
International  Journal  of

Environmental Research

and Public Health

Article

The Tipping Effect of Delayed Interventions on the Evolution
of COVID-19 Incidence

Kristoffer Rypdal

����������
�������

Citation: Rypdal, K. The Tipping

Effect of Delayed Interventions on the

Evolution of COVID-19 Incidence. Int.

J. Environ. Res. Public Health 2021, 18,

4484. https://doi.org/10.3390/

ijerph18094484

Academic Editor: Paul B. Tchounwou

Received: 23 February 2021

Accepted: 21 April 2021

Published: 23 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Mathematics and Statistics, UiT—The Arctic University of Norway, 9019 Tromsø, Normay;
kristoffer.rypdal@uit.no

Abstract: We combine infectious disease transmission and the non-pharmaceutical intervention (NPI)
response to disease incidence into one closed model consisting of two coupled delay differential
equations for the incidence rate and the time-dependent reproduction number. The model contains
three parameters, the initial reproduction number, the intervention strength, and the response
delay. The response is modeled by assuming that the rate of change of the reproduction number is
proportional to the negative deviation of the incidence rate from an intervention threshold. This delay
dynamical system exhibits damped oscillations in one part of the parameter space, and growing
oscillations in another, and these are separated by a surface where the solution is a strictly periodic
nonlinear oscillation. For the COVID-19 pandemic, the tipping transition from damped to growing
oscillations occurs for response delays of about one week, and suggests that, without vaccination,
effective control and mitigation of successive epidemic waves cannot be achieved unless NPIs
are implemented in a precautionary manner, rather as a response to the present incidence rate.
Vaccination increases the quiet intervals between waves, but with delayed response, future flare-ups
can only be prevented by establishing a post-pandemic normal with lower basic reproduction number.

Keywords: COVID-19; epidemic curve; epidemic waves; reproduction number; social-response model;
delayed response; tipping point; delay differential equations; vaccination; post-pandemic normal

1. Introduction

A year after the COVID-19 pandemic began its rapid geographic expansion across the
globe, it is evident that the incidence rate in each country evolves in waves. In Europe,
the typical pattern so far has been two waves, the first in the spring of 2020, and a second
longer and stronger wave that started in the fall and is still ongoing at the time of writing,
spring 2021 [1]. The increased strength of the second wave is particularly prominent in the
case notification rate, but part of this increase is due to increasing testing rate. Nevertheless,
the tendency is clear also in the reported COVID-19 death rates, although many countries
have seen lower death rates in the start of the second wave, because this wave began with
infection spreading in the younger age groups.

Based on the experience from the first wave, countries should have been better pre-
pared for the second wave than for the first, and mitigation should have been be more
feasible. There is no apparent microbiological mechanisms that could have driven the
strong second wave, even though new and more contagious mutants have started to make
an impact as we enter the calendar year of 2021. Hence, the explanation seems to be
associated to how our societies respond to the threats of the pandemic.

Some evidence suggest that the wavy pattern during the first year of the pandemic
has been driven by an interaction between the pathogen’s natural tendency to reproduce
and the non-pharmaceutical interventions (NPIs) implemented by governments [2]. Even
though the emergence of new and more contagious mutants of the SARS-CoV-2 virus with
higher basic reproduction numbersR and the roll-out of vaccines will play an increasingly
important role in reducing the effective reproduction numbers Reff, NPIs are expected
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to play an important role in regulating and controlling the incidence rate also in the
upcoming year.

In this paper the term incidence rate X(t) will refer to the daily number of actual
infections taking place in a country at the time t. It does not refer to the recorded incidence
(case notification rate), and the time t is the time of infection, not the time the infection is
detected. The instantaneous basic reproduction numberR(t) refers to the average number
of new infections transmitted by an infected individual at the time t in a population where
all individuals are susceptible to the infection. The effective reproduction numberReff(t)
is the reproduction rate in a population where only a fraction S(t) is susceptible at time t.

There is clear and strong correlation between case notification rate and NPIs in most
countries, and the time lag between NPIs and changes in recorded incidence corresponds
roughly to the sum of incubation period and time for testing, analysis and registration.
Thus, it is reasonable to assume that the effect of NPI-induced changes of R(t) on the
actual transmission of the infection is more or less instantaneous. The same is not the case
with the effect of disease incidence on the NPIs. Here we would expect considerable delay
between cause and effect, a delay we shall refer to as the social response time.

NPIs represent a great burden on society, and so far in the COVID-19 pandemic
there are very few examples where interventions have been effectuated in a precautionary
manner. Political pressure has forced policy makers to respond to the recorded disease
burden, which is delayed by 1–2 weeks relative to the actual state, even though most
governments have access to model projections that can inform them about the true present
state of the epidemic and the likely development in the near future. The objective of this
paper is to investigate whether or not this delay may have an important influence on the
trajectory of the epidemic state.

It is intuitively evident that NPIs effectuated as responses to the true epidemic state
will lead to oscillations in the disease incidence. This is because NPIs act as a restoring
force counteracting the virus’ natural tendency to reproduce, while the disease activity
level below or above a socially acceptable threshold will enhance or reduce the NPIs. In
a recent paper [2], we constructed a simple model that reduces to a damped harmonic
oscillator in the small-amplitude (linearized) limit. In that paper we demonstrated that a
weakening of the intervention response over time could counteract the damping and lead
to stronger and longer secondary waves, but it was assumed that the intervention response
is instantaneous. In the present paper, I explore a similar model, where the intervention
fatigue is replaced by a delayed response.

In Section 2, I formulate and explain the mathematical model, which takes the form of
a system of first-order delay differential equations [3], and we discuss briefly the nature
of the equilibria and a possible limit cycle of the system and their relation to three model
parameters expressing the reproductive ability of the pathogen, the intervention strength,
and the response delay. I also introduce the effect of immunization through vaccination
in the model. Then I explore the solutions of the system numerically in Section 3, and
demonstrate the existence of a tipping transition that transforms the solution from damped
into growing oscillations, and I map the surface in the parameter space where this transition
takes place. I explore the effect of vaccination programs on this behavior and also the ne-
cessity of establishing a post-pandemic normal with a lower permanent basic reproduction
number to prevent future flare-ups of the pandemic. In Section 4 I discuss the possible
policy implications of these results.
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2. Methods
2.1. Evolution of Epidemic State under Given Social Evolution

Let J(t) be the cumulative fraction of infected individuals in a population, and I(t)
the instantaneous fraction of infectious individuals. The time evolution of these quantities
can be modeled by the simple system of ordinary differential equations,

dt J(t) = αReff(t)I(t), (1)

dIt(t) = α[Reff(t)− 1]I(t) . (2)

Here the notation dt stands for the derivative with respect to time, Reff(t) is the
effective reproduction number at time t and α−1 is the mean duration of the infectious
period. The system is a reformulation of the standard Susceptible-Infectious-Recovered
(SIR) model of Kermack and McKendrick [4]. Here, the effective reproduction number can
be written in the form,

Reff(t) = R(t)S(t), (3)

where R(t) = β(t)/α is the basic reproduction number which measures the average
number of new infections transmitted by one infected individual if the entire population is
susceptible to the infection, S(t) = 1− J(t) is the fraction of susceptible individuals in the
population, and β(t) is the contact rate. An important point is that α is time-independent
and determined by the pathogen, β(t) is completely determined by the contagiousness
of the pathogen and the evolution of the social state, while S(t) depends on the degree of
immunity in the population. In the part of this paper which does not include the effect
of vaccination, we shall assume that the degree of infection-induced immunity does not
change significantly during the time span of the study, implying that we can consider
S ≈ 1, and hence thatReff(t) ≈ (β(t)/α) = R(t) only varies in time due to variations in
the social conditions that determine the contact rate β(t).

Note also that α[Reff(t) − 1] is the relative growth rate for the infectious fraction,
γI(t) ≡ dt ln I(t), which is positive whenReff(t) > 1 and negative whenReff(t) < 1.

2.2. Evolution of Social State under Given Epidemic Evolution

Equations (1)–(3) describe the dynamics of the epidemic state J(t) and I(t) when the
susceptible fraction S(t) is known and the evolution of the social state represented byR(t)
is given. Assuming for the time being that S(t) is known, a closed model can be obtained if
we can find an equation that connectsR(t) to J(t) and I(t). This requires a description of
how the social contact rate responds to the epidemic state. We shall represent this response
by assuming that the relative rate of change γR ≡ dt lnR(t) is a linear function of the
delayed incidence rate X(t− td) ≡ dt J(t− td), where td is the time delay. This function
is positive when X(t − td) is below a threshold X∗ and negative when it is above that
threshold. Society reacts to the incidence rate only when it receives the information about
new infections, which is the main reason for the delay. When the incidence rate is low,
society responds by relaxing restrictions, and the reproduction number increases. When
the incidence rate exceeds the threshold X∗, restrictions are introduced that make dt lnR(t)
to change sign from positive to negative. Thus, we end up with the equation,

dt lnR(t) = −k[X(t− td)− X∗], (4)

where k is a coefficient which characterizes the strength of the social response to the
epidemic evolution, and we shall refer to it as the intervention strength parameter.

One caveat of this formulation is that it necessarily fails if the model at some point
in time predicts thatR exceeds its “natural” valueRN for the virus in a fully susceptible
population with no NPIs implemented. IfR exceedsRN the right hand side of Equation (4)
should quickly drop to zero, because it is not reasonable to expect that society will im-
plement measures that stimulate to higher reproduction numbers than we would have
without any measures. One way to account for this in Equation (4) is to let the coefficient k
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depend onR(t) is such a way that it quickly drops to zero whenR exceedsRN . In practice
we do this by putting

k(R) = (1/2)(1− tanh(R−RN))k0. (5)

The function k(R)/k0 is plotted in Figure 1a forRN = 4.0.
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Figure 1. (a): TheR-dependent coefficient κ(R)/κ0 used in Section 3. Here the “natural” reproduc-
tion number for the dominating virus mutation has been chosenRN = 4.0. (b): The vaccine-induced
susceptible population SV(t), where we have chosen τV = 10, corresponding to 10 weeks if we
assume α−1 is 7 days.

2.3. A Closed Model for the Socio-Epidemic State

In the following, it is convenient to introduce a dimensionless time variable t→ αt,
which allows us to formulate the differential equations as functions of time measured
in units of the infectious time α−1, rather than days. We also express the incidence rate
and the infectious fraction in units of the intervention threshold, i.e., we introduce the
dimensionless variables X(t) → X(t)/X∗ and I(t) → I(t)/X∗. Equation (1) can then be
written as X(t) = Reff(t)I(t) and inserted into Equation (2), which leaves us with the
following nonlinear system of delay differential equations;

dt lnR(t) = −κ(R(t))[Reff(t− δ)I(t− δ)− 1],

dt I(t) = [Reff(t)− 1]I(t), (6)

where κ(R) = k(R)X∗/α and δ = tdα. Since this is a system of delay differential equations
we have to specify the state variables in the time interval t ∈ (−δ, 0) rather than only at
the time t = 0 as in a conventional initial value problem. For this particular problem, we
can do this in a way that reflects the actual epidemiological situation. In the early stage
of the epidemic, the reproduction number is R0 which is determined by the infectivity
of the pathogen and the social structure in the actual country in absence of any non-
pharmaceutical interventions. Let us define the time origin t = 0 as the time when
interventions start. At this time we assume S(0) = 1. In in the model system (6) the
threshold for intervention is X = RI = 1, but because of the delay, the intervention that
starts to change R at t = 0 is a response to the reported incidence rate which took place
at t = −δ, which means that X(−δ) = 1. Since R(t) = R0 for t ∈ (−δ, 0) we have that
X(−δ) = R0 I(−δ) = 1, i.e., I(−δ) = 1/R0. Equation (6) is valid not only for t > 0, but
also in the time interval (−δ, 0) when R(t) = R0, so the solution for I(t) satisfying the
condition I(−δ) = 1/R0 in this interval yields the following “initial conditions” for the
interval t ∈ (−δ, 0);

R(t) = R0, I(t) = (1/R0) exp [(R0 − 1)(t + δ)]. (7)

Note also, that this choice does not only make epidemiological sense, but also ensures
continuity in the derivatives ofR(t) and I(t) across the intervention point t = 0.



Int. J. Environ. Res. Public Health 2021, 18, 4484 5 of 12

The system has two equilibrium states: a fixed point in Reff = 1 and I = 1, where
the number of infected stays constant at the threshold value, and another fixed point in
Reff = 0 and I = 0, which is a state with no transmission and nobody infected. The latter
is obviously a repellor: ifReff(t) and I(t) both are becoming very small, then the second
equation in (6) implies that I(t) decays exponentially towards zero as I(t) ≈ exp(−t),
while the first equation implies thatReff(t) ≈ exp(κt) grows exponentially.

The numerical exploration, for which results are presented in Section 3, demonstrates
that the equilibrium (Reff, I) = (1, 1) is a stable spiral node for some regions of the
parameter space (R0, κ0, δ), it is an unstable spiral node in another region, and these
regions are separated by a surface in parameter space where the solution is a limit cycle.

2.4. The Effect of Vaccination-Induced Immunity

At the time of writing, vaccination programs are rolled out at varying pace in most
countries that have been severely hit by the pandemic, and in these countries vaccination
immunity seems to be more important than immunity caused by infection. Vaccination
reduces the susceptible population to SV(t), and the result is a lower effective reproduc-
tion number

Reff(t) = SV(t)R(t), (8)

where I shall employ the following simple model for the susceptible fraction;

SV(t) = 0.2 +
0.8

1 + (t/τV)2 . (9)

The parameter τV is the time for completing half of the vaccination program, and
Equation (8) implies that 20% of the population remains susceptible as t/τV → ∞. In
Section 3 we shall assume that τV = 10 (or about 10 weeks). The function SV(t) is shown
in Figure 1b.

The equation system (6) includes vaccination throughReff(t) on the right hand side
of both equations. This is because the rate of new infections is proportional to the number
of susceptible individuals. On the left hand side of the first equation, however, we retain
the relative growth rate of the basic reproduction number dt lnR, because it is R(t) that
responds to the NPIs.

2.5. Numerical Exploration of the Parameter Space

Delay differential equations are integrated numerically by the same methods as
ordinary differential equations, and these fast routines can be used to explore the nature of
the solutions in the regions of the parameter space which is of interest to the COVID-19
pandemic. In particular, the region close to the transition surface is carefully mapped and
we can easily detect the transition points with high accuracy in those three parameters. In
practice, we run the routine for an array of values of the parametersR0 and κ0 and detect
the value of δ for which the solution shifts from a decaying oscillation to a growing one.

3. Results

The delay-differential equation system (6), with “initial condition” (7), is an interesting
object that warrants further mathematical study. The purpose of this paper, however, is
not a mathematical exploration, but to extract those properties of the system that are of
particular relevance to the delayed social response to changing reported incidence of the
infection with the SARS-CoV-2 virus.

The introduction of dimensionless, independent and dependent variables has revealed
that the epidemic evolution depends on the response time delay δ measured in units of
the effective infectious time α−1. For COVID-19, a reasonable estimate of α−1 is about
one week [2], which means that time in the plots in this paper is measured in weeks. It
is reasonable to expect delays of the order of one week, so delay times in a range around
δ ∼ 1 are explored.
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The interpretation of the dimensionless intervention strength κ can be seen from the
first equation in (6), if we consider a state with very low incidence I(t)� 1, such that the
first term on the right hand side can be neglected. In that case, we can write κ ≈ dt lnR,
which is the relative rate of change of R(t) measured in the time unit of a week. From
experience with the first wave of the COVID-19 epidemic, we have seen that a characteristic
time scale of change ofR varies from a few weeks to a few months, which is included in
the κ0-range we explore below; κ0 ∈ (0.2, 1.0).

3.1. Solutions without Vaccination

Without vaccination, SV(t) = 1, and hence Reff(t) = R(t). The three characteristic
modes of epidemic development are shown in Figure 2. On a “transition surface” in
the (R0, κ0, δ) parameter space, the solution to the system (6) is a nonlinear oscillation
(limit cycle), as shown in Figure 2a,b, but this oscillation is parametrically unstable. This
means that an infinitesimal perturbation of the parameters could lead either to a damped
oscillation, as in Figure 2c,d, or to a growing oscillation, as in Figure 2e,f, depending on
which side of the transition surface the perturbed parameter point is located.

The simulations shown in Figure 2 have been made with RN = 4.0, which is a
reasonable basic reproduction number in the absence of NPIs for the more aggressive
mutants circulating in the first months of 2021. However, since R in these simulations
always stays well belowRN , there there is no significant effect of introducing the cut-off
at R = RN through Equation (5). In Sections 3.2 and 3.3, however, it will become clear
that this cap RN on the basic reproduction number will play an important rôle when
vaccination is introduced.

Out[�]=

0 50 100 150 200

0.50

0.75

1.00

1.25

1.50

1.75

0

1

2

3

4

5

t

R
(t)

X
(t)

0 50 100 150 200
0.50

0.75

1.00

1.25

1.50

1.75

0

1

2

3

4

t

R
(t)

X
(t)

0 50 100 150 200

0

1

2

3

0

20

40

60

80

t

R
(t)

X
(t)

0.6 0.8 1.0 1.2 1.4 1.6

0

1

2

3

4

5

R (t)

X
(t)

0.6 0.8 1.0 1.2 1.4 1.6
0

1

2

3

4

R (t)

X
(t)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0

20

40

60

80

R (t)

X
(t)

(a) (c)

(b) (d)

(e)

(f)

Figure 2. Solutions of the delay differential system (6) without vaccination (Reff = R) for initial
reproduction numberR0 = 1.7 and normalized intervention strength κ0 = 0.1. Blue curves show the
evolution of the time-dependent reproduction numberR(t) and red curves the incidence rate X(t)
in units of the intervention threshold. Panels (a,c,e) show the graphs for R(t) and X(t) for delay
times for intervention δ = 0.90272, 0.7, and 0.95, respectively. Times are given in units of infection
duration α−1. Panels (b,d,f) present the corresponding phase portraits, i.e., the trajectories for the
vector (R(t), X(t)) as a parameterized curve for the same values of δ.

Figure 3 shows isolines (curves of constantR0) in the (κ0, δ)-plane forR0 = 1.1, 1.7, 2.3, 3.0.
For any value ofR0 in this range and κ0 in the range (0.2, 1.0), the solution is a growing oscillation
if the (κ0, δ)-point is located above the isoline in the (κ0, δ)-plane, and a damped oscillation below
this line.
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The take-home message from this figure is that there is a transition from a series of
damped epidemic waves to a series of growing waves as the response delay δ exceeds
a critical transition threshold ∼1, or in dimensional units, about one week. Thus, this
simple model suggests that a policy responding blindly to the actual incidence rate delayed
by more than approximately a week may lead to a succession of epidemic waves of
increasing amplitude.

R0 = 1.1

R0 = 1.7

R0 = 2.3

R0 = 3.0

unstable
above curves

stable
below curves

Out[�]=
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0.6
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δ

Figure 3. The figure depicts the transition between stable, decaying oscillations, like those shown in
Figure 2c,d, and unstable, growing oscillations, as shown in Figure 2e,f. The curves represent the
parameters κ0 and δ at the transition points, for four values of R0. At these transition points, the
solution is a limit cycle like the one shown in Figure 2a,b. For each R0, the unstable region of the
(κ0, δ)-space is the region above the corresponding curve.

3.2. Solutions with Vaccination

At the time of writing, April 2021, a very low fraction of the world population has
achieved immunity due to past infections, and even though vaccines are being rolled
out at accelerating pace, there is growing concerns that herd immunity may never be
attained [5]. There are several reasons for this concern. It is not known how long natural
immunity from past infections will last, in particular considering the pace at which new
mutants of the virus appears. It is not known how well, and how long, the vaccines
protect against transmission. And it is not known whether children will be vaccinated
at large scale and how large fraction of the population that will reject to take the vaccine.
For these reasons, it is difficult to make precise and reliable estimates of the evolution of
community immunity in the years to come. Nevertheless, it seems reasonable to assume
that natural immunity due to past infections will play a minor rôle. Even if a majority
of the population finally may have contracted the virus, waning immunity against new
mutants will make such immunity insignificant compared to immunity obtained by new
vaccines tailored to combat these new variants. In order to illustrate the possible effect
of the vaccination programmes, I shall employ the model Equation (9) for the fraction of
susceptible individuals SV(t), which is shown in Figure 1b. The results for parameters
that are otherwise similar to those in Figure 2 are shown in Figure 4. In Figure 4a,b, I
have chosen δ = 1.1 to illustrate the convergence towards a stationary cycle, analogous
to Figure 2a,b. Figure 4c,d, for δ = 0.7, show an example of a decaying oscillation that
will finally end up in the equilibrium point (Reff, X) = (1, 1), and Figure 4e,f, for δ = 1.1,
display growing oscillations. Hence, for these model parameters, and specifically for
RN = 4.0, we see the same qualitative features as without vaccination. For delay times
δ well below 1, new waves come at weaker amplitudes, while for δ well above 1, the
amplitudes are growing with time.

A pronounced difference, though, is the longer intervals of very low incidence between
the waves in the vaccination scenarios. Assuming the time unit is approximately one week,
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there are about three wave peaks per year in the unvaccinated scenarios. In contrast, there
is less than one wave per year if the vaccination program is implemented. The reason is
that the decreasing fraction of susceptible individuals reduces the effective reproduction
number, and this reduces the growth rate of the basic reproduction number during the
quiet phases when the incidence is extremely low. The incidence does not start increasing
again until Reff(t) exceeds 1, and even if it then grows faster than exponential, it takes
considerable time until it attains the threshold X = 1 for intervention.

Another noticeable difference is that the effective reproduction number in Figure 4
remains quite low (Reff < 1.25) for t � τV . This is because SV(t) → 0.2 when the
vaccination program is completed andReff ≈ 0.2R. The basic reproduction numberR is
almost five times larger and is limited by the capRN .

3.3. The Post-Pandemic Normal—A Permanent Cap on the Basic Reproduction Number

An additional message one can take home from Figure 4 is that, even when vaccination
seems to have eradicated the disease, the existence of the virus in small pockets of the
population is sufficient to cause strong new outbreaks if society is allowed to return
to the pre-pandemic state with a large “normal” basic reproduction number RN . In
Figure 4, it is assumed RN = 4.0, which is a reasonable basic reproduction number for
the most aggressive mutants circulating in early 2021 in high-income countries with no
NPIs implemented.
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Figure 4. Solutions of the delay differential system 6 with vaccine-induced immunity introduced
through SV(t) given in Figure 1b, for initial reproduction numberR0 = 1.7 and normalized interven-
tion strength κ0 = 0.1. Blue curves show the evolution of the time-dependent effective reproduction
number Reff(t) = SV(t)R(t) and red curves the incidence rate X(t) in units of the intervention
threshold. Panels (a,c,e) show the graphs for Reff(t) and X(t) for delay times for intervention
δ = 1.1, 0.7, and 1.3, respectively. Time is given in units of infection duration α−1. Panels (b,d,f)
present the corresponding phase portraits, i.e., the trajectories for the vector (Reff(t), X(t)) as a
parameterized curve for the same values of δ.

The key to prevent this kind kind of repeated flare-up of the epidemic could be
that policy makers decide to introduce some permanent NPIs that effectively introduce
a long term capRN on the the basic reproduction number which is lower than expected
in a society with no NPIs. In practice, this would imply retaining on a permanent basis
some of the most effective, but least annoying, NPIs, or invention of new NPIs. This
idea, that fundamental long-term changes will have to be made in order to prevent new
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global outbreaks of COVID-19 or other contagious diseases, is often referred to as the new
post-pandemic normal [6,7].

Figure 5 shows the results of implementing permanent NPIs giving rise to lowerRN
in the model. Specifically, it shows solutions withRN = 3, 2, and 1, respectively. Otherwise,
the parameters are the same as in Figure 4a, where δ = 1.1 andRN = 4. It is seen that in
scenarios where delayed response tend to give repeated flare-ups, reduction of RN can
slow the rise ofReff(t) and push the second wave several years into the future. With such
a long quiet period with almost no transmission of the virus one could realistically expect
that a sufficient fraction of the population could be immunized from new and efficient
vaccines for herd immunity to be established, or at least that the disease could enter an
endemic state comparable to present day’s seasonal influenzas.
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Figure 5. Panel (a,c,e) show the function κ(R)/κ0 forRN = 3, 2, and 1, respectively. Panels (b,d,f)
show solutions of the delay differential system (6) when the other model parameters are the same as
in Figure 4a. Blue curves show the evolution of the effective reproduction numberReff(t) and red
curves the incidence rate X(t) in units of the intervention threshold.

4. Discussion

Our model system (6) is an extremely simplified representation of a complex reality,
although the second equation is probably far easier to accept than the first, since it just
describes the balance between new infections produced in a population where the instanta-
neous reproduction number isReff(t) and the reduction of the number of infections due to
recovery or death.The first equation, on the other hand, aspires to encapsulate the complex
social dynamics that determines the evolution of R(t) in one single delay differential
equation. Such a simple representation of a complex reality is certainly wrong, but may still
be a valuable supplement to purely qualitative reasoning over the socio-political process
that determines the response to a changing disease burden.

The potentially disastrous effect of delayed NPI response was recognized by Pei,
Shandula, and Shaman (2020), employing a metapopulation transmission model and data
on infections, deaths and human mobility in the United States [8]. Their findings indicate
that if control measures and reductions ofR(t) had been implemented just 1 to 2 weeks
earlier, substantial cases and deaths could have been avoided. It is concluded that rapid
detection of increasing case numbers and fast reimplementation of control measures are
needed to control repeated outbreaks. They run a considerably more complex transmission
model than our Equation (6), but make no attempt to model the social NPI response. They
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rather project the disease spread under factual and counterfactual NPI scenarios, and hence,
the possibility that NPI delays may lead to a succession of epidemic waves of increasing
amplitude is not explored.

The idea of NPIs trigged as incidence rates exceed a certain threshold is not new
either. In a paper on strategies for mitigation and suppression of COVID-19 in countries of
different income level, Walker et al. (2020) [9] modeled an oscillatory pattern of occupancy
in intensive care units (ICUs) by assuming NPIs resulting in instantaneous reduction of
75% in R from a basic level 3.0 each time the threshold is exceeded, and a duration of
the NPIs of 1 month. Thus, in that model R(t) flips between 0.75 and a value that starts
at 3.0 but is slightly reduced in successive flips as herd immunity starts to emerge. By
construction, this model will not allow the oscillations of disease incidence rate to grow
in amplitude; the incidence threshold cannot be exceeded since the reproduction number
drops instantaneously below 1 once the threshold is attained. The model presented here
differs from [9] in two important respects:

1. The effect onR(t) of crossing the incidence threshold is not an instantaneous shift,
but an effect on the rate of change dt lnR(t) which is proportional to the deviation
from the threshold. In this way one allows for an inertia in the response, which
gives rise to a damped oscillation around the threshold incidence. This can be seen
from introducing the perturbations R̃(t) = R(t) − 1, Ĩ(t) = I(t) − 1 around the
equilibrium (R, I) = (1, 1), and linearizing the model system (6) for δ = 0, which
yields the damped harmonic oscillator equation;

d2
t Ĩ + κdt Ĩ + κ Ĩ = 0, (10)

where the “friction coefficient” and the “spring constant” both are the same and given
by κ.

2. We allow for a delay δ in the NPI-response with respect to the time the incidence
threshold is crossed, and demonstrate that a sufficiently large delay may lead to a
transition from a damped oscillation to a growing oscillation.

The only damping taking place in [9] is a very slow reduction in effective reproduction
number arising from emerging herd immunity, i.e., reduction of the fraction of susceptible
individuals, S. This damping effect is not taken into account in our model, since it assumed
to be a negligible effect until vaccines effective against disease transmission have been rolled
out in all adult age groups. On the other hand, the present work takes immunity due to
vaccination into account and shows that it can prolong the quiet periods between outbreaks,
but may not alone be sufficient to prevent new outbreaks altogether. Effective prevention of
repeated outbreaks may require a permanent reduction of the basic reproduction number, or
in other words, a societal transformation to a new post-pandemic normal. Some countries,
like China, New-Zealand, and Australia, have had some success in adopting such a new
normal by implementing varying approaches to reduce RN . Common to all, though, is
that this has been achieved without extensive vaccination.

The absence in [9] of delay in the social response and the absence of a reduction in
the response strength due to intervention fatigue (as explored in [2]), also preclude the
possibility of repeated pandemic waves of growing amplitude. Thus, the value of the
scenarios depicted in [9] is primarily to quantify the fraction of the time societies will have
to spend in lockdown in order to keep ICU occupancy below a given threshold, under the
rather unrealistic assumption of full societal control of the reproduction number.

Under the assumption of an infectious period of α−1 = 7 days, and reasonable values
of the parameters κ0 and R0, our model predicts that the transition from damped to
growing oscillation occurs for a response delay td of the order of one week. This number
should of course be taken with a grain of salt, considering the simplicity of the response
model. Nevertheless, it is disturbing that this critical response time turns out to be so short
that it may be impossible, even under ideal circumstances, to avoid this regime of recurrent
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waves of growing amplitudes, provided we assume that NPIs are implemented by only
using information about the most recent available case notification rate.

A valid objection to this assumption, and hence to the model system (6), is that
governments have access to far more information when they lift on existing NPIs and
decide on new ones. They can consider existing trends in the incidence rates, not just the
the most recent reported recordings, and model projections are available. On the other
hand, it is clear for anyone who follow the public debate on the necessity of interventions,
that it is extremely difficult for policy makers to gain public acceptance for precautionary
interventions, even in cases when a pattern has been repeated several times in the past.
The common belief that the present wave is the last one seems to be a major hurdle to
successful control of the epidemic.

The tendency of repeated and stronger epidemic waves has been ubiquitous across
the world’s countries as we move into the second year of the pandemic. In [2], which was
a precursor to the present paper, we demonstrated this by analyzing incidence data for
150 countries for the first eight months of the pandemic. Patterns of decaying as well as
growing waves were observed and attempted explained by a model similar to the one
presented here, but without the effects of response delay, vaccination, and a post-pandemic
normal with lowerRN . In particular, repeated waves of growing amplitude were explained
as a result of intervention fatigue, which was introduced in the model. Here, we show that
this unstable growth may alternatively be a result of delays in the social response which
only can be avoided if governments are able to take precautionary action. The key message
from the present work is that relatively small changes in governments’ ability to respond
in a more precautionary manner may have profound effects on controlling and mitigating
new outbreaks. Modest, permanent changes towards a new post-pandemic normal can
also be effective. The main challenge seems to be convey this insight to policy makers, the
media, and others who shape the public opinion.
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