorem for continuous probability models can be
represented as follows [19]:

f (θ|x) = f (x|θ) f (θ)
f (x)

=
f (x|θ) f (θ)∫

θ f (x|θ) f (θ)dθ
(1)

where, θ is the parameter that is the subject of inference (e.g., p in the binomial distribution
or λ in a Poisson distribution), and x are the data in hand. Subjective belief about the
parameter θ is described by the prior distribution f (θ) which is generally a PDF since θ
is a continuous parameter. However, different forms of f (θ) may be chosen by different
analysts. Furthermore, the likelihood, f (x|θ), represents the general nature of the data-
generating process, which will be influenced by different values of θ. It is worth mentioning
that the likelihood is in fact a function of the parameter θ based on fixed values of x rather
than a function of x based on fixed-parameter θ. In other words, f (x|θ) expresses the
relative plausibility of the data as a function of possible values of θ. Consequently, the
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posterior distribution, f (θ|x), results from updating the prior distribution f (θ) considering
the information provided by the likelihood, f (x|θ) [19].

Gaining insight about unobserved data values in the future by quantifying the uncer-
tainty of the parameter θ is the ultimate goal of the Bayesian inference. To this aim, a PDF,
namely predictive distribution, is derived by combining the parametric data-generating
process and the posterior distribution for θ, which is given by Equation (2) [19],

f
(
x+
)
=
∫

θ
f
(
x+
∣∣θ) f (θ|x)dθ (2)

where x+ represents the unobserved data in the future and x denotes the data in hand
which have already been used to derive the posterior distribution, f (θ|x). It should be
noted that f (x|θ) is the PDF for the data given a particular value of θ, not the likelihood for
θ given a fixed data sample x, although the two have the same notation. The posterior PDF,
f (θ|x), quantifies uncertainty regarding θ based on the most recent probability updates.
Equation (2) is indeed a weighted average of the PDFs f (x+|θ) for all possible values of θ,
where the posterior distribution provides the weights [19].

Gaussian Data-Generating Process

In this study, it is assumed that the generating process of the data is Gaussian with
known variance since it is easier for analytic treatment using conjugate prior and posterior
distributions. This assumption will later be examined through a test of hypothesis in the
experiments. The procedure to cope with the case in which the distribution of parame-
ters of the generating process (i.e., f (µ) and f (σ2)) are unknown is available in [23,24].
Considering this assumption, in the situation where the conjugate prior and posterior dis-
tributions are Gaussian is computationally convenient, although it is confusing in notation
due to four sets of means and variances. Moreover, when the posterior is Gaussian, the
predictive distribution will also be Gaussian [19]. Below is the notation of the sets of means
and variances:

• µ: mean of the data-generating process;
• σ2

∗ : known variance of the data-generating process;
•

(
µH , σ2

H
)
: hyper-parameters of Gaussian prior distribution;

• x: sample mean;
•

(
µ′H , σ2′

H
)
: hyper-parameters of Gaussian posterior distribution;

•
(
µ+, σ2

+

)
: parameters of Gaussian predictive distribution.

The detailed mathematics and formulations are provided by Wilks (2011) and summa-
rized in [25]. Accordingly, the posterior hyper-parameters

(
µ′H , σ2′

H
)

are as follows [19]:

µ′H =

µH
σ2

H
+ nx

σ2∗
1

σ2
H
+ n

σ2∗

(3)

σ2′
H =

(
1

σ2
H
+

n
σ2∗

)−1

(4)

The posterior mean is indeed a weighted mean of prior and sample means with a
relatively greater weight for the sample mean, which rises as the sample size increases.
This property leads to less dependency of prediction on the old less reliable data and
instead emphasizes recently sampled data. The variance of the posterior is also smaller
than both the prior and the known data-generating variances and even decreases as the
sample size increases. Another aspect regarding the posterior parameters is that since the
variance of the data-generating process (σ2

∗ ) is known, only the sample mean appears in
the estimations and neither the sample variance nor the amount of additional data can
enhance our knowledge about it.
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The variability of the sampling, which is of a Gaussian data-generating process,
combining with the uncertainty about µ which is expressed by posterior causes uncertainty
about future values of x+. Considering these two contributions, the Gaussian predictive
distribution parameters

(
µ+, σ2

+

)
are as follows [19]:

µ+ = µ′H (5)

σ2
+ = σ2

∗ + σ2′
H (6)

2.2. Sequential Importance Sampling

MCS is commonly applied to estimating the value of complicated integrals. Accord-
ingly, when the target density, f , is too complex to calculate its definite integral, MCS
estimates its value using another density, g, so-called proposal density or envelope, which
covers f in its domain and is analytically easier to sample. A relatively more efficient form
of the MCS method to approximate integrals is importance sampling (IS). Briefly, in the IS
method, the drawn samples from the proposal density are weighted to correct the sampling
probabilities so that the weights are related to the target density. The weighted sample is
particularly useful to estimate expectations under f . Let h(θ) be any arbitrary function.
The expected value of h(θ) is then approximated as follows [26,27]:

∫
h(θ) f (θ|x)dθ =

∫
h(θ)

f (θ|x)
g(θ)

g(θ)dθ = lim
M→∞

1
M

M

∑
j=1

wjh
(
θj
)

(7)

where θj is drawn from g(θ), wj = f
(
θj
∣∣x)/g

(
θj
)
.

The weights can also be standardized so they sum to 1, although it is not necessary.
Therefore, IS can be seen as an approximation of f by a discrete distribution and weights as
masses of observed points. Rubin [28,29] proposed sampling from this discrete distribution,
which is called sampling importance resampling (SIR). Accordingly, as the number of
samples increases, the distribution of the random draws converges to f [27]. However,
as the dimension of the target density raises, the efficiency of SIR declines and it can
be difficult to implement. It is challenging to specifying a very good high-dimensional
envelope that properly approximates f with sufficiently heavy tails but little waste. This
drawback is addressed by sequential Monte Carlo (SMC) methods according to which the
high-dimensional task is split into a sequence of simpler steps, each of which updates the
previous one [27].

Let X1:t =
(
X1, . . . , Xt) denote a discrete-time stochastic process where Xt is the state

of the random variable at time t and X1:t represents the entire history of the sequence
thus far. For simplicity, the scalar notation is adopted here; however, Xt may be mul-
tidimensional. Meanwhile, the density of X1:t is denoted as f t. Consider that at time t
the expected value of h

(
X1:t
)

is supposed to be estimated with respect to f t and using

an IS strategy. One strategy would be directly using the SIR approach to sample X1:t

sequences from an envelope gt and then the expected value of h
(

X1:t
)

can be estimated
by calculating the importance weighted average of this sample. However, in this strategy,
as t is increasing, h

(
X1:t
)

and the expected value of h
(

X1:t
)

evolve. Therefore, at time t
it would be reasonable to update previous inferences rather than acting as if there is no
previous information. An alternative strategy is to append the simulated Xt to the X1:t−1

that previously simulated. Consequently, to estimate the expected value of h
(

X1:t
)

, the
previous importance weights are to be adjusted. This approach is called SIS [27,30,31].

2.2.1. Sequential Importance Sampling for Markov Processes

Assuming X1:t is a Markov process, Xt depends only on Xt−1 rather than the whole
history X1:t−1. Accordingly, the target density f t (x1:t) can be expressed as follows [27,31]:
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f t
(

x1:t
)
= f 1

(
x1
)

f 2
(

x2
∣∣∣x1:1

)
f 3
(

x3
∣∣∣x1:2

)
. . . f t

(
xt
∣∣∣x1:t−1

)
= f 1

(
x1
)

f 2
(

x2
∣∣∣x1
)

f 3
(

x3
∣∣∣x2
)

. . . f t
(

xt
∣∣∣xt−1

)
(8)

Similarly, by adopting the same Markov form for the envelope, we have [27,31]:

gt
(

x1:t
)
= g1

(
x1
)

g2
(

x2
∣∣∣x1
)

g3
(

x3
∣∣∣x2
)

. . . gt
(

xt
∣∣∣xt−1

)
(9)

According to the ordinary non-sequential SIR, as a sample is drawn from gt (x1:t) at
time t, each x1:t is to be reweighted by wt = f t (x1:t)/gt (x1:t), whilst, based on SIS in a
Markov process, we have [27,31]:

wt = u1u2 . . . ut (10)

where u1 = f 1 (x1)/g1 (x1) and ui = f i (xi
∣∣xi−1)/gi (xi

∣∣xi−1) for i = 2, 3, . . . , t.
Having x1:t−1 and wt−1 in hand and using the Markov property, the next component,

Xt, can be sampled and appended to x1:t−1. Moreover, wt−1 can be adjusted using the
multiplicative factor ut. Accordingly, the SIS algorithm for a Markov process initializes by
sampling X1 from g1 and lets w1 = u1. Thereafter, for the next component i = 2, 3, . . . , t, it
draws sample from gi (xi

∣∣xi−1) and lets wi = wi−1ui. Using a sample of n such points and

their weights, f t(x1:t) and thus the expected value of h
(

X1:t
)

can be approximated. The
algorithm is given in [27].

To obtain an independent sample of size n from x1:t
i , i = 1, 2, . . . , n, the algorithm can

be carried out considering the n sequences one at a time or as a batch. Consequently, the
estimation for the weighted average of the quantity of interest, h

(
X1:t
)

, is as below [27]:

E f t

[
h
(

X1:t
)]

=
n

∑
i=1

wt
i h
(

x1:t
i

)
/

n

∑
i=1

wt
i (11)

The standardization of the weights at the end of each cycle is not essential, while if
the estimation of E ft

[
h
(

X1:t
)]

is of interest, the normalization is natural [27].

2.3. Markov Chain Monte Carlo

MCMC is considered to be the most common computational method for Bayesian
analysis of complex models. Whereas IS generates independent draw and related weights,
MCMC methods build a Markov chain, generating dependent draws that have stationary
density. Although creating such a Markov chain is often easy, there is still a bit of art
required to construct an efficient chain with reasonable convergence speed [26].

2.3.1. The Metropolis–Hastings Algorithm

A very general method to implement MCMC is the Metropolis–Hastings algorithm.
Accordingly, given that we already have a sample θ1 from a target density f (θ|x), a new
sample θ′ is drawn from a proposal density g(θ|θ1). Moreover, the new sample θ′ is
accepted or rejected according to an acceptance probability, α, which depends on the
previous draw and is to be updated in each iteration (see Equation (12)). One of the key
properties of this method is that the density of θ2 will also be f (θ|x). The algorithm obtains
a sequence θ1, θ2, . . . , θM with the stationary density of f (θ|x) [26,27]. The algorithm is
given in [26].

α
(
θ′, θj−1

)
= min

{
1,

f (θ′|x)g
(
θj−1

∣∣θ′)
f
(
θj−1

∣∣x)g(θ′∣∣θj−1
)} (12)
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2.3.2. Convergence Diagnostic

A critical issue in the implementation of MCMC simulation is the time before the chain
settles down to a steady-state so-called “converged”. To mitigate the possibility of bias
due to the effect of the starting values, the iterations within the initial transient phase are
usually discarded. Rates of convergence on different target distributions vary considerably,
which makes it difficult to determine the length of the required initial transient phase [32].
Many techniques have been developed trying to determine the convergence of a particular
Markov chain as reviewed in [32]. However, it is not generally possible to estimate
the Markov chain convergence rate and then determine sufficient iterations to satisfy a
prescribed accuracy measure [33,34].

In this study, the variability of the estimations in the iterations is evaluated via the
absolute form of coefficient of variation (CV) and considered as a useful measure of
convergence. To this aim, the algorithm is firstly supposed to proceed with a certain
amount of iterations and then continues as long as the last m outcomes considerably
vary [19,22]. Thus, the absolute value of CV for the last m outcomes, CVm, which is
calculated below, should be larger than a threshold, denoted as CVT .

|CVm(X)| =
∣∣∣∣ S(X)

E(X)

∣∣∣∣ (13)

where S(X) and E(X) indicate the standard deviation and the expected value of the
sampled values, respectively.

2.4. Proposed Models

The aforementioned approaches cannot be directly used in their standard form and
some modifications and assumptions are required. For instance, in the Bayesian approach,
to consider the effect of climate change, the old less reliable data are used to estimate the
prior distribution, which is then modified by the newer sets of data from recent years to
estimate the posterior distribution. Moreover, the normal distribution function is used
in the Bayesian approach to fit the data, whilst, in SIS and MCMC models, the data are
fitted using kernel smoothing function, which is indeed the target density, and the Weibull
distribution function is used as the proposal density.

It is worth mentioning here that the kernel density estimate is an extension of the
histogram that does not require arbitrary rounding to bin centers, and provides a smooth
result. Indeed, kernel density estimate is a nonparametric alternative to fit the common
parametric PDFs. Further details in this regard are available in [19,27].

As mentioned before, the area of the study is the Arctic offshore, specifically, the sea
area between Northern Norway and Svalbard archipelago bounded to the latitudes 69◦ N
to 78◦ N and longitudes 8◦ E to 36◦ E (see Figure 1). The offshore location with coordinates
(74.07◦ N, 35.81◦ E) is selected for analysis of the meteorological and oceanographic con-
ditions and, icing events and rates since it is currently open for petroleum activity. These
coordinates, as illustrated in Figure 1, are located approximately 500 km east of Bjørnøya
in the Norwegian part of the Barents Sea, where the discovery wellbore 7435/12-1 was
drilled in 2017 [35].
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Figure 1. The study area between Northern Norway and Svalbard archipelago bounded to the
latitudes 69◦ N to 78◦ N and longitudes 8◦ E to 36◦ E.

In the following, after defining required assumptions, proposed models are developed
by combining and modifying the above-mentioned approaches. Thereafter, using the data
from 32 years (1980–2011), the six meteorological and oceanographic conditions, including
wave height, wind speed, temperature, relative humidity, atmospheric pressure, and wave
period, are simulated for one year on a daily basis and the results are compared with the
33rd year (2012). Then, the predicted values are used as input parameters in the MINCOG
model to forecast the icing rate.

2.4.1. Proposed Bayesian Approach

After some investigations in developing a Bayesian framework, to mitigate the effect
of climate change, the older data during 27 years from 1980 to 2006, are used to estimate
the prior distribution, which is then modified by the newer sets of data, from 2007 to
2011, to estimate the posterior distribution. Accordingly, it is assumed that the prior
data-generating process for the daily average of each meteorological and oceanographic
condition is Gaussian over the years 1980 to 2006. It is worth mentioning here that the
parameter µ+ of the Gaussian predictive distribution is then considered as an estimation for
the meteorological and oceanographic condition. Meanwhile, the assumption is evaluated
for the six meteorological and oceanographic conditions in coordinates (74.07◦ N, 35.81◦ E)
using the Anderson–Darling test at the 5% significance level, where the null hypothesis
(i.e., H0) is that the parameter is from a population with a normal distribution, against
the alternative hypothesis (i.e., H1) that the parameter is not from a population with a
normal distribution [36]. Accordingly, and based on the data over 27 years (1980–2006),
the null hypothesis cannot be rejected in the majority of the days. The results of the
Anderson–Darling test are shown in Table 1, where the number and percentage of the
days that the null hypothesis cannot be rejected are mentioned. Likewise, the posterior
data-generating process is assumed to be Gaussian with unknown parameters, and then
the newer sets of data during five years (2007–2011) are considered as a sample to modify
the prior distribution and determine the posterior distribution. However, the variance
of the data-generating process, σ2

∗ , is considered to be known and daily average values
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of meteorological and oceanographic conditions during 32 years (1980–2011) are used to
calculate its value.

Table 1. The Anderson–Darling test at the significance level of 5%, for normality test of the daily
average of meteorological and oceanographic conditions in coordinates (74.07◦ N, 35.81◦ E).

Parameter
Number of Days in Year

Which H0 Cannot Be
Rejected

Percentage of Days in Year
Which H0 Cannot Be

Rejected

Wave height 245 67%
Wind speed 330 90%
Temperature 257 70%

Relative humidity 284 78%
Atmospheric pressure 346 95%

Wave period 180 49%

2.4.2. Proposed Sequential Importance Sampling Algorithm

The drawback of the standard SIS that was defined in Section 2.2.1 is that the deviation
of estimation at each state will be added to the deviation from the previous state so that
the algorithm hardly converges to a value. Therefore, rather than sampling dependent
draws from static densities, the target and proposal densities are defined in a way to be
dependent on the previous state. To this aim, the deviation of each day from the previous
day in 32 years (1980–2011) was extracted from the dataset. Therefore, the conditional
density at each state is achieved by estimating the average of the previous state adding
to the possible deviations. Accordingly, a kernel smoothing density with Gaussian kernel
function is considered as the target density. Moreover, Weibull distribution is used as
the proposal density. However, since the Weibull distribution is defined only for positive
values, a data shifting procedure is embedded in the algorithm. Accordingly, a positive
value, A, is to be added to all the data, which is calculated via Equation (14).

A =
∣∣∣min

z

{
k(z)
}
+ 1
∣∣∣ (14)

where z is the index of bins in the kernel density estimation and k(z) represents the center
of the zth bin. It should be mentioned that ‘A’ must be later subtracted from the simulated
results. Furthermore, the parameters of the Weibull distribution are estimated by the
maximum likelihood estimation (MLE) method considering 32 years of the data (1980–
2011). Consequently, the algorithm iterates until a defined number of samples, M, is
drawn. Thus, the performance of the algorithm using two sizes of M = 200 and M = 500,
namely SIS200 and SIS500, are investigated. The proposed SIS algorithm for prediction of
meteorological and oceanographic conditions is outlined in Algorithm 1.
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Algorithm 1 Proposed sequential importance sampling (SIS) for prediction of meteorological and
oceanographic conditions.

1: for each meteorological and oceanographic condition, θ, do
2: Load the related historical data, x, from dataset
3: for each day t = 1, . . . , D do
4: for each year y = 1, . . . , Y do
5: Let DMt,y(θ) = mean{xi|xi belongs to t and y}; the daily mean of the parameter θ

6: end for
7: end for
8: for each day t = 1, . . . , D do
9: for each year y = 1, . . . , Y do
10: Let DVt,y(θ) = DMt,y(θ)− DMt−1,y(θ); the historical deviation of the parameter

θ from its value in the previous day.
11: Let st,y(θ) = mean

{
DMt−1,y(θ)

∣∣y = 1, . . . , Y
}
+ DVt,y(θ); the possible values of

the parameter θ on day t, given the daily mean of the previous day and the historical deviation
12: Note: if t = 1 then DMt−1,y(θ) should be replaced by either DM365,y−1(θ) or

DM366,y−1(θ) depending on the number of days in the year ‘y− 1’
13: end for
14: Let St(θ) =

{
st,1(θ), . . . , st,Y(θ)

}
15: Estimate f t(θ) ∼ kernel density using St(θ); as the target density of the parameter θ

16: Let A =
∣∣∣min

z

{
k(z)
}
+ 1
∣∣∣; where k(z) is the center of zth binfrom the kernel

density estimation
17: for each year y = 1, . . . , Y do
18: Let st,y(θ)← st,y(θ) + A
19: end for
20: Update St(θ) with the updated values of st,y(θ)
21: Let gt(θ) ∼Weibull(a, b); the proposal density of the parameter θ, which its

parameters are estimated by MLE method using the updated St(θ)
22: for j = 1, . . . , M do
23: Sample θj ∼ gt(θ)

24: Let ut
j = f t

(
θj − A

)
/gt
(

θj

)
25: Let wt

j = wt−1
j ut

j

26: Note: if t = 1 then wt
j = ut

j

27: end for
28: Let Wt =

{
wt

1, . . . , wt
M
}

29: Calculate ISM(θ); the weighted average of all M drawn samples using Wt

30: Let SISt(θ) = ISM(θ)− A; as the estimation of the parameter θ for day t
31: end for
32: end for

2.4.3. Proposed Markov Chain Monte Carlo Algorithm

To apply the MCMC approach, a modified Metropolis–Hastings algorithm is devel-
oped in which the IS concept is embedded. Similar to SIS, the kernel smoothing density and
the Weibull distribution function are considered as the target and proposal density, respec-
tively. Therefore, for parameters that might hire non-positive values such as temperature,
the shifting procedure is also required. Furthermore, a dynamic stopping criterion is added
to the algorithm based on which the algorithm iterates until the CV in the last m = 50
iterations (see Equation (13)) drops below the CV threshold, CVT = 0.01, which implies
the algorithm no longer achieves different results. Moreover, to avoid early stoppage,
the stopping criterion is to be activated after a certain amount of iterations, M, namely
iteration lower bound. Thus, two sizes of M = 200 and M = 500 are later investigated which
are called MCMC200 and MCMC500, respectively. Algorithm 2 indicates the steps of the
proposed MCMC algorithm for prediction of meteorological and oceanographic conditions.
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Algorithm 2 Proposed Markov chain Monte Carlo (MCMC) for prediction of meteorological and
oceanographic conditions.

1: for each meteorological and oceanographic condition, θ, do
2: for each day t = 1, . . . , D do
3: Load the related historical data, x, from dataset
4: Estimate f (θ) ∼ kernel density using x; as the target density of the parameter θ

5: Let A =
∣∣∣min

z

{
k(z)
}
+ 1
∣∣∣; where k(z) is the center of zth binfrom the kernel

density estimation
6: for i = 1, . . . , n do
7: Let xi ← xi + A
8: end for
9: Let g(θ) ∼Weibull(a, b); the proposal density of the parameter θ, which its

parameters are estimated by MLE method using the updated x
10: Let the daily mean value of the updated x as the initial sample, θ1
11: Let w1 = f (θ1 − A)/ g(θ1); the related importance sampling weight
12: Set iteration lower bound, M
13: Set CV threshold, CVT

14: for j = 2, . . . , M do
15: Sample θj using one iteration of the Metropolis-Hastings algorithm

16: Let wj = f
(

θj − A
)

/ g
(

θj

)
; the related importance sampling weight

17: end for
18: Calculate ISM(θ); the weighted average of all M drawn samples
19: Calculate CVm for the m last ISj(θ)

20: while |CVm| > CVT do
21: Let j← j + 1
22: Sample θj using one iteration of the Metropolis-Hastings algorithm

23: Let wj = f
(

θj − A
)

/ g
(

θj

)
24: Calculate ISj(θ)

25: Calculate CVm for the m last ISj(θ)

26: end while
27: Let MCMCt(θ) = ISj(θ)− A as the estimation of the parameter θ for day t
28: end for
29: end for

3. Results

Considering the aforementioned assumptions, the proposed models are programmed
in MATLAB R2020a [37] and run on a 1.60 GHz Intel® Core™ i5-8265U CPU and 8 GB
of RAM. Then, the meteorological and oceanographic conditions (i.e., wave height, wind
speed, temperature, relative humidity, atmospheric pressure, and wave period) are pre-
dicted using a 32-year set of data from 1980 to 2011 in coordinates (74.07◦ N, 35.81◦ E) for
all the days of 2012.

Meanwhile, the elements of the Bayesian inference comprised of the prior, sample,
posterior, and predictive distributions are evaluated. As an example, the results related to
the daily average temperature of 1 April are shown in Table 2 in which

(
µre, σ2

re
)

indicate
mean and variance of reanalysis values in 2012.

Moreover, the prior, sample, posterior, predictive, and related reanalysis distributions
are depicted in Figure 2. Apparently, the sample distribution is relatively closer to the
reanalysis distribution rather than the prior distribution. Additionally, the Gaussian
predictive distribution is more analogous to the reanalysis distribution in terms of central
tendency as well as deviation. Therefore, making decisions for the future based on such a
predictive distribution seems to be much more reliable than counting on the prior belief.
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Table 2. Bayesian inference elements for the daily average temperature of 1 April in coordinates
(74.07◦ N, 35.81◦ E).

Parameter Value

σ2
∗ 1.12(

µH , σ2
H
)

(−3.49, 10.29)
x (−5.20, 8.52)(

µ′H , σ2′
H
)

(−5.16, 0.25)(
µ+, σ2

+

)
(−5.16, 1.50)(

µre, σ2
re
)

(−4.44, 0.95)

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 12 of 24 
 

 

(𝜇 , 𝜎 ) (−5.16, 1.50) (𝜇 , 𝜎 ) (−4.44, 0.95) 

Moreover, the prior, sample, posterior, predictive, and related reanalysis distribu-
tions are depicted in Figure 2. Apparently, the sample distribution is relatively closer to 
the reanalysis distribution rather than the prior distribution. Additionally, the Gaussian 
predictive distribution is more analogous to the reanalysis distribution in terms of central 
tendency as well as deviation. Therefore, making decisions for the future based on such a 
predictive distribution seems to be much more reliable than counting on the prior belief.  

 
Figure 2. Bayesian inference elements for daily average temperature of 1 April 2012, in coordinates 
(74.07°N, 35.81°E). 

The monthly averages of the predicted meteorological and oceanographic conditions 
from different algorithms are compared with the reanalysis values in 2012, as shown in 
Figures 3–8. Accordingly, there is no significant difference between the techniques and all 
of them demonstrate proper performance dealing with simulating meteorological and 
oceanographic conditions in the study area in the Arctic. However, the estimates of the 
Bayesian approach are slightly closer to the monthly average of the reanalysis values. Fur-
thermore, examining the different number of iterations (i.e., 𝑀 = 200 and 𝑀 = 500) re-
vealed the capabilities of both SIS and MCMC algorithms to simulate the meteorological 
and oceanographic conditions with a relatively low number of iterations while further 
iterations result in only small improvements in some cases.  

Although Figures 3–8 provide overviews of the performance of the algorithms deal-
ing with the prediction of meteorological and oceanographic conditions in each month, 
the monthly average of the daily predicted values is not a proper measure to evaluate the 
deviation of the algorithms from the reanalysis values, since the positive and negative 
deviations offset each other. Therefore, to eliminate the offsetting effect, the absolute value 
of deviation for each day and each algorithm is taken and then the average absolute devi-
ation (AAD) [38] for each month is calculated, which is the sum of the absolute values of 
the deviations from the reanalysis values, divided by the number of days in the month. 
Accordingly, the monthly AAD for different meteorological and oceanographic condi-
tions are illustrated in Tables 3–8. For further clarification, considering wave height as an 
example, Figure 3 indicates that comparing the monthly average of both the daily pre-
dicted values and the reanalysis values, the greatest deviation is 0.98 m related to SIS500 
in February, whilst, Table 3 shows that, by eliminating the offsetting effect, the greatest 
monthly AAD is 1.48 m related to SIS200 in December. Thus, the least monthly AAD from 
the reanalysis values for wave height, wind speed, temperature, relative humidity, atmos-
pheric pressure, and wave period are achieved by SIS200, MCMC500, MCMC500, 
MCMC500, SIS500, and Bayesian approach with the values of 0.38 m, 1.53 m/s, 0.57 °C, 
4.88%, 4.2 hPa, and 0.6 s, respectively.  

Figure 2. Bayesian inference elements for daily average temperature of 1 April 2012, in coordinates
(74.07◦ N, 35.81◦ E).

The monthly averages of the predicted meteorological and oceanographic conditions
from different algorithms are compared with the reanalysis values in 2012, as shown in
Figures 3–8. Accordingly, there is no significant difference between the techniques and
all of them demonstrate proper performance dealing with simulating meteorological and
oceanographic conditions in the study area in the Arctic. However, the estimates of the
Bayesian approach are slightly closer to the monthly average of the reanalysis values.
Furthermore, examining the different number of iterations (i.e., M = 200 and M = 500)
revealed the capabilities of both SIS and MCMC algorithms to simulate the meteorological
and oceanographic conditions with a relatively low number of iterations while further
iterations result in only small improvements in some cases.
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Although Figures 3–8 provide overviews of the performance of the algorithms dealing
with the prediction of meteorological and oceanographic conditions in each month, the
monthly average of the daily predicted values is not a proper measure to evaluate the
deviation of the algorithms from the reanalysis values, since the positive and negative
deviations offset each other. Therefore, to eliminate the offsetting effect, the absolute
value of deviation for each day and each algorithm is taken and then the average absolute
deviation (AAD) [38] for each month is calculated, which is the sum of the absolute
values of the deviations from the reanalysis values, divided by the number of days in the
month. Accordingly, the monthly AAD for different meteorological and oceanographic
conditions are illustrated in Tables 3–8. For further clarification, considering wave height
as an example, Figure 3 indicates that comparing the monthly average of both the daily
predicted values and the reanalysis values, the greatest deviation is 0.98 m related to SIS500
in February, whilst, Table 3 shows that, by eliminating the offsetting effect, the greatest
monthly AAD is 1.48 m related to SIS200 in December. Thus, the least monthly AAD
from the reanalysis values for wave height, wind speed, temperature, relative humidity,
atmospheric pressure, and wave period are achieved by SIS200, MCMC500, MCMC500,
MCMC500, SIS500, and Bayesian approach with the values of 0.38 m, 1.53 m/s, 0.57 ◦C,
4.88%, 4.2 hPa, and 0.6 s, respectively.
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Table 3. Monthly AAD 1 from reanalysis values for wave height (m) in coordinates (74.07◦ N,
35.81◦ E) in 2012, where the smallest value for each month is indicated in bold.

Month Bayesian SIS200 2 SIS500 3 MCMC200 4 MCMC500 5

Jan 1.00 1.03 0.94 0.99 0.97
Feb 0.97 1.19 1.25 1.00 0.97
Mar 0.89 0.96 1.12 0.97 0.84
Apr 0.65 0.74 0.63 0.67 0.70
May 0.98 1.10 1.04 0.95 0.95
Jun 0.54 0.62 0.52 0.66 0.53
Jul 0.42 0.38 0.46 0.47 0.52

Aug 0.54 0.56 0.59 0.56 0.74
Sep 0.82 0.83 1.02 0.89 1.07
Oct 0.99 0.94 1.17 1.15 1.22
Nov 0.66 0.84 0.75 0.78 0.83
Dec 1.03 1.48 1.37 1.15 1.09

1 Average absolute deviation; 2 Sequential importance sampling with 200 iterations; 3 Sequential importance
sampling with 500 iterations; 4 Markov Chain Monte Carlo with 200 iterations; 5 Markov Chain Monte Carlo with
500 iterations.

Table 4. Monthly AAD from reanalysis values for wind speed (m/s) in coordinates (74.07◦ N,
35.81◦ E) in 2012, where the smallest value for each month is indicated in bold.

Month Bayesian SIS200 SIS500 MCMC200 MCMC500

Jan 3.39 3.37 3.31 3.76 3.52
Feb 2.39 2.23 2.31 2.29 2.38
Mar 2.69 3.14 2.92 2.77 2.89
Apr 1.99 2.07 2.65 1.92 2.18
May 2.77 2.50 2.84 2.60 2.54
Jun 2.33 2.49 2.49 2.22 2.14
Jul 1.56 1.86 1.90 1.65 1.53

Aug 2.48 2.51 2.60 2.35 2.62
Sep 2.90 3.62 3.23 3.01 3.00
Oct 2.85 3.18 4.10 3.22 3.07
Nov 2.63 3.13 3.48 2.43 2.59
Dec 2.83 3.61 3.64 2.94 2.91

Table 5. Monthly AAD from reanalysis values for temperature (◦C) in coordinates (74.07◦ N, 35.81◦ E)
in 2012, where the smallest value for each month is indicated in bold.

Month Bayesian SIS200 SIS500 MCMC200 MCMC500

Jan 3.13 4.36 4.29 5.95 5.99
Feb 4.25 4.88 5.16 7.25 6.94
Mar 2.76 3.19 3.16 4.49 5.57
Apr 1.83 2.58 2.26 2.40 2.18
May 1.68 1.85 2.17 1.64 1.98
Jun 0.63 0.64 0.76 0.67 0.57
Jul 0.75 0.84 0.71 0.80 0.76

Aug 0.85 0.83 0.97 0.89 0.78
Sep 1.33 1.83 1.25 1.43 1.42
Oct 1.41 2.44 2.46 2.07 2.12
Nov 2.34 2.75 3.02 3.38 3.04
Dec 2.12 3.31 3.44 3.55 3.49
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Table 6. Monthly AAD from reanalysis values for relative humidity (fraction) in coordinates (74.07◦ N,
35.81◦ E) in 2012, where the smallest value for each month is indicated in bold.

Month Bayesian SIS200 SIS500 MCMC200 MCMC500

Jan 5.31 5.59 5.20 5.82 6.02
Feb 9.54 9.34 9.33 8.21 8.25
Mar 5.94 7.53 7.49 6.28 5.16
Apr 9.72 10.39 9.59 9.94 9.65
May 8.22 8.82 8.57 8.60 8.54
Jun 5.54 5.41 5.25 4.96 4.88
Jul 6.48 5.98 7.34 6.36 6.36

Aug 6.55 6.14 7.52 5.95 5.99
Sep 8.81 10.47 9.22 9.63 9.75
Oct 6.46 8.41 9.76 6.19 6.21
Nov 9.98 13.56 11.86 11.59 11.29
Dec 6.97 9.38 8.16 8.97 7.67

Table 7. Monthly AAD from reanalysis values for atmospheric pressure (hPa) in coordinates (74.07◦ N,
35.81◦ E) in 2012, where the smallest value for each month is indicated in bold.

Month Bayesian SIS200 SIS500 MCMC200 MCMC500

Jan 14.20 14.09 15.64 13.07 14.57
Feb 17.13 15.96 16.92 16.46 16.86
Mar 10.58 12.53 12.60 11.55 12.91
Apr 9.35 12.01 9.41 8.40 10.38
May 9.80 11.05 9.92 10.46 9.95
Jun 4.40 5.05 4.20 4.84 4.88
Jul 7.07 8.74 7.66 7.45 7.76

Aug 7.62 8.29 6.44 7.46 6.84
Sep 8.79 9.35 10.88 10.40 9.69
Oct 8.46 8.41 12.09 8.68 7.70
Nov 12.85 12.20 14.82 12.36 12.79
Dec 16.90 17.16 18.81 17.05 16.12

Table 8. Monthly AAD from reanalysis values for wave period (s) in coordinates (74.07◦ N, 35.81◦ E)
in 2012, where the smallest value for each month is indicated in bold.

Month Bayesian SIS200 SIS500 MCMC200 MCMC500

Jan 1.06 1.14 1.08 2.00 1.82
Feb 1.14 1.59 1.38 2.33 3.38
Mar 0.99 1.40 1.20 1.52 2.16
Apr 0.78 0.81 0.80 1.34 1.61
May 1.03 1.36 1.29 1.47 1.56
Jun 0.63 1.03 0.77 0.70 0.67
Jul 0.70 0.97 0.79 0.84 0.71

Aug 0.60 0.62 0.70 0.71 0.96
Sep 0.64 0.63 0.88 0.89 0.61
Oct 0.98 1.22 1.06 1.13 1.01
Nov 0.63 0.98 1.13 0.83 0.73
Dec 0.89 1.01 1.25 1.28 1.47

Considering the combination of 5 simulation techniques and 12 months, we have 72
scenarios for monthly AAD in 2012 of which in 35 scenarios the Bayesian approach has
resulted in the lowest deviation from reanalysis value. This amount is 7, 10, 9, and 11 for
SIS200, SIS500, MCMC200, and MCMC500, respectively. Therefore, the Bayesian approach
is the most resistant technique, which is also robust due to few required assumptions for
implementation.
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Apart from the predicted meteorological and oceanographic conditions, some other
parameters are required in the MINCOG model that are adopted from [39]. Accordingly,
the salinity of seawater is kept constant at 35 ppt, the ship speed is 4 m/s, and surface
seawater temperature is 2.5 ◦C. Additionally, winds and waves are coming from the same
direction and the direction between wave and the ship is 150 degrees [39]. Eventually,
the predicted meteorological and oceanographic conditions from different algorithms are
separately plugged in the MINCOG model along with the adopted parameters as inputs
to estimate the daily icing rate in coordinates (74.07◦ N, 35.81◦ E) in 2012. Consequently,
the monthly average of icing rate is depicted in Figure 9 in which all of the techniques
have led to competitive estimates quite close to the reanalysis values. Moreover, the
monthly AAD from reanalysis values is indicated in Table 9, where the closest estimates to
reanalysis values are related to Bayesian inputs followed by SIS200, SIS500, MCMC200,
and MCMC500. Accordingly, the monthly AAD from reanalysis values for the MINCOG
estimations with Bayesian inputs is not greater than 0.13 cm/h. Whilst, the largest monthly
AAD from reanalysis values, yet competitive, is 0.41 cm/h related to MCMC200 inputs
in February.
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Figure 9. Monthly average of icing rate (cm/h) using the Marine-Icing model for the Norwegian
Coast Guard (MINCOG) model and simulated meteorological and oceanographic conditions as input
parameters from different algorithms comparing with reanalysis values in coordinates (74.07◦ N,
35.81◦ E) in 2012.

Additionally, the elapsed times of the Bayesian approach and simulation algorithms
in the entire study area are illustrated in Table 10. Hence, the Bayesian framework is much
faster than the other algorithms by the capability of predicting the six meteorological and
oceanographic conditions for 366 days of the year 2012 in only 1 second for one location and
00:04:41 (i.e., 281 s) for the entire area. However, the running times of the other algorithms
are quite low and competitive. The worst case in the simulation of the six meteorological
and oceanographic conditions for one location in a year is related to SIS500 with 22 s. While
in the simulation of the entire area, MCMC500 has the longest running time with 02:22:14.
It should be mentioned that reading the data from the dataset and extracting the required
information is a separate task, which lasts for about 1 minute for the entire area and is not
affected by the algorithms. Likewise, simulating the daily icing rate for one year in the
entire area by the MINCOG model takes around 16 hours that clearly is not influenced by
the algorithms.
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Table 9. Monthly AAD from reanalysis values for icing rate (cm/h) using MINCOG 1 model
and simulated meteorological and oceanographic conditions as input parameters from different
algorithms in coordinates (74.07◦ N, 35.81◦ E) in 2012, where the smallest value for each month is
indicated in bold.

Month Bayesian SIS200 SIS500 MCMC200 MCMC500

Jan 0.08 0.19 0.20 0.34 0.35
Feb 0.13 0.19 0.22 0.41 0.39
Mar 0.08 0.12 0.12 0.22 0.29
Apr 0.07 0.12 0.10 0.10 0.09
May 0.00 0.00 0.02 0.01 0.02
Jun 0.00 0.00 0.00 0.00 0.00
Jul 0.00 0.00 0.00 0.00 0.00

Aug 0.00 0.00 0.00 0.00 0.00
Sep 0.00 0.00 0.00 0.00 0.00
Oct 0.00 0.01 0.01 0.00 0.00
Nov 0.03 0.04 0.04 0.07 0.04
Dec 0.06 0.11 0.16 0.14 0.14

1 Marine-Icing model for the Norwegian Coast Guard.

Table 10. Elapsed time (hh:mm:ss) of the Bayesian approach and simulation algorithms in forecasting
the six meteorological and oceanographic conditions.

Location Bayesian SIS200 SIS500 MCMC200 MCMC500

Coordinates (74.07◦ N, 35.81◦ E) 00:00:01 00:00:05 00:00:22 00:00:12 00:00:19
Entire area 00:04:41 00:44:29 02:00:03 01:28:28 02:22:14

4. Discussion

Warming in the Arctic is considerably higher than the global average level. As a result,
traffic in the Arctic Ocean is growing rapidly [40], which is for purposes such as oil and
gas discoveries, fishing, tourism, maritime trade, as well as research and investigation [1].
However, navigation in the Arctic Ocean is challenging due to harsh environmental con-
ditions such as low temperatures, high-velocity winds, and ice on vessels. Ice on vessels
is particularly known as a critical challenge since it may cause catastrophic consequences
from safety and economic points of view [4,5].

Large, sophisticated computer models are routinely being used for forecasting the
future of meteorological and oceanographic conditions based on the physics of the atmo-
sphere and ocean. One drawback of these models is that they have been designed in a
deterministic manner and uncertainty is not considered in their formulations. In other
words, running the model with the same input parameters will always lead to the same
result. In this regard, statistical tools provide promising approaches to deal quantitatively
with chaotic events [19]. The other critical point in using such models is that lack of accu-
racy in the input parameters is a source of error in the results. Indeed, uncertainty in the
inputs may be amplified by the model formulations and cause larger uncertainty in the
outcome. In this view, it is expected that enhancing the accuracy of the input parameters
improves the outcome of the model.

In former studies, the MINCOG model was developed for the simulation of sea spray
icing on vessels [8,16]. However, for long-term prediction of sea spray ice, which is impor-
tant from planning, safety, and financial viewpoints, meteorological and oceanographic
conditions are required to be forecasted and plugged into the model as input parameters.
To this aim, long-term prediction of meteorological and oceanographic conditions was
mainly focused in this study.

As a matter of the climate change phenomenon, direct use of old historical data
may not lead to proper predictions for the future. Therefore, a Bayesian approach was
considered which modifies prior belief regarding data while receiving recently sampled
data. Consequently, the posterior, which is a compromise of the prior and likelihood,
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provides a more reliable basis to build the prediction upon. Eventually, the results showed
that the prior distribution was reasonably modified in terms of both central tendency
and deviation.

Furthermore, simulation techniques comprised of SIS, and MCMC were investigated.
In the proposed MCMC algorithm, predictions for a particular day are based on the history
of the meteorological and oceanographic conditions in that day during the past 32 years.
However, in the SIS algorithm, the predictions are according to the historical deviations
from the previous day. A similar strategy regarding the target and the proposal densities
was hired in SIS and MCMC. Accordingly, in both of the algorithms, the kernel density
estimation was applied as a non-parametric solution for the target density and the Weibull
distribution as the proposal density. Meanwhile, since the Weibull distribution does not
support non-positive values, a data shifting procedure was embedded in the algorithms.
The SIS algorithm iterates until a certain amount of samples are drawn. However, a second
stopping criterion was considered in the MCMC algorithm to evaluate the convergence of
the algorithm. Consequently, the standard SIS and MCMC were modified and the proposed
algorithms were developed.

In order to verify the models, the data from 32 years (1980–2011) were used to predict
the six meteorological and oceanographic conditions for one year on a daily basis and
the results were compared with the 33rd year (2012). It is worth mentioning that the
influence of the number of years that is used for prediction on daily AAD from reanalysis
values was investigated. To this aim, two scenarios including 30 years and 32 years were
compared via the two-sample t-test analysis for equality of the means. Accordingly, the
results did not indicate a significant difference between the numbers of years that are
chosen for prediction. The two-sample t-test analysis related to the prediction of wind
speed by the MCMC500 algorithm is shown in Table 11. Thus, since the p-value is larger
than the standard significance level of 0.05, the null hypothesis that the scenarios have
similar results cannot be rejected.

Table 11. Two-sample t-test analysis for equality of the means related to daily AAD from reanalysis
values using MCMC500 algorithm considering 30 years and 32 years of data for prediction of wind
speed (m/s) in coordinates (74.07◦ N, 35.81◦ E) in 2012.

t-test Parameter 30 Years 32 Years

Mean 2.68 2.61
Variance 4.32 3.80

Observations 365 365
df 725 -

t Stat 0.45 -
p-value 0.65 -

Despite the capability of the algorithms in the long-term prediction of meteorological
and oceanographic conditions, one drawback is that the conditions were separately pre-
dicted and the correlations between them were not examined. Considering the influences
of the meteorological and oceanographic conditions on each other in the model design
might lead to even better results. Thus, further investigation in this regard is suggested for
later studies.

The variations of the monthly average of the icing rate are analogous to the variations
of the input parameters. Generally, the deviation of predictions by the Bayesian framework
is less than the other methods that cause less variation in the simulated icing rate. However,
input parameters do not have the same contribution in the ice formation. However, it is
suggested that wave height, wind speed, and temperature have higher contributions to
the icing rate [16], and further statistical analysis in this regard is required. Moreover, to
investigate the source of error and improve the algorithms, different aspects of the algo-
rithms should be evaluated. For instance, the SIS and MCMC algorithms were designed
using Weibull distribution with two sample sizes of 200 and 500. It is suggested to use
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other distribution functions such as normal to fit the data. Then, combinations of different
distributions and stopping criteria should be evaluated. In this regard, statistical analysis
methods such as the design of experiments (DOE), and the Taguchi method are recom-
mended. Accordingly, the contributions of input parameters as well as the performance of
each algorithm using combinations of different distributions and stopping criteria can be
evaluated. Consequently, instead of using the predictions by a single algorithm as inputs
for the MINCOG model, an optimal combination of algorithms can be applied.

5. Conclusions

This study proposes statistical methods for long-term prediction of meteorological and
oceanographic conditions including wave height, wind speed, temperature, relative hu-
midity, atmospheric pressure, and wave period, which are used as inputs in the MINCOG
model to simulate sea spray icing for the future.

Meanwhile, 32 years (1980–2011) of reanalysis data from NORA10 was used to eval-
uate the performance of the models. Accordingly, four combinations of the proposed
algorithms and sample sizes (i.e., SIS200, SIS500, MCMC200, and MCMC500), as well as
the Bayesian framework, six meteorological and oceanographic conditions, were simulated
for the year 2012 on a daily basis. Consequently, all the algorithms reached competitive
results while the Bayesian model indicated slightly lower deviations from the reanalysis
values in 2012. The Bayesian model was also much faster with the capability of predicting
the six meteorological and oceanographic conditions for the entire area in less than five
minutes. Therefore, the Bayesian approach is considered to be the most resistant technique,
which is also robust due to few required assumptions for implementation. Moreover, the
results implied that the proposed SIS and MCMC could properly cope with simulating the
meteorological and oceanographic conditions in quite a low number of iterations (i.e., 200)
while further iterations result in only little improvements. Hence, although SIS200 and
MCMC200 take a longer time rather than the Bayesian framework, their running times for
the entire area (i.e., <1 h and <1.5 h, respectively) are yet reasonable.

Eventually, the simulated values from all algorithms were considered as inputs in
the MINCOG model to forecast the daily icing rate in 2012. Accordingly, the best results
were obtained using Bayesian inputs closely followed by SIS200, SIS500, MCMC200, and
MCMC500. The applied approaches and proposed models can play useful roles in indus-
trial application, especially when new data and information are collected using which
the meteorological and atmospheric conditions are predicted for future junctures. This
provides the decision-maker with valuable information for planning offshore activities in
the future (e.g., offshore fleet optimization). Accordingly, sea voyages with relatively lower
risks can be selected based on the predicted meteorological and oceanographic conditions
and icing rates. Further works can focus on developing a Bayesian approach using an
empirical prior distribution rather than a Gaussian data-generating process. Moreover,
the models can be combined with ant colony optimization (ACO), which is a promising
approach to routing problems, in a multi-criteria decision-making (MCDM) framework
to determine the shortest and safest sea routes for vessels. Moreover, the models can be
embedded in planning and scheduling problems, such as maintenance scheduling in a
dynamic condition to predict the possible intervals for maintenance activities.
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Abbreviations

List of Acronyms.
Acronym Meaning
AAD Average Absolute Deviation
ACO Ant Colony Optimization
CV Coefficient of Variation
DOE Design of Experiments
IS Importance Sampling
MCDM Multi-Criteria Decision-Making
MCMC Markov Chain Monte Carlo
MCMC200 Markov Chain Monte Carlo with 200 iterations
MCMC500 Markov Chain Monte Carlo with 500 iterations
MCS Monte Carlo Simulation
MINCOG Marine-Icing model for the Norwegian COast Guard
MLE Maximum Likelihood Estimation
NORA10 NOrwegian ReAnalysis 10 km
NSR Northern Sea Route
RAMS Reliability, Availability, Maintainability, and Safety
PDF Probability Density Function
RAMS Reliability, Availability, Maintainability, and Safety
SIR Sampling Importance Resampling
SIS Sequential Importance Sampling
SIS200 Sequential Importance Sampling with 200 iterations
SIS500 Sequential Importance Sampling with 500 iterations
SMC Sequential Monte Carlo
List of Symbols.
Symbol Meaning
(a, b) The parameters of the Weibull distribution

A
A positive value, which is needed to shift the data in Weibull estimation; since
the Weibull distribution does not support non-positive values

CVm CV for the m last drawn samples in the MCMC algorithm iterations
CVT A threshold for CV

D
The number of days in a year, which adopts the values 365 and 366 for normal
and leap years, respectively.

DMt,y(θ) The daily mean of the parameter θ at time t in year y. Here, ‘time’ is referring to ‘day’.

DVt,y(θ)
Deviation of DMt,y(θ) from its value at time ‘t− 1’ in year y. Here, ‘time’ is
referring to ‘day’.

E(X) The expected value of X

E f t

[
h
(

X1:t
)]

The expected value of a quantity of interest, h
(

X1:t
)

, with respect to f t

f A target density
f (θ) Prior distribution of the parameter θ

https://epim.no/ndp/
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f (θ|x) Posterior distribution of the parameter θ given the data x
f (x|θ) The likelihood function of the data in hand, given the parameter θ

f t Target density of a discrete-time sequential random variable at time t
g Proposal density or envelope for f
gt Proposal density or envelope for f t

h An arbitrary function
H Indices for hyper-parameters
H0 The null hypothesis in the Anderson-Darling test of hypothesis
H1 The alternative hypothesis in the Anderson-Darling test of hypothesis
i Subscript index for samples; i = 1, 2, . . . , n
ISj(θ) The weighted average of all drawn samples until iteration j for θ, using IS weights
j Subscript index as iteration counter of algorithms; j = 1, 2, . . . , M
k(z) Center of the zth bin in the kernel density estimation
M Number of iterations of an algorithm
MCMCt(θ) MCMC estimation for θ at time t
n Sample size
p The parameter of Binomial distribution

st,y(θ)

Possible values (i.e. state space) for the parameter θ in the SIS algorithm at
time t in year y. Here, ‘time’ is referring to ‘day’. The values are based on the
historical deviations from the daily mean of the parameter in the previous day.

S(X) Sample standard deviation of X
St(θ) Set of st,y(θ) for all years; St(θ) =

{
st,1(θ), . . . , st,Y(θ)

}
SISt(θ) SIS estimation for θ at time t

t
Superscript index for the time in a discrete-time sequential process. Without
loss of generality, ‘time’ is referring to ‘day’ in this study.

ut IS weight for
(

xt
∣∣xt−1) in a Markov process

ut
j IS weight for

(
xt
∣∣xt−1) in a Markov process for a drawn sample in iteration j

wj IS weight for a drawn sample in iteration j
wt IS weight for x1:t

wt
j IS weight for x1:t in iteration j

Wt Set of wt
j from iterations of SIS algorithm; Wt =

{
wt

1, . . . , wt
M
}

x The available data on the dataset
xi The ith sample of x
x+ Unobserved data of the random variable X in the future
xt A sample for Xt

x Sample mean
X A random variable
Xt A discrete-time sequential random variable at time t

X1:t =
(
X1, . . . , Xt) A discrete-time stochastic process representing the entire history of the

sequence of a random variable
x1:t A sample for X1:t

x1:t
i The ith sample for X1:t

y Superscript index for years; y = 1, . . . , Y
Y Number of years from the dataset that are used for estimation
z Subscript index for bins in the kernel density estimation
α Acceptance probability in the Metropolis-Hastings algorithm
θ Generic parameter that is supposed to be estimated
θ′ A drawn sample for parameter θ, which might be accepted or rejected
θj An accepted sample for parameter θ in iteration j
λ The parameter of Poisson distribution
µ Mean of the data-generating process(
µH , σ2

H
)

Hyper-parameters of Gaussian prior distribution(
µ′H , σ2′

H
)

Hyper-parameters of Gaussian posterior distribution(
µ+, σ2

+

)
Parameters of Gaussian predictive distribution(

µre, σ2
re
)

Parameters of reanalysis values in 2012
σ2
∗ The known variance of the data-generating process



J. Mar. Sci. Eng. 2021, 9, 539 23 of 24

References
1. Sevastyanov, D.V. Arctic Tourism in the Barents Sea region: Current Situation and Boundaries of the Possible. Arct. North 2020,

39, 26–36. [CrossRef]
2. Ryerson, C.C. Ice protection of offshore platforms. Cold Reg. Sci. Technol. 2011, 65, 97–110. [CrossRef]
3. Dehghani-Sanij, A.R.; Dehghani, S.R.; Naterer, G.F.; Muzychka, Y.S. Sea spray icing phenomena on marine vessels and offshore

structures: Review and formulation. Ocean Eng. 2017, 132, 25–39. [CrossRef]
4. Heinrich, H. Industrial Accident Prevention: A Scientific Approach, 3rd ed.; McGraw Hill: New York, NY, USA, 1950.
5. Chatterton, M.; Cook, J.C. The Effects of Icing on Commercial Fishing Vessels; Worcester Polytechnic Institute: Worcester, UK, 2008.
6. Barabadi, A.; Garmabaki, A.; Zaki, R. Designing for performability: An icing risk index for Arctic offshore. Cold Reg. Sci. Technol.

2016, 124, 77–86. [CrossRef]
7. Rashid, T.; Khawaja, H.A.; Edvardsen, K. Review of marine icing and anti-/de-icing systems. J. Mar. Eng. Technol. 2016, 15, 79–87.

[CrossRef]
8. Samuelsen, E.M.; Edvardsen, K.; Graversen, R.G. Modelled and observed sea-spray icing in Arctic-Norwegian waters. Cold Reg.

Sci. Technol. 2017, 134, 54–81. [CrossRef]
9. Mertins, H.O. Icing on fishing vessels due to spray. Mar. Obs. 1968, 38, 128–130.
10. Stallabrass, J.R. Trawler Icing: A Compilation of Work Done at N.R.C.; Mechanical Engineering Report MD-56; National Research

Conseil: Ottawa, ON, Canada, 1980.
11. Sultana, K.R.; Dehghani, S.R.; Pope, K.; Muzychka, Y.S. A review of numerical modelling techniques for marine icing applications.

Cold Reg. Sci. Technol. 2018, 145, 40–51. [CrossRef]
12. Kulyakhtin, A.; Tsarau, A. A time-dependent model of marine icing with application of computational fluid dynamics. Cold Reg.

Sci. Technol. 2014, 104–105, 33–44. [CrossRef]
13. Horjen, I. Numerical Modelling of Time-Dependent Marine Icing, Anti-Icing and De-Icing; Norges Tekniske Høgskole (NTH): Trondheim,

Norway, 1960.
14. Horjen, I. Numerical modeling of two-dimensional sea spray icing on vessel-mounted cylinders. Cold Reg. Sci. Technol. 2013, 93,

20–35. [CrossRef]
15. Forest, T.; Lozowski, E.; Gagnon, R.E. Estimating Marine Icing on Offshore Structures Using RIGICE04. In Proceedings of the 11th

International Workshop on Atmospheric Icing of Structures, Montreal, PQ, Canada, 12–16 June 2005; National Research Council Canada:
Montreal, QC, Canada, 2005; pp. 12–16.

16. Samuelsen, E.M. Ship-icing prediction methods applied in operational weather forecasting. Q. J. R. Meteorol. Soc. 2017, 144, 13–33.
[CrossRef]

17. Reistad, M.; Breivik, Ø.; Haakenstad, H.; Aarnes, O.J.; Furevik, B.; Bidlot, J.R. A high-resolution hindcast of wind and waves for
the North Sea, the Norwegian Sea, and the Barents Sea. J. Geophys. Res. Oceans 2011, 116, C05019. [CrossRef]

18. Little, R.J. Calibrated Bayes: A Bayes/Frequentist Roadmap. Am. Stat. 2006, 60, 213–223. [CrossRef]
19. Wilks, D. Statistical Methods in the Atmospheric Sciences, 3rd ed.; Academic Press: Cambridge, MA, USA, 2011; Volume 3.
20. Park, M.H.; Ju, M.; Kim, J.Y. Bayesian approach in estimating flood waste generation: A case study in South Korea. J. Environ.

Manag. 2020, 265, 110552. [CrossRef]
21. Robert, C.; Casella, G. A Short History of Markov Chain Monte Carlo: Subjective Recollections from Incomplete Data. Stat. Sci.

2012, 26, 102–115. [CrossRef]
22. Zio, E. The Monte Carlo Simulation Method for System Reliability and Risk Analysis; Springer: London, UK, 2013. [CrossRef]
23. Epstein, E.S. Statistical Inference and Prediction in Climatology: A Bayesian Approach; Meteorological Monographs, American

Meteorological Society: Boston, MA, USA, 1985; Volume 20.
24. Lee, P.M. Bayesian Statistics, an Introduction, 2nd ed.; Wiley: New York, NY, USA, 1997.
25. Barjouei, A.S.; Naseri, M.; Ræder, T.B.; Samuelsen, E.M. Simulation of Atmospheric and Oceanographic Parameters for Spray

Icing Prediction. In Proceedings of the 30th Conference Anniversary of the International Society of Offshore and Polar Engineers,
Shanghai, China, 11–16 October 2020; ISOPE: Mountain View, CA, USA, 2020; ISOPE-I-20-1256; pp. 750–1256. Available online:
https://onepetro.org/ISOPEIOPEC/proceedings-abstract/ISOPE20/All-ISOPE20/ISOPE-I20-1256/446378 (accessed on 20
April 2021).

26. Ridgeway, G.; Madigan, D. A Sequential Monte Carlo Method for Bayesian Analysis of Massive Datasets. Data Min. Knowl.
Discov. 2003, 7, 301–319. [CrossRef] [PubMed]

27. Givens, G.H.; Hoeting, J.A. Computational Statistics, 2nd ed.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2013. [CrossRef]
28. Rubin, D.B. Comment. J. Am. Stat. 1987, 82, 543–546. [CrossRef]
29. Rubin, D.B. Using the SIR algorithm to simulate posterior distributions. In Bayesian Statistics 3; Bernardo, J.M., DeGroot, M.H.,

Lindley, D.V., Smith, A.F., Eds.; John Wiley & Sons Inc.: Oxford, UK, 1988; pp. 395–402.
30. Liu, J.S.; Chen, R. Sequential Monte Carlo Methods for Dynamic Systems. J. Am. Stat. Assoc. 1988, 93, 1032–1044. [CrossRef]
31. Barbu, A.; Zhu, S.C. Sequential Monte Carlo. In Monte Carlo Methods; Springer: Singapore, 2020; pp. 19–48. [CrossRef]
32. Brooks, S.P.; Roberts, G.O. Convergence assessment techniques for Markov chain Monte Carlo. Stat. Comput. 1998, 8, 319–335.

[CrossRef]
33. Tierney, L. Markov Chains for Exploring Posterior Distributions. Ann. Stat. 1994, 22, 1701–1762. [CrossRef]

http://doi.org/10.37482/issn2221-2698.2020.39.26
http://doi.org/10.1016/j.coldregions.2010.02.006
http://doi.org/10.1016/j.oceaneng.2017.01.016
http://doi.org/10.1016/j.coldregions.2015.12.013
http://doi.org/10.1080/20464177.2016.1216734
http://doi.org/10.1016/j.coldregions.2016.11.002
http://doi.org/10.1016/j.coldregions.2017.08.007
http://doi.org/10.1016/j.coldregions.2014.05.001
http://doi.org/10.1016/j.coldregions.2013.05.003
http://doi.org/10.1002/qj.3174
http://doi.org/10.1029/2010JC006402
http://doi.org/10.1198/000313006X117837
http://doi.org/10.1016/j.jenvman.2020.110552
http://doi.org/10.1214/10-STS351
http://doi.org/10.1007/978-1-4471-4588-2
https://onepetro.org/ISOPEIOPEC/proceedings-abstract/ISOPE20/All-ISOPE20/ISOPE-I20-1256/446378
http://doi.org/10.1023/A:1024084221803
http://www.ncbi.nlm.nih.gov/pubmed/19789656
http://doi.org/10.1002/9781118555552
http://doi.org/10.1080/01621459.1987.10478461
http://doi.org/10.1080/01621459.1998.10473765
http://doi.org/10.1007/978-981-13-2971-5
http://doi.org/10.1023/A:1008820505350
http://doi.org/10.1214/aos/1176325750


J. Mar. Sci. Eng. 2021, 9, 539 24 of 24

34. Cowles, M.K.; Carlin, B.P. Markov Chain Monte Carlo Convergence Diagnostics: A Comparative Review. J. Am. Stat. Assoc. 1996,
91, 883–904. [CrossRef]

35. Norwegian Petroleum Directorate. Available online: https://factpages.npd.no/en (accessed on 4 May 2020).
36. Anderson, T.W.; Darling, D.A. Asymptotic theory of certain ‘goodness-of-fit’ criteria based on stochastic processes. Ann. Math.

Stat. 1952, 23, 193–212. [CrossRef]
37. MATLAB. MATLAB and Simulink; 9.8.0.1396136 (R2020a); The MathWorks Inc.: Natick, MA, USA, 2020. Available online:

https://es.mathworks.com/products/matlab/ (accessed on 14 April 2020).
38. Smith, G. Essential Statistics, Regression, and Econometrics, 2nd ed.; Academic Press: Cambridge, MA, USA, 2015. [CrossRef]
39. Naseri, M.; Samuelsen, E.M. Unprecedented Vessel-Icing Climatology Based on Spray-Icing Modelling and Reanalysis Data: A

Risk-Based Decision-Making Input for Arctic Offshore Industries. Atmosphere 2019, 10, 197. [CrossRef]
40. Wang, S.; Mu, Y.; Zhang, X.; Jia, X. Polar tourism and environment change: Opportunity, impact and adaptation. Polar Sci. 2020,

25, 100544. [CrossRef]

http://doi.org/10.1080/01621459.1996.10476956
https://factpages.npd.no/en
http://doi.org/10.1214/aoms/1177729437
https://es.mathworks.com/products/matlab/
http://doi.org/10.1016/C2014-0-04762-4
http://doi.org/10.3390/atmos10040197
http://doi.org/10.1016/j.polar.2020.100544

	Introduction 
	Methods 
	Bayesian Inference 
	Sequential Importance Sampling 
	Sequential Importance Sampling for Markov Processes 

	Markov Chain Monte Carlo 
	The Metropolis–Hastings Algorithm 
	Convergence Diagnostic 

	Proposed Models 
	Proposed Bayesian Approach 
	Proposed Sequential Importance Sampling Algorithm 
	Proposed Markov Chain Monte Carlo Algorithm 


	Results 
	Discussion 
	Conclusions 
	References

