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Summary 

Climate change is one of the greatest threats to animal wildlife in high latitude freshwater 

ecosystems. Climate warming is rapidly increasing water temperatures in these areas, affecting 

biological processes of ectotherms such as growth, maturation and reproduction, which in turn 

trigger population responses. The magnitude of the effects of climate warming will vary 

depending on the thermal niche and phenotype of species. Climate change will continue to 

redistribute species, and fish species from warmer temperature guilds will invade and possibly 

take over areas where cold water fish currently dominate. Hence, it is important to establish the 

performance of cold vs warmer water species in a warming Arctic. The aim of this thesis is 

therefore to provide novel insights and predictions on population level implications of climate 

change for both cold- and cool water fish at high latitudes. The primary focus is on climate 

effects mediated by direct and indirect individual-level responses to increasing water 

temperatures, addressed using long-term empirical investigations and modelling in 

retrospective and prospective studies. In addition, the thesis addresses interactions between 

climate change and size-selective harvesting, a main pressure on high latitude fish populations, 

by modelling their cumulative effects to evaluate risks and reveal potential synergistic threats.  

The thesis documents how both cold- and cool water fish at their northern range edge 

have increased their somatic growth rates during the last three decades of warming. However, 

the cool-water adapted vendace and perch displayed a higher increase in juvenile somatic 

growth with warming compared to cold-water Arctic charr and whitefish, stressing how the 

thermal niche modulates the magnitude of warming effects. The individual based models 

developed for this thesis predict a further increase in somatic growth towards year 2100 under 

warming scenarios (RCP-4.5, -8.5), with cool water fish displaying a greater increase in somatic 

growth rate than cold water fish. The documented and projected climate driven increase in 
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somatic growth rate mediates changes in survival rates and life history, including a likely 

increase in juvenile survival, and earlier maturation, the latter being contingent on species’ 

maturation reaction norm. The demographic implications of these individual effects were 

investigated via modelling and long-term empirical studies. 

The population level response to climate warming, mediated by individual effects, was 

evident in the cool water adapted perch, which experienced a substantial increase in density and 

importance relative to the cold-water adapted whitefish, which is dominant in the investigated 

lakes. The population response of this cool water fish was mediated by an increase in juvenile 

growth rate which resulted in larger size at age and earlier maturation, but also a likely increase 

in survival through the first critical winter. The modelled populations displayed higher biomass 

and yield as size at age increased with warming, but this effect was larger in the cool water 

specie than in the cold water species. In sum, cool water fish will benefit more from climate 

warming than cold water fish at high latitudes, and where they coexist, cool water fish may 

become the dominant player in the fish community.  

The climate driven increase in size at age affects the age-specific exposure to size-

selective harvesting, increasing the risk of younger individuals being caught by gillnets. The 

population level effect of earlier gillnet exposure is an increased age truncation, as illustrated 

by individual based model outcomes. Also, larger size at age increased the proportion of 

immature individuals being caught, with the magnitude of the effect being contingent on growth 

trajectories, their temperature dependence, and orientation of the maturation reaction norm. The 

increased juvenile mortality and more pronounced age truncation reduce recruitment, 

increasing the vulnerability of exploited populations to environmental stressors. Fish species 

with large size, slow growth, and late maturation like Arctic charr were more vulnerable to 

warming and harvesting than species with a faster life history, like vendace.  
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In conclusion, the stronger positive effects of warming on the performance of cool-water 

adapted species relative to cold-water salmonids, and the greater vulnerability of the latter when 

exposed to size-selective harvesting, warn of incipient reorganizations of Arctic fish 

communities, and invite climate adaptation in the management of high latitude populations. 
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1. Introduction 

1.1. Effects of climate change in high latitude fish populations 

Anthropogenic climate change is currently one of the greatest threats to both plant- and animal 

life, and the current speed of warming is unprecedented over the last 800 000 years (Bonan et 

al. 2015). The global average warming is 0.26°C per decade since 1950, and the ten warmest 

years since 1850 was all after 1997 (Bonan et al. 2015). There is no doubt that these changes in 

climate are driven by human overconsumption of natural resources, most notable the 

combustion of fossil fuel and deforestation (IPCC 2007, 2013). Although climate change is a 

global phenomenon, large regionally differences in both the rate and magnitude of warming is 

evident. High latitude ecosystems are experiencing a more rapid and greater warming than any 

other biomes on the planet, which makes these ecosystems potentially more vulnerable than 

others (Parmesan 2006, Wrona et al. 2016). Freshwater ecosystems hold a disproportional 

number of species, with 50 % of all fish species in the world residing in freshwater habitats 

(Hughes et al. 2021). These ecosystems are also disproportionally affected by anthropogenic 

stressors, with freshwater fish being five times more likely to be threatened than their marine 

or terrestrial counterparts (Strayer & Dudgeon 2010). In sum, high latitude freshwater 

ecosystems seem extremely sensitive and vulnerable to present and future anthropogenic 

climate change. 

Similarly as air temperature, lake water temperatures are increasing globally, with lakes 

in northern Europe having a more rapid temperature increase than the global average (O`Reilly 

et al. 2015, Woolway et al. 2020). The increase in water temperature has led to changes in ice 

phenology, where the duration of ice cover is becoming increasingly shorter in high latitude 

lakes (Sharma et al. 2013, Warne et al. 2020, Woolway et al. 2020), and projected future loss 

of lake ice is widespread throughout the northern hemisphere (Sharma et al. 2019). A longer 
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open season may alter the mixing regimes (Woolway & Merchant 2019), with an earlier and 

more stable and durable summer stratification (Woolway et al. 2020), which may increase the 

hypoxic conditions of the deep-water layers in high latitude dimictic lakes (Ficke et al. 2007). 

In addition, an increase in water temperature and subsequent shorter duration of ice cover may 

lead to an increase in pelagic productivity and eutrophication (Allan et al. 2005, O`Bierne et al. 

2017, Maeda et al. 2019), which may fuel an increase in littoral productivity of high latitude 

lakes (Hayden et al. 2019). On the other hand, studies have revealed that climate warming might 

lead to browning of lake water from increased dissolved organic carbon mediated by increased 

precipitation and terrestrial greening, which might decrease lake productivity (Finstad et al. 

2016, van Dorst et al. 2019). Hence, climate change will have large, complex and non-linear 

effects on the physical properties of high latitude lakes, which in turn may have dramatic effects 

on ecosystem processes and functioning (Dodds et al. 2013, Beneatau et al. 2019).  

High latitude lake fish communities in Europe are chiefly dominated by cold water (opt. 

temp range, 6-18 °C) salmonids and to some extent also featuring cool water (opt. temp range, 

15-25 °C) fishes like percids, pikes, minnows and sticklebacks (e.g. Magnuson et al. 1979, Reist 

et al. 2006). These ecosystems are located towards the northern distribution range of these cool 

water fishes, and effects of temperature appear to be greatest at the extremes of the geographic 

range of a species (Power & van den Heuval 1999). It is projected that fish will expand their 

ranges both northwards and to higher altitudes as water temperatures continue to increase (Reist 

et al. 2006, Comte et al. 2013, Campana et al. 2020), which may allow them to establish and 

potentially impose negative impacts on native species already present (Hayden et al. 2013, van 

Zuiden et al. 2016). Future climate warming will in addition favour cool water fish over cold 

water fish where they coexist (Ficke et al. 2007, Heino et al. 2009, Hein et al. 2012), and 

reductions in abundance and local extinctions of cold water fish in coexistence with cool water 
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fish has already been seen across Europe and North-America (Reist et al. 2006, Jeppesen et al. 

2012, Connor et al. 2019, Morrissey-McCaffrey et al. 2019). The northern border of the 

distribution of cool water and temperate fish are often restricted by cold summer temperatures 

and a long ice-covered period (McMeans et al. 2020). This affects especially the bottleneck life 

stages in these fishes (Dahlke et al. 2020), where a short open season with relatively cold water 

temperatures reduces normal development in eggs and reduces juvenile growth rate to a 

minimum, which substantially enhances mortality during their first winter (Heerman et al. 

2009). This severely limits their survival and recruitment, but future projected water 

temperatures might enable establishment of cool water fish in high latitude regions.  

Lakes are like isolated islands in an ocean of land, and migration between lakes are thus 

difficult and dependent on waterways that are possible for fish to migrate in, or they have to be 

translocated by humans (Crook et al. 2015). Therefore, freshwater fish species might be more 

vulnerable than e.g., marine fish under climate warming, because movement to colder refuges 

might not be possible (Woodward et al. 2010). Fish, as ectotherms, can only thermoregulate 

behaviourally as they have the same body temperature as the surrounding water. Hence, if 

migration northwards or to higher altitudes is prevented, they might select microhabitats where 

temperatures are closer to their optima (Ficke et al. 2007). Towards the southern range of cold 

water fish distribution, these fishes seek temperature refuges in the cooler hypolimnion of lakes 

during summer (Regier & Meisner 1990, Gerdaux 1998). However, the hypolimnion becomes 

increasingly hypoxic as climate warms (Gerdaux 1998), which is further restricting the 

available habitat of cold water fishes (Ficke et al. 2007). At the individual level, all biological 

rates vary as a function of body temperature, meaning that growth, reproduction, behaviour and 

activity are directly influenced by changes in temperature (Biro et al. 2007, Arula et al. 2017, 
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Huss et al. 2019). Temperature-dependent growth mediates many of the organismal and 

population effects of climate change (Deutsch et al. 2008, Ohlberger 2013).  

1.2. Temperature-dependent somatic growth mediates effects of climate change  

In the simplest form, individual growth follows the principle of bioenergetics, where the energy 

available for growth is the difference between food consumed and the metabolic cost and waste 

products lost, meaning that growth is dependent on the net energy gain (Jobling 2002, Huey & 

Kingsolver 2019). The amount of consumed food, or the consumption rate, is dependent on the 

availability of food and the ambient temperature. The availability of food is dependent on the 

productivity of the environment, the amount of preferable prey items and number of 

competitors in the ecosystem (Lorenzen & Enberg 2002, Amundsen et al. 2007, Burian et al. 

2020). Given excess availability of food, consumption rate increases with temperature up to an 

optimum temperature, before it drops precipitously (Koskela 1997, Jobling 2002) (Fig. 1, black 

line). The metabolic rate of fish is dependent on body temperature, where it increases 

exponentially with temperature (Gillooly et al. 2001, Brown et al. 2004) (Fig. 1, red line). 

Metabolic rate is in addition allometrically scaled with body size (Brown et al. 2004, Killen et 

al. 2010). Waste products could be divided into three different parts which are either 

proportional to the consumed (egestion) or the assimilated energy (excretion and SDA) (Jobling 

1983, Deslauriers et al. 2017) (Fig. 1, grey lines). The part of the consumed energy that is not 

used for metabolic processes or waste products is thus available for somatic or gonadic growth, 

depending on the maturation status of the individual.  
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Figure 1. Temperature-dependent rates in fish. The black line (―) shows the relationship 

between consumption rate and temperature, the red line (―) shows the relationship between 

metabolic rate and temperature, the grey lines (―) depicts the relationship between consumed 

energy and energy lost to egestion (E), excretion (U) and standard dynamic action (SDA), and 

the blue area (―) shows the relationship between available energy for growth (or reproduction) 

and temperature. 

Climate warming will increase water temperatures and therefore also body temperatures 

of fish inhabiting high latitude lakes. Therefore, climate warming might impact the net energy 

gain of individuals (Huey & Kingsolver 2019). Increase in ambient temperature will increase 

the body temperature and metabolic cost of ectotherms, which will lead to a higher demand of 

energy needed to sustain maintenance, growth and reproduction (Jobling 2002, Ficke et al. 

2007, Strand et al. 2011). If this demand is not met by an increase in consumption, e.g., due to 

a limitation of available food resources, the optimum temperature for growth will decrease 

(Huey & Kingsolver 2019, see section 2.3.2). Therefore, a warmer world might lead to less 

energy available for growth and somatic growth rates might accordingly decrease. However, in 
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high latitude lakes, food availability might increase with warming because productivity is likely 

to increase with longer ice-free season and higher summer temperatures (O`Bierne et al. 2017). 

Therefore, it is predicted that somatic growth rates might increase with warming in high latitude 

freshwater ecosystems, especially for juvenile fish (Pörtner et al. 2001, Reist et al. 2006, 

Deutsch et al. 2008, Huss et al. 2019). An increase in individual growth rates might have 

substantial effects on the population dynamics of size-structured fish species. 

 In fish, individual growth rates mediate other vital rates, such as mortality, maturation 

and reproduction (Wootton 1998, Heibo et al. 2005, Ohlberger et al. 2011). In size-structured 

fish populations these vital rates govern population dynamics, ecological interactions and 

community structures in freshwater habitats. For instance, an increase in juvenile somatic 

growth reduces the time in critical life stages, which might lead to higher survival and possible 

higher recruitment (Anderson 1988, Kjellman et al. 2003, Stawitz & Essington 2019). In 

addition, winter mortality of cool water fish in high latitude lakes depends often on the amount 

of energy acquired through somatic growth during the summer, and an increased somatic 

growth will therefore increase winter survival of these fishes (Johnson & Evans 1990, Heerman 

et al. 2009). Maturation schedules are phenotypically plastic, with the corresponding maturation 

reaction norms determining the age and size at maturation conditional on somatic growth 

(Heino et al. 2002). Therefore, an increase in growth rate will lead to larger size at age and 

possible a change in age and size at maturity, as individuals tend to mature at a younger age 

with faster growth (Dieckmann & Heino 2007). Lower age at maturation leads to a shorter 

generation time that might increase individual fitness (Kingsolver & Huey 2008), which might 

further lead to higher population fecundity depending on adult mortality and longevity. The 

temperature-size rule gives similar predictions, where ectotherms living in warmer conditions 

grow faster and mature at a younger age, but reaches a smaller final body size than conspecifics 
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living in colder environments (Atkinson 1994, Angilletta et al. 2004, Kingsolver & Huey 2008, 

Verberk et al. 2021).  

1.3. Size-selective harvesting 

In addition to climate change, freshwater fish, are often experiencing a multitude of additional 

stressors, many of which are from anthropogenic sources and acting synergistically with global 

warming (Woodward et al. 2010, Green et al. 2015). These additional stressors might amplify 

or mitigate the effects of climate change (Feuchtmayer et al. 2009, Gissi et al. 2021). In high 

latitude freshwater ecosystem, some of the most notable anthropogenic stressors outside climate 

change are eutrophication, acidification, introduction of non-native species and harvesting. For 

instance, with wetter conditions, as projected with future climate change, run-off of nutrients 

from land will be higher, potentially amplifying eutrophication in high latitude lakes (Hessen 

et al. 1997, Jeppesen et al. 2012). Introductions of more warm tolerant species in high latitude 

lake systems will have greater potential for establishing when temperatures increase, which 

might have dramatic effects on native species and alter ecosystem functioning (Schindler 2001, 

Jeppesen et al. 2012, Cazelles et al. 2019).  

For size-structured fish populations, selective harvesting or overharvesting are a major 

threat (Allan et al. 2005, Hughes 2021). The most striking example is the collapse in the cod 

population in the north-west Atlantic, where fisheries reduced the population to almost zero in 

the early 90ies, and the cod population size still remain historically low (Hutchings & Myers 

1994, Olsen et al. 2004, Neuenhoff et al. 2019). Humans are important predators in high latitude 

lakes as well, especially in species poor ecosystems (Hughes 2021). For instance, fisheries can 

reduce the number of fish competitors, thereby indirectly promoting density-dependent growth 

(Amundsen et al. 2007, Persson et al. 2007). Harvesting of fish populations is often size-
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selective, targeting large and therefore also older individuals (Hansen et al. 1997, Fenberg & 

Roy 2008). Accordingly, a common outcome of size-selective harvesting is a truncation of size- 

and age-distributions as a consequence of the removal of large individuals (Conover & Munch 

2002, Heino & Godø 2002). Such removals may change the character of size-structured 

interactions, leading to altered growth rates and changes in age and size at maturation of the 

fish that remain in the population (Law 2000, Olsen et al. 2005). In many populations, large 

fish contribute the most to recruitment and may provide a buffer against environmental 

perturbations (Berkeley et al. 2004, Anderson et al. 2008, Hsieh et al. 2010). Furthermore, size-

selective harvesting may even cause evolutionary changes in body size and maturation 

schedules, and these evolutionary changes might not easily be reversed (Kuparinen et al. 2007, 

Enberg et al. 2009, Heino et al. 2015). Climate change will act as an additional stressor for 

already heavily exploited freshwater stocks and the cumulative effects of these two stressors 

are hard to predict. 

 

1.4. Long-term perspective of causal ecological understanding 

Climate change, as opposed to weather, are only measurable on a decadal or even longer time 

perspective. Therefore, ecological climate change impact studies are per definition only feasible 

to investigate in a similar long-term perspective (Willis & Birks 2006, Amundsen et al. 2019). 

The availability of continuous biological data in natural ecosystems on such a time frame is still 

relatively rare and recognized as highly valuable from a broad scientific community, especially 

in ecosystems at high latitudes (or the Arctic) (CBMP 2019). More commonly climate change 

impact studies either adopt experiments to artificially change climate driven variables, or use 

scattered sampling points over time, space-for-time approaches to mimic future conditions, 

scenario-based modelling or distribution modelling. However, a few multi-decadal long-term 
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series do exist, potentially giving causal understanding on how climate warming affects 

ecosystems in the high north. These programs often follow what is called an adaptive 

monitoring framework (Lindenmayer & Likens 2009). The goal is typically to follow the 

development and processes as they unfold, instead of studying only start- and endpoints during 

a perturbation, which would be less valuable for a causal understanding of the mechanisms that 

led to the observed change. The adaptive monitoring framework advocates an iterative study 

design with well-defined scientific questions, rigorous statistical approach and a robust 

conceptual model for the targeted system in order to have a strong knowledge basis for adaptive 

management (Lindenmayer & Likens 2010, Amundsen et al. 2019). The community responses 

and the dynamic properties of populations from any perturbation may only be mechanistically 

understood when monitored over time.   

1.5. Objectives 

The principal aim of the thesis is to provide novel insights into how freshwater fish populations 

at high latitudes are affected by past and future climate warming. The thesis pursues a causal 

understanding of how temperature affects individual growth and life history in wild fish species, 

and the population level implications of these individual effects of climate warming. Further, I 

aim to investigate how multiple stressors, here in terms of climate warming and size-selective 

fisheries, jointly affect these fish populations. The explicit objectives are to: 

• Investigate how climate warming has affected individual growth rates and life history

in wild cold- and cool water freshwater fish populations using long-term studies in high

latitude lakes (paper Ⅱ & Ⅲ).
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• Project how climate change might affect somatic growth and life history of both cold- 

and cool water fish towards year 2100 using climate models and stock-specific 

parameterized individual based models (IBM) (paper Ⅰ & Ⅱ). 

• Contrast the population level effects of past and future climate change between cold- 

and cool water freshwater fish at high latitudes, mediated by individual level responses 

to increased water temperatures (paper Ⅰ, Ⅱ & Ⅲ). 

• Investigate the cumulative effects of climate change and size-selective harvesting on 

freshwater fish species differing in both thermal preference and life history strategies 

(paper Ⅰ & Ⅱ). 

 

Before presenting the results of the study (chapter 3), the thesis will include: a description of 

the method developments and challenges associated with projecting future climate, water 

temperature and ecological effects of climate change (chapter 2.2.-2.3). After a brief summary 

of the results presented in the thesis, a discussion of findings in relation to known theory and 

previous studies will be presented (chapter 4). 

 

 

 

 

 

 

 



 

20 

 

2. Methods 

2.1. Study Area 

In order to study how climate warming impact both past and future populations of freshwater 

fish, we investigated two different areas of northern Fennoscandia. Paper Ⅰ addresses future 

climate change impacts on Arctic charr, the most cold water adapted freshwater fish in the 

world (Klemetsen et al. 2003), taking advantage of a 40-year long-term study in Lake Takvatn 

in north-western Norway (Fig. 2). Paper Ⅱ compares three different cold water adapted 

freshwater fish in terms of vulnerability to climate change and size-selective harvesting, 

utilizing data from both Lake Takvatn and a 30-year long-term study conducted in the Pasvik 

watercourse in north-eastern Norway. Paper Ⅲ investigates the effects of climate warming on 

a cool water adapted freshwater fish species in the Pasvik watercourse (Fig. 2). 

Lake Takvatn has an area of 15 km2, and is a dimictic lake located in the western part of northern 

Norway. It is situated well above the Arctic Circle at 69°N with an altitude of 214 m a.s.l and 

maximum depth of around 80m (Amundsen et al. 2009). The climate at Lake Takvatn is 

relatively cold, with maximum surface water temperatures seldom exceeding 14°C and the lake 

is usually ice covered from late November/early December to late May/early June (Smalås et 

al. 2020). The fish community consists of two salmonids, a native brown trout (Salmo trutta) 

population and Arctic charr (Salvelinus alpinus), which was introduced in the lake in 1930, as 

well as three-spined stickleback (Gasterosteus aculeatus), which was introduced in the 1950ies 

(Klemetsen et al. 1989). From the mid-80ies towards the early 90ies a large culling experiment 

was conducted to reduce the overcrowded Arctic charr population and to restore the almost 

absent brown trout population (Amundsen et al. 1993, Klemetsen et al. 2002). The experiment 

was successful and today there are almost equal densities of the two salmonid populations in 

the littoral zone of the lake (Persson et al. 2013, Amundsen et al. 2019). 
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In the Pasvik watercourse (Fig. 2), Lake Skrukkebukta was the main study site for this study. 

The watercourse is located above the Arctic Circle (69°N) in the eastern part of northern 

Norway, constituting the Russian-Norwegian border. Lake Skrukkebukta is dimictic, with an 

altitude of 21 m a.s.l. and a maximum depth of around 40 m (Sandlund et al. 2013). The climate 

here resembles more of a continental climate, with cold winters and relative warm summers, 

leading to maximum surface water temperature during summer of around 22°C, which is much 

higher than in Lake Takvatn. Because of cold winters, the ice duration is similar in Lake 

Skrukkebukta as in Lake Takvatn (Sandlund et al. 2013). The fish community consists of in 

total 15 species, with whitefish (Coregonus lavaretus), perch (Perca fluviatilis), northern pike 

(Esox lucius), nine-spined stickleback (Pungitius pungitius), grayling (Thymallus thymallus), 

burbot (Lota lota), brown trout (Salmo trutta) and the introduced vendace (Coregonus albula) 

dominating the lacustrine fish community (Amundsen et al. 2003). The vendace was introduced 

in Lake Inari in the 50-ies and has migrated downstream to lakes in the Pasvik watercourse, 

now dominating the pelagic zone of many lakes in the watercourse (Sandlund et al. 2013). 
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Figure 2. Top: Map of Europe with the black rectangle depicting the main study area of this 

thesis. Below: Northern-Fennoscandia with the location of the two main study systems (Lake 

Takvatn and the Pasvik watercourse).  
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2.2. Climate modelling 

2.2.1 Climate data 

Ecological studies of climate change impact incorporate research from two very different 

scientific fields, ecology and climate science. The lack of integration between the two fields 

has restricted the understanding of what is available and how to appropriately use climate 

models in ecological response studies (Harris et al. 2014). Ecological impact studies often 

address the effect of future climate change, and in order to do so, realistic scenarios about future 

climatic conditions are necessary. However, there exist a vast jungle of climate models and 

different appropriate techniques for their usage. In addition, the development in climate 

modelling is extremely rapid, especially with the increasingly enhanced computational power, 

which leaves climate model outputs rather quickly outdated (Edwards 2011). Therefore, an 

ecologist with limited knowledge in climate modelling might find it difficult to make well 

documented and knowledge-based decisions in order to separate available climate models from 

one another and to choose the correct way forward.  

Climate models are complex computer-implemented numerical models that simulate the 

Earth`s climate system (Katzav & Parker 2015). The state of the art in climate modelling are 

Global Climate Models (GCM, or global-circulation-models) or even the more sophisticated 

Earth System Models (ESM). These models are extremely complex, implement extensive 

physical knowledge and represent a wide range of oceanic, atmospheric, biogeochemical and 

anthropogenic processes, coupling them together to simulate the different aspects of the 

observed climate (IPCC 2013, Katzav & Parker 2015). However, these models are labour 

intensive, expensive and need enormous computational power to operate, therefore their spatial 

resolution is still relatively course-grained. GCMs or ESMs currently represent climate on a 

spatial grid resolution of about 50 km2 and temporal resolutions of months or years. In most 
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ecological studies a much finer resolution in both space and time is necessary to model the 

effect from climate change on organisms, populations or ecosystem (Harris et al. 2014). 

Today there exists many different tools to downscale the GCMs to a much finer scale, 

but each method has its advantageous and shortcomings. However, all are dependent on the 

quality of the GCM that lies underneath. Regional dynamical downscaling (also called 

Regionally Climate Models, RCM) is one such method, where the boundary conditions of the 

region of interest is driven by the GCM, but within the region a separate climate model runs on 

a much finer spatial and temporal resolution (Rummukainen 2010). Even though the RCM can 

operate on a much finer resolution, the complexity is often as comprehensive or even more so, 

as the GCM (Rummukainen 2010). What separates this downscaling method from others is that 

RCM can generate climate variable outputs that only operate at small scales, like wind-speed, 

humidity and evaporation. Other downscaling techniques can increase the resolution from the 

output of GCMs, but not generate additional data (Harris et al. 2014). Typical region sizes that 

are modelled in RCMs are continents, and the grid cell resolution is down to about 12 km2. In 

this thesis, the climate model outputs were used to drive a one-dimensional air-to-water 

temperature model, which needed six different climatic input variables. Some of these input 

variables are only available through RCM outputs, making the choice of how to downscale the 

GCM rather easy. 

After choosing the method of how to downscale the global climate models, came the 

selection of which combination of climate models were applicable for this study area. In this 

process, expert knowledge about climate models and their applicability from the Norwegian 

Meteorological Institute (NMI) were used. The chosen climate model combination of GCM and 

RCM that fitted our study area the best was a regionally downscaled implementation at the 

finest grid resolution available (0.11° or 12.5 km2) (MPI-M-MPI-ESM-LR), forced by the 
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global circulation model CLMcom-CCLM4-8-17 (Landgren & Haugen 2016). The model 

outputs used here are made available through the CORDEX project (Coordinated Regional 

Climate Downscaling Experiment), which was initiated by the World Climate Research 

Programme and aims to coordinate, gather and cooperate between different climate modelling 

institutions around the world (Jacob et al. 2014). A huge amount of regionally downscaled 

output climatic data is available through their database, which is increasingly used in climate 

impact studies. The data is available for both hind-casted model runs (1950-2005) and projected 

future model runs with different climate scenarios (2005-2100) (Jacob et al. 2014). 

As earlier mentioned, climate model outputs are updated quickly as models improve and 

computational power increases (Edwards 2011). The data used here was part of Phase 5 of the 

Coupled Model Intercomparison Project (CMIP5), which was used in the Intergovernmental 

Panel for Climate Change (IPCC) assessment report #5 (AR5) (Jacob et al 2014). Here, the 

climate simulations used the Representative Concentration pathways (RCPs), defined for the 

IPCCs Fifth Assessment Report as future scenarios for anthropogenic emissions of greenhouse 

gases and future land use change (Moss et al. 2010). Four different scenarios of assumed 

increase in radiative forcing (W/m2) by the end of the century relative to pre-industrial 

conditions were developed, the RCP-2.6, RCP-4.5, RCP-6.0 and RCP-8.5, which translates in 

a global mean temperature increase of about 0.7-1.0 °C, 1.8-2.3 °C, 2.2-3.7 °C and 3.7-6.5 °C, 

respectively (Bonan 2015). In this thesis, two of the scenarios were adopted, the RCP-4.5 and 

RCP-8.5. In order to translate the projected climatic conditions to water temperatures that fish 

would experience, the one-dimensional air-to-water temperature model called General Lake 

Model (GLM) was used. 
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2.2.2. General Lake Modelling 

In the time-series data used here, continuous environmental variables were partly lacking and 

future prospective climatic data were available as global or regional climate models based on 

the IPCC climate scenarios. In the absence of long-term retrospective or prospective water 

temperature data, I opted to use a one-dimensional air-to-water temperature model, called 

General Lake Modelling (GLM) (Hipsey et al. 2014). The model requires an input of six 

different climatic variables (air temperature, precipitation, solar radiation, wind speed, cloud 

cover and relative humidity), which were available either from the different meteorological 

stations for the hind-casted model runs or from the climate model outputs for the projected 

future runs at the different lake sites. In addition, lake specific morphometries were required to 

translate climatic variables into water temperature. The GLM assumes no horizontal 

temperature variability within the water body and computes vertical temperature profiles by 

accounting for surface heating, surface cooling, and vertical mixing. The model also includes 

the effects of ice-cover formation and subsequent melting on heating and mixing processes 

within the lake (Hipsey et al. 2014). We calibrated and evaluated the different models using 

existing observed temperature profiles in the different study lakes to inspect the performance 

of the model and the estimated output variables from the model (Fig. 3, for an example of model 

performance).  
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Figure 3. Comparison of observed (top panel) and modelled (bottom panel) water temperature 

in Lake Takvatn from May 2018 to October 2019. Open circles depict the individual 

measurements of water temperature by temperature loggers.  

2.3. Ecological modelling 

2.3.1. Development of the individual based model 

Individual based models (also named agent based models (ABM)), hereafter referred to as 

IBMs, have a long history in biology and are widely used in ecology (Judson 1994, Grimm et 

al. 2006). IBMs allow studying how system level properties emerge from the adaptive 

behaviour of individuals (Railsback et al. 2001), and how the system or the environment affects 

the individuals. IBMs are important for both theoretical and managemental research, because 

they can handle questions analytical models usually ignore (Grimm et al. 2006). This 

particularly relates to individual variation, local interactions and individuals adapting to a 

changing internal and external environment. One such example is the recently developed IBMs 
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that focus on increasing the causal understanding and predictive power on impacts from 

anthropogenic sources on adapting natural resources, which are named eco-genetic modelling 

(Dunlop et al. 2009). This eco-genetic modelling framework is described in Dunlop et al. (2009) 

(similar modelling frameworks were at the same time also developed by Wang & Höök (2009) 

and Okamoto et al. (2009)), and is widely used and cited in the fisheries-induced evolution 

literature, but also in other disciplines. The individual based model presented here, relies on the 

eco-genetic framework developed by Dunlop et al. (2009). Dunlop et al. (2009) and papers 

following this work often focus on evolutionary and ecological consequences of anthropogenic 

effects on fish populations. In our model, we focus strictly on ecological effects of human 

pressures, thus we have omitted their “Inheritance” and “Expression” steps in the annual cycle. 

However, our IBM routine works similar with successive events for each annual cycle, which 

includes mortality, maturation, growth, and reproduction (Dunlop et al. 2009) (Fig. 4, 

demonstrating the IBM in paper Ⅱ). 
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Figure 4. Schematic representation of the four successive events in the annual cycle of the 

individual based model. 1) Mortality, modelled as two different size-dependent components 

(Z = natural (M) + fishing (F)). 2) Maturation specified by a linear probabilistic maturation 

reaction norm (PMRN), depending on both length and age. 3) Growth, modelled as biphasic 

growth which is both density- and temperature-dependent. 4) Reproduction, with size 

dependent fecundity, and density-dependent recruitment. 
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2.3.2. Individual growth in the IBM 

To capture how temperature affects fish individual growth in our IBM, existing knowledge on 

bioenergetics relationships were applied. In paper Ⅰ, a phenomenological representation of the 

relationship between ambient temperature and somatic growth was used. Here, the von 

Bertalanffy growth model was implemented with a temperature-dependent growth rate for 

Arctic charr in Lake Takvatn: 

𝐿𝐿𝑡𝑡+∆𝑡𝑡 = 𝐿𝐿𝑡𝑡 + (𝐿𝐿∞ − 𝐿𝐿𝑡𝑡)(1 − exp(−𝐾𝐾𝑡𝑡∆𝑡𝑡)),  (1a) 

where 𝐿𝐿𝑡𝑡 is the length of fish at age 𝑡𝑡, ∆𝑡𝑡 is the time interval over which growth is considered, 

𝐿𝐿∞  is the asymptotic length at which growth is zero, and 𝐾𝐾t  is the temperature-dependent 

growth rate at age 𝑡𝑡  (equation 1b). Equation (1a) uses the Fabens method for iteratively 

describing growth in the von Bertalanffy model (equation 4.1 in Fabens 1965; see also Haddon 

2001, pp. 241-242). For our model, we account for daily variations in the growth rate 𝐾𝐾t and 

accordingly consider daily growth increments, i.e., ∆𝑡𝑡 = 1 day = 365.25−1 yr =

0.0027379 yr, with a year’s growth beginning on January 1st and ending on December 31st. 

Growth starts at age 0 from an initial length randomly drawn from a normal distribution with 

mean 𝑚𝑚(𝐿𝐿0) and standard deviation 𝜎𝜎(𝐿𝐿0). 

The temperature dependence of 𝐾𝐾𝑡𝑡  follows a dome-shaped curve with a maximum of 0.35 

(𝐾𝐾max) at the temperature optimum (𝑇𝑇opt) of 14.1˚C (Larsson & Berglund 1998, 2005, Larsson 

et al. 2005, Siikavuopio et al. 2013). The maximum growth rate,  𝐾𝐾max, is calibrated to the 

growth of Arctic charr in Lake Takvatn, and individual variability in growth rate is implemented 

by random sampling from a normal distribution centered on 𝐾𝐾max. The temperature-dependent 
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growth coefficient 𝐾𝐾𝑡𝑡 in year 𝑡𝑡 is set to 0 if the temperature is smaller than 1˚C (𝑇𝑇min) or larger 

than 20˚C (𝑇𝑇max) (Larsson & Berglund 1998, 2005, Larsson et al. 2005, Siikavuopio et al. 2009, 

2010). Otherwise, 𝐾𝐾𝑡𝑡 is calculated as follows, 

𝐾𝐾𝑡𝑡  = 𝐾𝐾max
(𝑇𝑇𝑡𝑡−𝑇𝑇min)(𝑇𝑇𝑡𝑡−𝑇𝑇max)

(𝑇𝑇𝑡𝑡−𝑇𝑇min)(𝑇𝑇𝑡𝑡−𝑇𝑇max)−(𝑇𝑇𝑡𝑡−𝑇𝑇opt)2
, (1b) 

where 𝐾𝐾max is the maximum growth rate parameterized for the Takvatn charr population using 

the average von Bertalanffy growth rate (𝐾𝐾) and the average annual water temperature for the 

last ten years of the long-term data series, 𝑇𝑇𝑡𝑡 is the average water temperature for the upper ten 

meters on day 𝑡𝑡, and 𝑇𝑇min, 𝑇𝑇max, and 𝑇𝑇opt are the minimum, maximum, and optimum water 

temperatures for Arctic charr, respectively (see Fig. 5). Arctic charr at high latitudes 

predominantly utilize the shallow-water habitat, especially during the ice-free season (Hawley 

et al. 2017), and therefore, we use the average water temperature for the upper ten meters. 

Figure 5. The von Bertalanffy’s growth coefficient, K, and its relationship with water 

temperature in paper Ⅰ. Tmin, Tmax and Topt is the species specific minimum, maximum and 
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optimum temperature for growth, respectively. Kmax is the maximum growth rate, which is 

obtained when temperature approaches the species specific optimum temperature (Topt). 

For paper Ⅱ, a more mechanistic and bioenergetic approach was adopted. We assumed 

a biphasic growth model parameterized using standard bioenergetic assumptions, metabolic 

theory of ecology and density-dependence processes to capture both how temperature and 

density affects individual growth.  

Biphasic growth model 

We used the Quince-Boukal-Dieckmann (QBD) biphasic growth model (Boukal et al. 2014) to 

describe juvenile and adult growth trajectories, 

𝐿𝐿𝑎𝑎+1 =  �𝐿𝐿𝑎𝑎
(1−𝛽𝛽)𝛼𝛼+(1−𝛽𝛽)𝑐𝑐𝑏𝑏−(1−𝛽𝛽)

1+𝑞𝑞−1(1−𝛽𝛽) 𝑟𝑟𝑎𝑎+1

(1−𝛽𝛽)𝛼𝛼

,    (2a) 

where 𝐿𝐿𝑎𝑎 is the length at age 𝑎𝑎, 𝛽𝛽 is the allometric exponent relating the rate 𝑐𝑐𝑊𝑊𝑎𝑎
𝛽𝛽 of net energy 

intake – measured in terms of weight gain – to the weight 𝑊𝑊𝑎𝑎, 𝑐𝑐 scales this rate, 𝑞𝑞 is the ratio 

between the energetic costs per unit of weight of producing gonadic versus somatic tissue, 𝑟𝑟𝑎𝑎+1 

is the ratio between somatic and gonadic weight at the end of the growth season at age 𝑎𝑎 + 1, 

𝛼𝛼 is the allometric exponent relating the weight 𝑊𝑊𝑎𝑎 = 𝑏𝑏𝐿𝐿𝑎𝑎𝛼𝛼 to the length 𝐿𝐿𝑎𝑎, and 𝑏𝑏 scales this 

weight. For juveniles, all available energy is allocated to growth, i.e., 𝑟𝑟𝑎𝑎 = 0. For adults, a 

fraction of the net energy intake is allocated to reproduction, i.e., 𝑟𝑟𝑎𝑎 > 0. We assumed that 𝑟𝑟𝑎𝑎 

does not change with age 𝑎𝑎; therefore, we set 𝑟𝑟𝑎𝑎 = 𝑟𝑟 and use the closed form of the QBD model 

for adult growth (Boukal et al. 2014). We used empirically derived parameters from the QBD 

growth model for the different species in combination with the corresponding water-
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temperature and density experienced by the different populations to scale 𝑐𝑐𝑚𝑚𝑎𝑎𝑚𝑚 to the optimum 

temperature for growth for the different species (see below, paper Ⅱ).    

The coefficient 𝑐𝑐  was jointly determined by a temperature- and density-dependent 

consumption rate, scaled by 𝐼𝐼(𝑇𝑇,𝐷𝐷), and a temperature-dependent metabolic rate, scaled by 

𝑚𝑚(𝑇𝑇) , where 𝑇𝑇  and 𝐷𝐷  denote temperature and density, respectively. In other words, the 

consumption rate depends both on temperature and – indirectly, through the density of 

competitors – on food availability, while the metabolic rate depends only on temperature. This 

implies that the optimum temperature for growth is lower when the density of competitors is 

higher (Huey and Kingsolver 2019). In addition to 𝑚𝑚(𝑇𝑇), three different processes (Deslauriers 

et al. 2017) diminish 𝑐𝑐: egestion 𝐸𝐸 is the fraction of the consumed energy that is not ingested 

and leaves the fish as feces, specific dynamic action 𝑆𝑆𝐷𝐷𝑆𝑆  is the fraction of 𝑊𝑊𝑎𝑎
𝛽𝛽  used for 

processing the food to energy or storage (Jobling 1983), and excretion 𝑈𝑈 is the fraction of 𝑊𝑊𝑎𝑎
𝛽𝛽 

lost as nitrogen waste (Deslauriers et al. 2017). Therefore, 𝑐𝑐 was calculated using the following 

bioenergetic relationship, 

𝑐𝑐 = 𝐼𝐼(𝑇𝑇,𝐷𝐷)(1 − 𝐸𝐸) − 𝑆𝑆𝐷𝐷𝑆𝑆 − 𝑈𝑈 −𝑚𝑚(𝑇𝑇),   (2b) 

For eq. 2c-2f (see below), the calculated values are given in kJ day-1, but 𝑐𝑐 in the QBD 

model have the unit of 𝑔𝑔1−𝛽𝛽 year-1 and we therefore first accumulated the daily energy intake 

over the 365 days and subsequently used a conversion factor 𝑐𝑐 = 𝑐𝑐
𝑧𝑧
 to model growth on the

correct scale used in QBD growth model framework. To reflect individual variation in energy 

acquisition, individual values of 𝑐𝑐 were distributed normally around the mean value given by 

eq. (2b). 
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The temperature-dependent scaling of the consumption rate follows a Ratkowsky-type 

growth model (Ratkowsky et al. 1983, Larsson et al. 2005, Finstad et al. 2011), useful to 

describe consumption rate in salmonid fish, 

𝐼𝐼(𝑇𝑇) = 𝑑𝑑(𝑇𝑇 − 𝑇𝑇min)�1 − 𝑒𝑒𝑔𝑔(𝑇𝑇−𝑇𝑇max)�,    (2c) 

where 𝑇𝑇 is the experienced water temperature, 𝑇𝑇min and 𝑇𝑇max are the minimum and maximum 

temperatures for ingestion, respectively, and 𝑑𝑑 and 𝑔𝑔 are constants. 

The density-dependent scaling of the consumption rate follows a negative power law 

described by Amundsen et al. (2007); see also Lorenzen & Enberg (2002), 

𝐼𝐼(𝐷𝐷) =  𝛿𝛿1𝐷𝐷/𝑑𝑑𝑐𝑐
𝛿𝛿2,   (2d) 

where 𝐷𝐷 is the total density of competitors, 𝑑𝑑𝑐𝑐 is the conversion factor from the catch-per-unit-

effort scale used in Amundsen et al. 2007 to density of competitors in the model, and 𝛿𝛿1 and 𝛿𝛿2 

are constants. For densities below the minimum density described in Amundsen et al. (2007) 

(catch-per-unit-effort (CPUE) = 4.8), 𝐼𝐼(𝐷𝐷) was set to a maximum 𝐼𝐼max, where 𝐼𝐼max= 3.35 is the 

maximum consumption rate seen in Amundsen et al. 2007.  

To capture the combined effects of temperature and density on the consumption rate, 

we used the following equation, 

𝐼𝐼(𝑇𝑇,𝐷𝐷) = 𝐼𝐼(𝑇𝑇)(𝐼𝐼(𝐷𝐷)
𝐼𝐼max

),    (2e) 

where 𝐼𝐼(𝑇𝑇,𝐷𝐷) reaches its maximum when the water temperature is optimal and the population 

density is lower than the minimum density described by Amundsen et al. (2007). 

The temperature-dependent scaling of the metabolic rate follows the Arrhenius function 

(Gillooly et al. 2001, Lindmark et al. 2018), 
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𝑚𝑚(𝑇𝑇) = 𝑚𝑚0𝜔𝜔𝑒𝑒
−𝐸𝐸m(𝑇𝑇−𝑡𝑡0)

𝑘𝑘𝑘𝑘𝑡𝑡0 ,    (2f) 

where 𝑚𝑚0  is the metabolic scaling constant in terms of oxygen consumption, 𝜔𝜔  is the 

conversion factor from oxygen consumption to energy consumption, 𝐸𝐸m is the mean activation 

energy of biochemical reactions in fish, 𝑘𝑘 is the Boltzmann constant, 𝑇𝑇 is the temperature in 

terms of the Kelvin scale, and 𝑡𝑡0 is the conversion factor from Kelvin scale to Celsius scale.  

Field studies of the relationship between water temperature and growth are not available 

for freshwater salmonids at high latitudes, while corresponding lab experiments have frequently 

been conducted for the most common high-latitude freshwater fish species. Therefore, we used 

data from lab experiments to parameterize eq. (2c): specifically, bioenergetic studies have 

provided estimates of the energies lost to egestion, specific dynamic action, and excretion and 

of the temperature-dependent metabolic rate (Deslauriers et al. 2017).  

Increase in body temperature will increase the metabolic rate of ectotherms, which will lead to 

a higher demand of energy needed to sustain maintenance, growth and reproduction (Jobling 

2002, Ficke et al. 2007, Strand et al. 2011). If this demand is not met by an increase in 

consumption through e.g., a limitation of food resources, optimum temperature for growth will 

decrease (Huey & Kingsolver 2019, Fig. 6).  
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Figure 6.  The relationship between relative abundance and consumption rate in the individual 

based model. NB: Optimum temperature decreases as food limitation increases (e.g., Huey & 

Kingsolver et al. 2019).  
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3. Summary of results

3.1 Climate warming is predicted to enhance the negative effects of harvesting on high-

latitude lake fish (paper Ⅰ) 

The combined effects of climate warming and size-selective harvesting on somatic growth, 

population demography and vulnerability of Arctic charr populations in high latitude lakes were 

addressed. Two different climate scenarios, the RCP-4.5 and RCP-8.5 (regionally downscaled 

climate models from year 1950-2100 forced a one-dimensional air-to-water temperature model) 

with five different fishing mortality scenarios were used in an eco-genetic individual based 

model (IBM) to investigate synergetic effects of multiple anthropogenic stressors. The model 

captures successive annual life history events, including processes of size-dependent mortality, 

a probabilistic maturation reaction norm describing age- and size- at maturity, temperature-

dependent daily growth, size-dependent reproduction and density-dependent recruitment. The 

model was parameterized using data from the Arctic charr population in Lake Takvatn.  

The model predicts that with higher water temperature, somatic growth rate of Arctic charr 

will increase in high latitude lakes, leading to larger body size at age and increased stock 

biomass. Interestingly, the potential increase in stock biomass with future climate warming is 

masked by size-selective harvesting, which has a strong negative impact on biomass due to 

increase in mortality of large individuals. According to the model results, yield will increase 

substantially under climate warming only when fishing mortality is low. In addition, harvesting 

will target increasingly younger individuals as size-at-age increases due to climate warming, 

resulting in a more pronounced age truncation and a larger proportion of immature individuals 

in the catches. This will increase the vulnerability of the populations to additional 

environmental perturbations.   
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Conclusions 

1. Climate warming might boost somatic growth in freshwater fish living towards the

northern end of their distribution, increasing biomass and potential yield in low-

productive Arctic areas.

2. Harvesting might mask the effects of climate warming, by removing larger fish that

contribute the most to biomass which severely may increase the vulnerability of the

population.

3. The multiple stressors approach used here highlights that addressing these stressors

simultaneously will provide knowledge about synergetic effects that otherwise

would not be possible to reveal.

4. Harvested freshwater fish populations might become less resilient and more

vulnerable to climate warming than populations experiencing little or no size-

selective harvesting.

3.2 Temperature affinities and life history determine vulnerability of freshwater fish to 

multiple stressors in a warming Arctic (paper Ⅱ) 

To explore the vulnerability of freshwater fish to multiple stressors in a warming Arctic, 

possible impacts of climate warming were analysed for different harvesting regimes in three 

lacustrine salmonids north of the Arctic Circle. A retrospective analysis of four decades of field 

data on back-calculated temperature-dependent growth was used to study the effects of past and 

present climate warming in Arctic charr, whitefish and vendace. An individual based model 

(IBM) forced by observed and modelled climate variability was used to assess how future 

climate warming affects the three salmonid species with differing life history strategies and 

temperature preferences. The IBM addressed different scenarios of climate warming (RCP-4.5 
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and RCP-8.5) combined with effects of density dependence and different levels of size-specific 

harvest mortality. The adopted model used a bioenergetic approach of temperature-dependent 

somatic growth, size-dependent natural and fishing mortality, maturation schedules following 

a probabilistic maturation reaction norm, size-dependent fecundity and density-dependent 

recruitment. The model was parameterized using existing long-term data from the three fish 

populations. 

All three species increased their individual growth rates under climate warming both in the 

retrospective observed population and in the projected modelled populations. In the lower 

fishing mortality scenarios, size at age and stock biomass increased for all three modelled 

populations, however with a large negative effect of increasing density of competitors. 

Vendace, which is the least cold water adapted fish in this study, benefits substantially more in 

terms of somatic growth and biomass from warming than the more cold water species, Arctic 

charr and whitefish. Arctic charr, the species most sensitive to warming, also have the most 

vulnerable life history strategy under size-dependent harvesting. Effects of the multiple 

stressors approach used here depend on the thermal niche and life history of these study species 

in high latitude lakes. 

Conclusions 

1. In Arctic areas, climate warming increases individual growth rates of freshwater 

fish, an effect moderated by density (i.e., food availability). 

2. The life history of the species determine their vulnerability to the cumulative impact 

of climate warming and fisheries, where fish species with relative slow juvenile 

growth and old age at maturation are less resilient and more vulnerable than species 

with faster somatic growth and earlier maturation. 
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3. Cool water fish are favoured over cold water fish in a warming Arctic because of a

difference in thermal preference.

3.3. Increase in relative importance of cool water fish at high latitudes emerges from 

individual level responses to climate warming (paper Ⅲ) 

The population level responses to recent climate warming of eleven cool water fish populations 

were studied, and mechanisms governing the population effects were investigated at the 

individual level in two of these systems. Three decades of data on back-calculated juvenile 

length increment (mm·year-1), survival through the first critical winter, and age at maturity were 

assessed as candidate mechanisms explaining the observed population effects. Eurasian perch 

(Perca fluivitalis), a cool water fish with optimum temperature for growth between 16 and 27 

°C, was the model species, and the study systems are located towards the northern distribution 

edge of the species (68°N-70°N). The two lakes (Lake Vaggatem and Lake Skrukkebukta) 

where individual level responses to climate warming were studies, had both 30 year long-term 

series of population and individual level data of perch as well as continuous data on water 

temperature. 

Ten out of the eleven perch populations have increased in relative numerical importance 

over the latest decades in concurrence with the ongoing climate warming. More so, in the two 

long-term study systems in the Pasvik watercourse the perch density significantly increased 

with increasing water temperatures over the last 30 years. These population effects from climate 

warming arose from individual level responses to increased water temperatures. Juvenile length 

increment (mm·year-1) increased substantially with temperature, but similarly decreased with 

increasing perch density. Number of surviving one year old individuals showed similar 

response as juvenile growth, with an increase with temperature and a decrease with relative 
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density. The observed improvement in juvenile growth, an eco-physiological process, led to 

earlier maturation age, which is an evolutionary plastic response. The study shows that climate 

warming affects population level processes via direct and indirect temperature effects on 

individual life history.  

Conclusions 

1. Water temperature increase from climate change has favoured cool water fish at

high latitudes, possibly at the expense of cold water salmonids.

2. At their northern range edge, cool water fish species are becoming more abundant

and may increasingly dominate fish communities at these latitudes.

3. Individual level responses to water temperature increase mediate the population

effects of climate warming, with increased juvenile growth and survival, and

earlier maturation all contributing to promote population growth.

4. Given the observed speed and magnitude of the perch population response to

climate warming, management strategies should focus on limiting future

introductions and invasions of cool water fish at these latitudes.
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4. Discussion 

This thesis provides new evidence and understanding on how past and future climate warming 

will affect high latitude fish populations, mediated by individual level responses to water 

temperature increase. The long-term empirical studies documented that both cold- and cool 

water fish experienced an improved juvenile somatic growth with warming, which affected 

other life-history variables, favoring cool water fish more than cold water fish at high latitudes 

(paper Ⅱ & Ⅲ). The results from the individual based models demonstrated that the projected 

water temperature increase towards year 2100 will accentuate the effects seen in the 

retrospective long-term studies (paper Ⅰ & Ⅱ). The population level effects were contingent on 

species thermal niche and life history, with cool water fish experiencing greater increase in 

biomass and relative importance than cold water species (paper Ⅰ, Ⅱ & Ⅲ). This thesis also 

addressed the risk of cumulative effects of climate warming and size-selective harvesting, 

where life history and thermal preferences shape the vulnerability and resilience towards these 

multiple stressors (paper Ⅰ & Ⅱ). To my knowledge this is the first extensive study on climate 

change impacts on both cold- and cool water fish at their northern range edge, combining long-

term field evidence and model projections of future implications of further climate warming.   

 

4.1. Individual responses to past and future climate warming 

Individuals of both the cold- and cool water adopted species displayed a positive relationship 

in juvenile somatic growth with increasing water temperatures (paper Ⅱ & Ⅲ). Even Arctic 

charr, the most cold water adapted freshwater fish in the world (Klemetsen et al. 2003, 

Klemetsen 2010), demonstrated a clear positive effect of increased water temperature on young-

of-the-year somatic growth throughout the nearly 40 year long study in Lake Takvatn (paper 

Ⅱ). Previous studies on wild Arctic charr have not been conclusive with respect to effects from 
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temperature change on somatic growth (Power et al. 2000, Kristensen et al. 2006, Godiksen et 

al. 2010, Michaud et al. 2010, Murdoch & Power 2013). For the cool water fish, vendace and 

perch, the observed positive effect of increased water temperatures on somatic growth was as 

expected more pronounced, as the studied populations are situated at the northern edge of their 

distribution (~70°N). Several recent studies show similar results, where cool water fish 

experience improved growth rates with warming in populations situated in the northern reaches 

of their distribution (Jeppesen et al. 2012, van Dorst et al. 2019, Huss et al. 2019). The future 

increase in somatic growth rates projected by the IBMs under climate warming suggests that 

this trend will be further accentuated towards year 2100 (paper Ⅰ & Ⅱ).  

Both the observed increase in water temperature over the last few decades and the increase 

predicted towards year 2100 are substantial, but not to a degree that there will be direct negative 

effects on somatic growth for any of the studied populations at these latitudes (paper Ⅰ, Ⅱ & Ⅲ). 

This is explained by the fact that these study systems are some of the colder lakes in Europe 

(classified in the coldest group: Northern Frigid), and that warming to year 2100 will only 

increase these lakes to the second coldest classification group (Northern Cool) (Maberly et al. 

2020). Therefore, both the observed and predicted water temperature increments will expand 

the growth season with temperatures mostly remaining below or close to the optima for these 

species (paper Ⅰ & Ⅱ). However, inspection of the respective temperature-dependent growth 

curves stresses how the cool water species will benefit the most from the projected climate 

warming (Fig. 7). Other studies have also suggested that freshwater fish populations living 

north of the Arctic Circle have the potential to increase individual growth from moderate 

warming (Butzin & Pörtner 2016, Symons et al. 2019). Furthermore, both the observed and 

predicted growth increases are dependent on sufficient availability of food resources (paper Ⅱ 

& Ⅲ). Theory predicts that metabolic rates increase with warming, thus consumption needs to 
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meet the elevated metabolic demands (Kingsolver & Huey 2019). Productivity will likely 

increase with warming at these latitudes (O`Bierne et al. 2017), possibly leading to an increase 

in food availability. Nevertheless, higher density of intraspecific competitors significantly 

reduced observed growth rates for all investigated species in this thesis (paper Ⅱ & Ⅲ), which 

is a common finding in ecological studies (Amundsen et al. 2007, Persson et al. 2007). 

Therefore, in high latitude populations where effects from increased temperature on somatic 

growth are not apparent, food availability might be the limiting factor (see paper Ⅱ & Ⅲ). With 

a reduction in food availability (e.g. by increase in consumer density) optimum temperature for 

growth will decrease as metabolic demands increase exponentially with temperature 

(Kingsolver & Huey 2019, Morrongiello et al. 2021). However, even though this effect was 

present in our modelling approach, it did not substantially affect the growth negatively, because 

the projected future water temperature remain beneath the optimum temperature of these 

species. To summarize, for both cold- and cool water fish located towards the northern edge of 

their distribution, somatic growth may increase with warming, assuming that productivity and 

food availability will meet the demands in a warmer ecosystem.  
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Figure 7. Temperature-dependent growth rates for both cold water (Arctic charr and whitefish) 

and cool water (vendace and perch) freshwater fish redrawn from existing literature on the 

relationship between somatic growth and temperature (paper Ⅰ, Ⅱ & Ⅲ). 

An increase in juvenile somatic growth rate will lead to larger size at age, which will 

mediate other life history responses affecting survival, maturation and reproduction (Wootton 

1998, Heibo et al. 2005, Ohlberger et al. 2011). Mortality in fish is often size-dependent where 

smaller individuals are more vulnerable to both predation and mortality from starvation events 

(Elliott 1993, Gislason et al. 2010). If juvenile somatic growth increases with warming, 

individuals might reduce their time in predatory windows, resulting in avoidance of predators 

earlier in life. In addition, increased growth will lead to larger size at age, and larger fish will 

have higher resistance towards starvation than smaller fish (Bar 2014). Therefore, a rapid 

transition from these critical life stages might improve survival of juvenile fish. Favourable 

conditions and increased survival of juvenile individuals might lead to pulses of strong year 
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classes that could dominate the population in the following years (Mills & Mann 1985). If these 

favourable growth conditions become more frequent in the future, overall population 

recruitment and abundance might increase especially for cool water fish at high latitudes (see 

paper Ⅲ). 

The present study provides evidence that an increase in growth leads to a plastic 

response in life history resulting in earlier maturation. The phenotypic plastic response in 

maturation age is adaptive (Roff 1992, Stearns 2000). Individuals with different growth 

trajectories mature at different sizes and ages dependent on the orientation of their maturation 

reaction norm (Heino et al. 2002, Dieckmann & Heino 2007, Heino & Dieckmann 2008). Paper 

Ⅰ & Ⅱ use population estimates of the maturation reaction norm for the different fish species, 

and given the projected increase in length at age from increased water temperature, individuals 

matured earlier contingent on their maturation reaction norm. Hence, maturation age is 

indirectly affected by the environment, where the “quality” of the environment affects the slope 

of growth directly (Dieckmann & Heino 2007, Nilsson-Örtman & Rowe 2021). The indirect 

environmental effect on maturation age, mediated by growth, demonstrated this theory 

empirically in paper Ⅲ (Fig. 8). Similar results where an increase in juvenile growth led to a 

reduction in age at maturation have been seen in other freshwater fish, and also in marine fish 

species (Reznick 1990, Trip et al. 2014, Ward et al. 2017). Furthermore, for fish populations 

with a negatively sloped maturation reaction norm, size at maturation should also increase with 

faster juvenile growth (e.g. Fig. 8). Larger size at maturation will increase fecundity, since 

fecundity in fish is chiefly size-dependent (Berneche et al. 2018). In sum, for species where 

maturation size increases with faster juvenile growth rate, total population fecundity might 

increase as a consequence of climate warming. 
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Figure 8. Schematic illustration of how difference in growth trajectories, with red and blue dots 

representing good and poor growth, respectively, will affect both age and size at maturation 

dependent on the maturation reaction norm of the species. The shaded area depicts the possible 

growth trajectories of the different individuals within the population, and the solid and stippled 

lines represents the probabilistic maturation reaction norm with midpoint, and 25th and 75th 

percentile, respectively.   

   

4.2. Population level effects from climate warming 

All three papers in this thesis show that the population level effects of climate change were 

mediated by the individual level responses to increasing ambient temperatures. The increased 

somatic growth led to a larger size at age and a reduction in age at maturity, which substantially 

increased stock biomass and yield (paper Ⅰ & Ⅱ). However, individual growth was also 

dependent on density (paper Ⅱ & Ⅲ), and under high density both stock biomass and yield 
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increased less (paper Ⅱ). The population level effects suggest that cold water fish populations 

at the latitudes investigated here might benefit from warming (paper 1 & Ⅱ), at least in fish 

communities consisting of species from the same temperature guild. Other studies have also 

concluded that warming has the potential to increase both biomass and yield for cold water fish 

living at high latitudes (Reist et al. 2006, Campana et al. 2020, Jarvis et al. 2020). On the 

contrary, cold- and cool water fish populations living towards the southern end of the species 

distribution are already experiencing large negative impacts from climate warming (George et 

al. 2006, Rennie et al. 2009, Connor et al. 2019, Kelly et al. 2020). Hence, climate warming 

might change the outcome of ecological interactions. The IBMs used here are single species 

models and do not explicitly model effects from interspecific interactions. These complex 

interactions could have dramatic effects on the performance of especially cold water fish in the 

study area (Lindmark et al. 2019), making the future realized population growth to differ from 

the predictions presented here.  

Furthermore, there are large regional differences in fish species compositions between 

western and eastern parts of northern Fennoscandia. Typically, lake ecosystems in western 

Fennoscandia consists of 2-3 species of cold water adapted salmonids, while ecosystems in 

eastern Fennoscandia can comprise 10 or more species from both cold (salmonids), cool 

(percids, pikes) and even warm (cyprinids) temperature guilds. For lakes with low species 

richness in western Fennoscandia, warming might benefit individual and population growth of 

cold water fish as predicted by the modelling effort in this thesis. However, in multispecies 

lakes in eastern Fennoscandia where species from different temperature guilds coexists, cold 

water fish might struggle under climate warming (paper Ⅱ & Ⅲ). Additionally, the rate of 

temperature increase is higher in eastern compared to western Fennoscandia. This means that 

the climate change impacts predicted in this thesis will take place earlier and be more severe in 
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lake ecosystems in eastern-Fennoscandia, which could act as an early warning systems also for 

colder lakes located in the western parts.   

  Paper Ⅲ documents that cool water fish have the potential to experience a substantial 

increase in density and importance relative to cold water fish with warming. With the rapid 

increase in water temperature witnessed in these high latitude areas (O`Reilly et al. 2015, paper 

Ⅲ), an increase was not unexpected, but the speed and magnitude of the change were surprising. 

Similar increases in density of cool water fish above the Arctic Circle have been documented 

and predicted as a consequence of global warming in other studies (Ficke et al. 2007, Heino et 

al. 2009, Rolls et al. 2017). In addition, species from warmer temperature guilds are migrating 

northwards threatening native cold water species already existing in these high latitude areas 

(Reist et al. 2006, Comte et al. 2013, Campana et al. 2020). Simultaneously, cold water fish 

populations are suggested to be largely negatively affected by warming in the presence of cool 

water fish (Jeppesen et al. 2012, Morrissey-McCaffrey et al. 2019). Mass extirpations of cold 

water fish (Arctic charr) with warming in the presence of cool water predators (pike) are 

predicted in the future (Hein et al. 2014). Hence, cold water salmonids are classified as the most 

sensitive to future climate change (Blanchet et al. 2019). In sum, these predicted changes make 

cold water fish seem highly vulnerable to future climate change, regardless of the potential for 

increase in growth rate and biomass for cold water freshwater fish living in species poor 

systems, which hopefully can act as refuge areas.  

The temperature-size rule predicts that populations living in colder environments will 

experience slower growth rates, mature later and reach larger adult body size than populations 

living in warmer ecosystems (Atkinson et al. 1994, Angilletta et al. 2004, Verberek et al. 2021). 

The results presented here concur with the general expectations of the rule, with the exception 

of a reduction in adult body size. However, in our modeled populations the temperature-growth 
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relationship was constant with body size, but earlier research suggests that optimum 

temperature decreases with body size, as both oxygen and food demands increase 

disproportionally with body size under warming (Lindmark et al. 2018, Huss et al. 2019, 

Rubalcaba et al. 2020). Recent studies has however revealed that the temperature size-rule 

might not be as general as proposed, and that adult individuals in many species and populations 

actually become larger under warming (Audzijonyte et al. 2020). High latitude lakes are 

described as well-oxygenated and might become more productive in the future, which may 

contribute to sustain large individuals. Nevertheless, with the inclusion of a reduced thermal 

optima for growth with body size in the IBMs, mean adult body size could possibly decrease 

in the modelled populations experiencing the warmest temperature scenario towards year 2100. 

In addition, populations living in warmer environments are suggested to invest more energy in 

gonadosomatic growth at the expense of somatic growth (Heibo et al. 2005), which further 

could have reduced the realized adult growth if included in the modelling approach.  

 

4.3. Cumulative effects of climate warming and size-selective harvesting 

Paper Ⅰ and paper Ⅱ used a multiple stressor approach, by jointly addressing climate warming 

and size-selective fisheries. From earlier research we know that size-selective harvesting will 

truncate both age and size distributions, which will reduce recruitment rates in fish (Conover 

& Munch 2002, Heino & Godø 2002). In addition, large and old fish contribute the most to 

recruitment and can act as a buffer against environmental perturbations, and removing large 

fish will increase the vulnerability and decrease the resilience of exploited stocks (Anderson et 

al. 2008, Hsieh et al. 2010). Here, the impact of size-selective gill-net fisheries was modelled 

with different levels of fishing mortality. In the high fishing mortality scenarios (F>0.2), both 

age and size truncation were severe, and the age truncation was further increased with warming 
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(paper Ⅰ & Ⅱ). Size truncation was not affected by warming (the used fishing scenario set a 

lower size threshold for catchability), but because of larger size at age, younger fish were 

susceptible to harvesting, increasing the age truncation within all study species. However, there 

was a large difference between species in the implications of the observed age truncation, 

contingent on their life history (paper Ⅱ).  

It is suggested that fish species with slow growth rates, with an old maturation age and 

large maturation size are more vulnerable to harvesting in combination with additional stressors 

than species with a faster turnover rate (Jennings et al. 1998, Wiedmann et al. 2014). The results 

presented here clearly support this earlier work, but further highlight that the steepness of the 

slope in the maturation reaction norm dictates the vulnerability towards the cumulative impact 

of climate warming and size-selective fisheries. Hence, fish species that have maturation 

schedules which depend relatively more on age than on size (steep negative maturation reaction 

norm slope), will be more vulnerable to size-selective harvesting under climate change. For 

example, Arctic charr experienced a substantial increase in size at age, which led to younger 

fish being susceptible to harvest. Thus, the orientation of the maturation reaction norm resulted 

in an increasing proportion of immature individuals in the catches with increasing water 

temperatures and faster somatic growth (paper Ⅰ & Ⅱ) (Fig. 9). Vendace on the other hand, have 

a gentler negative maturation reaction norm, which did not lead to an increase in catchability 

of immature individuals. The species therefore responded differently to the multiple stressor 

scenarios, and while for Arctic charr the cumulative pressure reduced the proportion of adults 

substantially, this was not evident in the vendace population (paper Ⅱ). This suggests that Arctic 

charr would be more vulnerable and less resilient to size-selective harvesting under climate 

warming than vendace, which is a result of their difference in life history.  



 

52 

 

Both climate warming and size-selective harvesting might promote increased growth 

rates in high latitude fish populations as somatic growth increases with respectively higher 

water temperatures and lower population densities (Persson et al. 2007, Huey and Kingsolver 

2019, Morrongiello et al. 2021). A reduction of competitors (i.e. reduced density) as a 

consequence of high fishing mortality promoted compensatory somatic growth in the modelled 

populations (paper Ⅰ & Ⅱ), in line with previous studies on density dependent growth (Rose et 

al. 2001, Amundsen et al. 2007, Evangelista et al. 2020). Density similarly affected growth in 

the wild populations investigated here (paper Ⅱ & Ⅲ). Therefore, an additional cumulative 

effect of climate warming and size-selective fisheries is that climate warming promotes an 

increase in individual growth, while harvesting, by reducing density, accentuates this effect in 

high latitude freshwater fish populations (paper Ⅱ) (see Fig. 9). Such compensatory growth 

effects might increase juvenile survival, boosting reproductive rates and ultimately increase 

recruitment (Rose et al. 2001, Persson et al. 2007). However, as formerly mentioned, this is 

highly dependent on the life history of the species, as well as the fishing intensity or size-

selectivity of the fisheries (paper Ⅰ & Ⅱ). The negative synergetic effects (age truncation and 

immature individuals caught) are worst with high exploitation rates because it releases the 

somatic growth potential from warming due to lower densities. In addition, high exploitation 

rates removes most of the large individuals that contribute the most to population recruitment 

(Anderson et al. 2008, Hsieh et al. 2010), and simultaneously harvests young, fast growing and 

possibly immature individuals, this harvest pattern combination contributes to increase 

vulnerability and decrease resilience (Fig. 9).  

Paper Ⅰ and paper Ⅱ emphasize that fisheries might mask the effects of climate warming. 

Different levels of fishing mortality masked to a varying degree climate warming impacts both 

at the individual and population level in high latitude freshwater fish populations. The increase 
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in both biomass and yield revealed for the low fishing mortality scenarios was not visible in the 

highest fishing mortality scenarios, because fisheries removes the largest individuals that 

contribute the most to an increase in biomass and yield. Hence, interpretations of population 

performance might wrongly conclude that climate warming has minor effects on these fish 

stocks. Proper management that includes age- and size distributions and maturation patterns in 

the monitoring would observe climate warming effects in the populations that are not visible 

when monitoring biomass and yield alone. 

 

 

Figure 9. Theoretical representation of the combined effects of climate warming and size-

selective harvesting in high latitude freshwater fish populations, exemplified with a life history 

described with slow juvenile growth, large size and old age at maturation. Panel 1 from the 

bottom: Cold water temperature without fisheries, leading to a high density situation that 
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combined with the low water temperature, results in slow juvenile and adult somatic growth. 

Panel 2 from the bottom: Cold water temperature with size-selective-fisheries, resulting in 

lower density of competitors promoting compensatory growth, leading to larger size at age 

compared to the scenario without fisheries. Panel 3 from the bottom: Warm water temperature 

without fishing, might lead to a relative high density of competitors, but the increase in 

temperature promotes increased juvenile somatic growth. Panel 4 from the bottom: Warm water 

temperature with size-selective fishing, resulting in “double” positive effect in individual 

growth caused by an increase in water temperature and low density of competitors from 

fisheries, resulting in increased vulnerability as also juveniles will be susceptible for harvest 

(paper Ⅰ & Ⅱ).  

4.4. Implications for management and conservation 

This thesis highlights two separate management challenges for future freshwater fish stocks at 

high latitudes. First, climate warming may accentuate the negative effects of size-selective 

harvesting, increasing vulnerability of exploited stocks (paper Ⅰ & Ⅱ). Secondly, cool water fish 

will benefit more than cold water fish in terms of increased individual growth (paper Ⅱ), and 

increased density and relative importance in high latitude lakes (paper Ⅲ). In northern lakes 

harvesting is important both for sustenance and recreational purposes (Reist et al. 2006), and 

large, active salmonids are particular vulnerable (Finstad et al. 2001), with many populations 

being under pressure from size-selective fisheries. It is important for future management to 

monitor changes in age and size structures to prevent further age truncation, which would 

increase vulnerability and decrease resilience in already fully exploited stocks under climate 

warming. Mitigation strategies must encompass such effects by setting a limitation in mesh-

size of gill-nets and implement other strategies that protect large, adult individuals within 
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harvested populations (e.g. catch and release, minimum body size limitation) (see Ahrens et al. 

2020).  

 Climate adaptation must protect cold water fish in high latitude regions under climate 

change. Because, with warming, cool water fish will increase in density, relative importance 

(paper Ⅱ & Ⅲ), and might invade new areas where native cold water fish would be vulnerable. 

This thesis thus suggests that cool water fish might improve their overall performance in high 

latitude lakes and subsequently might threaten coexisting cold water fish. Therefore, it will be 

decisive to prevent future invasions or introductions of cool water fish into ecosystems where 

these species do not already coexist with cold water species. Introductions of species are already 

prohibited in many countries, but climate adaptation measures should involve strategies to 

prevent natural invasions of non-native fish as well. The native fish species already living in 

these ecosystems are very vulnerable towards invasions of non-native fish under climate 

warming (e.g. Bøhn et al. 2008, Morrissey-McCaffrey et al. 2018).       

 

4.5. Future developments and perspectives 

This thesis provides a causal understanding of how temperature affects individual growth and 

life history in fish, and the population level implications of these individual effects of climate 

warming in high latitude lakes. However, as these systems appear particularly vulnerable, it is 

important to further enhance the understanding of how climate warming may affect freshwater 

fish at high latitudes in the future. As demonstrated, both modelling efforts and long-term 

retrospective studies are important tools to investigate the complex implications of climate 

change. Furthermore, this thesis emphasizes the importance of studying climate change 

repercussions on the same temporal scale these effects unravel to obtain a strong causal 

understanding. To further increase complexity, climate warming seldom acts as the sole stressor 
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on wild populations and including additional stressors makes the task of environmental impact 

assessment even more challenging. Modelling tools, like the IBM used here, may extricate the 

effects caused by multiple stressors, but we need more experimental studies to provide species-

specific parameters that currently are unavailable in order to increase the realism and predictive 

power of these models. While filling knowledge gaps on species, we also need to adress whole 

ecosystem changes in climate change impact research. For instance, food web mediated effects, 

changes in productivity, and changes in ecological interactions both from coexisting species, 

but also from possible invading alien species need to be included in future modelling 

frameworks and research. The current study clearly reveals that climate-induced changes 

already are evident in northern lakes, and emphasizes the importance of learning from the past 

while making predictions and taking the necessary measures and precautions for a sustainable 

management of vulnerable freshwater fish. 
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Abstract
1. Ecosystems at high latitudes are exposed to some of the highest rates of climate

warming on earth, and freshwater ecosystems in those regions are already expe-
riencing extended ice-free seasons and warmer waters. The dominant fish species
in these ecosystems are cold-water salmonids, which play a central ecological role
in lake ecosystems, where they are often exposed to size-selective fisheries that
truncate their size and age distributions, making them potentially vulnerable to
exploitation and environmental perturbations.

2. Here, we address the combined effects of climate-induced water temperature in-
crease (using regionally downscaled climate models based on the RCP-4.5 and
RCP-8.5 climate scenarios together with an air-to-water temperature model) and
gillnet harvesting, over the period from 1950 to 2100, on the somatic growth,
demography and vulnerability of Arctic charr Salvelinus alpinus (L.), using an
eco-genetic individual-based model. The model captures successive annual life- 
history events, including the key processes of size-dependent mortality, age- and
size-dependent maturation described by a probabilistic reaction norm, temper-
ature-dependent growth, size-dependent reproduction and density-dependent
recruitment.

3. Our model predicts that higher water temperatures will increase the somatic
growth of Arctic charr, leading to larger body size at age and increased stock bio-
mass: for RCP-8.5, we predict an 80% increase in stock biomass in the year 2100
relative to the year 2000 in the absence of fishing. Interestingly, this potential
increase in biomass in future climate scenarios will be partially masked by harvest-
ing: for a fishing mortality of 0.3 year−1, we predict a mere 40% increase in stock
biomass in 2100 relative to 2000. Despite the predicted increase in stock biomass,
yield will increase substantially only when fishing mortality is low. In addition, cli-
mate warming will accentuate the age-truncation effect of harvesting, which will
target younger individuals, including immatures, thus elevating the vulnerability of
the population to environmental perturbations.
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1  | INTRODUC TION

The effects of climate change on aquatic ecosystems have been 
studied extensively, and projections of future changes are pres-
ently under intense scrutiny (Bryndum-Buchholz et al., 2018; 
Parmesan, 2006). However, most studies do not incorporate ad-
ditional anthropogenic stressors that are likely to interact with 
climatic effects, hindering understanding and predictions of the 
impact of multiple environmental stressors (Woodward, Perkins, 
& Brown, 2010). In ectotherms, temperature-dependent growth 
mediates some of the most notable effects of climate warming 
on individuals and populations (Deutsch et al., 2008; Ohlberger, 
2013), and growth-mediated population-level effects are influ-
enced by size-selective environmental pressures such as harvest-
ing (Fenberg & Roy, 2008). Under climate warming in sub-Arctic 
regions, fish will experience increased temperatures, possibly 
favouring improved growth conditions at the northern limits of 
their distributional range (Deutsch et al., 2008; Ohlberger, 2013; 
Pörtner et al., 2001; Reist et al., 2006). Accordingly, the impacts 
of climate change and harvesting need to be addressed jointly 
(Brander, 2007).

The effects of increasing water temperature on the vital rates 
and demography of fish are primarily mediated by growth and re-
production (Ficke, Myrick, & Hansen, 2007; Wootton, 1998). In 
many fish species, growth may influence reproduction, because 
maturation schedules are phenotypically plastic, with the corre-
sponding maturation reaction norms determining the age and size 
at maturation conditional on somatic growth (Heino, Dieckmann, 
& Godø, 2002). The changes in vital rates mediated by tempera-
ture-dependent growth have implications for fish demography, 
influencing population size, age structure and stock biomass. 
Harvesting of fish populations is often size-selective, target-
ing large individuals (Fenberg & Roy, 2008; Hansen, Madenjian, 
Selgeby, & Helser, 1997). A common outcome of size-selective 
harvesting is a truncation of size and age distributions as a con-
sequence of the removal of large individuals (Conover & Munch, 
2002; Heino & Godø, 2002), which may change the character of 
size structured interactions, leading to altered growth rates and 
changed ages and sizes at maturation of the fish that remain in the 
population (Law, 2000; Olsen et al., 2005). In many populations, 

large fish contribute the most to recruitment and may provide 
a buffer against environmental perturbations (Anderson et al., 
2008; Berkeley, Hixon, Larson, & Love, 2004; Hsieh, Yamauchi, 
Nakazawa, & Wang, 2010). The use of efficient gears and the ab-
sence of sufficient regulation further increase the risk of overex-
ploitation in freshwater fish populations (Allan et al., 2005; Post, 
Persson, Parkinson, & Kooten, 2008).

High latitudes are experiencing more rapid warming than tem-
perate or tropical regions (Parmesan, 2006), and cold-water fish 
species, such as salmonids, are among the taxa most sensitive 
to climate change (Blanchet, Primicerio, Smalås, Arias-Hansen, & 
Aschan, 2019). Salmonids are also among the numerically domi-
nant and ecologically most important freshwater fish in these re-
gions (Klemetsen et al., 2003). Due to their large size and active 
behaviour, salmonids are vulnerable to size-selective gillnet fisher-
ies (Finstad, Jansen, & Langeland, 2001). Among salmonids, Arctic 
charr Salvelinus alpinus (L.) has the northernmost distribution of all 
freshwater fish species (Klemetsen, 2010; Klemetsen et al., 2003). 
Arctic charr has been predicted to experience a large-scale ex-
tinction towards the southern end of its distribution; however, at 
higher latitudes and altitudes this pattern so far is not empirically 
evident (Hein, Öhlund, & Englund, 2012). On the contrary, it has 
been suggested that, in the latter locations, the somatic growth 
of Arctic charr might even increase under climate change, due 
to warmer water temperatures and a prolonged ice-free season 
(Pörtner et al., 2001; Reist et al., 2006), thereby opening new op-
portunities for their exploitation.

Here, we examine the combined effects of climate change and 
size-selective fishing on Arctic charr populations using an eco- 
genetic individual-based model (Dunlop, Heino, & Dieckmann, 
2009). Arctic charr population dynamics are modelled over the pe-
riod 1950–2100 for climate scenarios characterized by the repre-
sentative concentration pathways (RCPs) RCP-4.5 and RCP-8.5, and 
for five different levels of size-selective harvesting. The model is 
parametrized and evaluated based on long-term data from a sub- 
Arctic lake (Amundsen, Knudsen, & Klemetsen, 2007; Amundsen 
et al., 2019; Persson et al., 2007). We investigate whether climate 
change will increase individual growth rates of Arctic charr in 
high-latitude lakes, as water temperatures approach the optimum 
for summer growth, resulting in larger size at age and higher stock 
biomass and production. We further address the truncation of size 

4. Synthesis and applications. Our model-based analyses highlight the combined ef-
fects of climate change and size-selective fishing, emphasizing the emerging
vulnerability of fish populations to multiple stressors. We recommend carefully
climate-adapted management strategies permitting only a narrow range of gillnet
mesh sizes for inland fisheries at high latitudes.

K E Y W O R D S

age and size truncation, Arctic charr, climate change, ecological modelling, management of 
freshwater fish, population dynamics, salmonids, size-selective fishing



     |  3Journal of Applied EcologySMALÅS et AL.

and age distributions by size-selective fishing and the effects on 
stock biomass and yield contingent on fishing effort and climate 
scenario. In light of our findings, we discuss climate-adaptation 
strategies for inland fisheries at high latitudes that can promote 
sustainable exploitation.

2  | MATERIAL S AND METHODS

2.1 | Data sources and model parametrization

Our eco-genetic individual-based model for Arctic charr is forced by cli-
mate, using two different RCP scenarios, RCP-4.5 and RCP-8.5. These 
scenarios describe the projected increases, of either 4.5 or 8.5 W/m2, 
in radiative forcing in the year 2100 resulting from rising greenhouse-
gas concentrations in the atmosphere and their corresponding green-
house effects on climate warming (IPCC, 2007). Climate variables are 
obtained at the finest grid resolution available (0.11°) from a regionally 
downscaled climate model (MPI-M-MPI-ESM-LR), forced by the global 
circulation model CLMcom-CCLM4-8-17. The climate model out-
comes, made available through the EURO-CORDEX project, cover the 
period 1950–2100. To obtain daily lake water temperatures from the 
climate model outcomes, we adopt the one-dimensional air-to-water 
temperature model called ‘General Lake Modelling,’ using the r pack-
age GLMr (Hipsey, Bruce, & Hamilton, 2014). More detailed descrip-
tions of the climate models and of the modelling of physical limnology 
are available in Appendix S2.

The eco-genetic model is parameterized and evaluated based 
on long-term data for the Arctic charr population of Lake Takvatn 
(69°07′N, 19°05′E). Lake Takvatn is located about 300 km north of 
the Arctic Circle in northern Norway, has an area of 15 km2 and is sit-
uated 215 m above sea level. Data on Arctic charr have been collected 
yearly since the early 1980s (Amundsen et al., 2019) and include indi-
vidual age, length, weight, maturation status, sex and fecundity data 
(Amundsen et al., 2007; Henriksen et al., 2019). Parameters used for 
our model are listed in Table S1 in Appendix S1, and data from Lake 
Takvatn charr are visualized in Figure S1 in Appendix S1. Analyses of 
robustness and sensitivity to changes in somatic growth and natural 
mortality are also available in Appendix S2.

2.2 | Eco-genetic model overview

We use an individual-based model designed according to the eco-
genetic modelling framework introduced by Dunlop et al. (2009). Our 
model describes demographic processes without evolutionary ef-
fects on life-history traits. The model runs by accounting for succes-
sive life-history events during each annual cycle, including mortality, 
maturation, growth and reproduction (Dunlop et al., 2009). Growth 
is described by temperature-dependent daily length increments to 
capture climate-related growth effects. In each model run, the Arctic 
charr population is initialized with 3,000 individuals and traced for 
150 years. Results are averaged over 50 replicate model runs.

2.3 | Mortality

Annual mortality is calculated as

where Z is the total mortality, M the natural mortality, and F the fishing 
mortality (all expressed as instantaneous mortality rates). The natural 
mortality for many fishes, including salmonids, is assumed to be neg-
atively correlated with their body size (Elliott, 1993; Gislason, Daan, 
Rice, & Pope, 2010), following an allometric relation,

where L is the length of fish, Mr the natural mortality at the reference 
length Lr, and c the allometric exponent. The observed size distribution 
of Arctic charr in Lake Takvatn is used to calibrate Lr and c. To estimate 
Mr, we use the equation given by Pauly (1980),

where z-values are constants provided by Pauly (1980), all logarithms 
are natural logarithms, L∞ (= 50 cm) and K (= 0.14 year−1) are the as-
ymptotic length and the growth rate of Lake Takvatn Arctic charr, re-
spectively, both of which are estimated from empirical data using the 
von Bertalanffy growth model (Chen, Jackson, & Harvey, 1992), and 
T (= 4.4°C) is the observed mean water temperature of Lake Takvatn 
over the period 2017–2018.

We investigate five fishing-mortality scenarios, representing 
different levels of harvesting pressures by gillnets. Gillnet fishing 
is regulated by mesh size, which is recommended to be between 
26 and 35 mm by the regional management institutions (Statskog, 
2017). Size-selectivity of the minimum mesh size is modelled based 
on catch data for Lake Takvatn Arctic charr and used to parametrize 
the length-dependent fishing mortality,

where L is the length of fish, F0 the size-independent component, F1 
scales the size-dependent component, F2 the steepness of the size-de-
pendent component, and F3 the inflection point of the size-dependent 
component.

2.4 | Maturation

Age at maturation is assumed to be phenotypically plastic and deter-
mined by a probabilistic maturation reaction norm (PMRN) describing 
the length- and age-specific probabilities of maturation (Dieckmann 
& Heino, 2007; Heino et al., 2002). We estimate the PMRN from 

(1a)Z=M+F,

(1b)M=Mr(L∕Lr)
−c,

(1c)
log
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Mr∕year
−1
)

=−z1−z2 log
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+z3 log
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+z4 log
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−F2
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long-term data on Arctic charr in Lake Takvatn (Table S1 in Appendix 
S1) using the so-called demographic method assuming a linear reaction 
norm (Barot, Heino, O’Brien, & Dieckmann, 2004). Following Heino et 
al. (2002), we implement a PMRN that involves both age and size, and 
assume that these two variables have independent and linear effects,

where L is the length of fish, a the age of fish, i the PMRN intercept, s 
the PMRN slope, and d the PMRN width.

2.5 | Temperature-dependent growth

We assume a temperature-dependent von Bertalanffy growth 
model,

where Lt is the length of fish at age t, Δt the time interval over which 
growth is considered, L∞ is the asymptotic length at which growth 
is zero, and Kt is the temperature-dependent growth rate at age t 
(Equation 3b). Equation 3a uses the Fabens method for iteratively de-
scribing growth in the von Bertalanffy model (equation 4.1 in Fabens, 
1965; see also Haddon, 2001, pp. 241–242). For our model, we account 
for daily variations in the growth rate Kt and accordingly consider daily 
growth increments, that is ∆t = 1 day = 365.25−1 year = 0.0027379 
year, with a year's growth beginning on 1 January and ending on 
31 December. Growth starts at age 0 from an initial length randomly 
drawn from a normal distribution with mean m (L0) and SD σ (L0).

The temperature dependence of Kt follows a dome-shaped curve 
with a maximum of 0.35 (Kmax) at the temperature optimum (Topt) 
of 14.1°C (Larsson & Berglund, 1998, 2005; Larsson et al., 2005; 
Siikavuopio, Foss, Sæther, Gunnarsson, & Imsland, 2013). The maxi-
mum growth rate, Kmax, is calibrated to the growth of Arctic charr in 
Lake Takvatn, and individual variability in growth rate is implemented 
by random sampling from a normal distribution centred on Kmax. The 
temperature-dependent growth coefficient Kt in year t is set to 0 if 
the temperature is smaller than 1˚C (Tmin) or larger than 20˚C (Tmax) 
(Larsson & Berglund, 1998, 2005; Larsson et al., 2005; Siikavuopio, 
Knudsen, & Amundsen, 2010; Siikavuopio, Skybakmoen, & Sæther, 
2009). Otherwise, Kt is calculated as follows,

where Kmax is the maximum growth rate parameterized for the Takvatn 
charr population using the average von Bertalanffy growth rate (K) and 
the average annual water temperature (from the GLMr) for the last 10 
years of the long-term data series, Tt is the average water tempera-
ture for the upper ten metres on day t, and Tmin, Tmax and Topt are the 
minimum, maximum and optimum water temperatures for Arctic charr, 

respectively (Table S1 in Appendix S1). Arctic charr at high latitudes 
predominantly utilize the shallow-water habitat, especially during the 
ice-free season (Hawley, Rosten, Haugen, Christensen, & Lucas, 2017), 
and therefore, we use the average water temperature for the upper 
10 m.

2.6 | Reproduction and recruitment

The fecundity f of individual adult females is described by an allo-
metric function estimated for the fecundity–length relationship,

where L is the length of fish, fr is the fecundity–length relationship co-
efficient, and b is the allometric exponent.

Annual recruitment is dependent on the size of the spawning 
stock, as well as on the fecundity of adult fish and the density-de-
pendent mortality of eggs and hatchlings (Haddon, 2001). The latter 
density dependence is assumed to follow a Beverton–Holt stock– 
recruitment relationship,

where Rt is the total number of recruits, that is surviving offspring, to 
the population in year t, ftot,t the stock's total fecundity in year t (given 
by the sum of the fecundities f according to Equation 4a of all adult 
females reproducing in that year), Rmax the maximal number of recruits, 
and ftot,1/2 the total fecundity at which density-dependent recruitment 
mortality kills 50% of the offspring. This Beverton–Holt stock–recruit-
ment model predicts a saturating relationship between the total popu-
lation fecundity ft and the total number Rt of recruits.

2.7 | Limitations of model assumptions

The model description above is limited by simplifying assumptions re-
garding mechanisms and processes. Realistic models of intermediate 
complexity are suggested to enhance ecological understanding and 
are thereby considered advisable (Van Nes & Scheffer, 2005). In our 
model, we simplified the effects of density dependence on growth to 
facilitate the analysis of how water temperature and fishing mortal-
ity affect populations of Arctic charr. Density dependence is assumed 
to influence recruitment through a Beverton–Holt relationship, thus 
affecting the annual recruitment. Ignoring density-dependent growth 
will affect model outcomes for individual-level growth rates and pop-
ulation-level biomass and yield, particularly in low-fishing-mortality 
scenarios when abundance is relatively high. However, the maxi-
mum temperature-dependent growth coefficient Kmax is calibrated 
to Arctic charr growth from Lake Takvatn (von Bertalanffy growth 
curve, Figure S1 in Appendix S1), thereby implicitly taking into account 
resource availability. Interspecific interactions are omitted, as Arctic 
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1
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charr populations are often allopatric in high-latitude lakes (Klemetsen  
et al., 2003).

3  | RESULTS

3.1 | Climate warming increases somatic growth and 
stock biomass

Our model predicts that an increase in water temperature (Figure 1) 
substantially increases the length at age of Arctic charr (Figure 2). 
For example, the mean length of 4-year-old Arctic charr in the RCP-
8.5 climate scenario shows a significant increase from an average of 
20.7 cm in the year 2000 to 23.3 cm in the year 2050 (Wilcox non-
parametric W test, W = 44,289, p < .001) and to 25.5 cm in the year 
2100 (W = 12,663, p < .001). For the RCP-4.5 climate scenario, the 
increase of length at age is small, but significant; for 4-year-old charr, 

the average length increases to 22.8 cm in the year 2050 (W = 59,873, 
p < .001) and to 23.2 cm in the year 2100 (W = 55,658, p < .001). The 
stock biomass of Arctic charr is influenced by growth rate, increas-
ing with time along with temperature (Figures 1 and 3). The biomass 
increase since the year 2000 is 34% and 37% by the year 2050, and 
35% and 80% by the year 2100 in the RCP-4.5 and RCP-8.5 climate 
scenarios, respectively.

3.2 | Increased harvesting masks the temperature 
effects on stock biomass and yield

Increased harvesting masks the positive effects of tempera-
ture on stock biomass: for the year 2100, a fishing mortality of 
F = 0.0 year−1 results in a ratio of BRCP-8.5/BRCP-4.5 = 1.25 (com-
paring RCP-8.5 and RCP-4.5), F = 0.1 year−1 results in BRCP-8.5/
BRCP-4.5 = 1.22, F = 0.2 year−1 results in BRCP-8.5/BRCP-4.5 = 1.14,

F I G U R E  1   Time series of (a) air 
temperature, (b) water temperature and 
(c) stock biomass of Arctic charr in Lake 
Takvatn without harvesting for two 
climate scenarios (light shades for RCP-
4.5, dark shades for RCP-8.5) from 1953 
to 2005 (hindcasted model-predicted) and 
from 2006 to 2100 (scenario-projected 
and model-predicted)
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F = 0.3 year−1 results in BRCP-8.5/BRCP-4.5 = 1.09, and F = 0.5 year−1

results in BRCP-8.5/BRCP-4.5 = 1.03. This masking effect occurs because 
the predicted stock biomass of Arctic charr is strongly affected by 
the level of fishing; for example, the predicted biomass in the year 
2100 for F = 0.5 year–1 is only 5% of the biomass predicted without 
fishing.

Yield is substantially affected by increased somatic growth 
rates (Figure 4). For the lowest fishing mortality (0.1 year−1) in 

the RCP-4.5 climate scenario, yield increases by 28% by the year 
2050 and did not increase further by the year 2100. For the same 
fishing mortality in the RCP-8.5 climate scenario, yield increases 
by 33% by the year 2050 and by 67% by the year 2100. Yield 
is largest for the lowest considered non-zero fishing mortality 
of F = 0.1 year−1 and decreases significantly as harvesting is in-
creased: the yield for F = 0.5 year−1 is on average only 40% of the 
yield for F = 0.1 year−1. For the hindcast period 1950–2005, there 
is no significant difference in yield between the fishing mortal-
ities 0.1 and 0.2 year−1 (W = 405,670, p = .12). However, with 
increasing temperature, yield increases more for F = 0.1 year−1 
than for F = 0.2 year−1, and the difference is significant for the 
forecast period 2006–2100 in the RCP-8.5 climate scenario 
(W = 1,175,400, p < .001), during which average yield is 13% 
larger for F = 0.1 year−1 than for F = 0.2 year−1.

3.3 | Climate warming increases the vulnerability of 
harvested populations

The enhanced growth rates of Arctic charr lead to shifts in the 
age distributions of all individuals and harvested individuals 
(Figure 5a,c). Thus, relative to the year 2000, the age distribution 
in the Arctic charr population for a given fishing mortality (e.g. 
F = 0.2 year−1, mean age = 4.3 years) is significantly shifted towards 
younger individuals in the years 2050 (mean age = 4.0 years, 
W = 961,160, p = .008) and 2100 (mean age = 3.8 years, 
W = 12,037,000, p < .001). Similarly, relative to the year 2000, 
the age distribution of harvested Arctic charr (e.g. F = 0.2 year−1, 
mean age = 8.6 years) is significantly shifted towards younger 
individuals in the years 2050 (mean age = 7.7 years, W = 49,375, 

F I G U R E  2   Model predictions of lengths at age of Arctic charr in 
Lake Takvatn for two climate scenarios without harvesting
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p < .001) and 2100 (mean age = 7.2 years, W = 74,782, p < .001). 
The size distribution of the Arctic charr population does not 
change with climate warming (Figure S4 in Appendix S4). The age 
distributions of all individuals and harvested individuals are trun-
cated as fishing mortality is increased (Figure 5b,d); the same 
truncation effect is also empirically observed in the size distri-
bution of Artic charr in Lake Takvatn (Figure S4 in Appendix S4). 
The mean age of the remaining population in the year 2100 for 
F = 0.1 year−1 (RCP-8.5) is 5.1 years, but decreases to 2.5 years 
for F = 0.5 year−1. The five levels of fishing mortalities result in 
significantly different mean ages in the Arctic charr population in 
the year 2100 (F = 0.0 year−1 vs. F = 0.1 year−1, W = 52,667,000, 
p < .001; F = 0.1 year−1 vs. F = 0.2 year−1, W = 2,2036,000, 
p < .001; F = 0.2 year−1 vs. F = 0.3 year−1, W = 1,0,137,000, 
p < .001; and F = 0.3 year−1 vs. F = 0.5 year−1, W = 5,516,800, 
p < .001). The mean age of the harvested Arctic charr in the year 
2100 for F = 0.1 year−1 (RCP-8.5) is 8.6 years and decreases to 
5.4 years for F = 0.5 year−1.

The numbers of mature individuals and recruits increase 
with climate warming for low fishing mortality (F < 0.2 year−1), 
especially under the RCP-8.5 climate scenario. For instance, for 
F = 0.1 year−1 and RCP-8.5, the number of mature individuals in-
creases by 19.9% (W = 46,920, p < .001), and the number of recruits 
increases by 7.2% (W = 48,400, p < .001) from the year 2000 to the 
year 2100. However, for high fishing mortality (F > 0.2 year−1), the 
numbers of mature individuals and recruits decrease with climate 
warming. For instance, for F = 0.3 year−1 and RCP-8.5, the numbers 
of mature individuals and recruits in the year 2100, compared to 
the year 2000, are only 83.1% (W = 10,662, p < .001) and 88.3% 
(W = 11,696, p < .001), respectively. Through climate warming, 
the proportion of immature individuals included in the catches in-
creases over time. For instance, for F = 0.2 year−1 and RCP-8.5, 
this proportion equals 20.1% in the year 2000, 29.7% in the year 

2050 and 33.9% in the year 2100, corresponding to a 69% increase 
during the century.

4  | DISCUSSION

Our model predicts that higher water temperatures will acceler-
ate the somatic growth of Arctic charr at high latitudes, leading to 
larger body size at age and increased stock biomass. Interestingly, 
the potential increase in biomass with future climate warming 
is masked by harvesting, which has a strong negative effect on 
biomass due to the increase in the fishing mortality of larger in-
dividuals. According to our model, yield will increase substantially 
under climate warming only when fishing mortality is low, and the 
sensitivity of yield to fishing mortality will increase as water tem-
perature rises. In addition, under climate warming, harvesting will 
target younger individuals, resulting in a more pronounced age 
truncation and a larger proportion of immature individuals in the 
catches, which might elevate the vulnerability of the population to 
environmental perturbations.

Despite a significant increase in mean annual water tempera-
ture (by 1.5°C in the RCP-8.5 climate scenario for 2000–2100), the 
projected water temperatures are unlikely to exceed Arctic charr's 
optimum for somatic growth for the majority of the growing sea-
son in sub-Arctic areas: only 10.2 days above optimum are pre-
dicted for the year 2100. Temperature-dependent somatic growth 
in high-latitude Arctic charr populations has been studied exten-
sively and has revealed positive somatic growth between about 
1°C and about 20°C, with an optimum temperature of about 14°C 
(Larsson & Berglund, 1998, 2005; Siikavuopio et al., 2010, 2009). 
According to our study, the projected rise in water temperature 
will result in a significant increase in mean size at age and stock 

F I G U R E  4   Model predictions of yield of Arctic charr in Lake Takvatn for two climate scenarios (dashed lines for RCP-4.5, continuous 
lines for RCP-8.5) and five fishing mortalities (0.0, 0.1, 0.2, 0.3 and 0.5 year−1) from 1953 to 2005 (hindcasted) and from 2006 to 2100 
(forecasted). (a) Focus on RCP-4.5 climate scenario and (b) focus on RCP-8.5 climate scenario, with 95% confidence intervals indicated by 
shading
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biomass. Higher growth rates and production have been sug-
gested to be a consequence of climate warming for freshwater fish 
populations living in high-latitude lakes (Brander, 2007; Reist et al., 
2006). There are few studies testing the impact of climate warm-
ing on somatic growth in salmonids; however, a study on rainbow 
trout revealed that a 2°C increase in water temperature en-
hanced growth throughout most of the growing season (Morgan, 
McDonald, & Wood, 2001). This is further supported by a recent 
study showing that freshwater salmonid populations experienc-
ing climate warming within their temperature tolerance range 
will exhibit increased growth rates (Symons, Schulhof, Cavalheri, 
& Shurin, 2019). It is therefore likely that Arctic charr inhabiting 
areas where current water temperatures are substantially lower 
than the optimum for somatic growth will experience increased 
somatic growth and production from climate warming (Karlsson, 
Jonsson, & Jansson, 2005). This expectation assumes that the out-
comes of interactions with other species do not change. For in-
stance, studies on Arctic charr closer to the southern border of its 
distributional range indicate that an experienced temperature rise 

alone did not affect the production of such an Arctic charr popu-
lation, but when non-native fish (percids) were abundant, Arctic 
charr population's production decreased with increasing tem-
perature (Morrissey-McCaffrey, Shephard, Kelly, & Kelly-Quinn, 
2018). Our projections of changes in growth and stock biomass 
are robust to small (±5%) changes in growth parameters (L∞ and 
Kmax) and qualitatively consistent across the investigated range of 
natural-mortality parameters (Appendix S3). Our model results are 
based on the assumption that individual growth is not dependent 
on the density of the Arctic charr population. Hence, the empirical 
effects of increasing water temperatures on growth and stock bio-
mass may be less pronounced than what is predicted by our model.

Our model shows that higher water temperatures will increase 
the production and stock biomass of Arctic charr substantially 
only when fishing mortality is low. The substantial positive tem-
perature effect on stock biomass and yield predicted for low fish-
ing mortalities (F < 0.2 year−1) is largely reduced at higher levels of 
harvesting. A comparison between model results for the two con-
sidered climate scenarios and different levels of fishing mortality 

F I G U R E  5   Model predictions of the 
age distributions of the population of 
Arctic charr in Lake Takvatn (a, b) and 
among the harvested individuals (c, d). 
(a, c) Age distributions in the years 2000, 
2050 and 2100 for a fishing mortality of 
F = 0.2 year−1 and two climate scenarios 
(dashed lines for RCP-4.5, continuous lines 
for RCP-8.5). (b, d) Age distributions in 
the year 2100 for five fishing mortalities 
(0.0, 0.1, 0.2, 0.3 and 0.5 year−1) and two 
climate scenarios (dashed lines for RCP-
4.5, continuous lines for RCP-8.5)
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reveals that the positive temperature effect on production also 
diminishes at higher levels of fishing mortality. Including densi-
ty-dependent growth in the model may somewhat compensate 
for loss of production to fishing mortality, thereby reducing the 
negative impact of increased harvesting on yield. Interestingly, the 
yields our model predicts for the hindcast period 1950–2005 are 
quantitatively similar for the two lowest non-zero levels of fish-
ing mortality we have considered (F = 0.1 year−1 and 0.2 year−1), 
whereas with future climate warming, these yields will diverge, 
resulting in substantially higher yield for F = 0.1 year−1 than for 
F = 0.2 year−1. Brander (2007) suggested that yield may increase in 
high-latitude fisheries as a consequence of increasing water tem-
peratures, but emphasized the need to reduce fishing mortality 
in fully exploited stocks as a mitigation strategy against climate 
change. Our results suggest that climate-warming effects in highly 
exploited stocks might be hard to detect, because they will be 
masked by harvesting.

Long-term empirical studies (with study periods longer than 
10 years; Lindenmayer & Likens, 2010) are especially important 
for assessing population impacts of climate warming. However, 
such studies are rare and often examine systems simultaneously 
impacted by other anthropogenic stressors such as harvesting 
(Amundsen et al., 2019). A review of long-term empirical time se-
ries of freshwater fish in Europe indicates that declines in Arctic 
charr populations can be attributed to climate warming, even 
though somatic growth rates have often increased over time 
(Jeppesen et al., 2012). Indeed, in addition to experiencing climate 
warming, most of the studied populations were also influenced 
by other anthropogenic stressors including harvesting (Jeppesen 
et al., 2012). Climate-change effects might therefore be hard to 
disentangle from the impacts of other factors. Our model-based 

analyses help identify possible negative effects of the combined 
exposure to warming and harvesting.

We have found severe demographic effects of size-selective 
harvesting on Arctic charr, a phenomenon documented for many 
harvested fish populations (Anderson et al., 2008; Jørgensen et al., 
2007; Longhurst, 2006). Our model predictions show a sharper trun-
cation of the age and size distribution as harvesting is increased. A 
population experiencing size and age truncation typically becomes 
more vulnerable and less resilient to environmental perturbations 
and stochastic events (Anderson et al., 2008; Heino & Godø, 2002). 
Larger and older (and thus more experienced) individuals tend to 
tolerate fluctuating environmental pressures and survive hard times 
better through bet-hedging strategies than smaller and younger in-
dividuals (Bobko & Berkeley, 2004; Marteinsdottir & Steinarsson, 
1998). Higher vulnerability due to size and age truncation by fish-
eries might be particularly detrimental under the widely predicted 
increase in the frequency of extreme climate events (Beniston et al., 
2007). Arctic charr individuals are extremely vulnerable to gillnet 
fisheries, and only a few gillnets with large mesh sizes can remove 
the production of large piscivorous individuals (Finstad et al., 2001). 
In addition to ecological effects of size and age truncation, evolu-
tionary effects that might not be easily reversed are found in pop-
ulations of fish under size-selective harvesting (Enberg, Jørgensen, 
Dunlop, Heino, & Dieckmann, 2009; Jørgensen et al., 2007; Olden 
et al., 2010).

The combined effects of fishing and climate warming seem se-
vere, highlighting the importance of considering multiple stress-
ors affecting structured fish populations. With higher water 
temperatures, somatic growth increases, resulting in younger 
fish becoming available to gillnet fisheries. Our model predicts 
that the proportion of young, immature individuals in the catches 

F I G U R E  6   Conceptual illustration of the demographic changes caused by the combination of climate warming and size-dependent 
harvesting. The grey shading shows the size range of the fishery, the dashed red line shows the age-dependent probabilistic maturation 
reaction norm (PMRN) midpoints, and the blue lines show the mean growth trajectories (a) before (dashed blue line) and (b) after (continuous 
blue line) a period of climate warming. Open grey circles represent immature individuals, and open blue circles represent mature individuals, 
as predicted by our model. The two large black circles highlight the increased risks of large immature individuals (to the left of the dashed red 
line) and of small mature individuals (to the right of the dashed red line) to be harvested. This shows how the climate-induced changes in the 
demographic distribution of the population might increase its vulnerability, as a larger proportion of the population becomes susceptible to 
harvesting, including more large immature individuals and more young mature individuals
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will increase with climate warming: this effect is particularly pro-
nounced for fishing mortalities F > 0.2 year−1 and in fish popula-
tions with steeply negatively sloped maturation reaction norms, 
for which maturation is largely influenced by age, as in the pres-
ent study. For such fishing mortalities, climate warming does not 
change the population's size distribution, but causes a decline in 
the numbers of mature individuals and recruits. In turn, such an 
erosion in recruitment increases the population's vulnerability to 
environmental perturbations, which are expected to increase in 
frequency and intensity under climate warming. Further, the sharp 
decrease in the number of older mature individuals with climate 
warming results in a spawning stock that by the year 2100 con-
sists mainly of young individuals (3–5 years old). Older individuals 
typically produce larger, higher-quality eggs, resulting in offspring 
that may better withstand starvation and survive a broader suite 
of negative environmental conditions (Anderson et al., 2008; 
Berkeley et al., 2004; Hsieh et al., 2010). In Arctic charr, older in-
dividuals produce larger eggs (Lasne, Leblanc, & Gillet, 2018), and 
thus larger larvae, which have faster initial growth and higher sur-
vival than their smaller counterparts (Leblanc, Benhaïm, Hansen, 
Kristjánsson, & Skúlason, 2011). Also, the stronger age truncation 
of adults induced by climate warming results in a very narrow adult 
age range, which implies that weak cohorts will have a greater neg-
ative impact on recruitment. In addition to the ecological effects, 
removing a high proportion of immature, fast-growing fish might 
lead to fisheries-induced selection towards smaller size at matura-
tion (Enberg et al., 2009). The decline in the number of mature in-
dividuals and recruits eventually leads to a reduction in population 
abundance for high fishing mortality, further increasing vulnera-
bility (see Figure 6 for a conceptual summary of the possible com-
bined effects of climate warming and size-dependent harvesting).

For the management of exploited stocks under climate change, our 
results suggest that monitoring should address not only stock abun-
dances and biomasses, but also size and age distributions, as well as mat-
uration status, to detect demographic changes triggered by increased 
water temperatures. In many freshwater systems, monitoring of popu-
lations is based on catch statistics, which often do not include informa-
tion about the age of fish, and climate-change effects may therefore be 
difficult to detect. In light of our findings, we recommend a moderation 
of fishing effort (i.e. limiting the number of gillnets/night or licensed fish-
ermen, or establishing a temporal window for harvesting) and a narrow 
range of gillnet mesh sizes (excluding large mesh sizes, thus protecting 
larger individuals), as climate adaptations of the management of inland 
fisheries at high latitudes. Such mitigation strategies will help maintain 
the old and large individuals in the population and limit the harvesting 
of juvenile individuals. Current regulations in northern Scandinavia are 
highly variable; however, decision-makers are increasingly realizing that 
climate-adaptation plans are necessary for sustainable harvest.

Our model ignores temperature-driven changes in other candidate 
parameters that may mitigate or exacerbate the combined effects of 
climate warming and size-selective fisheries. One candidate parameter 
related to growth is the asymptotic length L∞, which might increase 
with climate warming (Quince, Abrams, Shuter, & Lester, 2008). This 

would mitigate some of the negative demographic effects for high lev-
els of harvesting if older, larger individuals could survive harvesting. To 
the extent that the maximum recruitment Rmax may be limited by basal 
production available to the larvae, Rmax might increase with climate 
warming due to higher production (Karlsson et al., 2005). Such an in-
crease in Rmax would mitigate the increased vulnerability associated 
with high levels of fishing mortality and climate warming.

The effects of multiple anthropogenic stressors on freshwater 
fish populations are presently poorly understood and hard to predict 
(Olden, Hogan, & Zanden, 2007). Scenario-based modelling helps 
to understand how combined pressures might interact (Folt, Chen, 
Moore, & Burnaford, 1999), which aids the future management and 
preservation of harvested freshwater fish stocks. The present study 
demonstrates that the combined effects of climate warming and 
size-selective fishing can be large, influencing both stock biomass and 
yield, as well as the size- and age structure of exploited Arctic charr 
populations. Harvested fish populations may thereby become less re-
silient and more vulnerable to climate warming.
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Abstract 

The effects of climate change on fish are increasingly well documented but have so far largely 

been overlooked in high-latitude freshwater ecosystems. High latitudes experience more rapid 

warming than any other area on the planet, and freshwater ecosystems appear to be more 

vulnerable than both marine and terrestrial environments. Here, we study how past and 

projected climate warming, together with anthropogenic harvesting pressures, affect lacustrine 

salmonids north of the Arctic Circle. We combine retrospective analyses of four decades of 

field data on temperature-dependent growth with individual based models (IBMs) forced by 

observed and modelled climate variability to assess how climate warming affects somatic 

growth in three salmonid species – Arctic charr, whitefish, and vendace – differing in their life 

mailto:aslak.smalas@uit.no
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histories and temperature preferences. The IBMs enable us to address different multi-stressor 

scenarios of climate warming (RCP 4.5 and RCP 8.5, as defined by the Intergovernmental Panel 

on Climate Change), density dependence, and size-selective harvesting. We find that all three 

salmonid species increase somatic growth under climate warming in both observed and 

modelled populations. We project that size at age and population biomass will increase for these 

populations. Vendace, which is the least cold-water-adapted species in our study, stands to 

benefit significantly more, in terms of somatic growth and population biomass, from climate 

warming than the more cold-water-adapted species Arctic charr and whitefish. Arctic charr, on 

the other hand, is the species most sensitive to climate warming and has a life history most 

vulnerable to size-selective harvesting. Our results highlight how the cumulative effects of 

global climate warming and local anthropogenic harvesting pressures are threatening for many 

populations of cold-water-adapted freshwater fish. 

Keywords: climate warming, salmonids, climate change, ecological modelling, population 

dynamics, size-selective fishing. 

Introduction 

Climate change affects freshwater environments and biota via the rapid warming of 

water temperatures (O’Reilly et al. 2015), leading to shifts in species distributions (Hickling et 

al. 2006, Comte et al. 2013, Campana et al. 2020), altering vital rates (Biro et al. 2007, Arula 

et al. 2017, Huss et al. 2019), and affecting ecosystem services and functioning (Dodds et al. 

2013, Benateau et al. 2019). The rates of climate warming in Arctic and sub-Arctic regions are 

higher than elsewhere on the planet (Parmesan 2006), and freshwater environments might be 

more exposed than terrestrial and marine environments (Woodward et al. 2010). For ectotherms 
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like fish, physiological processes are influenced by ambient temperatures, and somatic growth 

rates thus change with climate warming (Huss et al. 2019). Somatic growth rates, in turn, 

influence maturation, survival, and reproduction (Biro et al. 2007), and increased temperatures 

therefore comprehensively impact the ecology and population dynamics of freshwater fish. The 

population effects of climate warming will vary depending on species-specific traits, 

community composition, and geographic area, but also on the presence and strength of other 

human stressors like size-selective fisheries (Smalås et al. 2020). Even though cold-water-

adapted freshwater fishes at high latitudes are expected to respond strongly to ongoing and 

future climate warming, there is a lack of long-term studies and prospective model-based 

investigations to evaluate and quantify such expectations. This knowledge gap is concerning as 

it hinders possible climate action in pursuit of sustainable management and conservation. 

In fish, temperature-dependent somatic growth mediates many individual-level and 

population-level effects of climate change (Deutsch et al. 2008, Ohlberger 2013). Ambient 

temperature affects both food intake and metabolic costs, with their balance determining net 

energy gain and somatic growth (Jobling 2002). Food consumption increases with ambient 

temperature up to an optimum before it steeply drops (Jobling 1981, Koskela et al. 1997). In 

contrast, metabolic expenses increase exponentially with temperature (Brown et al. 2004). 

Somatic growth rates are thus highest at an intermediate temperature within the thermal 

tolerance range of a fish species. Net energy gain and somatic growth also depend on food 

availability (Huey & Kingsolver 2019), which in turn is affected by ecosystem productivity and 

consumer abundance (Lorenzen & Enberg 2002, Amundsen et al. 2007). Whereas climate 

warming is projected to reduce productivity in temperate and tropical areas, climate warming 

is expected to raise productivity in cold, high-latitude environments (Deutsch et al. 2008, 

O’Beirne et al. 2017). Since present water temperatures in high-latitude freshwater systems are 

relatively low, somatic growth is often slow in the typically late-maturing and long-lived 
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species of freshwater fish living there (Reist et al. 2013). If climate warming significantly 

increases somatic growth rates, the ecological implications for individuals and populations will 

be wide-ranging: ages and sizes at maturation might change, mortality patterns might be altered, 

and reproduction and recruitment might be impacted. 

Additional stressors affecting fish populations can either mitigate or accentuate the 

effects of climate warming. One such stressor is size-selective fishing, which greatly affects 

harvested populations (Ernande et al. 2004). Humans are important predators in species-poor 

high-latitude ecosystems and can reduce the abundance of fish competitors, thereby indirectly 

promoting density-dependent somatic growth (Amundsen et al. 2007, Persson et al. 2007). 

Although fisheries might thus increase somatic growth through the release of density 

dependence, size-selective harvesting reduces recruitment via the truncation of age and size 

distributions (Conover & Munch 2002, Heino & Godø 2002). Despite positive effects on 

somatic growth resulting from climate warming and size-selective harvesting, their cumulative 

effect may increase the vulnerability of exploited fish populations (Smalås et al. 2020). Multiple 

anthropogenic stressors already threaten fish populations at high latitudes, and climate warming 

may intensify the resultant risk via synergistic effects (Dodds et al. 2013, Green et al. 2015). 

Synergistic effects of climate warming and size-selective harvesting mediated by their effects 

on somatic growth crucially depend on the thermal preferences and life histories of the affected 

species (Smalås et al. 2020). The changes in vital rates mediated by temperature-dependent 

growth have implications for demography, influencing population size, age structure, and 

maturation schedules (Biro et al. 2007). Therefore, with climate warming, size-selective 

harvesting may shift from targeting primarily adult fish to targeting both adults and juveniles, 

and will exacerbate age truncation, reducing both the proportion of adults in the population and 

the recruitment potential (Smalås et al. 2020). The latter will increase population vulnerability 

to environmental perturbations. For instance, fish species with fast development, early 
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maturation, and maturation reaction norms dependent more on size than on age might be less 

vulnerable and vice versa (Jennings et al. 1998, Wiedmann et al. 2014). Therefore, the 

combined effects of climate warming and size-selective harvesting must be expected to differ 

between species, depending on their temperature preferences and life histories. 

Freshwater salmonids living at high latitudes vary substantially in their temperature preferences 

and life histories (Klemetsen et al. 2003, Reist et al. 2006). Here, we focus on three salmonid 

species with wide geographical distributions in northern Eurasia that differ in their temperature 

preferences, life histories, and exploitability, to assess their differential responses to climate 

warming and to investigate the synergistic effects of climate warming and size-selective 

harvesting. First, Arctic charr (Salvelinus alpinus) is the most cold-water-adapted of all 

freshwater fish species, with relative high longevity, slow juvenile growth, large adult size, and 

late maturation, and is an important but vulnerable target for sustenance and recreational 

fisheries (Klemetsen et al. 2003, 2010). Second, European whitefish (Coregonus lavaretus) is 

also cold-water-adapted, although it thrives at slightly higher temperatures than Arctic charr 

(Siikavuopio et al. 2010). Whitefish tend to mature at younger ages and smaller sizes than 

Arctic charr, have a greater juvenile growth capacity, and an on average smaller adult body size 

(e.g., Amundsen et al. 2002, Sandlund et al. 2013). Third, vendace (Coregonus albula) is a 

cool-water-adapted fish and differs from the other two species by maturing at very young age 

and relatively small size while accomplishing very fast juvenile growth (Sandlund et al. 2013). 

Vendace often displace whitefish from the pelagic zone of lakes when originally coexisting 

there (Sandlund et al. 2013). Thus, there is a gradient both in temperature preferences and in 

life histories among these three species. The present study’s objectives are to (i) assess the effect 

of climate warming on somatic growth based on long-term empirical studies of the three 

aforementioned salmonids using backcalculated sizes at age, (ii) model past and future effects 

of climate warming based on climate-forced individual-based models (IBMs) of these species, 
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and (iii) compare the synergistic effects of climate warming and size-selective harvesting across 

these species. We expect that less cold-water-adapted species will display stronger positive 

responses to climate warming in terms of accelerated juvenile somatic growth, while more cold-

water-adapted species will experience stronger negative synergistic effects of climate warming 

and size-selective harvesting. 

Material and Methods 

Empirical data and climate modelling 

To estimate temperature-dependent growth, we used long-term datasets from two of the 

best-studied watercourses at high latitudes, including three different species of freshwater fish, 

Arctic charr, whitefish, and vendace (Amundsen et al. 2019). Growth estimates for Arctic charr 

(n = 680) are from Lake Takvatn in the Målselv watercourse, covering the period 1986-2018. 

Growth estimates for whitefish (n = 331) and vendace (n = 199) are from two lakes, Lake 

Skrukkebukta and Lake Vaggatem, in the Pasvik watercourse, covering the period 1991-2007. 

For the Pasvik watercourse, water temperatures were available from an automated logger at the 

Skogfoss hydropower plant situated 25 km upstream from Lake Skrukkebukta and 23 km 

downstream from Lake Vaggatem. For Lake Takvatn, continuous water temperature data were 

not available, and we therefore used climate data from the nearby meteorological station at 

Bardufoss, situated 20 km southwest of the lake, to force a one-dimensional air-to-water 

temperature model, called General Lake Modelling (Hipsey et al. 2014, Appendix E), calibrated 

and validated using measured lake water temperature data. To assess water temperature change 

over time, we used linear regression. 

The eco-genetic individual-based model (IBM) specified below was forced by climate, 

using two different Representative Concentration Pathways (RCP) scenarios, RCP-4.5 and 
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RCP-8.5, as defined by the Intergovernmental Panel on Climate Change. These scenarios 

describe the projected increases, of either 4.5 or 8.5 W/m2, in radiative forcing in 2100 resulting 

from rising greenhouse-gas concentrations in the atmosphere and their corresponding 

greenhouse effects on climate warming (IPCC 2007). Climate variables were obtained at the 

finest grid resolution available (0.11°) from a regionally downscaled climate model (MPI-M-

MPI-ESM-LR), forced by the global circulation model CLMcom-CCLM4-8-17. The climate 

model outcomes, made available through the EURO-CORDEX project, cover the period 1950-

2100. To obtain daily lake water temperatures from the climate model outcomes, we again 

adopted the one-dimensional air-to-water temperature model, called General Lake Modelling, 

using the R package GLMr (Hipsey et al. 2014). A more detailed description of the climate 

models and of the modelling of physical limnology are available in the Supplementary 

Information (Appendix E). 

The longitudes and latitudes of the chosen lakes allow us to address the temperature 

difference between the western and eastern regions in northern Norway while representatively 

accounting for the zoogeography of freshwater fish in northern Scandinavia (Lake Takvatn, 

69°06’N, 19°05’E, and Lake Skrukkebukta, 69°33’N, 30°07’E; Supplementary Information, 

Table E1). Long-term data from fish populations in Lake Takvatn (Arctic charr) and Lake 

Skrukkebukta (whitefish and vendace) covering the last 30 years were used to parameterize the 

eco-genetic IBM as described below. Data include individual age, length, weight, maturation 

status, sex, and fecundity in addition to relative density in form of catch-per-unit-effort (CPUE) 

measurements. All resultant model parameters are listed in Table B1 in the Supplementary 

Information (Appendix B). Analyses of robustness and sensitivity to changes in somatic growth 

and natural mortality are also available in the Supplementary Information (Appendix C). 
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Empirical growth estimates 

To estimate empirical temperature-dependent growth, we backcalculated length at age 

for individuals of the three salmonid species using measurements of annulus radii in sagittal 

otoliths according to the backcalculation model described by Finstad (2003), which includes an 

interaction term between age and length, 

𝐿𝐿𝑎𝑎 = �𝑂𝑂𝑎𝑎𝑂𝑂𝐴𝐴−1�𝛽𝛽0 + 𝛽𝛽1𝐿𝐿𝑎𝑎 + 𝛽𝛽2𝐴𝐴+ 𝛽𝛽3𝐿𝐿𝐴𝐴𝐴𝐴� − 𝛽𝛽0𝛽𝛽2𝑎𝑎� (𝛽𝛽1 + 𝛽𝛽3𝑎𝑎)−1,     (1) 

were 𝐿𝐿𝑎𝑎 is the backcalculated length at age 𝑎𝑎, 𝐴𝐴 is the age at capture, 𝑂𝑂𝑎𝑎 is the measured otolith 

radius at age 𝑎𝑎, 𝑂𝑂𝐴𝐴 is the observed otolith radius at time of capture, and 𝐿𝐿𝐴𝐴 is the observed fish 

length at time of capture. The coefficients 𝛽𝛽0, 𝛽𝛽1, 𝛽𝛽2, and 𝛽𝛽3 are estimated by least-square 

multiple regression (Finstad 2003). The lengths at age 1 year of Arctic charr (n = 680), whitefish 

(n = 331), and vendace (n = 199) were backcalculated from immature fish ranging in age from 

2 to 6 years and covering the whole time period described above. To estimate how growth (or 

equivalently, the length at age 1 year) is affected by water temperature, we controlled for 

difference in food availability between years by accounting for differences in the relative 

density of competitors (catch per unit effort, CPUE) for the respective populations and years. 

Linear mixed-effect models were used with individual growth or length increment as the 

response variable, predicted by mean annual water temperature and mean annual relative 

density of competitors (CPUE) as fixed effects and age at capture and lakes (for the coregonids 

in the Pasvik watercourse) as random effects. Computations, statistical analyses, and graphical 

outputs were implemented in R (R version 3.6.0). 



9 

Eco-genetic model overview 

We used the eco-genetic individual-based model (IBM) developed by Dunlop et al. 

(2009) and modified for climate-change impact applications by Smalås et al. (2020), 

parametrized for Arctic charr, whitefish, and vendace. For each annual cycle, the model 

specifies successive population-level processes, including mortality, maturation, somatic 

growth, and reproduction, from which the corresponding individual-level events are derived 

(Dunlop et al. 2009). The initial population in each model run was set to 3000 individuals, and 

50 replicate model runs for 150 years were used. Figure 1 shows a schematic illustration of the 

modeled annual cycle. 

The somatic-growth model estimates a yearly length increment, but to capture climate-

related growth effects the model accumulates daily temperature-dependent effects on net intake 

rate over the year. Since the main aim of the present study is to investigate how temperature- 

and density-dependent growth affect population dynamics under climate warming and size-

selective harvesting (Figures 1 & 2), we describe the somatic-growth model in greater detail 

below. A detailed description of all other components of the IBM is provided in the 

Supplementary Information (Appendix B); see also Smalås et al. (2020). 

Somatic-growth model 

We used the Quince-Boukal-Dieckmann (QBD) biphasic growth model (Boukal et al. 2014) to 

describe juvenile and adult growth trajectories, 

𝐿𝐿𝑎𝑎+1 =  �𝐿𝐿𝑎𝑎
(1−𝛽𝛽)𝛼𝛼+(1−𝛽𝛽)𝑐𝑐𝑏𝑏−(1−𝛽𝛽)

1+𝑞𝑞−1(1−𝛽𝛽) 𝑟𝑟𝑎𝑎+1

(1−𝛽𝛽)𝛼𝛼

,     (2) 



10 

where 𝐿𝐿𝑎𝑎 is the length at age 𝑎𝑎, 𝛽𝛽 is the allometric exponent relating the rate 𝑐𝑐𝑊𝑊𝑎𝑎
𝛽𝛽 of net energy 

intake – measured in terms of weight gain – to the weight 𝑊𝑊𝑎𝑎, 𝑐𝑐 scales this rate, 𝑞𝑞 is the ratio 

between the energetic costs per unit of weight of producing gonadic versus somatic tissue, 𝑟𝑟𝑎𝑎+1 

is the ratio between somatic and gonadic weight at the end of the growth season at age 𝑎𝑎 + 1, 

𝛼𝛼 is the allometric exponent relating the weight 𝑊𝑊𝑎𝑎 = 𝑏𝑏𝐿𝐿𝑎𝑎𝛼𝛼 to the length 𝐿𝐿𝑎𝑎, and 𝑏𝑏 scales this 

weight. For juveniles, all available energy is allocated to growth, i.e., 𝑟𝑟𝑎𝑎 = 0. For adults, a 

fraction of the net energy intake is allocated to reproduction, i.e., 𝑟𝑟𝑎𝑎 > 0. We assumed that 𝑟𝑟𝑎𝑎 

does not change with age 𝑎𝑎; therefore, we set 𝑟𝑟𝑎𝑎 = 𝑟𝑟 and use the closed form of the QBD model 

for adult growth (Boukal et al. 2014). Figure 3 compares estimates of the biphasic somatic-

growth model with the observed length at age data for the different species. We used empirically 

derived parameters from the QBD growth model for the different species in combination with 

the corresponding water-temperature and density experienced by the different populations to 

scale 𝑐𝑐𝑚𝑚𝑎𝑎𝑚𝑚 to the optimum temperature for growth for the different species (see Supplementary 

Information, Appendix B).    

The coefficient 𝑐𝑐 was jointly determined by a temperature- and density-dependent 

consumption rate, scaled by 𝐼𝐼(𝑇𝑇,𝐷𝐷), and a temperature-dependent metabolic rate, scaled by 

𝑚𝑚(𝑇𝑇), where 𝑇𝑇 and 𝐷𝐷 denote temperature and density, respectively. In other words, the 

consumption rate depends both on temperature and – indirectly, through the density of 

competitors – on food availability, while the metabolic rate depends only on temperature. This 

implies that the optimum temperature for growth is lower when the density of competitors is 

higher (Huey and Kingsolver 2019). In addition to 𝑚𝑚(𝑇𝑇), three different processes (Deslauriers 

et al. 2017) diminish 𝑐𝑐: egestion 𝐸𝐸 is the fraction of the consumed energy that is not ingested 

and leaves the fish as feces, specific dynamic action 𝑆𝑆𝐷𝐷𝐴𝐴 is the fraction of 𝑊𝑊𝑎𝑎
𝛽𝛽 used for 

processing the food to energy or storage (Jobling 1983), and excretion 𝑈𝑈 is the fraction of 𝑊𝑊𝑎𝑎
𝛽𝛽 
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lost as nitrogen waste (Deslauriers et al. 2017). Therefore, 𝑐𝑐 was calculated using the following 

bioenergetic relationship, 

𝑐𝑐 = 𝐼𝐼(𝑇𝑇,𝐷𝐷)(1 − 𝐸𝐸) − 𝑆𝑆𝐷𝐷𝐴𝐴 − 𝑈𝑈 −𝑚𝑚(𝑇𝑇),  (3) 

For eq. 4-7 (see below), the calculated values are given in kJ day-1, but 𝑐𝑐 in the QBD 

model have the unit of 𝑔𝑔1−𝛽𝛽 year-1 and we therefore first accumulated the daily energy intake 

over the 365 days and subsequently used a conversion factor 𝑐𝑐 = 𝑐𝑐
𝑧𝑧
 to model growth on the

correct scale used in QBD growth model framework. To reflect individual variation in energy 

acquisition, individual values of 𝑐𝑐 were distributed normally around the mean value given by 

eq. (3). 

The temperature-dependent scaling of the consumption rate follows a Ratkowsky-type 

growth model (Ratkowsky et al. 1983, Larsson et al. 2005, Finstad et al. 2011), useful to 

describe consumption rate in salmonid fish, 

𝐼𝐼(𝑇𝑇) = 𝑑𝑑(𝑇𝑇 − 𝑇𝑇min)�1 − 𝑒𝑒𝑔𝑔(𝑇𝑇−𝑇𝑇max)�,     (4) 

where 𝑇𝑇 is the experienced water temperature, 𝑇𝑇min and 𝑇𝑇max are the minimum and maximum 

temperatures for ingestion, respectively, and 𝑑𝑑 and 𝑔𝑔 are constants. 

The density-dependent scaling of the consumption rate follows a negative power law 

described by Amundsen et al. (2007); see also Lorenzen & Enberg (2002), 

𝐼𝐼(𝐷𝐷) =  𝛿𝛿1𝐷𝐷/𝑑𝑑𝑐𝑐
𝛿𝛿2,    (5) 

where 𝐷𝐷 is the total density of competitors, 𝑑𝑑𝑐𝑐 is the conversion factor from the catch-per-unit-

effort scale used in Amundsen et al. 2007 to density of competitors in the model, and 𝛿𝛿1 and 𝛿𝛿2 

are constants. For densities below the minimum density described in Amundsen et al. (2007) 
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(catch-per-unit-effort (CPUE) = 4.8), 𝐼𝐼(𝐷𝐷) was set to a maximum 𝐼𝐼max, where 𝐼𝐼max= 3.35 is the 

maximum consumption rate seen in Amundsen et al. 2007.  

To capture the combined effects of temperature and density on the consumption rate, 

we used the following equation, 

𝐼𝐼(𝑇𝑇,𝐷𝐷) = 𝐼𝐼(𝑇𝑇)(𝐼𝐼(𝐷𝐷)
𝐼𝐼max

), (6) 

where 𝐼𝐼(𝑇𝑇,𝐷𝐷) reaches its maximum when the water temperature is optimal and the population 

density is lower than the minimum density described by Amundsen et al. (2007). 

The temperature-dependent scaling of the metabolic rate follows the Arrhenius function 

(Gillooly et al. 2001, Lindmark et al. 2018), 

𝑚𝑚(𝑇𝑇) = 𝑚𝑚0𝜔𝜔𝑒𝑒
−𝐸𝐸m(𝑇𝑇−𝑡𝑡0)

𝑘𝑘𝑘𝑘𝑡𝑡0 ,     (7) 

where 𝑚𝑚0 is the metabolic scaling constant in terms of oxygen consumption, 𝜔𝜔 is the conversion 

factor from oxygen consumption to energy consumption, 𝐸𝐸m is the mean activation energy of 

biochemical reactions in fish, 𝑘𝑘 is the Boltzmann constant, 𝑇𝑇 is the temperature in terms of the 

Kelvin scale, and 𝑡𝑡0 is the conversion factor from Kelvin scale to Celsius scale.  

Field studies of the relationship between water temperature and growth are not available 

for freshwater salmonids at high latitudes, while corresponding lab experiments have frequently 

been conducted for the most common high-latitude freshwater fish species. Therefore, we used 

data from lab experiments to parameterize eq. (3): specifically, bioenergetic studies have 

provided estimates of the energies lost to egestion, specific dynamic action, and excretion and 

of the temperature-dependent metabolic rate (Deslauriers et al. 2017). For the corresponding 

species-specific parameterizations, see the Supplementary Information (Appendix B). 
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Results 

Climate warming increases water temperature in high latitude lakes 

Water temperature has increased over the last 30 years in both study systems (Fig. 4a). 

For Lake Skrukkebukta, in the eastern part of the study area, annual mean water temperature 

increased by 0.42 ˚C per decade (F=8.61, p< 0.01, adj-R2=0.241). In Lake Takvatn in the 

western part of northern Norway, the increment was lower than for Lake Skrukkebukta with an 

increase of 0.28 ˚C per decade (F=19.66, p< 0.01, adj-R2=0.361). Climate warming is predicted 

to increase both air- and water temperatures in northern parts of Europe towards year 2100 (Fig. 

4b, & Supplementary Information, Fig. E1 & E3). Annual mean water temperature is projected 

to increase by 0.29 ˚C (F=331, p< 0.001, adj-R2 =0.77) and 0.15 ˚C (F=163.1, p< 0.001, adj-R2 

=0.62) per decade (year 2000-2100) under the RCP-8.5 climate scenario in Skrukkebukta and 

Takvatn, respectively. In addition, number of days with significant surplus growth (length of 

growth season, water temperature between 2-18 ˚C) are also projected to increase by 2.5 days 

per decade (RCP-4.5, F=93.67, p< 0.001, adj-R2=0.39) or by 4.2 days per decade (RCP-8.5, 

F=307, p< 0.001, adj-R2=0.68) for Arctic charr in Lake Takvatn. For whitefish and vendace in 

Lake Skrukkebukta, length of growth season is projected to increase by 2.2 days per decade 

(RCP-4.5, F=93.67, p< 0.001, adj-R2=0.39) or 3.7 days per decade (RCP-8.5, F=307, p< 0.001, 

adj-R2=0.68) (Supplementary Information, Appendix E, Fig. E4 & E5). 

Length at age increases with temperature in wild fish populations 

Increase in mean annual water temperature led to a significant increase in observed 

length at age 1-year for all three species. Vendace in Lake Skrukkebukta showed the greatest 

increase of length with 8.6 mm per degree (˚C) increase in mean annual water temperature. 

Whitefish from Lake Skrukkebukta and Arctic charr from Lake Takvatn showed a significant, 
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but lower increment in length at age 1-year with 4.7 mm per degree (˚C) and 3.4 mm per degree 

(˚C) increase in mean annual water temperature, respectively (Fig. 5, Supplementary 

Information, Table A2, A3 & A6). An increase in relative density of competitors (CPUE) led 

to a significant decrease in length at age for all three species, but the effect size was low for 

vendace in the Pasvik watercourse (Fig. 5). An increase of one standard deviation in CPUE led 

to very similar effects on length at age for all three species ranging between -0.97 to -1.11 mm 

per increase in SD of CPUE (Supplementary Information, Table A4, A5 & A7). Comparison 

between the effects of water temperature and relative density on length at age showed that the 

change in temperature was more important in explaining length increment than relative density 

within the observed range experienced by these fishes using standardized variables 

(Supplementary Information, Table A1 & A5). 

The least cold-water adapted species benefits the most from projected warming 

Our individual based model predicted that length at age increases for all three species, 

but the least cold-water adapted fish species benefits the most from warming in terms of 

increase in somatic growth (Fig. 6a-c). For example, with intermediate fishing pressure (F= 0.2 

yr-1) and thus with intermediate densities, a 4-year old vendace was on average 41 % larger in 

year 2100 compared to year 2000 under the RCP-8.5 climate scenario (Wilcox non-parametric 

W-test, W=2626, p< 0.001). For Arctic charr and whitefish this predicted increase was in 

contrast smaller with a length increment of 32.6 % (Wilcox non-parametric W-test, 

W=664,091, p< 0.001) and 28.4 % (Wilcox non-parametric W-test, W=486,772, p< 0.001), 

respectively. This general trend was true for most fishing mortality scenarios under both climate 

scenarios (Supplementary Information, Appendix C, Tables C1-C15 & Fig. C1-C5 for 

summary results including all fishing mortality and climate scenarios). However, under the 
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highest fishing mortality scenario (F= 0.4 yr-1) the faster growing and largest vendace 

individuals were removed from the population through fishing, therefore the climate effect was 

masked by the size-selective harvest, and the more cold water adapted species had larger 

increase in length at age (Supplementary information, Tables C13-C15).  

Stock biomass also increased substantially with warming for all three species in our 

modelled populations due to increased individual somatic growth (Fig. 6d). With intermediate 

fishing mortality (F= 0.2 yr-1) and thus intermediate densities, vendace stock biomass was 

predicted to increase by 119 % from year 2000 to year 2100 under the RCP-8.5 climate scenario 

(Wilcox non-parametric W-test, W=250,000, p< 0.001). The more cold-water adapted fish 

species, Arctic charr and whitefish, benefited less than vendace from warming with a biomass 

increase of 88 % (Wilcox non-parametric W-test, W=250,000, p< 0.001) and 89 % (Wilcox 

non-parametric W-test, W=250,000, p< 0.001), respectively. Similar trend in biomass increase 

was evident also for other fishing mortality scenarios (see Supplementary Information, 

Appendix C, Fig. C1-C6). 

Increased vulnerability caused by the joint effect of multiple stressors 

The modelled populations differ in their response to multiple stressors. High size-

selective harvest (F> 0.2 yr-1) combined with climate warming altered the age-distribution of 

all three species (Fig. 7). The age-truncation was severe and led to a decrease in both mean age 

and mean age of mature individuals in all three populations. For instance, for fishing mortality 

F= 0.2 yr-1, mean age of the Arctic charr population decreased by 7.3 % from 3.01 years in year 

2000 to 2.79 years in year 2100 (Wilcox non-parametric W-test, W=47,983.143, p< 0.001). For 

the whitefish population, mean age decreased by 10.1 % from 1.81 years in year 2000 to 1.64 

years in year 2100 (Wilcox non-parametric W-test, W=43,085,751, p< 0.001), while the mean 
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age in the vendace population decreased by 30 % from 0.62 years in year 2000 to 0.48 years in 

year 2100 (Wilcox non-parametric W-test, W=20,984,348, p< 0.001). With warming all three 

species increased their length at age, which reduced age at maturation contingent on their 

respective maturation reaction norm. For Arctic charr (F= 0.2 yr-1), the mean age at maturation 

decreased from 6.0 to 5.6 years and mean adult age decreased from 7.2 to 6.5 years from year 

2000 to the year 2100 (Wilcox non-parametric W-test, W=1,744,764, p< 0.001). Whereas for 

whitefish (F= 0.2 yr-1), the mean age at maturation decreased from 4.5 to 3.9 years and mean 

adult age decreased from 5.3 to 4.8 years from year 2000 to the year 2100 (Wilcox non-

parametric W-test, W=45.583.587, p< 0.01). For vendace (F= 0.2 yr-1), the mean age at 

maturation decreased from 1.1 years in year 2000 to 0.9 years in year 2100, and the mean adult 

age decreased from 1.9 to 1.5 years (Wilcox non-parametric W-test, W=1.817.218, p< 0.001). 

For all investigated species, there is no significant sharpening of the size-truncation with 

warming under high fishing mortality scenarios (see Supplementary Information, Appendix C 

for more detailed description of the individual based model outcomes and results). 

The cumulative effects of warming and harvesting increased population vulnerability 

by reducing the proportion of adults due to increased age-specific fishing mortality. Earlier 

maturation age did somewhat mitigate the reduction in the proportion of adults, but the degree 

of compensation differs among the three species. The proportion of mature individuals 

decreased for both Arctic charr and whitefish, but not for vendace in the multiple stressor 

scenarios considered here. For vendace, the proportion of mature individuals was stable or 

increased with warming for all fishing mortality scenarios (Fig. 7c.). Even for the highest 

fishing mortality scenario (F = 0.4 yr-1), the proportion of mature individuals in the population 

was not decreasing with warming (year 2000 vs. year 2100: Wilcox non-parametric W-test, 

W=124.771, p= 0.96). For the whitefish and the Arctic charr populations the negative 

cumulative effect on adult proportion was substantial. For example, under the highest fishing 



17 

mortality scenario (F = 0.4 yr-1), the proportion of mature individuals in the Arctic charr 

population decreased by 24.5 % from year 2000 to year 2100 (Wilcox non-parametric W-test, 

W=545.5, p< 0.001) (Fig. 7a-b). For the whitefish population the effect was less pronounced, 

with a decrease of 16.5 % in the proportion of mature individuals from year 2000 to year 2100 

(Wilcox non-parametric W-test, W=24.455, p< 0.001).  

Discussion 

Our study shows that climate warming affects freshwater fish life history at high latitudes via 

increased temperature-dependent somatic growth. Backcalculations of length at age show an 

increase in somatic growth with warming for the three investigated species. The cool-water 

adapted species vendace, increased length at age with temperature substantially more than the 

cold-water adapted Arctic charr and whitefish. The stronger warming effects detected in 

vendace were also seen in the model outcomes, with different growth performance projections 

among species due to their different temperature affinities. Our results highlight that the 

difference in temperature preferences between cold- and cool-water adapted fish will be more 

advantageous for the latter in a warming Arctic. The variation in life-history between species 

explained their different population sensitivity to the multiple stressors, where Arctic charr, 

with the slowest juvenile growth rate and oldest age at maturity, will be more heavily affected 

than vendace by size-selective harvesting under climate warming. 

We provide compelling evidence that cold- and cool-water salmonids benefitted from 

the rapid warming experienced during the last three decades in terms of increased juvenile 

somatic growth. However, a large difference between species in 0+ growth increase with 

temperature was evident. The cool-water adapted vendace grew twice as fast (8.6 mm) as the 

cold-water adapted Arctic charr (3.4 mm) and whitefish (4.7 mm) per degree (°C) of warming. 
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Our individual based models predict that the somatic growth rates will continue to increase 

towards year 2100 under the two climate scenarios investigated. At the population level, 

production and biomass are predicted to increase, more so for the least cold-water adapted 

species, vendace, than for Arctic charr and whitefish. Our findings are consistent with 

expectation that individuals living in ecosystems where the ambient temperature is considerably 

lower than optimum may improve somatic growth under warming, especially for juvenile fish 

(Van Dorst et al. 2019, Huss et al. 2019). Our study systems are located well above the Arctic 

Circle and the projected warming will therefore prolong the temperature-dependent growth 

season towards year 2100. Number of days between 2-18 ˚C are predicted to increase by 4.2 (in 

Takvatn) and 3.7 (in Skrukkebukta) days per decade (RCP-8.5). Under the projected warming, 

ambient temperatures will get closer to optimum temperatures for growth of salmonids during 

the open water season. On the contrary, populations living towards the southern end of the 

investigated species’ distribution are already experiencing large negative impacts from climate 

warming (George et al. 2006, Rennie et al. 2009, Connor et al. 2019, Kelly et al. 2020). For 

instance, Arctic charr in Ireland and vendace in the UK are currently struggling because their 

preferred thermal habitat is greatly reduced, affecting not only growth but also survival (George 

et al. 2006, Connor et al. 2019). Similarly, other studies associate climate warming with a 

decrease in population biomass and production at lower latitudes (Cohen et al. 2016, van Dorst 

et al. 2019), whereas systems located in the Arctic or sub-Arctic are expected to have a rise in 

population production of freshwater fish (Reist et al. 2006, Campana et al. 2020), in line with 

our findings. 

Somatic growth in the three salmonid species was affected by temperature but also by 

density of competitors, stressing the importance of food availability for growth performance. 

As expected, consumer density affected somatic growth negatively in our wild fish populations, 

however, the magnitude of this effect was smaller than that of temperature in all three 
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populations. At high densities food intake rates will be reduced substantially, limiting the scope 

for somatic growth variation (Amundsen et al. 2007), which may mask the positive effects on 

growth driven by warming at high latitudes. With warming, metabolic activity increases and 

food intake rate will therefore have to rise to meet the higher metabolic demands (Huey & 

Kingsolver 2019). In our models, productivity and prey availability are only considered 

implicitly, as food intake rate is dependent on number of competitors, and productivity is 

assumed to be constant. However, primary productivity will likely increase with warming in 

cold areas (Karlsson et al. 2005, Schindler et al. 2005, O`Bierne et al. 2017), and greater prey 

density may help satisfy the increased metabolic needs caused by warming (Kao et al. 2015, 

Huss et al. 2019), as also shown for other salmonids in high latitude ecosystems (Rich et al. 

2009). The negative effects that lower food availability has on somatic growth are well 

documented in harvested populations, where higher fishing mortality reduces consumer density 

resulting in compensatory growth (Evangelista et al. 2020), an effect also observed in the wild 

populations investigated here (Amundsen et al. 2007). 

Our modelling results show how synergistic effects mediated by compensatory and 

temperature-dependent growth increase the cumulative risk of harvesting and warming for wild 

salmonid populations. Under higher fishing pressure, compensatory growth increases the risk 

of size-selective fishing mortality in younger fish, including immatures, a phenomenon that is 

amplified by the growth acceleration induced by warming. The growth acceleration also leads 

to more pronounced age truncation and reduced proportion of adults (Jørgensen et al. 2007, 

Anderson et al. 2008, Smalås et al. 2020), resulting in cumulative effects that threaten exploited 

wild fish populations under warming. The severity of the cumulative risk depends on the 

thermal affinities and life history of the fish species. For instance, populations that are slow 

growing and late maturing, with a large maturation size, are more vulnerable to cumulative 

effects than populations with a faster life history (Jennings et al. 1998, Wiedmann et al. 2014). 
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The shape of the maturation reaction norm further determines vulnerability, with steep negative 

slopes resulting in greater risk of fishing mortality for immatures and a larger reduction in the 

proportion of adults, as seen for Arctic charr. Vendace, on the other hand, has a fast turnover 

rate and a gentler negative slope of the maturation reaction norm, and the population did not 

experience a reduction in the proportion of mature individuals even for the highest fishing 

mortality scenario. The difference in life history and vulnerability to cumulative effects among 

salmonids has also implications for their evolutionary responses to multiple stressors, with 

warming being likely to affect selection pressure from size-selective harvesting (Fenberg & 

Roy 2008). Climate adaptation plans for the management of salmonids should thereby address 

ecological and evolutionary cumulative effects when considering mitigation measures 

concerning fishing effort and gear selectivity. 

The predictions on warming impact and cumulative effects based on our individual 

based models are influenced by a number of simplifying assumptions. The temperature-

dependence in somatic growth capacity was assumed constant during ontogeny, however fish 

respond differently to temperature depending on size and life stage (Huss et al. 2019, Dahlke et 

al. 2020). Different temperature-performance relationships have been suggested for fish of 

different sizes, with larger fish being more negatively affected by warming than smaller ones 

(Lindmark et al. 2018). Also, embryos, larvae and spawners are especially vulnerable life stages 

with narrow thermal windows (Dahlke et al. 2020). Our projected changes in growth, age-

distribution and stock biomass are qualitatively robust to small (±5%) pairwise changes in both 

growth parameters (𝑑𝑑 and 𝑔𝑔) and natural-mortality parameters (Supplementary information, 

Appendix D). Yet, these projections do not factor in other indirect, ecological effects of 

warming mediated by interactions with other species or changes in environmental conditions. 

The negative impact of warming on cold water adapted salmonids will likely be magnified by 

interspecific interactions with species adapted to warmer waters (Comte et al. 2013, Rolls et al. 
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2017), which will experience a greater increase in performance in a warming Arctic (Lindmark 

et al. 2019).    

Conclusion 

We show how the cumulative effects of warming and size-selective harvesting at high 

latitudes are contingent on a species thermal niche and life history. Salmonid species adapted 

to warmer waters displayed the greater increase in growth performance, and cold water species 

with slow life history suffered the greatest cumulative effects. Such ecological factors 

contributing to the cumulative risk from climate warming and local anthropogenic pressures 

must be taken into account in climate adaptation strategies that attempt to mitigate impact on 

populations of cold-water adapted freshwater fish. 
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Figure Legends 

Figure 1. Schematic representation of the four successive events in the annual cycle of the 

individual based model. 1) Mortality, modelled as two different size-dependent components (Z 

= natural (M) + fishing (F)). 2) Maturation specified by a linear probabilistic maturation 

reaction norm (PMRN), depending on both length and age. 3) Growth, modelled as biphasic 

growth which is both density- and temperature-dependent. 4) Reproduction, with size 

dependent fecundity, and density-dependent recruitment. 

Figure 2. a) Theoretical representation of temperature-dependent rates affecting growth 

performance in the individual based model, 100% (solid line) and 75% (stippled line) of 

maximum ration. b) Temperature-dependent growth at maximum ration for Arctic charr 

(Salvelinus alpinus) (―), whitefish (Coregonus lavaretus) (―) and Vendace (Coregonus 

albula) (―). 

Figure 3. Fit of the Quince-Boukal-Dieckmann biphasic growth model to the observed length 

at age data with the estimated probabilistic maturation reaction norm midpoint, the 25th and 75th 

percentile (dashed lines) for a) Arctic charr in Takvatn, and b) whitefish and c) vendace in Lake 

Skrukkebukta.  

Figure 4. a) Historical annual mean water temperature for Lake Skrukkebukta (―) (1991-

2016), eastern part of northern Norway, and Lake Takvatn (―) (1985-2016), western part of 

northern Norway. Solid lines show the linear development in temperature over time. b) 

Projected annual mean water temperature for the upper ten meters for Lake Skrukkebukta (―), 

eastern part of northern Norway, and Lake Takvatn (―), western part of northern Norway. Solid 

lines represent the RCP-8.5 climate scenario and dashed lines represent the RCP-4.5 climate 

scenario. 
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Figure 5. Backcalculated length for one-year-old Arctic charr (Salvelinus alpinus) from Lake 

Takvatn, and one-year-old whitefish (Coregonus lavaretus) and vendace (Coregonus albula) 

from the Pasvik watercourse. Grey points represent the mean, whiskers represent the 

bootstrapped 95 % confidence interval of the mean, line with shading represent linear regression 

with standard error. Left panels: Length at age 1-year dependent on annual mean water 

temperature (˚C). Right panels: Length at age 1-year dependent on annual mean Catch-Per-

Unit-Effort.  

Figure 6. Model predictions of length at age for a) Arctic charr in Takvatn, and b) whitefish 

and c) vendace in Skrukkebukta under two climate scenarios, RCP (4.5 & 8.5), for intermediate 

fishing mortality (F= 0.2 yr-1). d) Model predictions of percentage change in stock biomass for 

Arctic charr (―) in Lake Takvatn, and whitefish (―) and vendace (―) in Lake Skrukkebukta 

under the RCP-4.5 (dashed line) and RCP-8.5 (solid line) climate scenarios from year 1950 to 

year 2100 for intermediate fishing mortality (F= 0.2 yr-1). 

Figure 7. Model predictions of the demographic changes in a) Arctic charr in Lake Takvatn, 

and b) whitefish and c) vendace in Lake Skrukkebukta. Left panels: Proportion of mature 

individuals for five different fishing mortality scenarios (F= 0.0-0.4 yr-1) from year 1950-2100 

under the RCP-4.5 (dashed line) and RCP-8.5 (solid line) climate scenarios. Right panels: Age-

distribution with immature (grey bars) and mature individuals (black bars) for three different 

fishing mortality scenarios (F= 0.0-, 0.2- & 0.4 yr-1) for the RCP-8.5 climate scenario in year 

2000, year 2050 and year 2100.  
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Supplementary Information 

Appendix A: Temperature and density effect on backcalculated length for 1-year-old fish. 

Table A1. Summary results of the linear mixed-effect model (LME) for the effects of water-

temperature (˚C) and relative density (catch-per-unit-effort, CPUE) (centered and standardized) 

on 1-year-old vendace (Coregonus albula) and whitefish (Coregonus lavaretus) from the 

Pasvik watercourse from 1991 to 2007. The full model includes fish from both Lake 

Skrukkebukt and Lake Vaggatem, to have enough data that includes both water-temperature 

and relative density.  

Length (one-year-old) 

Predictors Estimates CI p 

Intercept (Vendace) 82.67 77.48 – 87.86 <0.001 

Annual Mean Water-temperature 
(WTa) ( 

1.42 0.18 – 2.66 0.025 

Whitefish -9.89 -13.27 – -6.52 <0.001 

Total Catch Per Unit Effort 
(Coregonids) 

-0.90 -1.70 – -0.10 0.028 

WTa * Whitefish -0.64 -2.24 – 0.97 0.436 

Random Effects 

N Age 6 

Observations 500 

Marginal R2 / 
Conditional R2 

 
0.192/0.404 

Table A2. Summary results of the linear mixed-effect model (LME) for the effects of water-

temperature (˚C) (centered and standardized) on 1-year-old vendace (Coregonus albula) and 

whitefish (Coregonus lavaretus) from Lake Skrukkebukta from 1991 to 2007.  
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Length (one-year-old) 

Predictors Estimates CI p 

Intercept (Vendace) 85.67 79.40 – 91.94 <0.001 

Annual Mean Water-
temperature (WTa) 

3.08 1.25 – 4.90 0.001 

Whitefish -18.30 -23.64 – -12.97 <0.001 

WTa * Whitefish -2.11 -4.50 – 0.27 0.082 

N Age 6 

Observations 230 

Marginal R2 / Conditional R2 0.44/0.57 

Table A3. Summary results of the linear mixed-effect model (LME) for the effects of water-

temperature (˚C) on 1-year-old vendace (Coregonus albula) and whitefish (Coregonus 

lavaretus) from Lake Skrukkebukta from 1991 to 2007. 

Length (one-year-old) 

Predictors Estimates CI p 

(Intercept) 44.20 23.66 – 64.73 <0.001 

Vendace 8.60 4.52 – 12.68 <0.001 

Whitefish 4.72 0.66 – 8.79 0.023 

N Age 6 

Observations 230 

Marginal R2 / Conditional R2 0.45/0.59 

Table A4. Summary results of the linear mixed-effect model (LME) for the effects of relative 

density (catch-per-unit-effort, CPUE) (centered and standardized) on 1-year-old vendace 

(Coregonus albula) and whitefish (Coregonus lavaretus) from Lake Skrukkebukta from 1991 

to 2007. 
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  Length (one-year-old) 

Predictors Estimates CI p 

(Intercept) (Vendace) 82.16 77.28 – 87.04 <0.001 

Whitefish -9.62 -12.95 – -6.28 <0.001 

Total Catch Per Unit Effort (Coregonids) -1.11 -1.89 – -0.32 0.006 

N Age 6 

Observations 500 

Marginal R2 / Conditional R2 
 

 

0.18/0.37 

 

Table A5. Summary results of the linear mixed-effect model (LME) for the effects of water-

temperature (˚C) and relative density (catch-per-unit-effort, CPUE) (centered and standardized) 

on one-year-old Arctic charr (Salvelinus alpinus) from Lake Takvatn from 1986 to 2016. 

  Length (one-year-old) 

Predictors Estimates CI p 

(Intercept) 67.75 66.33 – 69.16 <0.001 

Annual Mean Water-temperature (WTa) 1.38 0.68 – 2.09 <0.001 

Catch Per Unit Effort (Arctic charr) -0.97 -1.69 – -0.25 0.008 

Random Effects 
N Age 6 

Observations 680 
Marginal R2 / Conditional R2 0.247 / 0.264 
  

  
  

Table A6. Summary results of the linear mixed-effect model (LME) for the effects of water-

temperature (˚C) on one-year-old Arctic charr (Salvelinus alpinus) from Lake Takvatn from 

1986 to 2016. 

  Length (one-year-old) 
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Predictors Estimates CI p 

(Intercept) 51.22 45.42 – 57.02 <0.001 

Annual Mean Water-temperature (WTa) 3.37 2.22 – 4.52 <0.001 

Random Effects 
N Age 6 

Observations 680 
Marginal R2 / Conditional R2 0.05 / 0.08 

  
  

Table A7. Summary results of the linear mixed-effect model (LME) for the effects of relative 

density (catch-per-unit-effort, CPUE) on one-year-old Arctic charr (Salvelinus alpinus) from 

Lake Takvatn from 1986 to 2016. 

  Length (one-year-old) 

Predictors Estimates CI p 

(Intercept) 70.05 68.21 – 71.90 <0.001 

Catch Per Unit Effort (Arctic charr) -0.37 -0.52 – -0.23 <0.001 

Random Effects 
N Age 6 

Observations 680 
Marginal R2 / Conditional R2 0.04 / 0.07 
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Appendix B: Individual Based Model description and parameters 

Eco-genetic model overview 

We used an individual-based model (IBM) relying on the eco-genetic framework 

developed by Dunlop et al. (2009). The IBM was modified to omit evolutionary effects on life-

history traits, retaining only demographic processes. The model runs using successive events 

for each annual cycle, which includes mortality, maturation, growth, and reproduction (Dunlop 

et al., 2009). The growth routine in our model uses a temperature-dependent daily length 

increment to capture climate-related growth effects. The initial population in each simulation 

was set to 3000 individuals, and 50 replicate model runs for 150 years were used for every 

simulation. 

Mortality 

Annual mortality is calculated as 

𝑍𝑍 = 𝑀𝑀 + 𝐹𝐹, (1a) 

where 𝑍𝑍 is total mortality, 𝑀𝑀 is natural mortality, and 𝐹𝐹 is fishing mortality. The natural 

mortality for many fishes, including salmonids, is assumed to be negatively correlated with 

their body size (Elliott, 1993; Gislason et al. 2010), following an allometric relation, 

𝑀𝑀 = 𝑀𝑀r(𝐿𝐿/𝐿𝐿r)−𝑚𝑚b , (1b) 

where 𝐿𝐿 is the length of fish, 𝑀𝑀r is the natural mortality at the reference length 𝐿𝐿r, and 𝑚𝑚b is 

the allometric exponent. For whitefish and vendace in the Pasvik watercourse, 𝑀𝑀r is taken from 

Sandlund et al. 2013, and for Arctic charr the 𝑀𝑀r is estimated using the equation given by Pauly 

(1980) (For details see Smalås et al. 2020). The observed size-distribution of the different 

populations is used to calibrate 𝐿𝐿r and 𝑚𝑚b.  
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We investigated five fishing-mortality scenarios, representing different levels of 

harvesting pressures by gillnets (F = 0.1-0.4 yr-1). Gillnet fishing is regulated by mesh-size, 

which is recommended to be between 26 and 35 mm in Lake Takvatn by the regional 

management institutions (Statskog, 2017). In the Pasvik watercourse gill-net fishing is not 

regulated by mesh-size, but fishermen seldom uses nets with mesh-size under 30 mm. For 

vendace, harvesting with gill-nets in the Pasvik watercourse is rare, however we wanted to 

investigate effects of fishing since this is common in neighboring areas in Finland, and there 

vendace under 10 cm is rarely caught. Known mesh-size selectivity were than used to estimate 

which size-classes were vulnerable under the given regulations and habits used by fishermen to 

parametrize the length-dependent fishing mortality,  

𝐹𝐹 =  𝐹𝐹0 + 𝐹𝐹1
1+exp (−𝐹𝐹2(𝐿𝐿−𝐹𝐹3))

, (1c) 

where 𝐹𝐹0 is the size-independent component, 𝐹𝐹1 scales the size-dependent component, 𝐹𝐹2 is the 

steepness of the size-dependent component, 𝐿𝐿 is the length of the fish, and 𝐹𝐹3 is the inflection 

point of the size-dependent component. 

Maturation 

Age at maturation is assumed to be plastic and depends on a probabilistic maturation 

reaction norm (PMRN) describing the length- and age-specific probabilities of maturation 

(Heino et al., 2002; Dieckmann & Heino, 2007). We calculated the PMRN from long-term data 

on Arctic charr in Lake Takvatn, and whitefish and vendace in Lake Skrukkebukta (Table B1) 

by the demographic method assuming a linear reaction norm (Barot et al. 2004). We 

implemented a model that involves both age and size, and assumed that these two variables 

have independent and linear effects, following Heino et al. (2002), 
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𝑃𝑃m = 1/ �1 + exp �−  𝐿𝐿−(𝑎𝑎+𝑎𝑎𝑎𝑎)
𝑑𝑑

��,        (2) 

where 𝐿𝐿 is the length of fish, 𝑖𝑖 is the PMRN intercept, 𝑎𝑎 is the age of fish, 𝑠𝑠 is the PMRN slope, 

and 𝑑𝑑 is the PMRN width. 

 

Growth 

Biphasic growth model 

We used the Quince-Boukal-Dieckmann (QBD) biphasic growth model (Boukal et al. 2014) to 

describe juvenile and adult growth trajectories, 

𝐿𝐿𝑎𝑎+1 =  �𝐿𝐿𝑎𝑎
(1−𝛽𝛽)𝛼𝛼+(1−𝛽𝛽)𝑐𝑐𝑏𝑏−(1−𝛽𝛽)

1+𝑞𝑞−1(1−𝛽𝛽) 𝑟𝑟𝑎𝑎+1

(1−𝛽𝛽)𝛼𝛼

,           (3a) 

where 𝐿𝐿𝑎𝑎 is the length at age 𝑎𝑎, 𝛽𝛽 is the allometric exponent relating the rate 𝑐𝑐𝑊𝑊𝑎𝑎
𝛽𝛽 of net energy 

intake – measured in terms of weight gain – to the weight 𝑊𝑊𝑎𝑎, 𝑐𝑐 scales this rate, 𝑞𝑞 is the ratio 

between the energetic costs per unit of weight of producing gonadic versus somatic tissue, 𝑟𝑟𝑎𝑎+1 

is the ratio between somatic and gonadic weight at the end of the growth season at age 𝑎𝑎 + 1, 

𝛼𝛼 is the allometric exponent relating the weight 𝑊𝑊𝑎𝑎 = 𝑏𝑏𝐿𝐿𝑎𝑎𝛼𝛼 to the length 𝐿𝐿𝑎𝑎, and 𝑏𝑏 scales this 

weight. For juveniles, all available energy is allocated to growth, i.e., 𝑟𝑟𝑎𝑎 = 0. For adults, a 

fraction of the net energy intake is allocated to reproduction, i.e., 𝑟𝑟𝑎𝑎 > 0. We assumed that 𝑟𝑟𝑎𝑎 

does not change with age 𝑎𝑎; therefore, we set 𝑟𝑟𝑎𝑎 = 𝑟𝑟 and use the closed form of the QBD model 

for adult growth (Boukal et al. 2014). We used empirically derived parameters from the QBD 

growth model for the different species in combination with the corresponding water-

temperature and density experienced by the different populations to scale 𝑐𝑐𝑚𝑚𝑎𝑎𝑎𝑎 to the optimum 

temperature for growth for the different species (see below).    
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The coefficient 𝑐𝑐 was jointly determined by a temperature- and density-dependent 

consumption rate, scaled by 𝐼𝐼(𝑇𝑇,𝐷𝐷), and a temperature-dependent metabolic rate, scaled by 

𝑚𝑚(𝑇𝑇), where 𝑇𝑇 and 𝐷𝐷 denote temperature and density, respectively. In other words, the 

consumption rate depends both on temperature and – indirectly, through the density of 

competitors – on food availability, while the metabolic rate depends only on temperature. This 

implies that the optimum temperature for growth is lower when the density of competitors is 

higher (Huey and Kingsolver 2019). In addition to 𝑚𝑚(𝑇𝑇), three different processes (Deslauriers 

et al. 2017) diminish 𝑐𝑐: egestion 𝐸𝐸 is the fraction of the consumed energy that is not ingested 

and leaves the fish as feces, specific dynamic action 𝑆𝑆𝐷𝐷𝑆𝑆 is the fraction of 𝑊𝑊𝑎𝑎
𝛽𝛽 used for 

processing the food to energy or storage (Jobling 1983), and excretion 𝑈𝑈 is the fraction of 𝑊𝑊𝑎𝑎
𝛽𝛽 

lost as nitrogen waste (Deslauriers et al. 2017). Therefore, 𝑐𝑐 was calculated using the following 

bioenergetic relationship, 

𝑐𝑐 = 𝐼𝐼(𝑇𝑇,𝐷𝐷)(1 − 𝐸𝐸) − 𝑆𝑆𝐷𝐷𝑆𝑆 − 𝑈𝑈 −𝑚𝑚(𝑇𝑇),  (3b) 

For eq. 3c-3f (see below), the calculated values are given in kJ day-1, but 𝑐𝑐 in the QBD 

model have the unit of 𝑔𝑔1−𝛽𝛽 year-1 and we therefore first accumulated the daily energy intake 

over the 365 days and subsequently used a conversion factor 𝑐𝑐 = 𝑐𝑐
𝑧𝑧
 to model growth on the

correct scale used in QBD growth model framework. To reflect individual variation in energy 

acquisition, individual values of 𝑐𝑐 were distributed normally around the mean value given by 

eq. (3b). 

The temperature-dependent scaling of the consumption rate follows a Ratkowsky-type 

growth model (Ratkowsky et al. 1983, Larsson et al. 2005, Finstad et al. 2011), useful to 

describe consumption rate in salmonid fish, 

𝐼𝐼(𝑇𝑇) = 𝑑𝑑(𝑇𝑇 − 𝑇𝑇min)�1 − 𝑒𝑒𝑔𝑔(𝑇𝑇−𝑇𝑇max)�,    (3c) 
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where 𝑇𝑇 is the experienced water temperature, 𝑇𝑇min and 𝑇𝑇max are the minimum and maximum 

temperatures for ingestion, respectively, and 𝑑𝑑 and 𝑔𝑔 are constants. 

The density-dependent scaling of the consumption rate follows a negative power law 

described by Amundsen et al. (2007); see also Lorenzen & Enberg (2002), 

𝐼𝐼(𝐷𝐷) =  𝛿𝛿1𝐷𝐷/𝑑𝑑𝑐𝑐
𝛿𝛿2,             (3d) 

where 𝐷𝐷 is the total density of competitors, 𝑑𝑑𝑐𝑐 is the conversion factor from the catch-per-unit-

effort scale used in Amundsen et al. 2007 to density of competitors in the model, and 𝛿𝛿1 and 𝛿𝛿2 

are constants. For densities below the minimum density described in Amundsen et al. (2007) 

(catch-per-unit-effort (CPUE) = 4.8), 𝐼𝐼(𝐷𝐷) was set to a maximum 𝐼𝐼max, where 𝐼𝐼max= 3.35 is the 

maximum consumption rate seen in Amundsen et al. 2007.  

To capture the combined effects of temperature and density on the consumption rate, 

we used the following equation, 

𝐼𝐼(𝑇𝑇,𝐷𝐷) = 𝐼𝐼(𝑇𝑇)(𝐼𝐼(𝐷𝐷)
𝐼𝐼max

),                  (3e) 

where 𝐼𝐼(𝑇𝑇,𝐷𝐷) reaches its maximum when the water temperature is optimal and the population 

density is lower than the minimum density described by Amundsen et al. (2007). 

The temperature-dependent scaling of the metabolic rate follows the Arrhenius function 

(Gillooly et al. 2001, Lindmark et al. 2018), 

𝑚𝑚(𝑇𝑇) = 𝑚𝑚0𝜔𝜔𝑒𝑒
−𝐸𝐸m(𝑇𝑇−𝑡𝑡0)

𝑘𝑘𝑘𝑘𝑡𝑡0 ,            (3f) 

where 𝑚𝑚0 is the metabolic scaling constant in terms of oxygen consumption, 𝜔𝜔 is the conversion 

factor from oxygen consumption to energy consumption, 𝐸𝐸m is the mean activation energy of 

biochemical reactions in fish, 𝑘𝑘 is the Boltzmann constant, 𝑇𝑇 is the temperature in terms of the 

Kelvin scale, and 𝑡𝑡0 is the conversion factor from Kelvin scale to Celsius scale.  
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Field studies of the relationship between water temperature and growth are not available 

for freshwater salmonids at high latitudes, while corresponding lab experiments have frequently 

been conducted for the most common high-latitude freshwater fish species. Therefore, we used 

data from lab experiments to parameterize eq. (3c): specifically, bioenergetic studies have 

provided estimates of the energies lost to egestion, specific dynamic action, and excretion and 

of the temperature-dependent metabolic rate (Deslauriers et al. 2017).  

 

Bioenergetic parameterization  

Field studies of the relationship between water temperature and growth is limiting for 

freshwater salmonids at high latitudes, however lab experiment are conducted frequently for 

the most common high latitude freshwater fish species. Therefore, we used data from laboratory 

experiments to parameterize the different compartments in our growth routine. Bioenergetic 

studies have provided parameters for the estimation of temperature-dependent metabolic rate 

and the proportion of energy intake that is lost to assimilation, excretion and egestion (see 

Deslauriers et al. 2017).  

 

Arctic charr (Salvelinus alpinus) 

For Arctic charr temperature-growth relationship are studied extensively in laboratory 

experiments. Arctic charr exhibit positive growth from 0.3 ˚C to 20-23 ˚C with an optimum 

between 14-16 ˚C (Jobling 1983b, Brännäs & Wiklund 1992, Larsson & Berglund 1998, 

Larsson & Berglund 2005, Larsson et al. 2005, Siikavuopio et al. 2010, Siikavuopio et al. 2013, 

Sæther et al. 2016). To calibrate the parameters used to estimate consumption (eq. 3c), we used 

existing estimates for temperature-dependent food intake rate (see Larsson & Berglund 2005), 
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and calibrated them to fit the observed growth in Lake Takvatn (see next paragraph) and the 

above for mentioned temperature-dependent growth relationships (see Fig. 1, original paper).    

We ran the QBD-Biphasic model (Boukal et al. 2014) on the existing data from Lake 

Takvatn, and model results show that using data from 2006-2018 where the average annual 

water temperature was 4.4 ˚C, and with an average Catch-Per-Unit-Effort of 4.8 giving 89% of 

the maximum temperature-dependent growth curve in Amundsen et al. (2007). The estimated 

net energy intake rate from the data, c = 2.55 ± 0.08 (95% CI) and r = 0.158 ± 0.031 (See Fig. 

2a in the original paper for comparison of observed length-at-age and the QBD-modelled 

length-at-age). The estimated values from the individual based model using the above for 

mentioned parameter values gave a c = 2.51, with r = 0.15 which is well within the confidence 

interval of the observed values for the population.  

 

Whitefish (Coregonus lavaretus) 

For whitefish temperature-growth relationship under laboratory experiments are well 

documented. Whitefish, in laboratory settings, grow from 1-3 ˚C to 21-23 ˚C with an optimum 

between 15-16 ̊ C (Tolonen 1998, Siikavuopio et al. 2010, Siikavuopio et al. 2012). To calibrate 

the parameters used to estimate consumption (eq. 3c), we used existing estimates for 

temperature-dependent food intake rate, and calibrated them to fit the observed growth in the 

Pasvik watercourse (see next paragraph) and the above for mentioned temperature-dependent 

growth relationships (see Fig. 1, original paper).  

We ran the QBD-Biphasic model (Boukal et al. 2014) on the existing data from Lake 

Skrukkebukta, and model results show that using data from 2007-2009 where the average 

annual water temperature was 5.2 ˚C, and with an average Catch-Per-Unit-Effort of 63.8 

assuming 85 % of the maximum temperature-dependent growth curve. The estimated net 
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energy intake rate from the data, c = 2.25 ± 0.13 (95% CI) and r = 0.266 ± 0.05 (see Fig. 2b in 

the original paper for comparison of observed length-at-age and the QBD-modelled length-at-

age). The estimated values from the individual based model using the above for mentioned 

parameter values gave a c = 2.36, with r = 0.27 which is within the confidence interval of the 

observed values for the population. 

Vendace (Coregonus albula) 

For vendace temperature-growth relationship are to a lesser extent studied in laboratory 

experiments compared to both Arctic charr and whitefish, but some information exists. Vendace 

show positive growth from 1-3 ˚C to 22-24 ˚C with an optimum between 15-17 ˚C (Helminen 

et al. 1990, Luczynski 1991). To calibrate the parameters used to estimate consumption (eq. 

3c), we used existing estimates for temperature-dependent food intake rate, and calibrated them 

to fit the observed growth in the Pasvik watercourse (see next paragraph) and the above for 

mentioned temperature-dependent growth relationships (see Fig. 1, original paper).    

We ran the QBD-Biphasic model (Boukal et al. 2014) on the existing data from Lake 

Skrukkebukta in Pasvik, and model results show that using data from 2007-2009 where the 

average annual water temperature was 5.2 ˚C, and with an average Catch-Per-Unit-Effort of 

63.2 assuming 85 % of the maximum temperature-dependent growth curve. The estimated net 

energy intake rate from the data, c = 2.87 ± 0.22 (95% CI) and r = 1.04 ± 0.096 (95% CI) (see 

Fig. 2c in the original paper for comparison of observed length-at-age and the QBD-modelled 

length-at-age). The estimated values from the individual based model using the above for 

mentioned parameter values gave a c = 2.86, with r = 1.04 which is well within the confidence 

interval of observed values for the population.  
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Recruitment and reproduction 

Annual recruitment is dependent on the size of the spawning stock, as well as on the 

fecundity of adult fish and the density-dependent mortality of eggs and hatchlings (Haddon, 

2001). The latter density dependence is assumed to follow a Beverton-Holt stock-recruitment 

relationship, 

𝑅𝑅t =  𝑅𝑅max𝑓𝑓t
𝑓𝑓t+𝜗𝜗 

,            (4a) 

where 𝑅𝑅t is the total number of surviving offspring or recruits to the population in year 𝑡𝑡, 𝑓𝑓t is 

the total fecundity of the mature female population in year 𝑡𝑡, 𝑅𝑅max is the maximal number of 

surviving offspring or recruits, and 𝜗𝜗 defines the strength of the density-dependent recruitment 

mortality. The Beverton-Holt stock-recruitment model predicts an asymptotic relationship 

between total population fecundity and number of surviving recruits. The fecundity 𝐹𝐹c of adult 

females is described by an allometric function estimated from the fecundity-length relationship, 

𝐹𝐹c =  𝑎𝑎𝑓𝑓 𝐿𝐿𝑏𝑏𝑓𝑓,           (4b) 

where 𝐿𝐿 is the length of fish, and 𝑎𝑎𝑓𝑓 and 𝑏𝑏𝑓𝑓 are constants. 

 

Limitations and caveats of model assumptions 

The model description above is limited by simplifying assumptions regarding mechanisms and 

processes. Realistic models of intermediate complexity are suggested to enhance ecological 

understanding, and are thereby considered advisable (Van Nes & Scheffer, 2005). In our 

modelling effort, the main focus is temperature-dependent growth, therefore we assume that 

temperature do not affect other processes like mortality and reproduction directly. Also, in order 

to investigate these populations we ignore interspecific interactions, but we include them 
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indirectly since parameters are from systems were these populations interact with other fish 

species. In addition, we ignore evolutionary processes and thus some of the effects presented 

here might be compensated for through evolution. 
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Table B1. Model parameters, equation number and symbol in equation and reference to source 

of parameter value for Arctic charr, whitefish and vendace. 

Description Sym-
bol 

Equa-
tion 

Arctic 
charr 

Source 
Arctic 
charr 

Whitefish Source 
Whitef-
ish 

Vendace Source 
Vendace 

Unit 

Mean initial size 𝑡𝑡0 - 1.664 1 0.978 5 0.77 5 cm 
Variance initial size 𝑡𝑡0 σ2 - 0.047 1 0.15 5 0.07 5 cm 
Start population - - 3000 - 3000 - 3000 - n 
Simulation length - - 100+150 - 100+150 - 100+150 - yr 
Maximum number of recruits 𝑅𝑅max 4a 800 - 1000 - 3000 - n 
Beverton-Holt parameter 𝜗𝜗 4a 0.2 - 0.1 - 0.1 - - 
Allometric scaling exponent in the growth 
rate-weight relationship 

𝛽𝛽 3a 0.748 4 0.712 4* 0.712 4 - 

Conversion factor between gonadic and  
somatic investment 

𝑞𝑞 3a 1 - 1 - 1 - - 

Relative reproductive investment r 3a 0.18 1 0.27 2 1.23 3 - 
Length-weight relationship coefficient 𝛼𝛼 3a 0.00372 1 0.0054 2 0.0051 3 g cm-b 
Length-weight relationship exponent 𝑏𝑏 3a 3.3288 1 3.1281 2 3.2092 3 - 
Maximum value for the allometric scaling 
coefficient in the growth rate-weight 
relationship 

𝑐𝑐𝑚𝑚𝑎𝑎𝑎𝑎 - 6.72 1 (10) 8.02 2 9.8 3 𝑔𝑔1−𝛽𝛽 yr-1 

Conversion factor between kJ and g1-β z - 50 - 50 - 50 - - 
Ratkowsky model constant d 3c 0.14 1 (9,10) 0.2 2 0.2 3 - 
Ratkowsky model constant g 3c 0.23 1 (9,10) 0.21 2 0.23 3 - 
Minimum temp for ingestion 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 3c -0.3 1 (9,10) 1 2 1 3 ˚C 
Maximum temp for ingestion 𝑇𝑇𝑚𝑚𝑎𝑎𝑎𝑎 3c 21 1 (9,10) 22 2 23 3 ˚C 
Minimum temp for growth 𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚 - 0.3 6,7 1.9 7 1.8 24 ˚C 
Maximum temp for growth 𝐺𝐺𝑚𝑚𝑎𝑎𝑎𝑎 - 20.6 8-10 21.3 26,27 22.4 25 ˚C 
Optimum temp for ingestion 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 - 14.1 11-13 15 27 15.6 24,25 ˚C 
Metabolic scaling constant 𝑚𝑚0 3f 0.0024 14 0.00584 21 0.006235 23 O2 g-1 d-1 
Activation energy 𝐸𝐸𝑚𝑚 3f 6.57E-17 15 6.57E-17 15 6.57E-17 15 kJ 
Conversion factor, O2 to kJ 𝜔𝜔 3f 13.56 17* 13.56 17* 13.56 17* J g-1 O2

Boltzmann’s constant 𝑘𝑘 3f 1.18E-20 15,16 1.18E-20 15,16 1.18E-20 15,16 kJ K-1 
Kelvin factor 𝑡𝑡0 3f 273.15 15 273.15 15 273.15 15 K 
Egestion  E 3b 21 17*,18 19 21,18 19 23,18 % 
Excretion  𝑈𝑈 3b 3.14 17*,18 7 21,18 7 23,18 % 
Specific Dynamic Action (SDA) 𝑆𝑆𝐷𝐷𝑆𝑆 3b 17 17*,18 17 21,18 17 23,18 % 
Density-dependent growth coefficient 𝛿𝛿1 3d 7.23 19 7.23 19* 7.23 19* - 
Density-dependent growth exponent 𝛿𝛿2 3d -0.556 19 -0.556 19* -0.556 19* - 
Conversion factor between CPUE and 
density of competitors in the model 

𝑑𝑑𝑐𝑐 3d 200 - 200 - 200 - - 

Allometric fecundity coefficient 𝑎𝑎𝑓𝑓 4b 4x10-5 1 4x10-5 1* 4x10-5 1* - 
Allometric fecundity exponent 𝑏𝑏𝑓𝑓 4b 2.9425 1 2.9425 1* 2.9425 1* - 
PMRN Intercept ip 2a 106.25 1 38.2 2 10 3 cm 
PMRN Intercept (SD) ipSD 2a 5.3125 1 1.91 2 0.5 3 cm 
PMRN Slope sp 2a -15.083 1 -5 2 -5 3 cm yr-1 
PMRN Width d 2a 31.98 1 12 2 2 3 cm 
Natural mortality for  Lr Mr 1b 0.17 1 0.3 22 0.6 22 yr-1 
Reference length in natural mortality Lr 1b 20 1 15 2 - 22,3 cm 
Allometric exponent in natural mortality 𝑚𝑚b 1b 0.2 1 0.1 2 0 22,3 - 
Size-independent component of fishing 
mortality (F) 

𝐹𝐹0 1c 0 20 0 20 0 20 yr-1 

Size-dependent component of F 𝐹𝐹1 1c 0.0-0.5, 
step 0.1 

20 0.0-0.5, 
step 0.1 

20 0.0-0.5, 
step 0.1 

20 yr-1 

Steepness of size-dependent component of 
F 

𝐹𝐹2 1c 1 20 1 20 1 20 

Inflection point of size-dependent 
component of F 

𝐹𝐹3 1c 25 20 25 14 10 14 cm 
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Source: 1) Estimated from the Arctic charr population in Lake Takvatn. 2) Estimated from the 

whitefish population in the Pasvik watercourse. 3) Estimated from the vendace population in 

the Pasvik watercourse. 4) Killen et al. 2010 (Supplementary information) Used vendace 

parameter value for whitefish. 5) Urpanen et al. 2005. 6) Brännäs & Wiklund 1992. 7) 

Siikavuopio et al. 2010. 8) Larsson & Berglund 1998. 9) Larsson & Berglund 2005. 10) Larsson 

et al. 2005.11) Jobling 1983. 12) Siikavuopio et al. 2013. 13) Sæther et al. 2016. 14) FEFO, 

2019. 15) Gillooly et al. 2001. 16) Brown et al. 2004. 17) Stewart et al. 1983 (Estimated using 

Lake trout data). 18) Deslauriers et al. 2017 (Fish Bioenergetics 4.0). 19) Amundsen et al. 2007 

(Used Arctic charr values for both whitefish and vendace. 20) Statskog 2017 (see Smalås et al. 

2020). 21) Huuskonen et al. 1998. 22) Sandlund et al. 2013. 23) Karjalainen et al. 1997. 24) 

Helminen et al. 1990. 25) Luczynski 1991. 26) Siikavuopio et al. 2012. 27) Tolonen 1998.  
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Appendix C: Individual based model results  

Length at age and stock biomass development with warming under two climate scenarios (RCP-

4.5 & RCP-8.5) and five fishing mortality scenarios (F= 0.0-0.4 yr-1).  

F = 0.0 yr-1 
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Figure C1. Individual based model predictions of length-at-age for a) Arctic charr in Takvatn, 

and b) whitefish and c) vendace in Skrukkebukta under two RCP (-4.5 & -8.5) climate scenarios 

for fishing mortality, F= 0.0 yr-1. d) Model predictions of percentage change in stock biomass 

for Arctic charr (―) in Takvatn, whitefish (―) and vendace (―) in Skrukkebukta under the 

RCP-4.5 (dashed line) and RCP-8.5 (solid line) climate scenarios from year 1950 to year 2100 

for fishing mortality, F= 0.0 yr-1. 

Table C1. Change in length-at-age for Arctic charr in Takvatn from year 2000 to year 2100 

under RCP-4.5 and RCP-8.5 climate scenarios and fishing mortality of F= 0.0 yr-1. 

RCP-4.5 RCP-8.5,  

Length at 
age (cm) 
year 2000 

Length at 
age (cm) 
year 2100 

Change in 
length at age 
(cm) 

Change 
in 
length 
at age 

Length at 
age (cm) 
year 2000 

Length at 
age (cm) 
year 2100 

Change in 
length at age 
(cm) 

Change 
in 
length 
at age 

Age 1 year 7.67 
(7.63-7.71) 

8.25 
(8.2-8.3) 

0.58 (0.51-0.64) 
W=2.312.906, 
p>0.001 

7.6 % 7.67 
(7.63-7.71) 

8.93 (8.87-
8.98) 

1.26 (1.19-1.33) 
W=2.992.363, 
p>0.001 

16.4 % 

Age 2 year 10.52 
(10.46-
10.58) 

11.34 
(11.27-
11.41) 

0.83 (0.73-0.92) 
W=1.320.584, 
p>0.001 

7.8 % 10.52 
(10.46-
10.58) 

12.3 
(12.2-12.4) 

1.82 (1.72-1.91) 
W=1.752.392, 
p>0.001 

17.2 % 

Age 3 year 13.1 (13.05-
13.21) 

14.23 
(14.14-
14.32) 

1.09 (0.97-1.22) 
W=818.609, 
p>0.001 

8.4 % 13.1 
(13.05-
13.21) 

15.55 
(15.45-
18.64) 

2.44 (2.31-2.56) 
W=1.147.789, 
p>0.001 

18.4 % 

Age 4 year 15.7 
(15.59-
15.78) 

16.9 
(16.8-
17.04) 

1.24 (1.08-1.39) 
W=524.789, 
p>0.001 

7.9 % 15.7 
(15.59-
15.78) 

18.5 
(18.4-
18.65) 

2.87 (2.72-3.03) 
W=731.068, 
p>0.001 

18.2 % 

Age 5 year 17.98 
(17.87-18.1) 

19.45 
(19.31-
19.59) 

1.46 (1.28-1.65) 
W=364.484, 
p>0.001 

8.2 % 17.98 
(17.87-
18.1) 

21.3 
(21.16-
21.44) 

3.33 (3.14-3.51) 
W=513.525, 
p>0.001 

18.5 % 

Table C2. Change in length-at-age for whitefish in Skrukkebukta from year 2000 to year 2100 

under RCP-4.5 and RCP-8.5 climate scenarios and fishing mortality of F= 0.0 yr-1. 

RCP-4.5 RCP-8.5,  
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 Length at 
age (cm) 
year 2000 

Length at 
age (cm) 
year 2100 

Change in 
length at age 
(cm) 

Change 
in 
length 
at age 

Length at 
age (cm) 
year 2000 

Length at 
age (cm) 
year 2100 

Change in 
length at age 
(cm) 

Change 
in  
length 
at age 

Age 1 year 7.61 
(7.57-7.65) 

8.95 
(8.9-9.0) 

1.33 (1.27-1.4) 
W=4.331.115, 
p>0.001 

17.6 % 7.61 
(7.57-7.65 

9.43 
(9.36-9.5) 

1.79 (1.71-1.87) 
W=4.504.359, 
p>0.001 

24.0 % 

Age 2 year 11.2 
(11.14-
11.27) 

13.36 
(13.27-
13.44) 

2.11 (2.01-2.21) 
W=2.108.306, 
p>0.001 

19.2 % 11.2 
(11.14-
11.27) 

14.2 
(14.05-
14.27) 

2.91 (2.78-3.04) 
W=1.183.831, 
p>0.001 

26.4 % 

Age 3 year 14.87 
(14.78-
14.95) 

17.63 
(17.51-
17.74) 

2.72 (2.58-2.86) 
W=1.005.780, 
p>0.001 

18.5 % 14.87 
(14.78-
14.95) 

18.83 
(18.68-
18.99) 

3.91 (3.74-4.09) 
W=1.101.752, 
p>0.001 

27.0 % 

Age 4 year 18.26 
(18.14-
18.38) 

21.66 
(21.51-
21.81) 

3.38 (3.19-3.57) 
W=512.699, 
p>0.001 

18.6 % 18.26 
(18.14-
18.38) 

23.32 
(23.12-
23.52) 

5.02 (4.79-5.26) 
W=534.539, 
p>0.001 

27.7 % 

Age 5 year 21.39 
(21.24-
21.54) 

25.1 
(24.86-
25.27) 

3.67 (3.42-3.92) 
W=259.559, 
p>0.001 

17.2 % 21.39 
(21.24-
21.54) 

27.2 
(26.94-
27.43) 

5.75 (5.46-6.03) 
W=282.099, 
p>0.001 

27.1 % 

 

Table C3. Change in length-at-age for vendace in Skrukkebukta from year 2000 to year 2100 

under RCP-4.5 and RCP-8.5 climate scenarios and fishing mortality of F= 0.0 yr-1. 

  RCP-4.5  
 

 RCP-8.5,   
 

 Length at 
age (cm) 
year 2000 

Length at 
age (cm) 
year 2100 

Change in 
length at age 
(cm) 

Change 
in 
length 
at age 

Length at 
age (cm) 
year 2000 

Length at 
age (cm) 
year 2100 

Change in 
length at age 
(cm) 

Change 
in  
length 
at age 

Age 1 year 7.18 (7.12-
7.24) 

8.2 (8.13-
8.27) 

1.02 (0.93-1.11) 
W=2.238.131, 
p>0.001 

14.2 % 7.18 (7.12-
7.24) 

8.73 (8.65-
8.81) 

1.49 (1.39-1.6) 
W=2.516.140, 
p>0.001 

21.6 % 

Age 2 year 8.06 
(7.97-8.14) 

9.25 
(9.15-9.35) 

1.2 (1.06-1.33) 
W=366.631, 
p>0.001 

14.8 % 8.06 
(7.97-8.14) 

9.82 
(9.71-9.93) 

1.72 (1.58-1.87) 
W=465.922, 
p>0.001 

21.9 % 

Age 3 year 8.47 (8.34-
8.6) 

9.84 (9.69-
9.99) 

1.37 (1.16-1.57) 
W=61.622, 
p>0.001 

16.2 % 8.47 (8.34-
8.6) 

10.54 
(10.38-
10.69) 

2.09 (1.87-2.3) 
W=73.289, 
p>0.001 

24.4 % 

Age 4 year 8.92 (8.72-
9.12) 

10.44 
(10.22-
10.65) 

1.54 (1.25-1.83) 
W=9.265, 
p>0.001 

16.9 % 8.92 (8.72-
9.12) 

11.11 
(10.88-
11.34) 

2.52 (1.94-2.57) 
W=10.304, 
p>0.001 

24.5 % 

Age 5 year 9.09 
(8.75-9.42) 

11.0 
(10.7-11.3) 

1.95 (1.48-2.33) 
W=1.583, 
p>0.001 

21.0 % 9.09 
(8.75-9.42 

11.65 
(11.3-12.0) 

2.51 (2.03-3.02) 
W=1.737, 
p>0.001 

28.2 % 
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F = 0.1 yr-1 

 

Figure C2. Individual based model predictions of length-at-age for a) Arctic charr in Takvatn, 

and b) whitefish and c) vendace in Skrukkebukta under two RCP (-4.5 & -8.5) climate scenarios 

for fishing mortality, F= 0.1 yr-1. d) Model predictions of percentage change in stock biomass 

for Arctic charr (―) in Takvatn, and whitefish (―) and vendace (―) in Skrukkebukta under the 

RCP-4.5 (dashed line) and RCP-8.5 (solid line) climate scenarios from year 1950 to year 2100 

for fishing mortality, F= 0.1 yr-1. 



28 

Table C4. Change in length-at-age for Arctic charr in Takvatn from year 2000 to year 2100 

under RCP-4.5 and RCP-8.5 climate scenarios and fishing mortality of F= 0.1 yr-1. 

RCP-4.5 RCP-8.5,  

Length at 
age (cm) 
year 2000 

Length at 
age (cm) 
year 2100 

Change in 
length at age 
(cm) 

Change 
in 
length 
at age 

Length at 
age (cm) 
year 2000 

Length at 
age (cm) 
year 2100 

Change in 
length at age 
(cm) 

Change 
in 
length 
at age 

Age 1 year 7.67 
(7.63-7.71) 

8.25 
(8.2-8.3) 

0.58 (0.51-0.64) 
W=2.312.906, 
p>0.001 

7.6 % 7.67 
(7.63-7.71) 

8.93 (8.87-
8.98) 

1.26 (1.19-1.33) 
W=2.992.363, 
p>0.001 

16.4 % 

Age 2 year 10.52 
(10.46-
10.58) 

11.34 
(11.27-
11.41) 

0.83 (0.73-0.92) 
W=1.320.584, 
p>0.001 

7.8 % 10.52 
(10.46-
10.58) 

12.3 
(12.2-12.4) 

1.82 (1.72-1.91) 
W=1.752.392, 
p>0.001 

17.2 % 

Age 3 year 13.1 (13.05-
13.21) 

14.23 
(14.14-
14.32) 

1.09 (0.97-1.22) 
W=818.609, 
p>0.001 

8.4 % 13.1 
(13.05-
13.21) 

15.55 
(15.45-
18.64) 

2.44 (2.31-2.56) 
W=1.147.789, 
p>0.001 

18.4 % 

Age 4 year 15.7 
(15.59-
15.78) 

16.9 
(16.8-
17.04) 

1.24 (1.08-1.39) 
W=524.789, 
p>0.001 

7.9 % 15.7 
(15.59-
15.78) 

18.5 
(18.4-
18.65) 

2.87 (2.72-3.03) 
W=731.068, 
p>0.001 

18.2 % 

Age 5 year 17.98 
(17.87-18.1) 

19.45 
(19.31-
19.59) 

1.46 (1.28-1.65) 
W=364.484, 
p>0.001 

8.2 % 17.98 
(17.87-
18.1) 

21.3 
(21.16-
21.44) 

3.33 (3.14-3.51) 
W=513.525, 
p>0.001 

18.5 % 

Table C5. Change in length-at-age for whitefish in Skrukkebukta from year 2000 to year 2100 

under RCP-4.5 and RCP-8.5 climate scenarios and fishing mortality of F=0.1 yr-1. 

RCP-4.5 RCP-8.5,  

Length at 
age (cm) 
year 2000 

Length at 
age (cm) 
year 2100 

Change in 
length at age 
(cm) 

Change 
in 
length 
at age 

Length at 
age (cm) 
year 2000 

Length at 
age (cm) 
year 2100 

Change in 
length at age 
(cm) 

Change 
in 
length 
at age 

Age 1 year 7.61 
(7.57-7.65) 

8.95 
(8.9-9.0) 

1.33 (1.27-1.4) 
W=4.331.115, 
p>0.001 

17.6 % 7.61 
(7.57-7.65 

9.43 
(9.36-9.5) 

1.79 (1.71-1.87) 
W=4.504.359, 
p>0.001 

24.0 % 

Age 2 year 11.2 
(11.14-
11.27) 

13.36 
(13.27-
13.44) 

2.11 (2.01-2.21) 
W=2.108.306, 
p>0.001 

19.2 % 11.2 
(11.14-
11.27) 

14.2 
(14.05-
14.27) 

2.91 (2.78-3.04) 
W=1.183.831, 
p>0.001 

26.4 % 

Age 3 year 14.87 
(14.78-
14.95) 

17.63 
(17.51-
17.74) 

2.72 (2.58-2.86) 
W=1.005.780, 
p>0.001 

18.5 % 14.87 
(14.78-
14.95) 

18.83 
(18.68-
18.99) 

3.91 (3.74-4.09) 
W=1.101.752, 
p>0.001 

27.0 % 

Age 4 year 18.26 
(18.14-
18.38) 

21.66 
(21.51-
21.81) 

3.38 (3.19-3.57) 
W=512.699, 
p>0.001 

18.6 % 18.26 
(18.14-
18.38) 

23.32 
(23.12-
23.52) 

5.02 (4.79-5.26) 
W=534.539, 
p>0.001 

27.7 % 

Age 5 year 21.39 
(21.24-
21.54) 

25.1 
(24.86-
25.27) 

3.67 (3.42-3.92) 
W=259.559, 
p>0.001 

17.2 % 21.39 
(21.24-
21.54) 

27.2 
(26.94-
27.43) 

5.75 (5.46-6.03) 
W=282.099, 
p>0.001 

27.1 % 
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Table C6. Change in length-at-age for vendace in Skrukkebukta from year 2000 to year 2100 

under RCP-4.5 and RCP-8.5 climate scenarios and fishing mortality of F= 0.1 yr-1. 

  RCP-4.5  
 

 RCP-8.5,   
 

 Length at 
age (cm) 
year 2000 

Length at 
age (cm) 
year 2100 

Change in 
length at age 
(cm) 

Change 
in 
length 
at age 

Length at 
age (cm) 
year 2000 

Length at 
age (cm) 
year 2100 

Change in 
length at age 
(cm) 

Change 
in  
length 
at age 

Age 1 year 7.18 (7.12-
7.24) 

8.2 (8.13-
8.27) 

1.02 (0.93-1.11) 
W=2.238.131, 
p>0.001 

14.2 % 7.18 (7.12-
7.24) 

8.73 (8.65-
8.81) 

1.49 (1.39-1.6) 
W=2.516.140, 
p>0.001 

21.6 % 

Age 2 year 8.06 
(7.97-8.14) 

9.25 
(9.15-9.35) 

1.2 (1.06-1.33) 
W=366.631, 
p>0.001 

14.8 % 8.06 
(7.97-8.14) 

9.82 
(9.71-9.93) 

1.72 (1.58-1.87) 
W=465.922, 
p>0.001 

21.9 % 

Age 3 year 8.47 (8.34-
8.6) 

9.84 (9.69-
9.99) 

1.37 (1.16-1.57) 
W=61.622, 
p>0.001 

16.2 % 8.47 (8.34-
8.6) 

10.54 
(10.38-
10.69) 

2.09 (1.87-2.3) 
W=73.289, 
p>0.001 

24.4 % 

Age 4 year 8.92 (8.72-
9.12) 

10.44 
(10.22-
10.65) 

1.54 (1.25-1.83) 
W=9.265, 
p>0.001 

16.9 % 8.92 (8.72-
9.12) 

11.11 
(10.88-
11.34) 

2.52 (1.94-2.57) 
W=10.304, 
p>0.001 

24.5 % 

Age 5 year 9.09 
(8.75-9.42) 

11.0 
(10.7-11.3) 

1.95 (1.48-2.33) 
W=1.583, 
p>0.001 

21.0 % 9.09 
(8.75-9.42 

11.65 
(11.3-12.0) 

2.51 (2.03-3.02) 
W=1.737, 
p>0.001 

28.2 % 
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F = 0.2 yr-1 

 

 

Figure C3. Individual based model predictions of length-at-age for a) Arctic charr in Takvatn, 

and b) whitefish and c) vendace in Skrukkebukta under two RCP (-4.5 & -8.5) climate scenarios 

for fishing mortality, F= 0.2 yr-1. d) Model predictions of percentage change in stock biomass 

for Arctic charr (―) in Takvatn, and whitefish (―) and vendace (―) in Skrukkebukta under the 
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RCP-4.5 (dashed line) and RCP-8.5 (solid line) climate scenarios from year 1950 to year 2100 

for fishing mortality, F= 0.2 yr-1. 

Table C7. Change in length-at-age for Arctic charr in Takvatn from year 2000 to year 2100 

under RCP-4.5 and RCP-8.5 climate scenarios and fishing mortality of F= 0.2 yr-1. 

RCP-4.5 RCP-8.5,  

Length at 
age (cm) 
year 2000 

Length at 
age (cm) 
year 2100 

Change in 
length at age 
(cm) 

Change 
in 
length 
at age 

Length at 
age (cm) 
year 2000 

Length at 
age (cm) 
year 2100 

Change in 
length at age 
(cm) 

Change 
in 
length 
at age 

Age 1 year 7.92 
(7.88-7.97) 

9.17 
(9.11-9.24) 

1.25 (1.17-1.33) 
W=2.351.663, 
p>0.001 

15.8 % 7.92 
(7.88-7.97) 

10.27 
(10.2-10.3) 

2.35 (2.26-2.44) 
W=2.731.753, 
p>0.001 

29.6 % 

Age 2 year 10.85 
(10.79-
10.91) 

12.65 
(12.57-
12.73) 

1.82 (1.72-1.92) 
W=1.344.183, 
p>0.001 

16.6 % 10.85 
(10.79-
10.91) 

14.2 
(14.1-14.3) 

3.37 (3.25-3.48) 
W=1.609.976, 
p>0.001 

30.1 % 

Age 3 year 13.55 
(13.47-
13.63) 

15.89 
(15.79-
15.99) 

2.35 (2.22-2.48) 
W=840.592, 
p>0.001 

17.2 % 13.55 
(13.47-
13.63) 

17.94 
(17.8-
18.07) 

4.39 (4.24-4.53) 
W=1.028.223, 
p>0.001 

32.3 % 

Age 4 year 16.1 
(16.0-16.2) 

18.9 
(18.7-19.0) 

2.73 (2.56-2.9) 
W=530.560, 
p>0.001 

17.0 % 16.1 
(16.0-16.2) 

21.4 
(21.2-21.5) 

5.29 (5.1-5.47) 
W=664.091, 
p>0.001 

32.6 % 

Age 5 year 18.46 
(18.32-18.6) 

21.6 
(21.48-
21.8) 

3.16 (2.95-3.38) 
W=353.935, 
p>0.001 

17.2 % 18.46 
(18.32-
18.6) 

24.5 
(24.33-
24.7) 

6.07 (5.84-6.3) 
W=426.501, 
p>0.001 

32.8 % 

Table C8. Change in length-at-age for whitefish in Skrukkebukta from year 2000 to year 2100 

under RCP-4.5 and RCP-8.5 climate scenarios and fishing mortality of F= 0.2 yr-1. 

RCP-4.5 RCP-8.5,  

Length at 
age (cm) 
year 2000 

Length at 
age (cm) 
year 2100 

Change in 
length at age 
(cm) 

Change 
in 
length 
at age 

Length at 
age (cm) 
year 2000 

Length at 
age (cm) 
year 2100 

Change in 
length at age 
(cm) 

Change 
in 
length 
at age 

Age 1 year 8.36 
(8.31-8.4) 

9.7 
(9.63-9.75) 

1.33 (1.25-1.41) 
W=3.528.810, 
p>0.001 

16.0 % 8.36 
(8.31-8.4) 

10.43 
(10.36-
10.51) 

2.04 (1.95-2.13) 
W=3.836.122, 
p>0.001 

24.8 % 

Age 2 year 12.4 
(12.33-
12.46) 

14.65 
(14.56-
14.74) 

2.26 (2.15-2.38) 
W=1.803.484, 
p>0.001 

18.2 % 12.4 
(12.33-
12.46) 

15.7 
(15.6-
15.82) 

3.24 (3.11-3.37) 
W=1.935.018, 
p>0.001 

26.7 % 

Age 3 year 16.44 
(16.35-
16.54) 

19.31 
(19.17-
19.44) 

2.88 (2.71-3.04) 
W=890.521, 
p>0.001 

17.4 % 16.44 
(16.35-
16.54) 

21.04 
(20.89-
21.2) 

4.53 (4.34-4.72) 
W=946.124, 
p>0.001 

27. %
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Age 4 year 20.18 
(20.05-
20.31) 

24.0 
(23.8-24.2) 

3.81 (3.6-4.04) 
W=468.506, 
p>0.001 

18.9 % 20.18 
(20.05-
20.31) 

25.91 
(25.7-26.1) 

5.69 (5.45-5.92) 
W=486.772, 
p>0.001 

28.4 % 

Age 5 year 23.5 
(23.32-
23.65) 

27.6 
(27.38-
27.84) 

4.08 (3.8-4.37) 
W=219.924, 
p>0.001 

17.5 % 23.5 
(23.32-
23.65) 

29.87 
(29.6-30.1) 

6.35 (6.03-6.67) 
W=213.206, 
p>0.001 

27.2 % 

 

Table C9. Change in length-at-age for vendace in Skrukkebukta from year 2000 to year 2100 

under RCP-4.5 and RCP-8.5 climate scenarios and fishing mortality of F= 0.2 yr-1. 

  RCP-4.5  
 

 RCP-8.5,   
 

 Length at 
age (cm) 
year 2000 

Length at 
age (cm) 
year 2100 

Change in 
length at age 
(cm) 

Change 
in 
length 
at age 

Length at 
age (cm) 
year 2000 

Length at 
age (cm) 
year 2100 

Change in 
length at age 
(cm) 

Change 
in  
length 
at age 

Age 1 year 7.55 (7.5-
7.6) 

9.0 (8.9-
9.1) 

1.42 (1.31-1.53) 
W=1.991.453, 
p>0.001 

19.1 % 7.55 (7.5-
7.6) 

9.94 (9.84-
10.04) 

2.27 (2.15-2.4) 
W=2.302.043, 
p>0.001 

31.7 % 

Age 2 year 8.35 
(8.26-8.44) 

9.85 
(9.71-9.98) 

1.43 (1.26-1.60) 
W=272.332, 
p>0.001 

17.9 % 8.35 
(8.26-8.44) 

11.12 
(10.95-
11.3) 

2.68 (2.48-2.87) 
W=283.722, 
p>0.001 

33.2 % 

Age 3 year 8.81 (8.68-
8.93) 

10.52 
(10.27-
10.77) 

1.61 (1.37-1.87) 
W=30.822, 
p>0.001 

19.5 % 8.81 (8.68-
8.93) 

11.97 
(11.6-
12.29) 

3.09 (2.77-3.43) 
W=26.632, 
p>0.001 

35.9 % 

Age 4 year 8.97 (8.76-
9.17) 

11.18 
(10.64-
11.73) 

2.11 (1.61-2.58) 
W=2778, 
p>0.001 

24.7 % 8.97 (8.76-
9.17) 

12.69 
(12.17-
13.2) 

3.71 (3.24-4.24) 
W=2626, 
p>0.001 

41.5 % 

Age 5 year 9.23 
(8.9-9.57) 

11.4 
(10.4-12.4) 

2.19 (1.55-3.07) 
W=201, 
p>0.001 

23.4 % 9.23 
(8.9-9.57 

13.15 
(11.7-14.6) 

4.06 (2.73-5.03) 
W=210, 
p>0.001 

42.5 % 
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F = 0.3 yr-1 

Figure C4. Individual based model predictions of length-at-age for a) Arctic charr in Takvatn, 

and b) whitefish and c) vendace in Skrukkebukta under two RCP (-4.5 & -8.5) climate scenarios 

and fishing mortality, F= 0.3 yr-1. d) Model predictions of percentage change in stock biomass 

for Arctic charr (―) in Takvatn, and whitefish (―) and vendace (―) in Skrukkebukta under the 

RCP-4.5 (dashed line) and RCP-8.5 (solid line) climate scenarios from year 1950 to year 2100 

for fishing mortality, F= 0.3 yr-1. 
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Table C10. Change in length-at-age for Arctic charr in Takvatn from year 2000 to year 2100 

under RCP-4.5 and RCP-8.5 climate scenarios and fishing mortality of F= 0.3 yr-1. 

  RCP-4.5  
 

 RCP-8.5,   
 

 Length at 
age (cm) 
year 2000 

Length at 
age (cm) 
year 2100 

Change in 
length at age 
(cm) 

Change 
in 
length 
at age 

Length at 
age (cm) 
year 2000 

Length at 
age (cm) 
year 2100 

Change in 
length at age 
(cm) 

Change 
in  
length 
at age 

Age 1 year 8.41  
(8.36-8.46) 

9.14  
(9.08-9.2) 

0.72 (0.64-0.8) 
W=1.827.569, 
p>0.001 

8.7 % 8.41  
(8.36-8.46) 

10.96 
(10.88-
11.04) 

2.55 (2.46-2.65) 
W=2.203.354, 
p>0.001 

30.3 % 

Age 2 year 11.55 
(11.48-
11.62) 

12.58 
(12.49-
12.66) 

1.03 (0.92-1.14) 
W=1.041.649, 
p>0.001 

8.9 % 11.55 
(11.48-
11.62) 

14.6 
(14.4-14.6) 

3.72 (3.6-3.85) 
W=1.328.405, 
p>0.001 

32.0 % 

Age 3 year 14.47 
(14.39-
14.57) 

15.78 
(15.68-
15.89) 

1.33 (1.19-1.47) 
W=1.041.649, 
p>0.001 

9.0 % 14.47 
(14.39-
14.57) 

19.28 
(19.15-
19.4) 

4.83 (4.67-4.99) 
W=939.367, 
p>0.001 

33.2 % 

Age 4 year 17.35 
(17.23-
17.46) 

18.79 
(18.66-
18.92) 

1.46 (1.28-1.63) 
W=459.440, 
p>0.001 

8.3 % 17.35 
(17.23-
17.46) 

22.9 
(22.8-23.1) 

5.59 (5.39-5.78) 
W=634.732, 
p>0.001 

32.2 % 

Age 5 year 19.96 
(19.83-
20.09) 

21.6 
(21.42-
21.73) 

1.63 (1.43-1.84) 
W=327.339, 
p>0.001 

8.1 % 19.96 
(19.83-
20.09) 

26.1 (25.9-
26.3) 

6.13 (5.89-6.36) 
W=413.577, 
p>0.001 

30.7 % 

 

Table C11. Change in length-at-age for whitefish in Skrukkebukta from year 2000 to year 2100 

under RCP-4.5 and RCP-8.5 climate scenarios and fishing mortality of F= 0.3 yr-1. 

  RCP-4.5  
 

 RCP-8.5,   
 

 Length at 
age (cm) 
year 2000 

Length at 
age (cm) 
year 2100 

Change in 
length at age 
(cm) 

Change 
in 
length 
at age 

Length at 
age (cm) 
year 2000 

Length at 
age (cm) 
year 2100 

Change in 
length at age 
(cm) 

Change 
in  
length 
at age 

Age 1 year 8.68 
(8.63-8.73) 

10.8 
(10.73-
10.87) 

2.09 (2.0-2.17) 
W=3.353.592, 
p>0.001 

24.4 % 8.68 
(8.63-8.73) 

11.8 
(11.7-
11.89) 

3.08 (2.97-3.18) 
W=3.533.177, 
p>0.001 

35.9 % 

Age 2 year 12.97 
(12.9-13.04) 

14.65 
(14.56-
14.74) 

3.23 (3.1-3.37) 
W=1.618.781, 
p>0.001 

25.2 % 12.97 
(12.9-
13.04) 

17.9 
(17.73-
18.01) 

4.81 (4.65-4.97) 
W=1.727.318, 
p>0.001 

37.8 % 

Age 3 year 17.2 (17.13-
17.33) 

21.56 
(21.41-
21.7) 

4.3 (4.12-4.47) 
W=821.631, 
p>0.001 

25.1 % 17.2 
(17.13-
17.33) 

23.8 (23.6-
24.0) 

6.55 (6.33-6.77) 
W=869.437, 
p>0.001 

38.3 % 

Age 4 year 21.2 
(21.04-
21.32) 

26.4 
(26.2-26.6) 

5.21 (4.97-4.45) 
W=407.095, 
p>0.001 

24.7 % 21.2 
(21.04-
21.32) 

29.1 (28.8-
29.3) 

7.87 (7.58-8.16) 
W=391.084, 
p>0.001 

37.1 % 

Age 5 year 24.7 
(24.5-24.9) 

30.3 
(30.02-
30.59) 

5.56 (5.22-5.9) 
W=149.250, 
p>0.001 

22.6 % 24.7 
(24.5-24.9) 

33.9 
(33.55-
34.3) 

9.2 (8.79-9.6) 
W=138.061, 
p>0.001 

37.2 % 
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Table C12. Change in length-at-age for vendace in Skrukkebukta from year 2000 to year 2100 

under RCP-4.5 and RCP-8.5 climate scenarios and fishing mortality of F= 0.3 yr-1. 

  RCP-4.5  
 

 RCP-8.5,   
 

 Length at 
age (cm) 
year 2000 

Length at 
age (cm) 
year 2100 

Change in 
length at age 
(cm) 

Change 
in 
length 
at age 

Length at 
age (cm) 
year 2000 

Length at 
age (cm) 
year 2100 

Change in 
length at age 
(cm) 

Change 
in  
length 
at age 

Age 1 year 8.29 (8.21-
8.37) 

9.65 (9.56-
9.76) 

1.33 (1.2-1.46) 
W=1.467.052, 
p>0.001 

16.5 % 8.29 (8.21-
8.37) 

11.15 
(11.02-
11.28) 

2.73 (2.58-2.89) 
W=2.400.128, 
p>0.001 

34.5 % 

Age 2 year 9.08 
(8.97-9.2) 

10.57 
(10.39-
10.75) 

1.47 (1.25-1.67) 
W=135.016, 
p>0.001 

16.4 % 9.08 
(8.97-9.2) 

12.1 
(11.84-
12.37) 

2.99 (2.73-3.26) 
W=92.466, 
p>0.001 

33.3 % 

Age 3 year 9.5 (9.28-
9.66) 

11.4 
(11.12-
11.7) 

1.91 (1.56-2.24) 
W=10.776, 
p>0.001 

20.5 % 9.5 (9.28-
9.66) 

13.2 
(12.62-
13.85) 

3.64 (3.09-4.19) 
W=5.094, 
p>0.001 

39.8 % 

Age 4 year 9.97 (9.63-
10.29) 

12.15 
(11.52-
12.77) 

2.11 (1.45-2.73) 
W=772, 
p>0.001 

21.8 % 9.97 (9.63-
10.29) 

13.99 
(13.78-
14.19) 

4.01 (2.75-5.25) 
W=141, 
p>0.001 

40.3 % 

Age 5 year 9.87 
(9.4-10.35) 

NA 
(NA-NA) 

NA NA 9.87 
(9.4-10.35) 

15.42 
(NA-NA) 

5.72 (4.66-6.39) 
W=8, 
p=0.22 

56.2 % 
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F = 0.4 yr-1

Figure C5. Individual based model predictions of length-at-age for a) Arctic charr in Takvatn, 

and b) whitefish and c) vendace in Skrukkebukta under two RCP (-4.5 & -8.5) climate scenarios 

for fishing mortality, F= 0.4 yr-1. d) Model predictions of percentage change in stock biomass 

for Arctic charr (―) in Takvatn, and whitefish (―) and vendace (―) in Skrukkebukta under the 
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RCP-4.5 (dashed line) and RCP-8.5 (solid line) climate scenarios from year 1950 to year 2100 

for fishing mortality, F= 0.4 yr-1. 

Table C13. Change in length-at-age for Arctic charr in Takvatn from year 2000 to year 2100 

under RCP-4.5 and RCP-8.5 climate scenarios and fishing mortality of F= 0.4 yr-1. 

  RCP-4.5  
 

 RCP-8.5,   
 

 Length at 
age (cm) 
year 2000 

Length at 
age (cm) 
year 2100 

Change in 
length at age 
(cm) 

Change 
in 
length 
at age 

Length at 
age (cm) 
year 2000 

Length at 
age (cm) 
year 2100 

Change in 
length at age 
(cm) 

Change 
in  
length 
at age 

Age 1 year 8.45 
(8.4-8.5) 

9.86  
(9.79-9.93) 

1.42 (0.64-0.8) 
W=1.827.569, 
p>0.001 

16.7 % 8.45 
(8.4-8.5) 

11.22 
(11.14-
11.31) 

2.78 (2.68-2.88) 
W=2.842.472, 
p>0.001 

32.8 % 

Age 2 year 11.67 
(11.6-11.74) 

13.64 
(13.55-
13.73) 

1.97 (1.86-2.09) 
W=1.172.859, 
p>0.001 

16.9 % 11.67 
(11.6-
11.74) 

15.67 
(15.55-
15.78) 

3.98 (3.84-4.11) 
W=1.146.946, 
p>0.001 

34.2 % 

Age 3 year 14.62 
(14.53-
14.71) 

17.15 
(17.03-
17.27) 

2.52 (2.36-2.67) 
W=757.070, 
p>0.001 

17.3 % 14.62 
(14.53-
14.71) 

19.75 
(19.6-19.9) 

5.13 (4.96-5.3) 
W=787.279, 
p>0.001 

35.1 % 

Age 4 year 17.4 
(17.29-
17.51) 

20.56 
(20.41-
20.71) 

3.13 (2.94-3.31) 
W=515.122, 
p>0.001 

18.2 % 17.4 
(17.29-
17.51) 

23.5 
(23.35-
23.71) 

6.11 (5.89-6.32) 
W=502.943, 
p>0.001 

35.2 % 

Age 5 year 19.95 
(19.81-
20.09) 

23.56 
(23.38-
23.74) 

3.63 (6.3-6.86) 
W=343.255, 
p>0.001 

18.1 % 19.95 
(19.81-
20.09 

26.52 
(25.3-
26.73) 

6.55 (6.3-6.81) 
W=307.138, 
p>0.001 

32.9 % 

 

Table C14. Change in length-at-age for whitefish in Skrukkebukta from year 2000 to year 2100 

under RCP-4.5 and RCP-8.5 climate scenarios and fishing mortality of F= 0.4 yr-1. 

  RCP-4.5  
 

 RCP-8.5,   
 

 Length at 
age (cm) 
year 2000 

Length at 
age (cm) 
year 2100 

Change in 
length at age 
(cm) 

Change 
in 
length 
at age 

Length at 
age (cm) 
year 2000 

Length at 
age (cm) 
year 2100 

Change in 
length at age 
(cm) 

Change 
in  
length 
at age 

Age 1 year 9.32 (9.26-
9.37) 

12.1 (12.0-
12.17) 

2.78 (2.68-2.88) 
W=2.877.347, 
p>0.001 

29.8 % 9.32 (9.26-
9.37) 

12.99 
(12.88-
13.11) 

3.65 (3.52-3.78) 
W=2.504.952, 
p>0.001 

39.5 % 

Age 2 year 13.85 
(13.76-
13.94) 

18.19 
(18.06-
18.32) 

4.35 (4.2-4.51) 
W=1.396.644, 
p>0.001 

31.4 % 13.85 
(13.76-
13.94 

19.6 
(19.42-
19.78) 

5.67 (5.47-5.87) 
W=1.247.140, 
p>0.001 

41.6 % 

Age 3 year 18.32 
(18.21-
18.44) 

23.1 (23.9-
24.26) 

5.8 (5.58-6.02) 
W=694.799, 
p>0.001 

31.4 % 18.32 
(18.21-
18.44) 

26.2 
(25.85-
26.4) 

7.8 (7.52-8.1) 
W=577.753, 
p>0.001 

42.5 % 
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Age 4 year 22.4 
(22.28-22.6) 

29.2 
(28.96-
29.49) 

6.74 (6.44-7.06) 
W=280.941, 
p>0.001 

30.2 % 22.4 
(22.28-
22.6) 

31.53 
(31.15-
31.9) 

8.87 (8.47-9.26) 
W=205.809, 
p>0.001 

40.5 % 

Age 5 year 25.9 
(25.68-26.1) 

33.7 
(33.2-
34.19) 

7.69 (7.19-8.18) 
W=70.435, 
p>0.001 

30.2 % 25.9 
(25.68-
26.1 

36.7 
(36.03-
37.31) 

10.7 (10.0-11.3) 
W=46.627, 
p>0.001 

41.6 % 

Table C15. Change in length-at-age for vendace in Skrukkebukta from year 2000 to year 2100 

under RCP-4.5 and RCP-8.5 climate scenarios and fishing mortality of F= 0.4 yr-1. 

RCP-4.5 RCP-8.5,  

Length at 
age (cm) 
year 2000 

Length at 
age (cm) 
year 2100 

Change in 
length at age 
(cm) 

Change 
in 
length 
at age 

Length at 
age (cm) 
year 2000 

Length at 
age (cm) 
year 2100 

Change in 
length at age 
(cm) 

Change 
in 
length 
at age 

Age 1 year 8.67 (8.58-
8.75) 

9.98 (9.87-
10.09) 

1.27 (1.13-1.42) 
W=1.022.442, 
p>0.001 

15.2 % 8.67 (8.58-
8.75) 

10.94 
(10.81-
11.08) 

2.17 (2.0-2.33) 
W=986.743, 
p>0.001 

26.3 % 

Age 2 year 9.47 
(9.33-9.61) 

10.59 
(10.3-
10.78) 

1.1 (0.88-1.33) 
W=65.008, 
p>0.001 

11.8 % 9.47 
(9.33-9.61) 

11.43 
(11.14-
11.73) 

1.87 (1.58-2.18) 
W=43.200, 
p>0.001 

20.7 % 

Age 3 year 9.76 (9.55-
9.97) 

11.05 
(10.76-
11.35) 

1.34 (0.96-1.71) 
W=3.230,5, 
p>0.001 

13.3 % 9.76 (9.55-
9.97) 

11.91 
(10.78-
13.05) 

1.93 (1.05-3.19) 
W=889, 
p>0.001 

22.1 % 

Age 4 year 10.07 (9.65-
10.49) 

NA 
(NA-NA) 

NA NA 10.07 
(9.65-
10.49) 

12.1 
(11.54-
12.66) 

2.08 (0.86-3.00) 
W=35, 
p=0.021 

20.2 % 

Age 5 year 10.54 
(9.77-11.3) 

NA 
(NA-NA) 

NA NA 10.54 
(9.77-11.3) 

NA 
(NA-NA) 

NA NA 
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Development of stock biomass and yield for two climate scenarios and five different 

fishing mortality scenarios 

 

 

 

Figure C6. Development of stock biomass (a, c and e) and yield (b, d and f) for Arctic charr (a 

and b) in Takvatn, and whitefish (c and d) and vendace (e and F) in Skrukkebukta from year 

1950 to year 2100 for climate scenarios RCP-4.5 (dashed line) and RCP-8.5 (solid line).   
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Development in age- and size-distribution and number of recruits and adult individuals 

from year 1950-2100 

Arctic charr in Lake Takvatn 

 

Figure C7. Age-distribution (right) and size-distribution (left) for five different levels of fishing 

mortality (F = 0.1-0.4) under the RCP-8.5 climate scenario in year 2100 for Arctic charr in Lake 

Takvatn predicted in the individual based model.  
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Figure C8. Individual based model predictions of size-distribution in the Arctic charr population 

in Lake Takvatn for three different fishing mortality scenarios (F= 0.0-, 0.2- & 0.4 yr-1) in the 

year 2000 (left), year 2050 (middle) and year 2100 (right) for the RCP-8.5 climate scenario. 

Proportion of mature individuals and number of recruits increases significantly with warming 

(RCP=8.5) for the low fishing mortality scenarios (F< 0.2 yr-1) (Fig. C9), for F= 0.0 yr-1

proportion of mature individuals increases with 8.9% (W=230,743, p<0.001) and number of 

recruits increases with 5.8% from year 2000 to the year 2100 (W=39,954, p<0.001). For F= 0.1 

yr-1 proportion of mature individuals increases with 2.4% (W=158,311, p<0.001), and number 

of recruits increases with 9.2% from year 2000 to the year 2100 (W=216,278, p<0.001). 

However, for F>= 0.2 yr-1 proportion of mature individuals and number of recruits decreases 

with warming (RCP-8.5), and for F= 0.4 yr-1 the decrease is severe. For F= 0.2 yr-1 proportion 

of mature individuals are only 94.2% (W=55,499, p<0.001), and number of recruits are only 

92.6% in the year 2100 compared to the year 2000 (W=53,779, p<0.001). For F= 0.3 yr-1 
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proportion of mature individuals are only 83.6% (W=5,927, p<0.001), and number of recruits 

are only 88.4% in the year 2100 compared to the year 2000 (W=134.5, p<0.001). For F= 0.4 

yr-1 proportion of mature individuals are only 75.3% (W=433, p<0.001), and number of recruits 

are only 76.4% in the year 2100 compared to the year 2000 (W=0, p<0.001) (Fig. C9). 

 

Figure C9. Proportion of mature individuals (left) and number of recruits (right) in the Arctic 

charr population in Takvatn from the year 1950-2100 for five different fishing mortalities (yr-

1) and two different climate scenarios, RCP-4.5 (dashed line) and RCP-8.5 (solid line) predicted 

in the individual based model. 
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Whitefish in Lake Skrukkebukta 

Figure C10. Age-distribution (right) and size-distribution (left) for five different levels of 

fishing mortality (F= 0.1-0.4 yr-1) under the RCP-8.5 climate scenario in year 2100 for whitefish 

in Lake Skrukkebukt predicted in the individual based model. 

Figure C11. Individual based model predictions of size-distribution in the Arctic charr 

population in Lake Takvatn for three different fishing mortality scenarios (F= 0.0-, 0.2- & 0.4 
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yr-1) in the year 2000 (left), year 2050 (middle) and year 2100 (right) for the RCP-8.5 climate 

scenario. 

 

Proportion of mature individuals and number of recruits increases significantly or have no 

change with warming (RCP=8.5) for the low to medium fishing mortality scenarios (F< 0.3 yr-

1), for F= 0.0 yr-1 proportion of mature individuals increases with 11.1% (W=231,179, p<0.001) 

and number of recruits increases with 5.1% from year 2000 to the year 2100 (W=38,493, 

p<0.001). For F= 0.1 yr-1 proportion of mature individuals increases with 6.8% (W=195,455, 

p<0.001), and number of recruits increases with 11.1% from year 2000 to the year 2100 

(W=211,028, p<0.001). However, for F= 0.2 yr-1 proportion of mature individuals and number 

of recruits are stabile with warming (RCP=8.5), and for F> 0.2 yr-1 both decreases with 

warming. For F= 0.2 yr-1 proportion of mature individuals increases by 1.8% (W=145,366, 

p<0.001), and number of recruits does not change in the year 2100 compared to the year 2000 

(W=131,463, p=0.157). For F= 0.3 yr-1 proportion of mature individuals are only 92.4% 

(W=55,546, p<0.001), and number of recruits are only 91.1% in the year 2100 compared to the 

year 2000 (W=2,369, p<0.001). For F= 0.4 yr-1 proportion of mature individuals are only 83.4% 

(W=24,057, p<0.001), and number of recruits are only 77.8% in the year 2100 compared to the 

year 2000 (W=517.5, p<0.001) (Fig. C12). 
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Figure C12. Proportion of mature individuals (left) and number of recruits (right) in the 

whitefish population in Skrukkebukta from the year 1950-2100 for five different fishing 

mortalities and two different climate scenarios, RCP-4.5 (dashed line) and RCP-8.5 (solid line) 

predicted in the individual based model. 
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Vendace 

 

 

Figure C13. Age-distribution (right) and size-distribution (left) for five different levels of 

fishing mortality (F= 0.1-0.4 yr-1) under the RCP-8.5 climate scenario in year 2100 for vendace 

in Lake Skrukkebukt predicted in the individual based model. 
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Figure C14. Individual based model predictions of size-distribution in the Arctic charr 

population in Lake Takvatn for three different fishing mortality scenarios (F= 0.0-, 0.2- & 0.4 

yr-1) in the year 2000 (left), year 2050 (middle) and year 2100 (right) for the RCP-8.5 climate 

scenario. 

 

Proportion of mature individuals increases significantly with warming for all fishing mortality 

scenarios except for the highest scenario of F= 0.4 yr-1, where proportion of mature individuals 

stays constant with warming. Number of recruits increases significantly with warming for low 

and medium fishing mortality scenarios (F< 0.3 yr-1), but decreases with warming for high 

fishing mortality scenarios (F> 0.2 yr-1). For F= 0.0 yr-1 proportion of mature individuals 

increases with 10.5% (W=217,692, p<0.001) and number of recruits increases with 13.9% from 

year 2000 to the year 2100 (W=39,533, p<0.001). For F= 0.1 yr-1 proportion of mature 

individuals increases with 7.6% (W=195,180, p<0.001), and number of recruits increases with 

15.2% from year 2000 to the year 2100 (W=225,651, p<0.001). For F= 0.2 yr-1 proportion of 

mature individuals increases with 6.4% (W=185,580, p<0.001), and number of recruits 

increases with 7.1% from year 2000 to the year 2100 (W=178,779, p<0.001). For F= 0.3 yr-1 

proportion of mature individuals increases with 3.1% (W=154,088, p<0.001), but number of 

recruits decreases with 5.2% from the year 2100 compared to the year 2000 (W=12,440, 

p<0.001). For F= 0.4 yr-1 proportion of mature individuals stays constant with warming 

(W=120,664, p=0.342), and number of recruits decreases to only 84.1% in the year 2100 

compared to the year 2000 (W=27,516, p<0.001) (Fig. C15). 
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Figure C15. Proportion of mature individuals (left) and number of recruits (right) in the vendace 

population in Skrukkebukta from the year 1950-2100 for five different fishing mortalities and 

two different climate scenarios, RCP-4.5 (dashed line) and RCP-8.5 (solid line) predicted in the 

individual based model. 
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Density-dependent growth 

Our model assumes that consumption rate is dependent on both temperature and density. 

Maximum consumption is thus fractioned by number of competitors (see original paper), which 

will affect individual growth rate. In addition, it will also affect the optimum temperature of 

growth (Fig. C16). Thus, density affects individual somatic growth rate, and the development 

over time in density-factor is visualized in Figure C17 for all three species, both climate 

scenarios and five different fishing mortality scenarios. Fishing mortality affects the density of 

competitors, but warming is also influencing abundance and therefore also density in the 

populations (Fig. C17). However, the three different species are similarly affected in the 

development of density by both warming and fisheries.  

 

Figure C16. Theoretical representation on how temperature and density affects individual 

somatic growth in our individual based model. Black line (―): Energy acquired through 

consumption (𝐼𝐼(𝑇𝑇,𝐷𝐷)), Grey lines (―): Represent energy lost to Standard Dynamic Action 

(SDA), Egestion (E) and Excretion (U). Red line (―): Energy lost through metabolic processes 
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(m(T)). The blue filled area (―): Energy available for somatic growth and/or reproduction 

(Inspired by Deslauriers et al. 2017).  

 

 

 

Figure C17. Development in the density-dependent factor from year 1950 to year 2100 with 

five different fishing mortality scenarios and two different climate scenarios, RCP-4.5 (dashed 

line) and RCP-8.5 (solid line) for a) Arctic charr in Takvatn, and b) whitefish and c) vendace 

in Skrukkebukta. 
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Appendix D: Robustness and sensitivity analyses 

For the robustness and sensitivity analysis, we focus on the growth parameters, which are 

temperature- and density dependent and thus particularly important for our study. We modified 

consumption rate parameters 𝑑𝑑 and 𝑔𝑔 in eq. 4 in the original paper (or Supplementary 

Information eq. 3c, Appendix B) to reflect a 5% increase or decrease in the growth parameter 

𝑐𝑐 in eq. 2 and 3 in the original paper (or Supplementary Information eq. 3a and 3b, Appendix 

B). In addition, we focus simultaneously on the natural-mortality parameter 𝑀𝑀r that will affect 

growth indirectly through density-dependence, and modified 𝑀𝑀r to reflect 5% increase or 

decrease in natural mortality (yr-1). We assess how a variation in these parameters affects the 

individual based model-predicted population stock biomass (Fig. D1, D4 & D7), population 

age-distribution (Fig. D2, D5 & D8), and individual somatic growth (Fig. D3, D6 & D9). The 

sensitivity analysis show that small changes in parameter values have no qualitative effects and 

do not change our conclusions, but could have relative large quantitative effects for some 

combinations of parameter values. It is also evident that the change in natural mortality have 

larger effect on both individual level and population level outcomes than a change in growth 

parameters.  
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Figure D1. Change in stock biomass from year 2000 to year 2100 for the RCP-8.5 climate 

scenario with the pairwise combination of three levels of the growth parameter (c) and natural 

mortality (yr-1) for Arctic charr in Takvatn, a) F= 0.0 yr-1 and b) F= 0.2 yr-1.  

 

Figure D2. Difference in age-distribution in year 2100 for the RCP-8.5 climate scenario 

between the pairwise combination of three levels of the growth parameter (c) and natural 

mortality (yr-1) for Arctic charr in Takvatn, a) F= 0.0 yr-1 and b) F= 0.2 yr-1. 
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Figure D3. Difference in length-at-age in year 2100 for the RCP-8.5 climate scenario between 

the pairwise combination of three levels of the growth parameter (c) and natural mortality (yr-

1) for Arctic charr in Takvatn, a) F= 0.0 yr-1 and b) F= 0.2 yr-1.

Figure D4. Change in stock biomass from year 2000 to year 2100 for the RCP-8.5 climate 

scenario with the pairwise combination of three levels of the growth parameter (c) and natural 

mortality (yr-1) for Whitefish in Skrukkebukta, a) F= 0.0 yr-1 and b) F= 0.2 yr-1. 
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Figure D5. Difference in age-distribution in year 2100 for the RCP-8.5 climate scenario 

between the pairwise combination of three levels of the growth parameter (c) and natural 

mortality (yr-1) for whitefish in Skrukkebukta, a) F= 0.0 yr-1 and b) F= 0.2 yr-1. 
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Figure D6. Difference in length-at-age in year 2100 for the RCP-8.5 climate scenario between 

the pairwise combination of three levels of the growth parameter (c) and natural mortality (yr-

1) for whitefish in Skrukkebukta, a) F= 0.0 yr-1 and b) F= 0.2 yr-1.

Figure D7. Change in stock biomass from year 2000 to year 2100 for the RCP-8.5 climate 

scenario with the pairwise combination of three levels of the growth parameter (c) and natural 

mortality (yr-1) for vendace in Skrukkebukta, a) F= 0.0 yr-1 and b) F= 0.2 yr-1. 
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Figure D8. Difference in age-distribution in year 2100 for the RCP-8.5 climate scenario 

between the pairwise combination of three levels of the growth parameter (c) and natural 

mortality (yr-1) for vendace in Skrukkebukta, a) F= 0.0 yr-1 and b) F= 0.2 yr-1. 

Figure D9. Difference in length-at-age in year 2100 for the RCP-8.5 climate scenario between 
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the pairwise combination of three levels of the growth parameter (c) and natural mortality (yr-

1) for vendace in Skrukkebukta, a) F= 0.0 yr-1 and b) F= 0.2 yr-1. 

 

Appendix E: Air- and water temperature, General Lake model parameterization, calibration 

and evaluation and Lake morphometries.  

To demonstrate both historic and future climate at high latitude regions in Europe. We used the 

WorldClim database to show both historic air-temperature and projected future air-temperature 

(Fig. E1). The WorldClim data we used has high spatial resolution (30 seconds or ~1 km2 

resolution tiles) of both historic measured and future modelled climate (Fick & Hijmans 2017). 

For the future air-temperature projections, WorldClim uses results from the Coupled Model 

Intercomparison Project phase 6 (CMIP6), and for mean air-temperature comparison in Figure 

E1, we used the SSP-8.5 scenario with a regionally downscaled climate model (MPI-ESM) 

from year 2061-2080. Both for the historical and the projected air-temperature it is a large 

difference between the western and the eastern part of Fenno-Scandia. To illustrate temperature 

differences between coastal areas in the west and more inland areas in the east of northern-

Norway we used air temperature data from the Worldclim database (Fick & Hijmans 2017). 

Both historical and projected air temperature data are available in 30 Arc-seconds resolution 

and we used the same climate model (MPI-ESM) for the projected air temperature data as for 

the water temperature estimation routine described below (average from 2061-2080). In 

addition, we used water temperature loggers (HOBO® Pendant temp/light, Part #UA-002-64) 

deployed at both Lake Skrukkebukta and Lake Takvatn to illustrate how the difference in 

climatic variables translate into difference in water temperatures from June 2018 to September 

2019 (Fig. E2). 
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Figure E1. Left: Map of northern Europe with average (1960-2000) July air temperature. Right: 

Northern Fenno-Scandia with (top) average (1960-2000) July air temperature and (bottom) 

average projected (year 2061-2081) July air temperature under the RCP-8.5 climate scenario. 

Black dots represent Takvatn (left) in the Målselv watercourse and Skrukkebukta (right) in the 

Pasvik watercourse.  

We measured water-temperature in both Lake Takvatn and Lake Skrukkebukta with 

temperature loggers. We measured water-temperature at 1m, 3m, 5m, 7m, 9m, 12m, 15m, 20m, 

25m and 30m depth with two different types of HOBO loggers (HOBO® Pendant temp/light, 

Part #UA-002-64 and HOBO® Water Temp Pro v2, Part #U22-001 for greater depths (20-30 

m)) to illustrate how the difference in climatic variables translate into difference in water 

temperatures from June 2018 to September 2019. In addition, we used this data to validate the 

GLMr model used to project future water-temperature (see below). There is a clear difference 
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in summer water-temperature between Takvatn and Skrukkebukt, where Skrukkebukt has 

significantly higher summer water-temperature (mean of top ten meters) than Takvatn (Fig. 

E2).  

 

 

Figure E2. Average water-temperature of the top ten meters in Takvatn in the western part of 

northern Norway (―) and Skrukkebukta in the eastern part of northern Norway (―) from June 

2018 to September 2019 measured with temperature loggers. 

 

Climate scenarios RCP-4.5 and RCP-8.5 were obtained for both the historic period and for 

future projections (1950–2100) from the EURO-CORDEX project and the Earth System Grid 

Federation (ESGF) project. The chosen climate model was a regionally downscaled 

implementation at the finest grid resolution (0.11°) (MPI-M-MPI-ESM-LR), forced by the 

global circulation model CLMcom-CCLM4-8-17. This climate model has been ranked as the 

one best fitting our study area in a report by the Norwegian Meteorological Institute (Landgren 

& Haugen 2016). Air-temperature derived from this climate model is visualized in Figure E3a. 
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The climate model’s outcomes were used to force a one-dimensional air-to-water temperature 

model implemented by the General Lake Modelling approach, using the R package GLMr 

(Hipsey et al., 2014). This temperature model assumes no horizontal temperature variability 

within the water body and computes vertical temperature profiles by accounting for surface 

heating, surface cooling, and vertical mixing. The model also includes the effects of ice-cover 

formation and subsequent melting on heating and mixing processes within the lake (Hipsey et 

al., 2014). We calibrated and evaluated the model using water-temperature data from Lake 

Takvatn for the years 1982, 1992, 1994, 1997, 2017, 2018 and 2019, and for Lake Skrukkebukta 

we used water-temperature data from year 2000 to year 2017 obtained from the Skogfoss hydro-

power plant to calibrate the model, and water-temperature data from our loggers years 2018 

and 2019 to evaluate the model. The GLMr-implemented temperature model requires input data 

for climatic variables (air temperature, precipitation, solar radiation, wind speed, cloud cover, 

and relative humidity) and lake-morphometric variables (see Fig. E10 and Table E1) (Hipsey 

et al., 2014). Model evaluation summary can be found below (Fig. E6-E9). 

Climate warming is predicted to increase both air- and water temperature in northern parts of 

Europe towards year 2100 (Fig. E3a). The summer air temperature difference between lakes in 

western and eastern part of northern-Norway is relative large and the difference will maintain 

with warming (Fig. E3a), therefore lakes in eastern part of northern-Norway have significantly 

warmer water temperature during the summer than their counterparts in the west (Fig. E3b). 

Annual mean air temperature increases with 0.46 ˚C (t-value=32.74, p<0.001, adj-R2 =0.88) 

and 0.40 ˚C (t-value=27.69, p<0.001, adj-R2 =0.84) per decade (year 1950-2100) under the 

RCP-8.5 climate scenario in Skrukkebukta and Takvatn, respectively. Modelled water-

temperature show similar difference between lakes in eastern (Skrukkebukta) and western 

(Takvatn) part of northern Fennoscandia as air-temperature (Fig. E3b). In addition, length of 

growth season increases substantially for both study systems and for both climate scenarios. 
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Lake Skrukkebukta has a significantly longer growth season than Lake Takvatn both for the 

retrospective and the prospective time period (Fig. E3 and E4). In Lake Takvatn number of 

growth days (water-temperature between 2-18 ˚C) increases with 2.5 days (F=93.67 1,146, 

R2=0.39) and 4.2 (F=307 1,146, R2=0.68) days per decade for the RCP-4.5 and RCP-8.5 climate 

scenarios, respectively. For Lake Skrukkebukta the increase is in growth season (water-

temperature between 2-18 ˚C) is also substantial, with 2.2 days (F=120.8 1,146, R2=0.45) and 3.7 

days (F=216.6 1,146, R2=0.595) per decade for the RCP-4.5 and RCP-8.5 climate scenarios, 

respectively. In addition, the period with water temperature within the 20 % of the maximum 

of the temperature-dependent growth curve are increasing for all three species. For Arctic charr 

in the cold western, part of northern Norway the increase is 3.3 days per decade. For whitefish 

and vendace, in the warmer eastern part of northern Norway, the increase is lower but 

substantial with 1.7- and 2.9 days per decade, respectively. 

Figure E3. Annual mean air temperature (a) and annual mean water temperature for the upper 

ten meters (b) for Lake Skrukkebukta (―), eastern part of northern Norway, and Lake Takvatn 

(―), western part of northern Norway. Solid line represent the RCP-8.5 climate scenario and 

dashed line represent the RCP-4.5 climate scenario. 
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Figure E4. Number of days with water temperature between 2-18 ˚C (length-of-growth-season) 

for Arctic charr in Takvatn under two different climate scenarios a) RCP-4.5 and b) RCP-8.5. 

Figure E5. Number of days with water temperature between 2-18 ˚C (length-of-growth-season) 

for whitefish and vendace in Skrukkebukta under two different climate scenarios a) RCP-4.5 

and b) RCP-8.5. 
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Figure E6. Comparison of observed (top panel) and modelled (bottom panel) water temperature in Lake 

Takvatn from May 2018 to October 2019. Open circles depicts the individual measurements of water 

temperature by temperature loggers.  

  

Figure E7. Observed vs. modelled thermocline depth (top left), Schmidt stability (bottom left) and 

average water temperature (right) for the top ten meters in Lake Takvatn from June 2018 to November 

2019.  
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Figure E8. Comparison of observed (top panel) and modelled (bottom panel) water temperature in Lake 

Skrukkebukta from March 2018 to October 2018. Open circles depicts the individual measurements of 

water temperature by temperature loggers.  

Figure E9. Observed vs. modelled thermocline depth (top left), Schmidt stability (bottom left) and 

average water temperature (right) for the top ten meters in Lake Skrukkebukta from May 2018 to 

December 2018.  
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Figure E10. Bathymetric map of Lake Takvatn (left) and Lake Skrukkebukta (right). 

Table E1. Locality characteristics of Lake Skrukkebukta and Lake Takvatn. 

Parameter Lake 

Skrukkebukta 

Lake 

Takvatn 

Latitude (˚N) 69°33′ 69°07′ 

Longitude (˚E) 30°07′ 19°05′ 

Surface Area (km2) 7 15 

Altitude (m.a.s.l) 21 214 

Max depth (m) 38 80 

Secchi depth (m) 4-5.5 14 

pH 6.9 6.9-7.4 

ToT P (µg l-1) 7 <6 

ToT N (µg l-1) 156 110 

Source: Dahl-Hansen 1995, Primicerio 2000, Kaihlainen et al. 2011. 
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Abstract 

High latitude ecosystems are experiencing the most rapid warming on earth, expected to trigger 

a diverse array of ecological responses. Climate warming effects on the ecophysiology of cool-

water adapted fish close to their northern range edge, i.e., at the cold end of their thermal 

distribution, will promote somatic growth, which in turn affects maturation schedules, 

reproduction and survival, boosting their population growth. At high latitudes, cool-water 

adapted perch, a spring-spawning species, is expected to benefit from increasing temperatures 

and a prolonged productive season driven by warming, thereby increasing in abundance relative 

to cold-water fish living in the same lakes. We studied 11 perch populations at the northern 

range edge of the species to investigate if their relative importance has increased during the 

recent period of rapid warming. Ten of the studied populations displayed a marked increase in 

their numerical importance in the benthic fish communities during the recent period of rapid 

warming. To further investigate the influence of climate warming on the population responses 

in perch, we focused on two long-term studies spanning 30 years (1991-2020). We show that 

mailto:aslak.smalas@uit.no


2 
 

climate warming affects population level processes via direct and indirect temperature effects 

on perch individuals. The increase in abundance of perch in high latitude lakes arises from 

increased survival of 0+ individuals, faster juvenile growth and ensuing earlier maturation, all 

boosted by climate warming. Given the speed and magnitude of the perch population response 

to warming, management strategies should focus on limiting future introductions and invasions 

of cool-water fish in high latitude ecosystems. 

 

Keywords: perch, climate change, thermal guilds, population dynamics, life history, growth, 

age at maturation, recruitment  
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Introduction 

High latitude regions are experiencing the most rapid warming on Earth, a trend projected to 

continue towards year 2100 (Parmesan 2006, IPCC 2013). Rapid warming strongly affects 

freshwater ecosystems (O’Reilly et al. 2015), leading to changes in species abundance, 

phenology and distribution (Hickling et al. 2006, Comte et al. 2013, Campana et al. 2020). 

Temperature driven changes in physiological rates of ectotherms are expected to trigger a 

diverse array of ecological responses (Biro et al. 2007, Arula et al. 2017, Huss et al. 2019, 

Rezende et al. 2019), with implications for ecosystem structure and function (Dodds et al. 2013, 

Benateau et al. 2019). Fish are strongly influenced by ambient temperature, with species 

displaying distinctive thermal niches (Hayden et al. 2014) that provide a basis for classification 

into thermal guilds (Magnuson et al. 1979). Climate warming tends to favor fish populations 

currently experiencing the cold end of their species thermal range, typically in proximity of the 

northern limits of a species distribution (Ficke et al. 2007, Campana et al. 2020). As temperature 

increases, these populations are likely to outperform competing species of colder temperature 

guilds (Hein et al. 2014, Hayden et al. 2017). Evidence in support of, or against, these 

expectations is presently lacking due to a paucity of long-term ecological studies of freshwater 

fish communities in the rapidly warming Arctic (Amundsen et al. 2019, Zubova et al. 2020).  

The impact of increasing temperatures on fish populations is mediated by direct 

ecophysiological effects and indirect life history responses that ultimately affect survival and 

reproduction. In ectotherms, temperature limits biological rates, affecting for instance food 

intake and metabolism and their balance determining the net energy gain of an organism 

(Jobling 2002). Growth rate will therefore depend on ambient temperature, with maximum 

growth being reached at an intermediate, optimum temperature within the thermal niche of a 

species (Magnuson et al. 1979, Gvoždík 2018). The growth rate of individuals living at 

temperatures below their optimum might increase with climate warming, given sufficient food 



4 

availability (Huss et al. 2019, Smalås et al. 2020, Smalås et al. MS in prep.). Higher juvenile 

growth rates lead to larger size at age and earlier maturation. Larger size at age might increase 

survival, especially during early life stages, because mortality in fish is largely size-dependent 

(Elliott 1993, Hurst 2007, Perez & Munch 2010). Spring-spawning fish tend to benefit from 

climate warming as an extended growth season helps to gain a sufficient size for successful 

overwintering (Hurst 2007, Rolls et al. 2017). Thus, faster growth increases the probability of 

reaching maturity, which is further enhanced by earlier maturation, overall resulting in higher 

transition rates to the adult, reproductive stage. Recruitment rates can be further enhanced by 

faster somatic growth as young adult females become larger, thereby producing larger clutches. 

Furthermore, fecundity has been demonstrated to be higher in fish living closer to their thermal 

optima (Pörtner et al. 2001), and thus climate warming is likely to enhance population fecundity 

(Heibo et al. 2005). In addition, some life stages, in particular the egg and larvae, often have a 

narrower temperature range for survival and successful development than other life stages 

(Dahlke et al. 2020). These critical life stages are classified as bottlenecks and might therefore 

be pivotal in determining individual fitness and population recruitment. Populations living close 

to the northern end of their distribution, might in colder years suffer from temperatures that are 

too low for successful development, especially in critical periods such as survival over the first 

winter, and should therefore benefit from climate warming (Reist et al. 2006, Hurst 2007, Shuter 

et al. 2012, Dahlke et al. 2020).  

The effects of climate warming on high latitude lakes go beyond increasing water 

temperatures, and predicted changes in the aquatic environment such as increased productivity, 

decreased dissolved oxygen levels and altered seasonality, are likely to favor cool-water species 

more than the dominant cold-water salmonids (Klapper 1991, Ficke et al. 2007, Kundzewicz et 

al. 2008, Finstad et al. 2016, Rolls et al. 2017, van Dorst et al. 2019). Increase in temperature 

and productivity will expectedly first favor percids, and later cyprinids, over salmonids (Persson 
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et al. 1991, Hayden et al. 2017). Furthermore, shorter duration of ice cover, more rapid warming 

of the epilimnion and decreasing oxygen levels in the hypolimnion will limit the habitat 

availability of cold-water adapted salmonids in contrast to cool- and warm-water adapted 

species (Lehtonen 1996, Ficke et al. 2007, Rolls et al. 2017). These cool-water species have 

been shown to redistribute northwards and to higher altitudes over the last few decades of rapid 

warming (Comte et al. 2013, Hayden et al. 2014, Rolls et al. 2017). One such cool-water 

species, the European perch (Perca fluviatilis), hereafter perch, (Hayden et al. 2014), has its 

northern range edge in subarctic regions of Eurasia around 70°N, but with its wide temperature 

range for growth, between 5-33°C, and an optimum between 16-27 °C (Hokanson 1977, 

Willemsen 1977, Craig 1978, Karås 1987, Karås 1990), it has a wide distribution, reaching 

about 40°N in the south. In high latitude lakes, perch thrives in benthic areas, mostly in the 

littoral zone of lakes, but in warmer systems perch also uses the pelagic habitat extensively 

(Hayden et al. 2019). Perch is an ontogenetic generalist, feeding on zooplankton as larvae, and 

shifting to a diet of zoobenthos, and later fish, as it grows larger (Persson 1988, Hjelm et al. 

2001, Amundsen et al. 2003; Hayden et al. 2014) (more detailed information in material and 

methods).  

Here, we address the effects of climate warming on perch populations at the northern 

end of the species distribution, using long-term surveys of high latitude freshwater fish 

communities (68-70°N). As a cool-water adapted species, we expect perch to benefit from 

increasing temperatures and a prolonged productive season, leading to increased abundance and 

numerical importance relative to cold-water adapted fish co-inhabiting the sampled lakes. 

Several mechanisms underlie our expectation of an increase in the relative importance of perch 

following the recent rapid warming. Specifically, we focus on the life history and ecological 

implications of temperature-induced increase in somatic growth rate, anticipating that higher 

growth rates i) reduce the duration of critical life stages, ii) increase size at age, and iii) 
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anticipate maturation age; overall improving survival and increasing recruitment rates and total 

population fecundity (see Fig. 1). 

 

Material and Methods 

Study area and model species 

The study area is concentrated in northern Fennoscandia, with lakes situated in Norway, 

Finland and Russia. All lakes are located north of the Arctic Circle, towards the northern end 

of the distribution of cool-water fish species (> 68˚N) (Fig. 2). To assess the relative importance 

of Eurasian perch, we compiled data from 11 lakes sampled on multiple occasions over the last 

30 years. The eleven study lakes were sampled between 2 and 26 times, with time series ranging 

from 8 to 32 years (Appendix Table S1). Two study sites, Lake Vaggatem and Lake 

Skrukkebukta, were selected for an in depth analysis because these two lakes were sampled 

almost annually for 30 years, while also including daily data on water temperature for most of 

the long-term series (see more details below).  

The Eurasian perch is distributed throughout northern Eurasia, ranging from 40°N to 

70°N. The species is common and widespread in lakes, ponds and slow-running rivers. It is a 

generalist that has a size-dependent ontogenetic dietary niche-shift, where larvae and small 

juveniles are pelagic zooplankton feeders, before they shift to feeding on benthic 

macroinvertebrates at intermediate sizes, and larger individuals feed on fish (Persson 1988, 

Hjelm et al. 2001). It is common in both recreational and subsistence fisheries, with a global 

catch statistics of around 30 000 tons (FAO 2020). Perch is a cool-water fish (e.g. Shuter et al. 

2012, Hayden et al. 2014), with temperature requirements for development and growth that are 

size and stage dependent (Hokanson 1977, Dahlke et al. 2020). The temperature range for 

normal egg development is between 7-18 ˚C, and the optimum is estimated to be between 13-



7 

14˚C (Hokanson & Kleiner 1974, Hoestlandt & Devienne 1980, Saat et al. 1996). The reported 

minimum temperature for growth is between 5-10 ˚C (Karås 1987, Karås 1990, Hokanson & 

Kleiner 1974) and maximum temperature for growth between 31.4- 33.5 ˚C (Alabaster & 

Downing 1966, Willemsen 1977). Optimal temperature ranges for growth vary between the 

different life stages. At the larval stage there is an optimum range between 12-25 ˚C (EIFAC 

1969 in Küttel et al. 2002, Karås 1996), whereas for juveniles the reported optimum temperature 

is 25 ˚C (Kleiner 1974). For adult perch, the reported optimum range is between 16-27 ˚C 

(Horoszewicz 1973 in Hokanson 1977, Craig 1978), and the range of spawning temperatures 

falls between 5-19 ˚C (Hokanson 1977) (see Appendix Fig. S11 for relationship between water 

temperature and somatic growth in perch). 

Fish sampling and individual data 

The total number of sampled fish across the 11 lakes was nearly 60 000, of which 12 000 were 

perch, and the littoral catches from this data were used to describe the development in 

proportion of perch in the 11 lakes (Appendix Table S1). In addition to perch, whitefish 

(Coregonus lavaretus) was present in all lakes except for Lake Shounjavri, and was either the 

most abundant or the second most abundant fish species, next to perch, in the littoral zone of 

the different lakes. Besides perch and whitefish, pike (Esox lucius), burbot (Lota lota), trout 

(Salmo trutta), grayling (Thymallus thymallus), ninespined stickleback (Pungitius pungitius) 

and common minnow (Phoxinus phoxinus) were present in lower abundances in most lakes. 

Arctic charr (Salvelinus alpinus) was only present in Lake Shounjavri and Lake Stourajavri, 

while vendace (Coregonus albula) was present in a few lakes. Fish were collected using 

multimesh gill-nets or gill net series in all three sampled habitats (i.e. littoral, pelagic, 

profundal) of the lakes, but only fish from the littoral zone were included in the analyses because 

the sampling in the other habitats was more scattered in both time and space. The fish 
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communities were usually sampled between July and September, with the majority of the 

sampling being conducted in September. Benthic multi-mesh gillnets with mesh-size ranging 

from 8 to 60 mm and mono-mesh gillnets with one mesh-size throughout the net were used, 

these nets are 1.5-1.8 m deep and 25-40 m long. The gillnets were put out in the evening and 

taken up in the morning, giving approximately 12 hours of soaking time.  

We used individual data from the two lakes most frequently and intensively sampled 

(Lake Vaggatem and Lake Skrukkebukta), to assess changes in life history parameters over 

time in the perch populations. These two lakes were selected because of their long time series 

(~1991-2020) with mostly annual sampling, and detailed individual data collected from year 

2003 to 2020. A total of 2960 individual perch from Lake Vaggatem (n=38-608 per year) and 

Lake Skrukkebukta (n=30-130) were sampled and inspected using the following procedure 

between 2003 and 2020: fork length was measured to nearest mm, weight was measured to 

nearest gram, sex and maturation status were determined visually, the latter as either immature 

or mature, and age was determined from cleaned and intact operculum bones under preparation 

microscope using magnification 2x-20x. Age estimation for each fish individual was performed 

independently by a minimum of two different persons. For summary information on mean body 

length (cm), mean body weight (g), sex ratio, proportion of 1 year olds within the perch 

population, average Fulton’s condition factor (K) (calculated as: K = 100·weight/length3) 

(Froese 2006), and von Bertalanffy`s growth parameters, asymptotic length 𝐿𝐿∞ and initial 

growth, 𝑔𝑔 (Mooij et al. 1999), see Tables S2 & S3 in the Appendix. The estimation of the von 

Bertalanffy`s growth parameters are described below. Mean body size and the estimated 

average condition factor (K) did not change significantly over time or with the different 

explanatory variables tested here.      
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Temperature 

For the two main study systems, Lake Skrukkebukta and Lake Vaggatem, daily water 

temperature measurements were available from an automated datalogger at the Skogfoss 

hydropower plant situated 25 km upstream from Lake Skrukkebukta and 23 km downstream 

from Lake Vaggatem. We calculated annual mean water temperature, mean summer 

temperature (Jun-Jul-Aug) and mean autumn temperature (Sep-Oct-Nov) from the logger data. 

Mean annual water temperature has increased significantly by 0.3°C per decade (p<0.01, 

F=9.3611,25, adj-R2= 0.243, Appendix Table S4), mean autumn temperature (September-

November) has also increased significantly by 0.4 °C per decade (p<0.01, F=11.261,26, adj-R2= 

0.275, Appendix Table S5), and mean summer water temperature (June-August) by 0.4 °C per 

decade (Fig. 3) (p=0.037, F=4.871,25, adj-R2= 0.13, Appendix Table S6). 

 

Statistical analysis 

The proportion of perch in the fish community was calculated as the number of perch caught 

relative to the total number of fish caught in the littoral zone of the different lakes. To estimate 

how the proportion of perch in the catches changed over time we used a Linear Mixed Effect 

model (LME) with location (lakes) as random effect, using the nlme-package in R. The response 

variable was log(x+1) transformed. Relative density of fish in terms of Catch-Per-Unit-Effort 

(CPUE) was readily available for the two main study systems, Lake Skrukkebukta and Lake 

Vaggatem. The CPUE was calculated as the number of fish caught per 100 m2 per night (or 12 

hours). To investigate the change in relative density over time, we estimated separate linear 

models for the two lakes, with log(CPUE+1) as the response and year as the predictor. To 

estimate the relationship of relative density and water temperature, we again used CPUE on a 

natural logarithmic scale  with annual mean water temperature as predictor in a linear regression 
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model. We transformed the predictor to a weighted-moving-average over the last two years 

with more weighting given to the latest year, to better reflect any long-term effects of 

temperature on relative density of perch. To investigate recruitment in the perch population, we 

used the proportion of one-year-old individuals within the perch population as a measure of the 

number of individuals surviving the first winter, which is suggested to be dependent on both 

water temperature and food availability (or density of competitors), but also density of predators 

their first growth season (Heermann et al. 2009). We used linear regression with summer water 

temperature the preceding year and a simple moving average of the density of perch over the 

last two years to predict the proportion of one-year-old individuals in the perch populations. In 

the statistical analyses, we combined both lakes as the number of sampling points were too low 

to treat them separately.  

To compare somatic growth in the perch population over time and between the different 

populations we used, in addition to a back-calculation routine (described below), a modified 

version of the von Bertalanffy growth model for every sampling year in Lake Skrukkebukta 

and Lake Vaggatem (results are shown in Appendix Table S7-S8 and Appendix Fig. S1-S2): 

𝐿𝐿(𝑡𝑡) = 𝐿𝐿∞ − (𝐿𝐿∞ − 𝐿𝐿0) 𝑒𝑒[−�𝑔𝑔𝐿𝐿∞−1�𝑡𝑡] (1) 

 where 𝐿𝐿(𝑡𝑡) is the mean length at age (𝑡𝑡), 𝐿𝐿∞ is the asymptotic length as age approaches 

infinity, 𝐿𝐿0 is the length at hatching, 𝑔𝑔 is the absolute initial growth rate (length·year-1) which 

represent the maximum growth rate, occurring early in life according to the von Bertalanffy 

growth model (Sandlund et al. 2013). The advantage of using the modified version of the von 

Bertalanffy growth model is that we are not dependent on the unit-less coefficient 𝑘𝑘, which is 

hard to interpret and is not independent of 𝐿𝐿∞. In addition, 𝑔𝑔 has the unit length·year-1 which is 

very interpretable biologically (Mooij et al. 1999, Sandlund et al. 2013). 𝐿𝐿∞ and 𝑔𝑔 were 

estimated using non-linear least-square regression based on length at age data for the different 
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years and populations. Perch hatching size is around 5 mm (Olin et al. 2012) 𝐿𝐿0 were therefore 

set to 5 mm. To investigate the development in initial growth (𝑔𝑔, length·year-1), we used the 

summer water temperature (°C) the preceding year and relative density of perch (CPUE) the 

preceding year (because of the lack of 0+ perch in the data set, we had to relate initial growth 

to 1 year old fish and used the temperature when these fish were 0 year old) in a multiple linear 

model with an interaction term between the predictors.   

  

Back-calculated length at age and length increment 

The back-calculated length increment was estimated for a sub-sample of perch from Lake 

Vaggatem and Lake Skrukkebukta. On the opercular bones of individual perch, we measured 

the width of annual growth increments as the distance between the opaque zones. We used these 

measurements in addition to the total opercular length and the body length of the individual 

perch to estimate length-at-age with the nonlinear body-proportional hypothesis method. This 

method is commonly used for perch (Thoresson 1996) and assumes that the deviation in body 

size from the expected body size given by the operculum size does not change through life 

(Thoresson 1996, Tarkan et al. 2006), 

𝐿𝐿𝑎𝑎 = 𝐿𝐿𝐴𝐴(𝑂𝑂𝑎𝑎
𝑂𝑂𝐴𝐴

)𝛽𝛽1,          (2) 

where 𝐿𝐿𝑎𝑎 is the back-calculated length-at-age a, 𝑂𝑂𝑎𝑎 the measured operculum radius at 

age a, 𝑂𝑂𝐴𝐴 the observed operculum size at time of capture, and 𝐿𝐿𝐴𝐴 the observed fish length at 

time of capture. 𝛽𝛽1 is the linear regression slope coefficient estimated from the log-log 

relationship between the body length and operculum length at capture. A total of 1646 perch 

were used in the back-calculation procedure. We back-calculated length increment (mm·year-

1) for juvenile fish in the age group of 1-4 years with individual perch ranging from age 2 to 10 

years, giving us length increment data from year 1995 to year 2018. We did not asses growth 
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during the sampling year, because those estimates would be dependent on sampling time within 

the year, which was not exactly the same every year. A comparison between back-calculated 

length at final winter before capture and length at capture revealed a good fit of the back-

calculation model (p<0.001, F= 2501 on 1 and 1644 df, adj-R2=0.94) (Appendix Fig. S3 & 

Table S9). Back-calculated length increment (mm·year-1) for 1, 2, 3 and 4 years old perch were 

related to summer water temperature and relative density in a Linear Mixed Effect model 

(LME) with sampling year and age at capture as random effects, with the nlme-package in R. 

In addition, we estimated cohort-mean (year class) length increment from age 1 to 4, which was 

related to mean summer water temperature (°C) and mean relative density (CPUE) for the same 

time period (three-year moving-average) with linear regression. 

Age at maturity 

We estimated age at maturity (A50, age at 50% probability of the individuals have reached 

maturation age) for each cohort (year-class) with sufficient data in the time series for perch in 

both Lake Vaggatem (ncohorts= 12)  and Lake Skrukkebukta (ncohorts= 4) (Appendix Fig. S10) 

using logistic regression,  

We related the estimated cohort-specific A50 to the estimated total cohort-specific length 

increment (age 1 to age 4 year old) using linear regression. We estimated cohort-specific 𝐴𝐴50 

to address how environmental variables (water temperature and relative density) indirectly 

affected age at maturity mediated through individual juvenile growth. In addition, we estimated 

maturation age separately for males and females to explore if it differed between the sexes. This 

was, however, only done for each sampling year and not for each cohort as the amount of data 

was not sufficient to separate into the different sexes in the cohort analysis.  
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Age at maturation is assumed to be plastic and depending on a probabilistic maturation 

reaction norm (PMRN) describing the length- and age-specific probabilities of maturation 

(Heino et al. 2002, Dieckmann & Heino 2007). To illustrate how age at maturity changes with 

differing individual growth rate and to highlight the population response to altered individual 

growth rate, we calculated the PMRN from the long-term data on perch in the Pasvik 

watercourse. We calculated the PMRN by the demographic method assuming a linear reaction 

norm (Barot et al. 2004). We implemented a model that involves both age and size, and assumed 

that these two variables have independent and linear effects, following Heino et al. (2002), 

𝑃𝑃m = 1/ �1 + exp �−  𝐿𝐿−(𝑎𝑎+𝑎𝑎𝑎𝑎)
𝑑𝑑

��,        (3) 

where 𝐿𝐿 is the length of fish, 𝑖𝑖 is the PMRN intercept, 𝑎𝑎 is the age of fish, 𝑠𝑠 is the PMRN slope, 

and 𝑑𝑑 is the PMRN width.  

 To investigate causal relationship between environmental variables and age at 

maturation (A50) we used structural equation modelling (SEM) with the “piecewiseSEM” 

package in R. We constructed the SEM to assess direct and indirect effects of summer water 

temperature and relative density on age at maturation (A50) mediated through mean length 

increment (mm·year-1) from age 1 to age 4 year old perch. Summer water temperature and 

relative density of perch were modelled as exogenous random variables, influencing other 

variables, but not themselves being influenced by other variables. The biotic variable length 

increment (from age 1 to age 4, mm·year-1) was included as endogenous variable influenced by 

others and itself also influencing other variables. Finally, age at maturity (A50) was set as a 

response endogenous variable, influenced by all other variables, but not influencing other 

variables. All variables were standardized prior to the analysis. Figures and maps were created 

by using the ggplot-package in R or BioRender.com, and tables were made using the Sjplot-

package in R. 
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Results 

The proportion of perch is increasing in high latitude lakes 

The proportion of perch in the littoral zone of the sampled lakes substantially increased 

over the study period (Fig. 4a). All lakes with more than two sampling points showed an overall 

increase in proportion of perch with time. The overall mean trend reveals that the proportion of 

perch  increased exponentially over time (p<0.01, mar-R2=0.356, Table S10), from under 10% 

in the early 1990ies to above 70% in most lakes during the last decade, however with large 

variation between lakes (Fig. 4a). The relative density (CPUE) data in Lake Skrukkebukta and 

Lake Vaggatem shows a similar trend as the overall proportion data (Fig. 4b), with a substantial 

increase in relative density of perch in the littoral zone of both lakes (Skrukkebukta: t=8.014 on 

22 d.f., p<0.01, adj-R2= 0.73. Vaggatem: t=4.042 on 24 d.f., p<0.01, adj-R2= 0.38, Appendix 

Table S11 & S12). This was related to an increase in water temperature where relative density 

of perch increased with annual mean water temperature (Weighted-Moving-Average over the 

last two years) in both Lake Skrukkebukta and Lake Vaggatem (Fig. 4c). In Lake Skrukkebukta 

the relative density has increased with 1.83 ln-CPUE·°C-1 of temperature increase (t=3.788 on 

20 d.f., p<0.01, adj-R2=0.389, Appendix Table S13), while in Lake Vaggatem, the increase was 

weaker, but significant with an increase of 0.89 ln-CPUE·°C-1 of temperature increase (t=3.788 

on 20 d.f., p=0.048, adj-R2=0.141, Appendix Table S14). 

 

Survival of juveniles increases with temperature and decreases with perch density 

We used the proportion of 1-year olds in the perch population in Lake Vaggatem and Lake 

Skrukkebukta as a proxy for number of individuals surviving the first critical winter. The 

proportion of one year old perch increased with mean summer water temperature (Jun-Aug) the 

preceding year and decreased with relative density of perch in the littoral zone (Fig. 5). The 
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proportion of one year old perch was significantly related to temperature and density (p<0.001, 

adj-R2=0.62), increasing by 9.7 % per degree centigrade increment in preceding year summer 

water temperature (°C) (t=4.950 on 17 d.f., p<0.001), and decreasing by 4.5% per 10-CPUE 

increase in relative density of the perch population (t=-2.731 on 17 d.f., p=0.014). In addition, 

there was a significant interaction term between the two predictors in the linear model (t=-2.541 

on 17 d.f., p=0.021, Appendix Table S15). 

 

Faster juvenile growth with higher summer water temperature 

The overall trend for the juvenile perch was that annual length increment increased with 

summer water temperature and decreased with relative density of perch in both Lake Vaggatem 

and Lake Skrukkebukta (Fig. 6, Appendix Fig. S4-7). The combined length increment 

(mm·year-1) from age 1 to age 4 year old perch increased substantially with increasing 3-year-

mean summer water temperature and decreased similarly with an increase in 3-year-mean 

relative density (Fig. 7a & 7b). The combined length increment (age 1 to 4 year) for Lake 

Vaggatem and Lake Skrukkebukta perch was significantly related to temperature and density 

in a linear regression model (p=0.004, adj-R2=0.28), increasing by 8.5 mm per degree 

centigrade of temperature increment (t=2.481 on 31 d.f., p=0.019) and decreased by 6.8 mm 

per 10 CPUE increment (t=-3.806 on 31 d.f., p=0.001) (Appendix Table S16). In addition, there 

was a difference in intercept between the lakes, where the length increment was larger in Lake 

Vaggatem compared to Lake Skrukkebukt (Appendix Table S16). However, for the individual 

age groups, the effect of water temperature and relative density on length increment varied. 

For the youngest age group (1 year old) there was no significant change in length 

increment (mm·year-1) with either increasing summer water temperature or relative density of 

perch (Fig. 6, Appendix: Fig. S4, Table S17 & S18). For all the other juvenile age groups (2 to 
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4 year old), length increment (mm·year-1) increased significantly with increasing summer water 

temperature in both lakes, whereas only in Lake Vaggatem length increment decreased 

significantly with relative density of perch (Fig. 6, Appendix: Fig. S5-S7, Table S19-S24). 

Length increment (mm·year-1) for 2 year old perch increased by 2.21 mm·°C-1 (Lmme: 

CI=0.19-3.99, p<0.001, mar-R=0.117) and 3.08 mm (Lmme: CI=1.6-4.58, p<0.001, mar-

R=0.085) per degree centigrade of water temperature increment in Lake Vaggatem and Lake 

Skrukkebukta, respectively (Fig. 6, Appendix Fig. S5, Table S19 & S20). For 2 year old perch, 

length increment decreased by 1.5 mm·10-CPUE-1 with relative density (CI=-2.89- -0.04, 

p<0.001, mar-R=0.117) in Lake Vaggatem, whereas no significant change was apparent with 

relative density in Lake Skrukkebukta (Fig. 6, Appendix Fig. S5, Table S19 & S20). 

Length increment (mm·year-1) for 3 year old perch increased by 1.59 mm·°C-1 (Lmme: 

CI=0.21-2.98, p=0.025, mar-R=0.07) and 1.21 mm·°C-1 (Lmme: CI=0.24-2.2, p=0.031, mar-

R=0.022) in water temperature increase in Lake Vaggatem and Lake Skrukkebukta, 

respectively (Fig. 6, Appendix Fig. S6, Table S21 & S22). For 3 year old perch, length 

increment decreased by 1.1 mm per 10-CPUE increment in relative density (CI=-1.93- -0.16, 

p=0.021, mar-R=0.07) in Lake Vaggatem, whereas no significant change was apparent with 

relative density in Lake Skrukkebukta (Fig. 6, Appendix Fig. S6, Table S21 & S22). Length 

increment (mm·year-1) for 4 year old perch increased by 2.24 mm (Lmme: CI=1.03-3.21, 

p<0.001, mar-R=0.09) and 1.82 mm (Lmme: CI=0.65-3.51, p=0.005, mar-R=0.097) per degree 

centigrade increment in water temperature in Lake Vaggatem and Lake Skrukkebukta, 

respectively (Fig. 6, Appendix Fig. S7, Table S23 & S24). For 4 year old perch, length 

increment did not significantly change with relative density (Fig. 6, Appendix Fig. S7, Table 

S23 & S24).  

The absolute initial growth (𝑔𝑔) derived from population estimates of the von Bertalanffy 

growth model from Lake Skrukkebukta and Lake Vaggatem varied between 4.2 and 9.4 
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(cm·year-1) over the study period. In a simple linear regression pooling data for both lakes, the 

initial growth increased with 6 mm per degree centigrade increment in summer water 

temperature the preceding year (t=2.653 on 18 d.f., p=0.016, adj-R2=0.24, Appendix Table S7, 

Fig. S1). 

Earlier maturation age with faster growth 

Age at maturation (A50) differed between males and females in the perch populations in Lake 

Vaggatem and Lake Skrukkebukta; males matured on average at an age of 4.1 years whereas 

females matured on average at an age of 7.5 years (Appendix Fig. S8). The difference in age at 

maturity between the sexes did not change over time (t=-0.767 on 12 d.f., p=0.45) (Appendix 

Fig. S9). The observed increase in combined length increment (mm·1-4years-1) substantially 

affected the cohort specific age at maturation (A50) negatively (Fig. 7c), with -0.8 years 

reduction per cm increase in length increment (t=-3.783 on 14 d.f., p=0.002, adj-R2=0.47) 

(Appendix Table S25 & Fig. S10). The effect of summer water temperature and relative density 

on age at maturity was mediated through growth (length increment) for perch in Lake Vaggatem 

and Lake Skrukkebukta, as illustrated by the structural equation model (SEM) results (Fig 8a). 

We found a positive effect of cohort-specific (age 1 to age 4 year old) mean summer water 

temperature and a negative effect of relative density of perch in the same time period on length 

increment of perch from age 1 to age 4 year, which further affected age at maturity (A50) 

negatively (Fig. 8a). Figure 8b illustrates these relationships theoretically, where individuals 

with higher growth rate, due to temperature increase or reduced density, will reach maturation 

age earlier than populations experiencing lower growth rates according to the estimated PMRN 

from the perch populations in Lake Vaggatem and Lake Skrukkebukta.   
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Discussion 

We find that the numerical importance of Eurasian perch in fish communities at the northern 

edge of its distribution increased substantially during the last two decades of rapid warming. 

The positive trend was registered in ten out of the eleven lakes investigated. For our main two 

study lakes, Lake Vaggatem and Lake Skrukkebukta, the trend was driven by an increment in 

perch density associated with the increase in water temperature. These two perch populations 

showed higher recruitment with warming, with the proportion of 1 year old fish in catches 

increasing by almost 10 % per degree increment of mean summer water temperature. The 

demographic responses to warming were concomitant with individual level effects on somatic 

growth, which increased with temperature across young age classes, resulting in earlier 

maturation. The latter is an indirect effect of warming mediated by increased temperature-

dependent growth rate of juveniles, an eco-physiological response, and phenotypic plasticity in 

maturation schedules, a life history adaptation. The resulting earlier maturation and larger size 

at age of juveniles help explain the increased recruitment rates promoting perch population 

density at higher temperatures. Both somatic growth and recruitment (assessed as proportion of 

1 year olds in the perch population) displayed negative density-dependence, which may mask 

individual and demographic responses to warming in field studies. Considering that perch is a 

generalist species engaging in many direct and indirect ecological interactions, its increasing 

importance is likely to have a pervasive, food-web mediated impact on high latitude lake 

communities. 

 

Increase in temperature-dependent growth 

During the recent period of warming, the increased numerical importance of perch was 

accompanied by positive temperature effects on juvenile growth in our two reference lakes. The 



19 

yearly mean growth significantly increased with temperature across all investigated juvenile 

age classes, with the exception of the 1 year old age group. The cohort mean cumulative length 

increment from age 1 to 4 years increased by 8.5 mm (~12%) per degree centigrade increment 

in summer water temperature. Individual perch growth displayed substantial negative density-

dependence, decreasing by 6.8 mm per 10 CPUE units increase in relative density, in line with 

earlier findings for this species (Byström & García-Berthou 1999, Horppila et al. 2010, Olin et 

al. 2017). The observed positive effect of temperature on perch somatic growth was expected 

considering that in our lakes mean summer water temperature varied between 10-14 °C, which, 

although within the species temperature tolerance range (Kleiner 1974, Karås & Thoresson 

1992), is well below the optimum temperature for perch growth, estimated to be within 16-

27°C (Hokanson 1977). Positive effects of higher summer water temperatures on perch growth 

rates have been described in regions where temperature variability is within the thermal 

tolerance range of the species (Jeppesen et al. 2012, van Dorst et al. 2019, Huss et al. 2019), 

where the increased size at age was maintained also in adult age classes owing to faster growth 

in young stages (Huss et al. 2019, Gårdmark et al. 2020). Projected lake water temperatures, 

forced by climate model outcomes under RCP-scenarios 4.5 and 8.5 (Smalås et al. MS in prep.), 

suggest that in the coming decades warming should continue to promote growth in perch 

populations from our study area, assuming that species composition is similar in the future (see 

appendix figure S9 for relationship between water temperature and growth in perch). The higher 

ambient temperatures will increase metabolic demands (Huey & Kingsolver 2019), but at high 

latitudes, lake productivity mediated by catchment greening is expected to increase with 

warming (Schindler et al. 2005, O’Beirne et al. 2017), and should ensure sufficient food 

availability to support growth (Kao et al. 2015). The documented and projected positive effects 

of warming on growth of perch living at its northern range edge affect its life history, 

demography, and ecological interactions.  
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Life history and demographic implications of faster growth 

The faster growth induced by warming resulted in earlier maturation of perch. The latter 

is an indirect effect of warmer temperatures mediated by adaptive plasticity in perch maturation 

schedules. The indirect effect of warming, estimated and summarized via a structural equation 

model, is substantial, with maturation age (A50) decreasing by 0.8 years per cm increase in 

juvenile length increment (from age 1 to 4 years). The adaptive plastic response in maturation 

age is dependent on the eco-physiological process of somatic growth, which in turn is affected 

by the ambient temperature and food availability (Ward et al. 2017). In our perch populations, 

the orientation of the estimated maturation reaction norm is such that faster growth will lead to 

earlier maturation. A reduction in maturation age as a consequence of increased growth has 

been documented repeatedly in fish (Reznick 1993, Haugen 2000). Furthermore, an increase in 

juvenile growth rate has been associated with a subsequent increase in reproductive output in 

fish (Ward et al. 2017), and an increase in reproductive output is seen as a direct effect of an 

increase in water temperature for perch (Heibo et al. 2005). The climate driven increase in 

temperature-dependent growth thus results in larger size at age and earlier maturation, 

increasing the perch populations reproductive output and recruitment, thus promoting 

population growth, as seen in other stocks (Denney et al. 2002, Ottersen et al. 2006, Ward et al. 

2017). 

Survival of individuals during different life stages is a process which could be directly 

affected by ambient temperature either through temperature-specific developmental rates, 

temperature-dependent mortality rates or time spent in different life stages mediated by 

individual somatic growth (Sponaugle et al. 2006, Mirth et al. 2021). We show that the 

proportion of 1 year olds in the populations increased with summer water temperature during 

their 0+ summer, but decreased with perch density. Increasing summer water temperatures has 
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been shown to increase recruitment in other perch populations (Lappalainen et al. 1996, 

Kokkonen et al. 2019), whereas it is suggested that cannibalism is an important factor reducing 

recruitment when the density of perch is high (Persson et al. 2000). The effect of increased 

summer temperature is usually related to larger body size and condition in autumn that 

subsequently lower the winter mortality (Hurst 2007, Shuter et al. 2012, Estlander et al. 2017). 

Developmental rates increase with water temperature in ectotherms. For instance, mortality and 

the duration of the perch egg-stage are decreasing with temperature, with normal development 

of eggs occurring in the temperature range of 7-18 °C (Saat et al. 1996, Küttel et al. 2002). 

Therefore, an increase in summer water temperature might increase the number of surviving 

hatchlings as more eggs might develop normally and the shorter duration of the egg-stage might 

decrease the predation risk at this life stage. Embryos and hatchlings are defined as critical life 

stages with a narrow thermal range (Dahlke et al. 2020), and at the northern edge of perch 

distribution an increase in spring and summer water temperature might have been pivotal for 

an increase in recruitment and subsequent increase in density and relative importance of the 

perch populations. 

How warming increases importance of cool-water species at high latitudes 

Considering the rapid warming experienced in the study area during the last three 

decades, an increased numerical importance of a cool-water species could be expected (Ficke 

et al. 2007, Heino et al. 2009, Rolls et al. 2017). However, the speed and magnitude of the 

observed increase in perch abundance and importance across the investigated lake communities 

was surprising. The population process outlined above helps explain the sudden response to 

climate warming, and suggests that similar responses should be expected in other populations 

of cool-water species at their northern range edge, unless kept in check by negative ecological 

interactions. However, many of the lakes near the northern range edge of perch are salmonid 
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dominated systems, with little resistance capacity against percid fish at higher temperatures 

(Hayden et al. 2013, 2014). Shifts in dominance from cold-water fish to more cool- or warm-

water fish have been documented in other freshwater systems (Jeppesen et al. 2012, Hansen et 

al. 2017). One candidate mechanism for the increased dominance of cool-water fish in high 

latitude lakes that is also supported by this study, is the increased recruitment with temperature 

often observed for spring-spawning cool-water fish (Rolls et al. 2017). Furthermore, an increase 

in somatic growth reduces time in critical life stages, which thus improves survival and 

promotes a faster transition between ontogenetic dietary stages which may further improve 

growth and individual performance (Heibo et al. 2005).  

Implications of warming for ecological interactions and freshwater communities 

Climate change impact on high latitude freshwater ecosystems is predicted to further 

increase as warming favours resident and invasive cool-water species, potentially displacing 

native cold-water salmonids from these ecosystems (Hayden et al. 2017, van Zuiden et al. 2016, 

Hansen et al. 2017, Campana et al. 2020). Perch is a generalist fish that has high capacity as a 

resource competitor in littoral habitats, and subsequently also as a predator, for native cold-

water species such as whitefish (Hayden et al. 2014). Such ecological interactions with resident 

cold water species mediate higher order effects of climate change, which may change in 

character and outcome under warming. For instance, the activity and aggression level of perch 

will increase (Jacobsen et al. 2002, Nakayama et al. 2016), and a more rapid body growth will 

enhance the rate of ontogenetic transition towards piscivory (Heibo et al. 2005), and reduce the 

period perch is vulnerable for predators (Rudolf & Ramen 2018), which thus may change the 

strength and character of both intra- and interspecific interactions. Warming and increased 

productivity will change food webs towards pelagic-driven energy sources that will likely boost 

growth of small planktivorous perch and lower the size at shift to piscivory via the pelagic prey 

resources (Hayden et al. 2019).  Climate induced changes in size-structured interactions may 
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have cascading effects within the food web, and the outcome is dependent on thermal niche, 

population size structure and the existing ecological interactions within the ecosystem 

(Gårdmark et al. 2020). Cold-water sympatric species will be more vulnerable as perch increase 

in competitive and predatory capacity with warming, possibly causing major alterations within 

fish communities in high latitude lakes. In a wider perspective, cool-water perch dominance 

may eventually shift towards warm-water cyprinid (roach, bleak) fish dominance along 

increasing temperature and productivity in lakes where cyprinids are present or able to 

immigrate (Hayden et al. 2017). 

Conclusion 

Our study documents rapid cool-water fish responses to warming at their northern range edge, 

a finding render possible by the available long-term surveys. The causal links between 

individual and population effects of warming considered in this study help to account for the 

speed and magnitude of the population responses. The magnitude of these responses is such 

that dominance is shifting from salmonids to percids, warning of an ongoing reorganization of 

high latitude fish communities. Evidently, water-temperature increase from climate change has 

already favoured cool-water fish at high latitudes, and future projected climate warming will 

accentuate this development, potentially at the further expense of cold-water salmonids. 

Climate adaptation strategies must therefore focus on limiting the ecological impact of warmer 

water fish in high latitude ecosystems, given that successful establishment and rapid increase 

in population size of cool- and warm-water fish is likely as climate continuous to warm.  
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Figure legends 

Figure 1. Schematic representation of how the life cycle of the Eurasian perch might be affected 

by increased water temperatures in high latitude populations. 

Figure 2. Map of northern Europe with the box depicting the study area (left panel), and the 

location of the sampled lakes within the study area (right panel). 

Figure 3. Water temperature in the Pasvik watercourse from year 1992 to 2020. Annual mean 

temperature (blue circles). Mean autumn temperature (Sep-Nov) (green triangles). Mean 

summer temperature (Jun-Aug) (orange squares). Temperature data is missing from January 

1998-July 1999. 

Figure 4. Development of perch populations in the littoral zone of study lakes from year 1990 

to year 2020. a) Proprtion of perch in the study lakes, the black line shows the overall trend 

given by the Linear-mixed-effect model (Appendix Table S11). b) Relative density (ln-CPUE, 

no. of fish per 100m2 per 12h) of perch in the littoral zone of Lake Vaggatem (green) and Lake 

Skrukkebukta (blue) from year 1990 to year 2020. c) Relative density (ln-CPUE) of perch 

dependent on annual mean water-temperature (Weighted-Moving-Average, WMA, over the 

last two years) in Lake Skrukkebukta (blue) and Lake Vaggatem (green) in the Pasvik 

watercourse. 

Figure 5. Proportion of one-year-old individuals in Lake Skrukkebukta (blue) and Lake 

Vaggatem (green) perch populations related to a) the preceding summer water temperature (°C) 

and b) two-year-simple-moving-average (SMA) of the relative density (CPUE, (100m2/12h)-1) 
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of perch. Trend lines depict the linear regression model results with the shading illustrating the 

standard error of the line. 

Figure 6. Back-calculated length increment (mm·year-1) for age 1 year (top left), 2 years (top 

right), 3 years (bottom left) and 4 years (bottom right) perch from Lake Vaggatem (green) and 

Lake Skrukkebukta (blue) in the Pasvik watercourse dependent on summer water temperature 

(°C). Points represent the mean, whiskers represent the bootstrapped 95 % confidence interval 

of the mean, trend line with shading represent linear regression with standard error. 

Figure 7. Relationship between the average length increment from age one to four years 

(mm·1-4 years-1) for the different cohorts of perch and a) summer water temperature (three-

year moving-average, SMA), b) relative density (three-year moving-average, CPUE) with solid 

lines representing the multiple linear regression model results (predictors centred and scaled). 

c) The relationship between age at maturation (A50, given by logistic regression) and average

length increment from age one to four years for the different perch cohorts from 1998-2013, 

with the solid line representing the linear regression model and shaded area depicting the 

standard error of the model. NB. Lakes were pooled in the linear regressions because no 

significant difference in the slope between lakes were detected. 

Figure 8. a) Structural equation model showing the relationship between predictor variables 

affecting length increment (combined from age 1 year to age 4 year olds) and the effect of 

increasing length increment on age at maturation in the perch populations in Lake Vaggatem 

and Lake Skrukkebukta. Arrows represent causal pathways, highlighted black lines represent 

significant relationships and grey lines represent non-significant relationship within the model. 
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Numbers in boxes denote the effect size of standardized coefficients and R2 is shown for each 

endogenous variable. b) Relationship between somatic growth and maturation in perch in the 

Pasvik watercourse illustrated by the maturation reaction norm, length at age for perch in the 

Pasvik watercourse (grey dots) with blue dotted line representing a slow growth rate, i.e. “cold 

and high density situation” (10th percentile) and orange dotted line representing a fast growth 

rate, i.e. “warm and low density situation” (90th tercentile). The population estimated 

probabilistic maturation reaction norm (PMRN) midpoint (solid line), the 25th and 75th 

percentile (dashed lines). 
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46 

Figure 6. 



47 

Figure 7. 



48 

Figure 8. 



Supplementary information 

Appendix 1: Lake characteristics and summary data of the sampled material 



Table S2. Summary data per sampling year for perch in Lake Vaggatem including total 
number of perch (n), mean body length (cm), mean body weight (g), proportion of female 
perch in the dataset, mean condition factor and the von Bertalannffy`s growth variables 𝐿𝐿∞ 
and initial growth, 𝑔𝑔. NA describes missing data. 
  

Number 
of fish 

Mean 
body 
length 
(cm) 

Mean 
body 
weight 
(g) 

Proportion 
female 
perch 

Proportion 
of one-
year olds 

Mean 
Condition 
factor 

Asymptotic 
length, 𝑳𝑳∞ 

Initial 
growth, 𝒈𝒈 
(cm·year-1) 

2003 608 19.7 139.8 0.56 0.16 1.32 31.47 6.0255 
2004 55 18.1 98.8 0.6 0.20 1.26 26.47 8.059 
2005 132 21.1 165.1 0.67 0.30 1.33 26.89 8.67 
2006 NA NA NA NA NA NA NA NA 
2007 NA NA NA NA NA NA NA NA 
2008 110 19.5 110.8 0.58 0.025 1.25 25.62 6.31 
2009 109 23.4 202.7 0.63 0 1.39 36.22 5.13 
2010 86 21.1 134.6 0.65 0.013 1.31 29.03 5.257 
2011 NA NA NA NA NA NA NA NA 
2012 NA NA NA NA NA NA NA NA 
2013 38 22.5 192.9 0.68 0.026 1.37 30.35 6.02 
2014 165 19.7 142.7 0.64 0.16 1.29 27.86 5.99 
2015 121 20.6 153.4 0.69 0 1.32 30.77 5.64 
2016 NA NA NA NA NA NA NA NA 
2017 181 20.6 132.1 0.65 0 1.26 27.44 6.83 
2018 100 20.5 139.0 0.65 0.02 1.31 29.9 4.92 
2019 158 19.5 118.2 0.54 0.04 1.29 30.57 4.58 
2020 172 18.6 103.4 0.54 0.05 1.28 26.95 5.32 

 
 
Table S3. Summary data per sampling year for perch in Lake Skrukkebukta including total 
number of perch (n), mean body length (cm), mean body weight (g), proportion of female 
perch in the dataset, mean condition factor and the von Bertalanffy`s growth variables 𝐿𝐿∞ and 
initial growth, 𝑔𝑔. NA describes missing data. NA* describes data which were not good enough 
to estimate the different variables. 
 
 

 Number 
of fish 

Mean 
body 
length 
(cm) 

Mean 
body 
weight 
(g) 

Proportion 
female 
perch 

Proportion 
of one-
year olds 

Mean 
Condition 
factor (K) 

Asymptotic 
length, 𝑳𝑳∞ 

Initial 
growth, 𝒈𝒈 
(cm·year-1) 

2003 30 16.0 63.6 0.53 0.40 1.20 NA* NA* 
2004 50 15.6 57.8 0.62 0.23 1.20 NA* NA* 
2005 73 15.0 50.1 0.53 0.17 1.17 NA* NA* 
2006 NA NA NA NA NA NA NA NA 
2007 NA NA NA NA NA NA NA NA 
2008 NA NA NA NA NA NA NA NA 
2009 NA NA NA NA NA NA NA NA 
2010 67 17.1 63.4 0.70 0 1.18 22.59649 5.55072 



2011 NA NA NA NA NA NA NA NA 
2012 NA NA NA NA NA NA NA NA 
2013 59 23.2 197.4 0.66 0.02 1.33 37.84762 4.326264 
2014 130 19.2 121.1 0.62 0.18 1.20 24.26648 9.368055 
2015 47 19.2 136.2 0.57 0 1.15 36.95272 4.695531 
2016 NA NA NA NA NA NA NA NA 
2017 78 20.4 148.3 0.54 0 1.20 29.62441 6.796229 
2018 81 21.2 164.7 0.64 0 1.24 33.10267 4.713568 
2019 111 20.4 133.8 0.52 0 1.17 37.64752 4.2 
2020 100 19.8 119.3 0.59 0.02 1.22 31.75967 4.725684 

Appendix 2: Water temperature data 

Table S4. Summary results for the linear model of the development of mean annual water 
temperature over the sampling period (year 1990 to year 2020). 

Mean Annual Water temperature 

Predictors Estimates CI p 

(Intercept) 4.42 4.07 – 4.78 <0.001 

year 0.03 0.01 – 0.05 0.005 

Observations 27 
R2 / R2 adjusted 0.272 / 0.243 

Table S5. Summary results for the linear model of the development of mean summer water 
temperature over the sampling period (year 1990 to year 2020). 

Mean Summer Water temperature 

Predictors Estimates CI p 

(Intercept) 11.27 10.42 – 12.12 <0.001 

year 0.05 0.00 – 0.09 0.037 

Observations 27 
R2 / R2adjusted 0.163 / 0.130 

Table S6. Summary results for the linear model of the development of mean autumn water 
temperature over the sampling period (year 1990 to year 2020). 

Mean Autumn Water temperature 

Predictors Estimates CI p 

(Intercept) 5.41 4.85 – 5.97 <0.001 

year 0.05 0.02 – 0.08 0.002 

Observations 28 



R2 / R2 adjusted 0.302 / 0.275 
 
 
Appendix 3: Population level estimates of somatic growth 
 
The absolute initial growth (𝑔𝑔) derived from population estimates of the von Bertalanffy growth 
model from Lake Skrukkebukta and Lake Vaggatem varied between 4.2 and 9.4 (cm·year-1) 
over the study period (Fig. S1). In a simple linear regression combined for both lakes the initial 
growth is increasing with 0.6 cm·year-1 per degree of increasing summer water temperature the 
preceding year (t=2.653 on 18 d.f., adj-R2=0.24, p=0.016, Appendix Table S7) (Fig. S1). In a 
multiple regression model with the preceding summer water temperature (scaled and 
standardized) and relative density (CPUE) of perch (scaled and standardized) there was a large 
effect of temperature on initial growth rate (𝑔𝑔) (1.07 cm·year-1 per standard deviation of 
temperature increase) (t=4.397 on 14 d.f., p<0.001, adj-R2=0.51), no significant effect of 
relative density (t=-1.024 on 14 d.f., p=0.32), but a substantial negative effect of the interaction 
between the two predictors (-1.02 decrease per increase in standard deviation of relative 
density) (t=-2.940 on 14 d.f., p=0.011 Appendix Table S8).  

 
Figure S1. Initial growth (g) given by the modified von Bertalanffy growth model for perch in 
Lake Skrukkebukta (blue) and Lake Vaggatem (green) dependent on summer water temperature 
(°C) from the preceding year with a linear regression (solid line) and standard error of the linear 
regression (shaded area). 
 
 
Table S7. Initial growth (g) (length, cm/year) given by the modified von Bertalanffy growth 
model in Lake Skrukkebukta and Lake Vaggatem perch populations dependent on mean 
summer-water-temperature (°C, Jun-Aug) the preceding year in linear regression model. 

  Initial growth (g) 

Predictors Estimates CI p 

(Intercept) -1.30 -7.07 – 4.47 0.809 

Preceding year, mean 
summer-water-

0.59 0.12 – 1.06 0.016 



temperature (°C, Jun-
Aug) (lag-SWT) 

Observations 20 

Degrees of freedom 18 
R2 / R2 adjusted 0.281 / 0.241 

 
 
Table S8. Initial growth (g) (length, cm/year) given by the modified von Bertalanffy growth 
model in Lake Skrukkebukta and Lake Vaggatem perch populations dependent on mean 
summer-water-temperature (°C, Jun-Aug) and relative density (CPUE) the preceding year in a 
linear model with an interaction term of the predictors (standardized and scaled). 

  Initial growth (g) 

Predictors Estimates CI p 

(Intercept) 6.12 5.55 – 6.69 <0.001 

Preceding year, mean summer-water-
temperature (°C, Jun-Aug) (lag-SWT) 

1.07 0.55 – 1.60 0.001 

Lag-CPUEperch (lag=1, (100m2/12h)-1) -0.30 -0.93 – 0.33 0.323 

Lag-SWT * Lag-CPUEperch -1.02 -1.77 – -0.28 0.011 

Observations 18 

Degrees of freedom 14 
R2 / R2 adjusted 0.595 / 0.508 

 



Figure S2. Length at age with von Bertalanffy growth model (stippled and solid line) from 
year 2003 to year 2020 in Lake Skrukkebukta (blue dots) and Lake Vaggatem (green dots). 
Shaded area represent the bootstrapped 95 % confidence interval of the line.    

Appendix 4: Correlation between back-calculated length and observed length 
Table S9. Linear model representing the correlation between back-calculated length (mm) the 
final winter before capture and observed length (mm) at capture for perch in both Lake 
Skrukkebukta and Lake Vaggatem. 

Observed length (mm) 

Predictors Estimates CI p 

(Intercept) -20.60 -23.20 – -18.01 <0.001 

Back-calculated length (mm) 1.04 1.03 – 1.05 <0.001 

Observations 1646 
R2 / R2 adjusted 0.938 / 0.938 



 
Figure S3. The correlation between back-calculated length (mm) the final winter before 
capture and observed length (mm) at capture with the solid line (grey) representing the linear 
regression model. 
 
Appendix 5: Proportion and density of perch in the different study lakes 
Table S10. Summary results for the Linear Mixed Effect model (LME) of the development of 
proportion of Eurasian perch in the littoral zone of 11 high latitude lakes over time. The 
response is on a natural logarithmic scale.  

  ln(Proportion perch+1) 

Predictors Estimates CI p 

(Intercept) 1.27 0.71 – 1.83 <0.001 

Sampling year 0.09 0.07 – 0.11 <0.001 

Random Effects 
σ2 0.67 
τ00 Lakes 0.34 
ICC 0.34 
N Lakes 11 

Observations 95 



Marginal R2 / Conditional R2 0.356 / 0.574 
  

Table S11. Summary results for the linear model of the development in relative density 
(CPUE) of Eurasian perch in the littoral zone of Lake Skrukkebukta over the 30-year 
sampling period. The response is on a natural logarithmic scale. 

  Ln CPUE Perch (100m2/12h)-1 

Predictors Estimates CI t-value p 

(Intercept) 0.35 -0.18 – 0.87 1.361 0.187 

Sampling year 0.11 0.08 – 0.14 8.014 <0.001 

Observations 24 

Degrees of freedom 22 
R2 / R2 adjusted 0.745 / 0.733 

 
 
Table S12. Summary results for the linear model of the development relative density (CPUE) 
of Eurasian perch in the littoral zone of Lake Vaggatem over the 30-year sampling period. 
The response is on a natural logarithmic scale. 

  Ln CPUE Perch (100m2/12h)-1 

Predictors Estimates CI t-value p 

(Intercept) 1.93 1.40 – 2.46 7.520 <0.001 

Sampling year 0.06 0.03 – 0.08 4.042 <0.001 

Observations 26 

Degrees of freedom 24 
R2 / R2 adjusted 0.405 / 0.380 

 
Table S13. Relative density of Eurasian perch in Skrukkebukta dependent on water-temperature 
(Weighted-Moving-Average (WMA) over the last two years) (°C). The response is on a natural 
logarithmic scale. 

  Ln CPUE Perch (100m2/12h)-1 

Predictors Estimates CI t-value p 

(Intercept) -6.67 -11.63 – -1.72 -2.808 0.011 

Water-temperature (°C) (WMA) 1.83 0.82 – 2.83 3.788 <0.001 

Observations 22 

Degrees of freedom 20 
R2 / R2 adjusted 0.418 / 0.389 

 



Table S14. Relative density of Eurasian perch in Vaggatem dependent on water-temperature 
(Weighted-Moving-Average (WMA) over the last two years) (°C). The response is on a natural 
logarithmic scale. 

  Ln CPUE Perch (100m2/12h)-1 

Predictors Estimates CI t-value p 

(Intercept) -1.32 -5.63 – 2.99 -2.808 0.530 

Water-temperature (°C) (WMA) 0.89 0.01 – 1.76 3.788 0.048 

Observations 22 

Degrees of freedom 20 
R2 / R2 adjusted 0.182 / 0.141 

 
 
Appendix 6: Survival  
 
Table S15. Proportion of one-year-old individuals in Lake Skrukkebukta and Lake Vaggatem 
perch populations dependent on mean summer-water-temperature (°C, Jun-Aug) (µ=12.06, 
σ=1.05) the preceding year and a two-year-simple-moving-average (SMA) relative density 
(when the perch individuals was 0 and 1 year old) (CPUE) (µ=16.64, σ=10.93) in a linear 
model with an interaction term of the predictors (standardized and scaled).  

  Proportion of 1 year old individuals in the 
perch populations 

Predictors Estimates CI p 

(Intercept) 11.57 7.96 – 15.18 <0.001 

Preceding year, mean summer-water-
temperature (°C, Jun-Aug) (lag-SWT) 

9.71 5.57 – 13.85 <0.001 

CPUEperch (SMA, (100m2/12h)-1) -4.49 -7.96 – -1.02 0.014 

(lag-SWT) * CPUEperch -4.31 -7.88 – -0.73 0.021 

Observations 21 
Degrees of freedom 17 
R2 / R2 adjusted 0.673 / 0.615 

 
 
 
 
 
Appendix 7: Back-calculated length at age 
 
Table S16. The relationship between back-calculated length increment (mm·year-1) from age 
1-4 year old perch for individual cohorts and the mean summer water temperature (°C, three-
year moving-average, 3YA) (µ=12.24, σ=0.49) and the mean relative density (CPUE, three-



year moving average, 3YA) (µ=17.51, σ=9.9) in Lake Vaggatem and Lake Skrukkebukta 
(Centred and scaled predictor variables).  

Length increment (mm·year-1) (age 1-4 
years) 

Predictors Estimates CI p 

(Intercept) 62.83 58.02 – 67.64 <0.001 

Mean relative density (CPUE, 3YA) -6.80 -10.44 – -3.16 0.001 

Mean summer water temperature (°C, 
3YA) 

4.08 0.73 – 7.44 0.019 

Lake [Vaggatem] 7.58 0.77 – 14.39 0.030 

Observations 35 
R2 / R2adjusted 0.347 / 0.283 

Table S17. Back-calculated length increment for age 1 year old perch (mm·year-1) in Lake 
Vaggatem dependent on summer water temperature (°C, Jun-Aug) (µ=12.72, σ=0.98) and 
relative density of perch (CPUE) (µ=23.2, σ=12.22) (centred and scaled predictor variables) 
in a linear mixed-effect model with sample year and age when caught as random effect. 

Length increment (mm·year-1) in age 1 year old 
perch 

Predictors Estimates CI p 

(Intercept) 69.51 67.27 – 71.75 <0.001 

Summer water temperature (°C) 0.57 -1.72 – 2.85 0.618 

Relative density of perch 
(CPUE) 

-0.15 -2.27 – 1.97 0.887 

Random Effects 
N year 18 
N Age 5 

Observations 407 

Degrees of freedom 366 and 34 
Marginal R2 / Conditional R2 0.024 / 0.17 

Table S18. Back-calculated length increment for age 1 year old perch (mm·year-1) in Lake 
Skrukkebukta dependent on summer water temperature (°C, Jun-Aug) (µ=12.31, σ=0.69) and 
relative density (CPUE) (µ=20.52, σ=18.49) (centred and scaled predictor variables) in a 
linear mixed-effect model with sample year and age when caught as random effect. 



Length increment (mm·year-1) in age 1 year old 
perch 

Predictors Estimates CI p 

(Intercept) 71.78 68.62 – 74.95 <0.001 

Summer water temperature (°C) -0.35 -3.20 – 2.50 0.803 

Relative density of perch 
(CPUE) 

0.15 -3.37 – 3.66 0.932 

Random Effects 
N year 16 
N Age 5 

Observations 292 

Degrees of freedom 259 and 26 
Marginal R2 / Conditional R2 0.07 / 0.311 

Figure S4. Back-calculated length increment for age 1 year old perch (mm·year-1) in Lake 
Skrukkebukta (blue dots) and Lake Vaggatem (green dots) dependent on summer water 
temperature (°C, Jun-Aug) (right) and relative density of perch (CPUE) (left) (centred and 
scaled). The lines describes the linear mixed-effect model results. 

Table S19. Back-calculated length increment for age 2 year old perch (mm·year-1) in Lake 
Vaggatem dependent on summer water temperature (°C, Jun-Aug) (µ=12.42, σ=0.796) and 
relative density of perch (CPUE) (µ=22.83, σ=15.06) (centred and scaled predictor variables) 
in a linear mixed-effect model with sample year and age when caught as random effect. 

Length increment (mm·year-1) in age 2 year 
old perch 



Predictors Estimates CI p 

(Intercept) 28.53 26.81 – 30.25 <0.001 

Summer water temperature (°C) 1.76 0.15 – 3.18 <0.001 

Relative density of perch (CPUE) -2.24 -4.35 – -0.06 <0.001 

Random Effects 
NYear 20 
NAge 13 

Observations 877 

Degrees of freedom 791 and 71 
Marginal R2 / Conditional R2 0.117 / 0.264 
  

Table S20. Back-calculated length increment for age 2 year old perch (mm·year-1) in Lake 
Skrukkebukta dependent on summer water temperature (°C, Jun-Aug) (µ=12.50, σ=0.84) and 
relative density (CPUE) (µ=17.7, σ=13.54) (centred and scaled predictor variables) in a linear 
mixed-effect model with sample year and age when caught as random effect. 

  Length increment (mm·year-1) in age 2 year old 
perch 

Predictors Estimates CI p 

(Intercept) 29.22 26.74 – 31.70 <0.001 

Summer water temperature (°C) 2.59 1.34 – 3.85 <0.001 

Relative density of perch 
(CPUE) 

-1.00 -2.74 – 0.74 0.252 

Random Effects 
NYear 10 
NAge 12 

Observations 580 

Degrees of freedom 515 and 51 
Marginal R2 / Conditional R2 0.085 / 0.278 

 



Figure S5. Back-calculated length increment for age 2 year old perch (mm·year-1) in Lake 
Skrukkebukta (blue dots) and Lake Vaggatem (green dots) dependent on summer water 
temperature (°C, Jun-Aug) (right) and relative density of perch (CPUE) (left) (centred and 
scaled). The lines describes the linear mixed-effect model results. 

Table S21. Back-calculated length increment for age 3 year old perch (mm·year-1) in Lake 
Vaggatem dependent on summer water temperature (°C, Jun-Aug) (µ=12.31, σ=0.82) and 
relative density of perch (CPUE) (µ=20.24, σ=14.72) (centred and scaled predictor variables) 
in a linear mixed-effect model with sample year and age when caught as random effect. 

Length increment (mm·year-1) in age 3 year old 
perch 

Predictors Estimates CI p 

(Intercept) 26.04 24.88 – 27.20 <0.001 

Summer water temperature (°C) 1.30 0.17 – 2.44 0.025 

Relative density of perch 
(CPUE) 

-1.55 -2.85 – -0.24 0.021 

Random Effects 
NYear 11 
N Age 11 

Observations 791 

Degrees of freedom 719 and 59 
Marginal R2 / Conditional R2 0.069 / 0.363 

Table S22. Back-calculated length increment for age 3 year old perch (mm·year-1) in Lake 
Skrukkebukta dependent on summer water temperature (°C, Jun-Aug) (µ=12.15, σ=0.85) and 
relative density of perch (CPUE) (µ=16.05, σ=9.99) (centred and scaled predictor variables) 
in a linear mixed-effect model with sample year and age when caught as random effect. 



  Length increment (mm·year-1) in age 3 year old 
perch 

Predictors Estimates CI p 

(Intercept) 20.35 19.31 – 21.40 <0.001 

Summer water temperature (°C) 1.03 0.2 – 1.88 0.031 

Relative density of perch 
(CPUE) 

-0.07 -0.99 – 0.93 0.883 

Random Effects 
N Year 10 
N Age 10 

Observations 503 

Degrees of freedom 439 and 47 
Marginal R2 / Conditional R2 0.022/0.193 

 
 

 
Figure S6. Back-calculated length increment for age 3 year old perch (mm·year-1) in Lake 
Skrukkebukta (blue dots) and Lake Vaggatem (green dots) dependent on summer water 
temperature (°C, Jun-Aug) (right) and relative density of perch (CPUE) (left) (centred and 
scaled). The lines describes the linear mixed-effect model results. 
 
Table S23. Back-calculated length increment for age 4 year old perch (mm·year-1) in Lake 
Vaggatem dependent on summer water temperature (°C, Jun-Aug) (µ=12.31, σ=0.98) and 
relative density of perch (CPUE) (µ=23.6, σ=12.25) (centred and scaled predictor variables) 
in a linear mixed-effect model with sample year and age when caught as random effect. 

  Length increment (mm·year-1) in age 4 year old 
perch 



Predictors Estimates CI p 

(Intercept) 22.11 20.99 – 23.23 <0.001 

Summer water temperature (°C) 2.17 1.05 – 3.28 <0.001 

Relative density of perch 
(CPUE) 

-0.57 -1.67 – 0.53 0.301 

Random Effects 
N Year 11 
N Age 11 

Observations 761 

Degrees of freedom 689 and 59 
Marginal R2 / Conditional R2 0.09 / 0.404 

Table S24. Back-calculated length increment for age 4 year old perch (mm·year-1) in Lake 
Skrukkebukta dependent on summer water temperature (°C, Jun-Aug) (µ=11.87, σ=1.07) and 
relative density of perch (CPUE) (µ=14.26, σ=7.16) (centred and scaled predictor variables) 
in a linear mixed-effect model with sample year and age when caught as random effect. 

Length increment (mm·year-1) in age 4 year old 
perch 

Predictors Estimates CI p 

(Intercept) 18.11 16.67 – 19.56 <0.001 

Summer water temperature (°C) 1.95 0.61 – 3.28 0.005 

Relative density of perch 
(CPUE) 

-0.19 -1.33 – 0.96 0.745 

Random Effects 
N Year 10 
N Age 10 

Observations 474 

Degrees of freedom 416 and 46 

Marginal R2 / Conditional R2 0.097 / 0.296 



Figure S7. Back-calculated length increment for age 4 year old perch (mm·year-1) in Lake 
Skrukkebukta (blue dots) and Lake Vaggatem (green dots) dependent on summer water 
temperature (°C, Jun-Aug) (right) and relative density of perch (CPUE) (left) (centred and 
scaled). The lines describes the linear mixed-effect model results. 



Appendix 8: Age at maturation and sex ratio 

Figure S8. Probability of being mature dependent on age of the perch with logistic regression 
lines for the individual sampled cohorts. Blue dots and lines depict male individuals. Orange 
dots and lines depict female individuals. 

Cohort-specific age at maturation was not dependent on the difference in sex ratio (proportion 
of females) for the different cohorts within the perch populations (fig. S9) (p=0.92, t=0.102 on 
15 d.f., adj-R2=-0.07). The sex ratio (proportion of females) was between 0.48-0.72 for the 
different cohorts, with no change in sex ratio over time (p=0.21, t=-1.31 on 15 d.f., adj-
R2=0.04).  



Figure S9. Shows how the difference in proportion of females in the different cohorts affects 
the age at maturation estimated for the different cohorts. The black line depicts results from 
the linear model with the shaded area describes the 95% confidence interval.  

Table S25. Cohort-specific age at maturation (A50, from logistic regression, fig. S7) 
dependent on back-calculated length increment (mm·year-1) from age 1-4 years.  

A50

Predictors Estimates CI p 

(Intercept) 11.58 8.43 – 14.74 <0.001 

Length increment (1-4 years) -0.08 -0.12 – -0.03 0.002 

Observations 16 
R2 / R2adjusted 0.506 / 0.47 



 
Figure S10. Probability of being mature dependent on age of the perch with logistic regression 
lines for the individual sampled cohorts. Blue dots and lines depict individuals sampled in 
Lake Skrukkebukta. Green dots and lines depict individuals sampled in Lake Vaggatem. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Appendix 9: Temperature dependent growth in perch 

Figure S11. The relationship between growth and water temperature for perch fed on 
maximum rations from existing literature (see material and methods). Where minimum 
temperature for growth is 5 °C, optimum temperature for growth is 25 °C and maximum 
temperature for growth is 32 °C. 
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