
Faculty of Science and Technology
Department of Computer Science

Slicer
A practical framework for web-based CMV

Øystein Knutsen
INF-3990: Master’s Thesis in Computer Science - September 2021

This thesis document was typeset using the UiT Thesis LaTEX Template.
© 2021 – http://github.com/egraff/uit-thesis

http://github.com/egraff/uit-thesis

“This too shall pass”
– Unknown

Abstract
Explorative data visualization is a widespread tool for gaining insights from
datasets. Investigating data in linked visualizations lets users explore potential
relationships in their data at will. Furthermore, this type of analysis does not
require any technical knowledge, widening the userbase from developers to
anyone. Implementing explorative data visualizations in web browsers makes
data analysis accessible to anyone with a PC. In addition to accessibility, the
available types of visualizations and their interactive latency are essential
for the utility of data exploration. Available visualizations limit the number
of datasets eligible for use in the application, and latency limits how much
exploring the users are willing to do.

Existing solutions often do all the computation involved in either the client
application or on a backend server. However, using the client limits performance
and data size since hardware resources in web browsers are scarce, and sending
large datasets over a network is not feasible. Whereas server-based computation
often comes with high requirements for server hardware and is limited by
network latency and bandwidth on each interaction.

This thesis presents Slicer, a framework for creating explorative data visual-
izations in web browsers. Applications can be created with minimal developer
effort, requiring only a description of the visualizations. Slicer implements bar
charts and choropleth maps. The visualizations are linked and can be filtered
either by brushing or clicking on single targets. To overcome the hurdles of
pure client- and server-reliant solutions, Slicer uses a hybrid approach, where
prioritized interactions are handled client-side.

Recognizing that different types of interactions have different latency thresh-
olds, we trade the cost of switching views for low latency on filtering. To
achieve real-time filtering performance, we follow the principle that the chosen
resolution of the visualizations, not data size, should limit interactive scalability.
We describe use of data tiles accommodating more interactions than shown
in earlier work, using an approach based on delta differencing, which ensures
constant time complexity when filtering. For computing data tiles, we present
techniques for efficient computation on consumer hardware.

iv abstract

Our results show that Slicer can offer real-time interactivity on latency-sensitive
interactions regardless of data size, averaging above 150Hz on a consumer lap-
top. For less sensitive interactions, acceptable latency is shown for datasets
with tens of millions of records, depending on the resolution of the visualiza-
tions.

Contents
Abstract iii

List of Figures ix

List of Tables xi

List of Code Listings xiii

1 Introduction 1
1.1 Problem definition . 3
1.2 Targeted Applications . 5
1.3 Assumptions and Limitations 5
1.4 Methodology . 6
1.5 Context . 8
1.6 Contributions . 8
1.7 Thesis Outline . 9

2 Background 11
2.1 Data reduction . 11

2.1.1 Sampling . 11
2.1.2 Binning . 12

2.2 Aggregate functions . 12
2.3 Data visualization . 13

2.3.1 Binned aggregates 13
2.3.2 Overplotting . 14

2.4 Coordinated and Multiple Views 14
2.5 Optimizations . 16

2.5.1 Caching . 16
2.5.2 Progressive loading 16

2.6 Prefix sum . 17

3 Related Work 19
3.1 Databases . 19
3.2 Crossfilter . 22

v

vi contents

3.3 Nanocubes . 23
3.4 imMens . 23
3.5 Falcon . 24
3.6 Summary . 25

4 Design 27
4.1 Requirements . 28

4.1.1 Non-functional requirements 28
4.1.2 Functional requirements 28

4.2 User Interfaces . 29
4.3 A tile-based approach . 30
4.4 Slicer’s data tiles . 31

4.4.1 Using data tiles . 32
4.4.2 Assigning bins . 33
4.4.3 Creating data tiles 33

4.5 Database design . 34
4.6 Architecture . 34

5 Implementation 37
5.1 Programming languages . 37
5.2 Front-end . 38

5.2.1 Mediator . 38
5.2.2 API-connector . 38
5.2.3 Views . 39
5.2.4 Tile Handler . 40

5.3 Back-end . 43
5.3.1 Initialization . 43
5.3.2 Communication . 43
5.3.3 Database . 44
5.3.4 Creating data tiles 44

5.4 Creating an application . 46

6 Evaluation 49
6.1 Experimental Setup . 49
6.2 Benchmarks . 50

6.2.1 Filtering . 50
6.2.2 Data tile computation 52

6.3 Analysis . 54
6.3.1 Comparison with Falcon 54

7 Discussion 57
7.1 Geographical visualizations 57

7.1.1 Datasets without a link to GeoJSON 57
7.2 Incremental computation of data tiles 58

contents vii

7.3 SQL performance . 59
7.4 Client-side tile engines . 59
7.5 Datasets too large to keep in-memory 60

8 Conclusion 63
8.1 Concluding remarks . 63
8.2 Future work . 64

8.2.1 Exploit the symmetry of Slicer’s data tiles 64
8.2.2 Further utilization of bin arrays 64
8.2.3 Chart improvements 65
8.2.4 Client-side caching of tiles 65
8.2.5 Speeding up tile generation 66

References 67

A Code for generating SQL queries 71

B Code for generating data tiles (with timing) 73

C Extract from slicer-frontend/src/Mediator.ts 75

D Extract from slicer-frontend/src/Types.ts 77

E Extract 2 from slicer-frontend/src/Types.ts 79

F Code for estimating row count based on filter 81

List of Figures
1.1 The framework for Information Systems Research presented

by Hevner et al. in their 2004 paper. 7

2.1 Bar chart, pie chart, binned heatmap, and choropleth examples. 13
2.2 Example of overplotting . 14
2.3 Screenshot of CMV application for data analysis 15
2.4 Illustration of brush select and single select 15

3.1 Column- vs. row-layout in databases 20
3.2 Illustration of a datacube 22
3.3 Screenshot of example application made with Falcon 24
3.4 Illustration of a Falcon data tile 25

4.1 Screenshot of a Slicer application 29
4.2 Birds eye view of a Slicer application. 30
4.3 Behavior flowchart for Slicer back-end. 31
4.4 Illustration of a Slicer data tile 31
4.5 Illustration of how Slicer incrementally calculates bin values

when filtering . 32
4.6 Logical component diagram of Slicer. 35

5.1 Connection between bins and views. Here exemplified with a
bar chart. 39

5.2 HTML, JavaScript, and configuration for example application. 47

6.1 Histograms of filtering latency 51
6.2 Tile computation performance 53

8.1 Illustration of the symmetric nature of data tiles in Slicer. . . 64

ix

List of Tables
2.1 Example of a 1-d prefix sum array based on a source array. . 17

6.1 Specifications of computers used in benchmarks. 50
6.2 Detailed time taken when creating data tiles with a 20 million

record dataset. 53

xi

List of Code Listings
5.1 Bar chart rendering code 39
5.2 Choropleth rendering code 40
5.3 Fetching Data Tiles . 41
5.4 Computing filter delta . 41
5.5 Updating bins using data tiles and deltas 42
5.6 Data tile endpoint created with FastAPI 43
5.7 Data tile SQL code. 45
5.8 Code for turning SQL result into data tile. 45

6.1 Mediator.send() modified to time filtering. 51
6.2 Tiler.set_tiles() method with timing. 52

A.1 SQL generating code . 71

B.1 DuckDbDataProvider.get_tile() method (with timing). 73

C.1 Extract from slicer-frontend/src/Mediator.ts 75

D.1 Extract from slicer-frontend/src/Types.ts 77

E.1 Extract 2 from slicer-frontend/src/Types.ts 79

F.1 Code for estimating row count based on filter 81

xiii

1
Introduction
The fields of data collection, storage, analysis, and visualization have developed
broadly in the past few decades. While the amount of available data has
increased, the cost of processing and storage has decreased. In the span 2000-
2014 the cost of computational power decreased by approximately 77% per
year[1, 2]. The cost of storage has seen a similar development[3, 4]. This trend
has made it feasible to collect and analyze data at large scales. But collecting
and analyzing data is not only feasible, it is increasingly profitable. The value
of collected data scales with size, as illustrated by the law of large numbers:
The more data available, the more generalized conclusions can be drawn.
Consequently, we have circular incentives for collecting more data: Storage
and processing is becoming cheaper, and the value grows with volume. With
this motivation, businesses and academics now collect more data than ever
before, and the significance of data is acknowledged to the extent that the
value of some of the worlds largest companies is not measured by physical
assets but rather the information they own[5].

To maximize the value of gathering data, having the right tools to analyze it
is critical: The data itself is only as valuable as the insights it provides. As a
result, many new databases and processing frameworks focused on analytical
performance have emerged, ranging from columnar databases to OLAP-cubes,
GPU-accelerated systems, and distributed solutions. These solutions improve
query performance compared to more traditional Online Transactional Process-
ing (OLTP) solutions, allowing faster aggregates on attributes and drill-downs
across dimensions. Distributed solutions further offers horizontal scaling when

1

2 chapter 1 introduction

additional capacity or performance is demanded.

In general, interfacing with these tools is done through some application
programming interface (api) or query language, commonly Structured Query
Language (sql). The set of people who can explore the datasets at will is
therefore limited to those with technical skills. Often, those making decisions
based on the data are not the ones responsible for managing the infrastructure.
Visual interfaces and reports composed of charts andmaps are popularmethods
to provide insight from datasets to decision-makers. Shifting the analytical
responsibility over to decision-makers can be done by providing interactive
visual tools to explore datasets. Doing so reduces the time it takes decision-
makers to get answers to their questions significantly, allowing them to explore
more ideas and potentially gain more insights and discover correlations. Using
Coordinated and Multiple Views (CMV) is a way for applications to enable such
exploration.

CMV consists of multiple visualizations of the same dataset. The visualizations
can be of different types and often visualize different attributes of the underly-
ing data. For example, a histogram showing revenue over time and a bar chart
showing counts of sold products by category. A key feature is the coordinated
part of CMV; when one visualization changes, all other visualizations update
to reflect the change. Continuing the previous example, this could be that the
category "Shoes" is selected in the bar chart. Then the histogram would update
to represent the revenue solely from shoe sales over time.

Businesses are aware of Decision Support Systems (DSS) and CMVs value, and
these tools have become a market of their own. In industry, we see companies
offering what is coined business intelligence (BI) platforms. These solutions
connect to database backends and provide visual interfaces to explore data and
make customized reports and dashboards. Microsoft has PowerBI[6], Google
has BigQuery BI[7], and Tableau[8] is a popular independent solution. By
transparently mapping visual selections to backend queries, these tools give
great analytical power to non-technical users. However, the tools are usually
used by just a handful of people to make reports and static dashboards they
share with others. The ones receiving the static reports get to learn the insights
of the ones who made them but cannot discover such insights themselves.
These dashboards and reports aim to teach something, but the best way to
learn is often to see the patterns and correlations by one’s own accord. Making
CMV applications more accessible could enable more people to understand
more datasets.

Web applications are some of the most accessible types of applications today.
The utility of a dataset is a function of how accessible it is and to how many.
As virtually all client computers have a web-browser, the web is a well suited

1.1 problem definit ion 3

platform for data visualization and analysis. JavaScript libraries for creating
visualizations in the browser are popular exist in numbers1, further validating
the platform.

CMV has been a field of research for a long time, and some have stated that they
are a "solved problem" already in 2007 [9]. However, earlier solutions were not
made to cope with the size of today’s datasets, nor the expectations for usability
and interactivity of modern users. When exploring data in CMV, latency is
critical. Users are prone to refrain from exploring slow visualizations and
instead make examinations with faster response times[10, 11]. Even differences
in latency measured in milliseconds effects how many insights are gained from
exploration and the users impression of the application[12, 10].

BI solutions can not be used to make stand-alone applications and are lim-
ited in performance by their client-server architecture. JavaScript libraries for
visualizations are great for making applications but are limited by having to
transfer all the data to the client. Most of them are also static and do not
support creating CMV. There also exists a few hybrid solutions with promising
performance and scalability, but they are lacking in features, are hard to set
up and hard to use.

To provide low latency in web-based CMV, one must overcome network limita-
tions and limited computational power in clients. To overcome these challenges,
we propose a bottom-up design optimized for the visualizations and queries
the front-end will support. Building on earlier works and original ideas, we aim
to support the features we miss in existing solutions while still providing low
latency. Slicer provides a framework for making high performance web-based
CMV for data analysis. The framework is designed to be practical for developers
to set up.

1.1 Problem definition

Earlier works[13, 14, 15] have shown the possibility of visual and real-time
cross-filtering of large datasets in the browser. The popularity of crossfilter[15],
Javascript charting libraries such as Highcharts[16], and various BI-platforms
further proves the demand for tools of this sort. While pleased with features
in some solutions and the performance of others, we feel there is a gap. The
existing frameworks for creating web-based CMV are limited in numbers, and
suffer from at least on of the following weaknesses:

1. See for example: https://d3js.org/, https://vega.github.io/vega/, or
https://github.com/dc-js/dc.js

https://d3js.org/
https://vega.github.io/vega/
https://github.com/dc-js/dc.js

4 chapter 1 introduction

• Too high latency on interactions. Purely client-side driven applications
struggle to keep up the performance as dataset sizes increase. And
purely server-side driven applications suffer from the interactivity being
bounded by round trip time (RTT) and bandwidth on top of the servers
ability to handle incoming requests.

• High cold-start times (time from entering application to first drawn frame
of all visualzations).

• Missing features: Many datasets today couldmake use of plotting in maps
in addition to charts and having filtering in both categorical, continuous,
spatial, and temporal dimensions.

• Too demanding of back-end or client computers. We do not want to
rely on distributed or GPU-accelerated back-ends, and if the clients are
responsible for doing the heavy lifting it severely limits the size and
dimensionality of supported datasets. It is important that the solution is
practical to set up and maintain, and should ideally work on commodity
hardware.

• Limited in how large datasets can be.

• Hard to set up and use (for developers).

We believe that it is possible to provide a practical framework for developing
perfomant applications with many desired features. Such a framework would
consist of a Javascript library for creating the front-end clients and a backed
service that takes in a dataset and works in coordination with the application
built by the front-end library. The work should be shared between the client
and the server. This should be done in a way that minimizes the need for client-
server communication when handling user interactions. Ideally, most user
actions can be handled without relying on the backend service. Such a solution
should be able to handle visualization and interactive filtering relational data
with both categorical and continuous dimensions as well as visualizing data in
maps in a meaningful way.

Performance can be gained by placing computational power requirements
on back-end servers, e.g., requiring CUDA compatibility or distributed setups.
However, we aim for the usability of crossfilter and believe that ease of setup
and use is critical for the framework to be adopted. We propose that it is
possible to improve usability and extend the features of existing frameworks
for making CMV web-applications while keeping state of the art interactivity.
Specifically, the thesis is:

1.2 targeted applications 5

An easy to set up and use framework for creating feature-rich and performant
CMV web-applications can be made by using and extending existing web

technologies and data handling methods.

1.2 Targeted Applications

In this thesis we aim for a framework to build web-based data analysis applica-
tions with state of the art levels of interactivity, while adding features. Without
relying on GPU-acceleration, we do not believe it is manageable to achieve
this for enormous or unstructured datasets. The targeted applications for the
framework therefore have datasets of relational data with records in millions,
in contrast to some other works supporting billions[14, 13].

Applications made with Slicer should work in most popular web-browsers
(Google Chrome, Firefox, Safari, and Microsoft Edge). The back-end service
should be compatible with both Linux and Windows systems from the past
decade at least, with no requirement for a GPU.

1.3 Assumptions and Limitations

Striving for maximum performance dictates some assumptions and limitations.
When utilizing the newest technologies, backward-compatibility for hardware
and software cannot be guaranteed. The thesis’s primary focuses also eliminate
certain features and considerations from being implemented. Nonetheless, we
aim to make it possible to implement features that do not require changes to
the underlying data structures in the future. Performance and extendability
will be key concerns for the implementation of Slicer, and specifically we make
the following limitations on the scope of the thesis:

• We will not consider clients with small screens and mobile devices (e.g.,
phones) when designing the front-end components.

• We will not consider the security aspects of the framework.

• We will not implement support for dynamically adding data.

• We will only consider relational datasets when implementing the core
functionality.

6 chapter 1 introduction

1.4 Methodology

The methodology of the thesis springs from the ACM Task Force on the Core
of Computer Science’s definitions of computing as a discipline[17] and the
framework for information systems (IS) research as presented be Hevner et al.
in 2004[18].

In their 1989 report, the Task Force on the Core of Computer Science formed by
the Association for Computing Machinery (ACM) and the Institute of Electrical
and Electronics Engineers (IEEE) introduce three paradigms as the foundation
of computing as a discipline:

• Theory is the first paradigm and is rooted in mathematics. In this
paradigm a mathematician iterates four steps until arriving at a valid
theory:

1. Define objects of study

2. Hypothesize relationships between the objects as theorems

3. Determine if the theorems can be proved or disproved

4. Interpret the findings

• Abstraction is the second paradigm and is rooted in the scientificmethod.
In this paradigm a scientist also iterates through four steps, but here to
investigate a phenomenon:

1. Construct hypothesis

2. Make a model and a prediction

3. Execute experiments and gather data

4. Interpret the findings

• Design is the third and final paradigm. Design is rooted in engineering
and is concerned with solving specific problems. The paradigm is also
iterative and consists of four steps:

1. State requirements

2. State specifications

1.4 methodology 7

3. Design and implement a system

4. Test the system

In the 2004 paper Design Science in Information systems research[18], Hevner
et al. complete framework for conducting IS research. The paper identifies
two main paradigms characterizing IS research: behavioral science and design
science. The behavioral science paradigm "seeks to develop and verify theories
that explain or predict human or organizational behavior", while the design
paradigm concentrates on "creating new and innovative artifacts". The presented
framework encompasses both paradigms and ties them together. With nested
iterative research cycles the intended environment is continually taken into
consideration while existing knowledge is visited and applied when relevant
possible. This interplay is illustrated in Figure 1.1.

Figure 1.1: The framework for Information Systems Research presented by Hevner et
al. in their 2004 paper.

In this thesis both the theory and design paradigms from the task force’s
definition have been applied in combination with the more complete cyclical
approach of the IS research framework. Where it has been possible theory
iterations have been used to avoid implementing data structures that are
not mathematically sound. With mathematically sound findings added to the
knowledge base,design iterationswere done to implement concrete components
in code. These iterations were conducted, as shown in Figure 1.1, with frequent
reviews of the relevant knowledge bases (existing technology and literature).
The Environment cycle of the framework, seen to the left in Fig. 1.1, has been
omitted. Business needs were already established and the requirements were
known at the start of the thesis, making the cycle irrelevant for this work.

8 chapter 1 introduction

This thesis presents the product of numerous iterations of different research
cycles, where Slicer is the final artifact. We present existing knowledge found
to be relevant, our own design and implementation, evaluations of said imple-
mentation, and conclude with our findings and potential courses for further
research.

1.5 Context

This thesis is motivated by challenges I have met while working at SINTEF
with one of my advisers, Peter Haro (SINTEF Nord).

At SINTEF, we have many projects where data is gathered and processed, and
almost always, the customer and domain experts want to examine the data. As
a result, we have tried most existing solutions for making web-based CMV and
gone so far as to extend and modify them to suit our needs. The feedback on
projects where we have done so has been very positive, but the experience of
making them has been problematic. Struggles with limitations in performance,
features, scaling, and usability of existing frameworks are what formed the
idea for Slicer and this thesis.

1.6 Contributions

The main contributions of this work are:

• Models for

– Data tile design - Smaller data tiles, requiring less computation to
create than earlier work.

– Dual protocol communication to reduce latency, while keeping
throughput for data transfer.

• Methods for

– Data tile filtering - Using data-differencing, constant time filtering
with data tiles is kept, while adding support for single bin selections
as well as range selections.

– Data tile computation - Using database indexing, auxiliary tables,
and cached tiles, data tiles can be computed on consumer hardware

1.7 thesis outline 9

without GPU-acceleration for large data sets.

– Visualizations - Showing filterable geographical data based on data
tiles.

• Artifacts

– Slicer Framework

1.7 Thesis Outline

The rest of this thesis is structured as follows:

Chapter 2, Background outlines concepts required for understanding the
premise for this thesis as well as the related works. The chapter introduces
the types of visualizations and interactions with which this thesis and related
work are concerned. We look at the underlying principles, data reduction and
aggregate functions, and common optimization techniques.

Chapter 3, RelatedWork provides a review of "state-of-the-art" technologies for
data exploration. We present supporting technology and complete frameworks,
showing the techniques used to achieve their performance.

Chapter 4, Design presents the design of Slicer and its architecture.

Chapter 5, Implementation describes the implementation of Slicer, focusing
on its unique aspects.

Chapter 6, Evaluation outlines experiments and their results before presenting
evaluations of Slicer.

Chapter 7, Discussion discusses the choices of Slicer’s design and their impact
on performance, features, and practicality.

Chapter 8, Conclusion summarizes the thesis and proposes avenues for future
work.

2
Background
This chapter provides an overview of techniques and technologies needed to
understand the basis of the thesis and existing solutions. We will explain CMV
and common techniques used to ensure performance in data analysis and web
applications.

2.1 Data reduction

Achieving low latency when interactively visualizing large amounts of data is
often done with one or more strategies to reduce the dataset. Query response
time depends on data volume, and if the reduction leads to transferring less
data between a server and client, bandwidth imposed latency is also reduced.
Data reduction in this context means transforming a dataset in some way that
reduces the number of data points stored, in contrast to compression, where
the goal is to store the dataset efficiently without changing it.

2.1.1 Sampling

Sampling is one of the simplest forms of data reduction. To reduce a dataset
with sampling, a predicate function to sample by is chosen and all records
not fulfilling it are disregarded. The function can be as simple as checking if
the index modulo 10 is equal to 0, thereby reducing the dataset to 10% of its

11

12 chapter 2 background

original size. This is a considerable reduction, but it comes at an accuracy cost.
It is simply not possible to answer all queries correctly when the whole dataset
is not used.

Not all sampling functions are as simple as modulo, however. BlinkDB [19],
pre-computes smarter samples to provide SQL support scaled for big data.
Doing so, they out-compete their (cluster computing based) competition by
a factor of 10-200x, while maintaining reasonably accurate answers (within
errors of 2-10% on a 17TB dataset)[20].

2.1.2 Binning

Binning is a data reduction method where data values are assigned to bins.
These bins represent an interval in the range of the underlying data values —
that way, the values may be stored as representations of the bins. This limits
the bytes necessary to represent a single value to the bytes needed to represent
the number of bins. E.g., if a dataset containing 64-bit values gets binned into
255 bins, the data values can be stored as single bytes instead of 8.

Bins do not need to represent regular intervals. They can be irregular and
multidimensional as well. Similar to how the range 1..100 can be split into ten
even bins at an interval of ten, a bin can represent an irregular 2-dimensional
area - for example, a country in a 2d map.

If the intervals for the bins are not known, they can be set with clustering
algorithms. Clustering algorithms can group similar items usually into a pre-
determined number of bins (classes). Creating bins this way will often lead to
a higher granularity of bins in ranges with more data as bins are not "wasted"
on empty intervals.

Some domains have existing natural bins. An example is geographical data;
geographical data often makes sense to group based on country, city, bus-stop,
region etc.

2.2 Aggregate functions

In the domain of databases, aggregate functions are functions that reduce a
set of values to a single value [5, p.91]. These sets will often be a column in a
database, or a selection of rows in a column. Which aggregate functions are
natively supported varies between databases. Nevertheless, in SQL-databases
at least these five are commonplace:

2.3 data visualization 13

• Count: Returns the number of items in the input set.

• Sum: Returns the sum of all values in the input set.

• Average: Returns the average value found in the input set.
Usually implemented as 𝑆𝑢𝑚/𝐶𝑜𝑢𝑛𝑡

• Min: Returns the minimum value found in the input set

• Max: Returns the maximum value found in the input set

In other domains, such functions are also referred to as reduce functions with
single value outputs. In functional programming, these functions are called
fold functions and are functions that take a traversable data structure and a
combine function (e.g. add) as input parameters. When called , it traverses
the data structure and, using the combine function, builds the return value.
The returned value may be a single value or another data structure. In the
context of this work, all mentioned reduce functions will reduce to a single
value. Aggregate- and reduce- functions are thus interchangeable terms in the
context of this thesis.

2.3 Data visualization

2.3.1 Binned aggregates

Binned aggregates are the values produced by binning data and then computing
an aggregate on each bin. This computation forms the basis for a subset of data
visualizations. These visualizations are especially useful for large datasets since
the space they occupy depends solely on the resolution of the visualization, and
not the dataset. Common binned aggregate visualizations, as seen in Figure 2.1,
include: bar charts, pie charts, binned heatmaps, and choropleth maps.

Figure 2.1: Bar chart, pie chart, binned heatmap, and choropleth examples.

14 chapter 2 background

2.3.2 Overplotting

Overplotting is the phenomenon that occurs when data points overlap in a
visualization - obscuring each other and making it impossible to know how
many points are in each location. It is a very common problem when visualizing
large datasets, and needs to be taken into consideration when creating views.
A screen with FullHD resolution1 has 1920 · 1080 = 2, 073, 600 pixels. This
means that if a dataset with more than ∼2 million data points is to be visualized
on such a screen, overplotting is guaranteed to be a problem even if each data
point only occupies a single pixel each.

Figure 2.2: Example of a scatterplot suffering from overplotting (left) and the same
data in a binned scatterplot to overcome the problem (right). Images are
taken from: https://r-graphics.org/recipe-scatter-overplot

2.4 Coordinated and Multiple Views

Coordinated and multiple view systems are systems that offer multiple visual-
izations (views) of the same data. The views are coordinated, automatically
reflecting updates to one view in the other views. Exploratory data visualiza-
tions made this way allows users to interactively explore their data, potentially
discovering valuable relationships and facts that would not be seen with similar
non-interactive or non-coordinated visualizations[9].

As outlined by J.C. Roberts in [9], there are vast amounts possible views
and ways of coordinating them. Among the nuances, many efforts focus on
scientific visualization, e.g., volumetric rendering, where one data point usually
maps to one pixel on the screen. We, however, are interested in general data
visualization and exploration. Therefore, we will limit our use of views to charts

1. FullHD is the most common resolution for desktop monitors. See: https://gs.
statcounter.com/screen-resolution-stats/desktop/worldwide for more
statistics on screen resolutions.

https://r-graphics.org/recipe-scatter-overplot
https://gs.statcounter.com/screen-resolution-stats/desktop/worldwide
https://gs.statcounter.com/screen-resolution-stats/desktop/worldwide

2.4 coordinated and multiple views 15

(histograms, bar charts, line charts, and scatter plots), tables, and data overlaid
on world maps in the form of heatmaps, choropleth, or icons.

Figure 2.3: Screenshot of example CMV application made with Crossfilter and D3
with bar charts and linking and brushing. Can be seen online at: https:
//crossfilter.github.io/crossfilter/

Linking and brushing is a popular method to provide interaction and coordina-
tion to visualizations, and it is the primary method used in Slicer and related
works. Brushing is the act of selecting a range or an area in a chart by dragging
with the pointer. This selection represents a filter in the underlying dataset,
and the linking is that the other charts in the application update to reflect this.
A brush selection represents range filters. They only enable the selection of
elements next to each other - e.g. consecutive bars in a bar chart. In this work
we are interested in single-select filtering also. Single selections enables filtering
of multiple elements which are not positioned next to each other. For example
if the x-axis in a bar chart represents countries, it makes sense to be able to
select two (or more) countries without them having to be placed consecutively
in the bar chart.

Figure 2.4: Example of single select in bar chart (left) and brush select (right). On
the left, the blue bars have been selected by clicking on them, while on
the right the selection is the range between the brush edges.

Importance of low latency

Users have shown to prefer interactions with low latency, to the extent of
avoiding slow interactions[12, 11]. For CMV applications using linking and

https://crossfilter.github.io/crossfilter/
https://crossfilter.github.io/crossfilter/

16 chapter 2 background

brushing, the implication is that all charts should ideally respond to filtering
with the same latency. A typical threshold for interaction latency has been
500ms[14], but this level of latency has shown to impact user performance in
interactive applications[12, 11]. Another finding by Liu and Heer [11] is that
different actions have different sensitivities to latency. An example of a latency
sensitive interaction is brushing, while zooming in a chart is an example of a
less sensitive interaction.

For users to get the most value from data exploration similar actions should
have similar latency, and the importance of how low the latency is differs
depending on action type.

2.5 Optimizations

To achieve fast cold start times and low latency on interaction, many optimiza-
tion techniques are used in web applications. Here wemention some of the most
widespread relevant to this thesis: Caching and progressive loading.

2.5.1 Caching

Caching is a general optimization technique in computer science. Caching is
to anticipate what data will be requested in the future and storing it in a more
accessible way than the rest of its kind. This anticipation function will vary
widely based on the application. Common functions are to cache recently or
commonly used values or values stored in proximity to recently accessed values.
The advantage of caching comes when it is faster than recomputing values
or reading them from a slower data store. Caching is used on most levels of
computing, but an example for a web application could be a web-server for a
news website storing todays news in-memory, and older news on disk.

2.5.2 Progressive loading

In web applications progressive loading is a technique that improves load-
ing times by deferring non-essential resources. The time from a web app is
requested until the first meaningful frame is drawn plays a big part in how
responsive it feels. An example for a simple website can be that everything
that will not be visible before scrolling down on the page, is not loaded before
everything that will be immediately visible has loaded and rendered. Another
form of progressive loading is to first load a lesser version of the resource to be
able to display something immediately, while the actual resource loads in the

2.6 prefix sum 17

background. A common use of this form is to load low resolution images and
replace them later with the full resolution ones.

In a CMV context, visualizations can be progressively loaded by first show-
ing non-interactive versions and then add interactivity when the necessary
resources have loaded.

Progressive loading does not only apply to the initial loading of an app. Any time
new resources are requested, the non-essential ones can be down-prioritized
or lesser versions can be loaded first.

2.6 Prefix sum

Prefix sum arrays (also called cumulative sum) is a relevant datastructure as it
can be used to speed up an operation frequently used when visualizing binned
aggregates. Summed area tables2 are the 2-dimensional generalization of prefix
sum arrays. The 1-d and 2-d variants of prefix sums are easiest to visualize and
reason about, but prefix sum arrays generalize to 𝑛 dimensions.

Input Sequence 3 5 3 1 0 2 7 6 ...
Prefix Sum 3 8 11 12 12 14 21 27 ...

Table 2.1: Example of a 1-d prefix sum array based on a source array.

In a prefix sum array each value in the array represents the sum of all previous
values in the sequence so far. I.e. to get the value at index 𝑛 of the original
array, one takes the value at index 𝑛 and subtract the value at index 𝑛 − 1,
unless the index = 0, the value is the same in the prefix sum array and the
source array.

The operation that prefix sum arrays speed up is to compute the sum of sub-
sequences. When computing the sum of values in the range 2..8 on a regular
array, it will require 6 add operations. Using prefix sum, this can be reduced to
a single subtract operation, subtracting value 2 from value 8. Thus it changes
the complexity of the operation from 𝑂 (𝑛) to 𝑂 (1), where 𝑛 is the length of
the sub-sequence. This makes prefix sums particularly useful when plotting
binned values as it usually involves summing up the values or counts belonging
to each bin.

2. Also called integral images and is used in computer graphics to speed up shading operations
and to do object detection.

3
Related Work
This chapter provides an overview of existing works with similar goals to
this project. There has been done an overwhelming amount of work done
on databases and data visualization. Here we focus specifically on work that
enables making CMV data exploration applications with web-browser clients.
We do not try to give complete descriptions of all the topics covered, but
focus on what makes them related to Slicer and this thesis. For more in-depth
descriptions reading the references papers is highly recommended.

3.1 Databases

The increasing interest in data collection and analysis has led to much research
on databases. This work has many branches, but we limit our scope to relational
databases.

Data visualizations often reflect some aggregate, which relational databases
usually support computation of as native features. In this section, we briefly
cover developments enabling fast computations of aggregates. The overview
provided is limited, as most databases are made to be front-end agnostic, while
today’s highest performing CMV frameworks rely on purpose-built data struc-
tures and encodings residing on the front-end. The relevancy of databases lies
in their ability to facilitate the production of those data structures. Additionally,
databases might be able to handle queries the custom data structures cannot

19

20 chapter 3 related work

and thus work in unison with them to achieve more features in the CMV
system.

Columnar Databases

Data tables in relational databases are generally stored in one of two types
of layouts: row-oriented and column-oriented[5, p.611]. These layouts are illus-
trated in Figure 3.1.

Figure 3.1: Illustration of how a table can be stored either row-oriented ot column-
oriented. Source: https://datacadamia.com/data/type/relation/
structure/column_store

Column orientation is favorable when one or a few attributes from each row
is needed in the query. In a column oriented layout, only relevant attributes
are read from the database. Whereas row orientation will read entire rows -
including irrelevant attributes. This can lead to a significant reduction in disk
I/O.

Column orientation can also increase the amount of cache-hits in the CPU1,
further increasing performance. When the CPU requests data from main mem-
ory or disk, the CPU will fetch enough bytes to fill a cache line. If the data is
fetched from a column oriented database, the extra bytes in the cache line will
be the value of the next row in the column. In contrast, if the data is fetched
from a row-oriented database, the extra bytes will be the rest of the attributes
in the current row. If the query is doing an aggregate on a certain column,
these extra bytes will be wasted when fetched from a row oriented database,
whereas it will reduce the times the CPU needs to fetch data if it comes from a
column-oriented database.

These advantages make column oriented databases useful when many aggre-
gate functions are used - particularly when the aggregate functions use a single

1. A cache-hit happens when data requested is found in cache and does not need to be read
from higher up in the memory hierarchy. Modern CPUs have multiple levels of internal
caches they try to read from before main memory or disk.

https://datacadamia.com/data/type/relation/structure/column_store
https://datacadamia.com/data/type/relation/structure/column_store

3.1 databases 21

column.

In-memory databases

An in-memory database is a database that is loaded into or created in main-
memory, in contrast to being stored on disk. In-memory databases mainly exist
to optimize performance. Main-memory has more bandwidth and faster access
times than disks[5, p.616]. Additionally, on disks data is stored in blocks further
complicating data access. Accessing records in blocks involves getting block
identifiers and offsets before checking if the block is in the buffer2 (and if so,
where in the buffer) and finally following the retrieved record pointer to read
the data. In main-memory however, accessing a record is done as a regular
pointer-traversal, which requires much fewer CPU cycles to complete and is
generally a well optimized fast operation on CPUs.

Data Cubes

For a dataset represented as a table of n columns, a datacube for the same
dataset is a n-dimensional cube. Although they are called cubes, there can be
more or fewer dimensions than 3 and they do not need to be of the same size.
Each cell in a data cube represents an aggregate on the intersection of the
distinct values of the dimensions at its coordinate. In Figure 3.2 for example
each cell represents the number of sales of a category of products, in a specific
region, in a specific year. Dimensions and aggregates are computed when the
cube is created,making if fast to get out specific aggregates later. One operation
that data cubes are effective for is slicing. Slicing is the operation of looking at
aggregates for a fixed value of a dimension. For example in Figure 3.2, fixing
the year dimension on 2004 would produce a 2d cube slice containing only
aggregates for 20043. When multiple dimensions are fixed, or dimensions are
fixed on several bins (e.g. by selecting 2004 and 2005), the operation is called
dicing[5, p.530].

Data cubes do have some drawbacks, mainly in flexibility and size complexity.
In terms of flexibility, data cubes need to be recomputed if changes are made
to the dimensions of the underlying data. If different types of aggregates are
wanted on different dimensions, data cubes also lose their merit. The space
complexity of data cube can be very large compared to the underlying data

2. Databases make use of a buffer manager, which keeps some blocks read from disk in
memory.

3. Slices do not need to be 2-dimensional. It just happens to be the case here since the
underlying cube has three dimensions.

22 chapter 3 related work

Figure 3.2: Illustration of a datacube representing a sales database.
Image is edited version of this, with this origial licence.

set as a cell has to exist for every possible combination, regardless of if all
combinations exist in the underlying dataset⁴. For example if there were no
sales in 2005 in the dataset illustrated in Fig. 3.2, one third of the space the
cube occupies is effectively wasted.

3.2 Crossfilter

Crossfilter[15] is a JavaScript library for making interactive coordinated views
in the browser. It is an entirely client-side library, meaning the entire dataset
is transferred to the client on load. The library supports many popular visual-
izations, such as bar charts, line charts, tables, and scatter plots.

Up to a certain amount of data and dimensions, it is possible to make very
fast interactive visualizations with Crossfilter (< 30ms per interaction). One
of its most attractive features is the possibility of creating custom grouping,
aggregation, and filtering functions, which means that the axes of charts and
the way charts are coordinated can be modified to suit even the most outlying
needs.

Crossfilter achieves its speed by making use of the assumption that most ex-
plorative actions are incremental. Filtering and aggregation is done on smaller
and smaller subsets of the dataset as more filtering operations are done. This
keeps the interaction latency low and decreases until a filter gets reset and the
active subset increases. To achieve this, Crossfilter relies on sorted indexes and

4. Simplification. Sparse representations do exist, but come at a cost for lookups.

https://en.wikipedia.org/wiki/File:OLAP_slicing_en.png
https://creativecommons.org/licenses/by-sa/4.0/deed.en

3.3 nanocubes 23

a few optimizations using bit-wise operations. Crossfilter scales up to datasets
with a few million data points, but performance drops of quickly with either
volume or number of filterable dimensions. Cold-start latency scales with size
and the number of dimensions as data must be transmit to the client, the client
must decode the data, and the client to compute the indexes. The server for a
Crossfilter-application can be static and serve the data as JSON or CSV, while
the application itself is served as JavaScript-, HTML-, and CSS-files.

3.3 Nanocubes

A Nanocube is a data structure tackling the often prohibitively large size
of data cubes. Nanocubes support queries to visualize spatiotemporal data
in charts and heatmaps. The query responses are singular aggregates, binned
aggregates, and tiles of heatmaps to be overlaid on a worldmap. The queries are
evaluated very quickly (generally <10ms, even on a laptop) but are constrained
by network latency and bandwidth. It is also not possible to query a nanocube
for individual records, as the data structure only stores aggregates.

To achieve their speed, nanocubes use their own tree structure to index the
data. As a query traverses the tree, it will first visit spatial nodes, which form a
quadtree. Thereafter, it traverses nodes branching based on categories. Finally,
in the leaf nodes are time-series stored as sparse prefix sum arrays.

The time and space complexity of building a nanocube is heavily impacted by
the dimensionality and branching factors of the categories, as well as volume.
This is illustrated in their paper by some of their example datasets and cubes:
One nanocube with 210M records took 6 hours to build and uses 46GB, while
another with 1B records took 4 hours to build and occupies 4.5MB.

3.4 imMens

imMens[13] is a system for creating interactive visualizations in web-browsers.
It is built around the principle that interactive visualizations should scale with
the resolution of the visualizations, and not the number of records in the
dataset. imMens supports visualizations of aggregated bins in terms of bar
charts and gridded heatmaps, where the aggregate function is count.

Gridded heatmaps are prioritized in imMens, and the data structure supporting
the systems real-time interactivity is built around them. imMens is built by
projecting data cubes onto 2-d data tiles which are encoded as PNG-images

24 chapter 3 related work

which are read using WebGL⁵ in the browser. As data cubes become unwieldy
when there are many bins, each tile represents a sub-square of the data holding
area of the heatmap. Furthermore, to be able to project the data cube source
into its 2-d tiles, imMens is limited to use 4 dimensions.

Using WebGL to handle both filtering and rendering, imMens achieves brushing
performance of approximately 50hz and up on consumer PCs, even for datasets
with billions of records. imMens does not support cross-filtering, only one filter
can be active at a time. The data tiles map from each chart to the others, and
would have to be recreated after each filter action to be able to compound
them.

3.5 Falcon

Falcon[14] is another system for making CMV data analysis applications, and
can be seen as a continuation of the imMens project. Similarly to imMens,
Falcon is built to scale - in terms of latency on interactions - with the resolution
of its visualizations rather than the amount of underlying records. Falcon
continues the idea of data tiles, but with changes to what they comprise. There
is no native support for heatmaps in Falcon, but it adds support for cross-
filtering. Supported visualizations in Falcon are bar charts and scatter-plots,
with count as the only supported aggregate function.

Figure 3.3: Example application made with Falcon. Source: https://vega.github.
io/falcon/flights/

Falcon introduces the concept of active and passive views. An application has
one active view at a time, while the remaining views are passive. The active
view is the view the user is currently interacting with, i.e. brushing. A data tile
in falcon is able to compute all possible states of one view based on the filtering
in another. For each passive view, there is a tile based on the active view. Since

5. WebGL is a subset of OpenGL, enabling graphics computation in web browsers. WebGL is
mostly used for rendering, but can also be used for GPGPU purposes.

https://vega.github.io/falcon/flights/
https://vega.github.io/falcon/flights/

3.6 summary 25

Falcon supports cross-filtering, the tiles have to be recomputed every time
there is a new active view. To do this quickly, Falcon uses the GPU-accelerated
database OmniSciDB⁶ in a back-end service which serves the new tiles to the
front-end client.

Figure 3.4: Illustration of a Falcon data tile, borrowed from the falcon paper[14]. In
this example, Air Time is the active view, and Arrival delay is the passive
view.

In Figure 3.4, we can see how a data tile maps filtering done in an active view
to the bins of a passive view. The with of tile is equal to the width of the active
view in pixels, while the height is the number of bins in the passive view. Each
row is prefix sum array of counts for a bin in the passive view (illustrated as the
height of bars in this example). Each column is a bin in the active view, one bin
for each pixel. This enables brush filtering to be done at the resolution of the
screen used and the updates to passive views are done with a single operation
per bin: The value at the index of end-of-brush minus start-of-brush. When
this operation is done for each row in each tile, all the bins for the passive views
have been calculated. This operation is done in constant time if the number
of bins is fixed, having a time complexity of 𝑂 (1). While this means that any
range selection can be computed in constant time, it comes with the limitation
that only brush selections are supported. If every other bin were to be selected,
it would be twice as costly to sum the aggregates than if they were not stored
as cumulative sums.

3.6 Summary

Databases, data cubes, and nanocubes can meet most of the filtering and
aggregation needs for a framework of the kind we want. They are all however,
limited by network connections on each user action and can be expensive

6. https://www.omnisci.com/platform/omniscidb

https://www.omnisci.com/platform/omniscidb

26 chapter 3 related work

to compute and store. If it was feasible to send entire data cubes to the
clients, it would make sense to build a CMV framework around them. The size
of data cubes and the unpredictable size of nanocubes however, makes this
unpractical.

Crossfilter shows us a solution where the entire dataset is sent to each client
without requiring any pre-processing. This way, they remove the network
impact on latency on user actions, but it severely limits the of data that can be
used. imMens on the other hand, does pre-process the data which increases
the supported data size. They do this however by trading away cross-filtering -
it supports only one active filter at a time.

Falcon represents a middleway for all the other solutions by handling filtering
with data on the client as well as by pre-processing new data tiles continually
on the server. Falcon supports large dataset sizes, cross-filtering, and has low
latency on most user interactions. These favorable qualities come with some
draw-backs: Falcon only supports count as its reduce function, only supports
range filters, only supports continuous dimensions, and it is built around a
GPU-accelerated back-end. Falcon’s performance and biggest draw-back stems
from the design of its data tiles. By using prefix sums to facilitate fast filtering,
they are not only limited to brush selections, but also to visualizations where
the bins are are places next to each other in a fixed order. Making for example
a filterable choropleth map almost useless as polygons would have to line up
to be able to be selected.

4
Design
In this chapter we present the requirements for Slicer and its design. Slicer is
a framework consisting of multiple components, with differing requirements
so that each component encapsulates specific functionality. We will present
their architecture, the high level design and the intra- and intercommunication
required for performant CMV given limitations in web-browsers and commodity
computers. The design is centered around methods to facilitate the requisites
for CMV, with real-time performance constraints.

Slicer’s architecture consists of two separate but communicating systems, a
front-end JavaScript library and a back-end API. Here we will present the
whole system’s design, but emphasizing aspects enabling Slicer’s performance
and features.

Deciding on the fundamental design approach for Slicer has made up the
principle part of this work in terms of time used. After reviewing the related
literature and experimenting with various approaches (See Section 7.4), it
became apparent that a tile-based approach was most tenable. Instead of
competing with the culmination of approximately 10 years of research1, Slicer
is inspired by it.

1. imMens and Falcon were developed successively, largely by the same group.

27

28 chapter 4 design

4.1 Requirements

Slicer’s requirements derive from the context outlined in Section 1.5 and
findings in the literature regarding latency sensitivity. Here we outline both
functional and non-functional requirements.

4.1.1 Non-functional requirements

• Performance

– Latency sensitive operations should scale with visualization resolu-
tion.

– Latency sensitive operations should be performed near 60Hz on
commodity laptops.

– Latency insensitive operations should take less than 500ms.

– Performance goals should hold for datasets up to at least 20 million
records.

• Flexibility

– Slicer applications should be easy to create and run on commodity
hardware.

– Slicer visualizations should be able to be build into existing web-
sites.

• Extendability

– Slicer should facilitate addition of types of views and filters.

– Additional aggregate functions should be possible to add in the
future.

4.1.2 Functional requirements

• Must be able to use CSV-files as data sources.

• Must support visualization of relational data in binned aggregates.

4.2 user interfaces 29

• Must support linking and brushing.

• Must support single select.

• Visualizations must include a meaningful way of displaying geographical
data.

4.2 User Interfaces

To achieve its requirements, Slicer is designed to support visualizing binned
aggregates in bar charts and choropleths. Displaying geographical with choro-
pleths avoids ove plotting and provides more meaningful bins than uniformly
gridded heatmaps. The views can be interacted with by a user brushing or
clicking to select bars or choropleth polygons. Selections can be active in mul-
tiple views at a time, thus enabling cross-filtering. The height of bars or color
intensity of polygons is used to indicate the value of the aggregates for each
bin. Hovering bins shows a tool-tip with exact values. An example application
with a map and several bar charts can be seen in Figure 4.1.

Figure 4.1: Example Slicer application.
Note: this screenshot is from before labels on chart axes has been added.

The geometry of the choropleth features has to be provided by the developer
in a GeoJSON-file. GeoJSON is a standardized format for storing geographical
data, taking the form of a JSON-file with a strict schema[21]. If a GeoJSON-file
is not provided with the dataset, many preexisting GeoJSON-files are freely
available online2, covering common use cases such as countries, states, or

2. See for example: https://geojson-maps.ash.ms/ and https://eric.clst.org/tech/usgeojson/

30 chapter 4 design

cities.

4.3 A tile-based approach

The design of Slicer is inspired by the idea that visual analysis should scale
with the resolution of the visualizations and the observation made in [11]
that some user actions are more latency sensitive than others. Slicer handles
latency sensitive operations efficiently in the client powered by data structures
provided by the server. The concept of active and passive views from earlier
work is continued. Some latency when switching active views is accepted in
trade for real-time filtering. Slicer also continues the use of data tiles to enable
filtering and coordination between active and passive views, although with a
novel design, use, and computation.

Figure 4.2: Birds eye view of a Slicer application.

In Figure 4.2, we see how the data tile approach is designed to fit into Slicer
applications. Developers create the client application and include the Slicer
JavaScript library, then they provide the configuration and data files to the
Slicer back-end. This is all the back-end needs to prepare for serving data tiles
and when a user hovers a view - activating it - in the application, the back-end
creates and serves the necessary tiles to enable filtering.

Slicer’s back-end relies on a in-memory columnar database to quickly compute
data tiles. This database is set up on the first start of new Slicer application.
Indexes are built and extra columns are added to speed up filtering and
grouping, as outlined in Section 4.5. Upon building the database, the initial
unfiltered bins for all views are computed and cached. These are served when a
client connects so that it can see all views immediately. The back-ends life-cycle
consists mainly of waiting for requests, as illustrated in Figure 4.3.

4.4 slicer ’s data tiles 31

Figure 4.3: Behavior flowchart for Slicer back-end.

4.4 Slicer’s data tiles

A Slicer data tile holds the information needed to compute bin values in a
passive view for all possible selection combinations done in the active view.
Since Slicer supports single-select, any combination of bins can be selected in
the active view, meaning that a data tile holds the information for 2𝑏 passive
view bin configurations while using the space of 𝑏 bin configurations, where
𝑏 is the number of bins in the active view. There has to exist a tile for each
passive view, so handling 2𝑏 bin configurations for each passive view would
quickly become unwieldy. Data tiles are created every time a new active view
is set. Based on filters provided by a client, the server creates tiles for all the
passive views. In an application with five views, the server would send four
tiles, as the fifth view would be active one.

Figure 4.4: Example data tile. Column sums are equal to the bin values in the active
chart and row sums are equal to the bins of the passive view. Here the
two views are illustrated as bar charts.

Slicer data tiles are 2-dimensional, where the width is set by the number of
bins in the active view and the height is set by the number of bins in the

32 chapter 4 design

passive view. Each cell in the tile represents the aggregate of values belonging
to bin 𝑥 in the active view and bin 𝑦 in the passive view. The sum of each row3
represents the bin value for a single bin in the passive view. An example of a
tile is seen in Figure 4.4. In the example both views have four bins. When bins
are selected in the active view, filtering the dataset, the bins for the passive
view are updated to reflect only the sums of selected columns.

4.4.1 Using data tiles

Figure 4.5: Illustration of how Slicer incrementally calculates the next bin values when
filtering. The delta is highlighted in green here and the previous bins is
highlighted in yellow. The values in previous bins is the sum of the columns
from the previous selection

A naive algorithm to calculate new bin values when active views are filtered
would iterate through all the selected columns in the data tiles and sum them
together. in an application with a fixed number of total bins, such an algorithm
would have a time complexity of𝑂 (𝑠𝑏), where 𝑠𝑏 is the number of selected bins
in the active chart (i.e. columns in the data tiles). Exploiting the observation
that most selections done by brushing or single-selecting is incremental and
applying a technique inspired by video codecs, Slicer handles most filtering
operations in constant time. When brushing in a bar chart bars are added
to the selection one by one. Likewise, when clicking on a bar or a polygon
in a map the selection adds or removes one bin at a time. In video codecs,
delta encoding is a common technique⁴ Using delta encoding, the next frame
in a sequence is stored as the change from the previous one. Observing that
the bins for the previous selection is known, the bins for the next selection
can be calculated as the previous added with the delta. As most selections
add or remove one bin at a time, this calculation becomes taking the previous

3. For some reduce functions, two tiles are needed to get the correct values. E.g. to get the
correct averages in the passive view, the the averages have to be combined with a tile
containing the weights for each average.

4. The underlying principle for the technique is data differencing.

4.4 slicer ’s data tiles 33

bin values and adding or subtracting a single column from the data tile. This
process is illustrated in Figure 4.5.

4.4.2 Assigning bins

Slicer’s design supports categorical and quantitative data. For categorical di-
mensions, one bin is assigned for each unique value in the dimension. For
example, if a dimension called "color" only contains data with the values
"red", "green", and "blue", a view visualizing this dimension would have three
bins.

Quantitative data can have unique values for each data point. To visualize
this type of data in a meaningful way, the range from the minimum to the
maximum value in dataset is divided into uniformly sized sub-ranges. These
sub-ranges form the bins, and any data point with a value within the sub-range
of a bin, belongs to that bin. The number of bins to create for a view with
quantitative data has to be set in the configuration file.

4.4.3 Creating data tiles

Data tile are created using an in-memory columnar database. When Slicer’s
back-end receives a tile request, it includes which chart is the active one and
which filters are active in the passive views. Translating the filters to SQL, the
database is queried once for each passive view. Each of the responses contain
the data for a data tile.

To improve this process, another delta differencing technique is used. When a
Slicer back-end starts, unfiltered data tiles for each view are computed and
cached. This results in 𝑣 ∗ (𝑣 − 1) cached tiles, where 𝑣 is the number of views
in the application. These tiles are then used later in the computation of new
tiles when the back-end receives requests from clients. If the filters received
are estimated to filter out more than 50% of the rows in the database, the
filters are inverted before being translated into SQL. The resulting tiles are then
subtracted from the cached tiles. Doing this ensures that the database never
computes aggregates on more than 50% of its rows. Computing aggregates
is the slowest operation done in the queries, so the resulting improvement
effectively halves the worst case complexity of computing data tiles.

34 chapter 4 design

4.5 Database design

The database schema for a Slicer application is decided by the dataset and
configuration file provided. All fields in the CSV-file which either is the dimen-
sion for a view or is used in the aggregate function for a view, are added as
columns in the database. Additionally, there is added one new column for each
view, containing the bin id for each row. These bin ids indicate which bin a row
belongs to in the respective views, and are essentially the index in bin array
for each view.

The columns with the bin ids are used for filtering and grouping. Since all
filtering in Slicer is either a range of bin ids or a collection of bin ids, these can
be used instead of the actual underlying data. To speed up filtering a regular
nonclustered index is created on each of them. When data tiles are computed,
the bins are grouped by bin id in both the active and the passive view. To speed
up the grouping, a multifield index is created for each possible combination of
two views. 𝑁 choose 2,

(
𝑁
2
)
, where 𝑁 is the number of views in the application,

such indexes are created.

4.6 Architecture

Slicer applications consist of a client web-application and a server. Both the
client and server software consists of multiple components each. The architec-
ture is set up to facilitate efficient communication and data transfer between
the clients and the server. To reduce latency, bandwidth, and server load, the
architecture is a client-server architecture with a fat client⁵. While the server
computes new data tiles when a new active view is set, all the computation
for real-time filtering is done by the client. A simplified overview of the logical
components of Slicer can be seen in Figure 4.6. The implementation has more
classes and interfaces, but these components illustrate the main distribution
of computation and communication done.

Communication between clients and server is donewith two protocols: onewith
low overhead per request for messages, and another for data transfer. Messages
are sent over the WebSocket protocol[22], while data tiles are transferred over
HTTP. For messages, such as requests for new tiles, it is important that the
server can handle them as quickly as possible; Before the request is received the
server cannot start making new data tiles. Another aspect is server load. There
are many more messages sent than data tiles, and WebSockets scales better

5. Could also be called edge computing, where the concept is to keep computation near the
user with the same performance goals as a fat client.

4.6 architecture 35

Figure 4.6: Logical component diagram of Slicer.

than HTTP requests for concurrent messages[23]. By using HTTP for data tiles,
the tiles can be sent concurrently while keeping the WebSocket connection
open for other messages.

Slicer’s front-end code consists of loosely coupled components which commu-
nicate through a mediator⁶. Each component can subscribe to specific topics
and can send messages with specific topics. This way the different view can
be coordinated without knowing about each other, simplifying the code and
making it easy to implement new views in the future.

6. This design pattern is sometimes also called Pub/Sub and is similar to an Event Bus.

5
Implementation
In this chapter we present the implementation of Slicer. The implementation
includes a Web-API and a JavaScript library, containing many necessary com-
ponents surrounding and facilitating Slicer’s features and performance. Here,
we will briefly cover supporting components, and keep the primary focus on
components directly tied to Slicer’s design.

The code for the implementation is found in the source_code.zip archive.

5.1 Programming languages

To be able to use an iterative approach and validate ideas quickly, Python[24]
was chosen as the language for implementing the back-end. The authors fluency
in the language and its rich selection of packages, made it a natural choice
when developer time was a primary concern. Packages such as numpy[25]
and pandas[26] makes data processing operations easy to implement and
reasonably fast as they are implemented in c[27]. The FastAPI package[28]
ensured that setting up a web API with WebSocket functionality was trivial,
allowing for most time to be spent on experimenting with algorithms and data
structures.

Slicer’s front-end code, responsible for handling data tiles, user input and
rendering visualizations is implemented in TypeScript[29], which is a language

37

38 chapter 5 implementation

that transpiles to JavaScript. The alternative would have been to use JavaScript
directly. This choice is primarily done due to preference, as making the code
extendable was desirable and in the authors experience it is more comfortable
to extend upon typed code.

5.2 Front-end

The implementation of Slicer’s front-end builds on principles and techniques
outlined in Clean Code[30] and Design Patterns[31] for writing reusable
and extendable code. Namely, the principles of "single responsibility", "compo-
sition over inheritance", and "relying on abstractions, not implementations" are
applied. The application of these principles decouples internal components and
makes the implementation both easier to understand and extend upon in the
future. TypeScripts support for types, interfaces, and abstract classes, made
the techniques uncomplicated to adopt.

5.2.1 Mediator

The central component of Slicer’s front-end is the mediator. Any part of the
front-end code can subscribe to messages or send messages to the mediator.
There always exists a mediator, and there only exists one as it is implemented as
a singleton. The mediator itself is not exposed, only its subscribe() and send
methods are. All messages have to be one of the MediatorMsg types, which can
be seen in Appendix C. These messages have a Subject, and when subscribing,
objects can choose to only listen formessages on certain subjects. Themediators
implementation can be seen in slicer-frontend/src/Mediator.ts.

5.2.2 API-connector

The API-connector is what connects clients to the back-end server. It has
methods for requesting metadata for views and tiles, sending data tile requests,
and downloading new data tiles. Messages are sent via aWebSocket connection
while data tiles are downloaded using concurrent HTTP requests.

The API-connectors implementation can be seen in src/WebSocketAPI.ts

5.2 front-end 39

5.2.3 Views

Slicer’s implementation currently supports two types of views: Bar charts and
choropleth maps. All views keep their bin values in a typed JavaScript array.
These arrays are used when rendering bins, and are updated when a users
filters. The connection between bin arrays and views is shown in Figure 5.1,
where it can be seen how the bin values determine the height of the bars in a
bar chart.

Figure 5.1: Connection between bins and views. Here exemplified with a bar chart.

Bar chart

Bar charts are implemented with HTML-Canvas elements[32]. Bar charts auto-
matically fill their parent DIV-element when created, making customization of
placement and size a matter of editing CSS for the developer.

To render the bars of a bar chart, the method BarChart.render() is called.
This method iterates the charts bin values and draws a rectangle for each. The
height is calculated as the percentage of themaximum bin value. The implemen-
tation of BarChart.render() is found in the file slicer-frontend/src/BarChart.ts
and in Listing 5.1.

Code Listing 5.1: BarChart.render() method.

1 render(): void {
2 this.context.clearRect(0, 0, this.canvas.width, this.canvas.height);
3 this.rs.bins.forEach((val, i) => {
4 const x = this.rs.bar_width * i + i * this.rs.bar_spacing;
5 const h = (val / this.rs.max_bar_value) * this.canvas.height;
6 const y = this.canvas.height - h;
7 this.context.fillRect(x, y, this.rs.bar_width, h);
8 });
9 }

40 chapter 5 implementation

Choropleth

Choropleth layers are implemented using the leaflet1 library. Leaflet can draw
regular maps and has native support for rendering GeoJSON. This feature and
leaflets lightweight footprint (39kB of bundled JavaScript), made it the choice
for map rendering.

The initial polygons are created using leaflets built in geoJSON()-method.
For each polygon an onClick-event is added so that clicking them trigger
a filtering operation. This event makes use of a key lookup which maps
the "key"-property of the GeoJSON features to a bin index. The lookup is
a part of the AppConfig-object the client receives upon connecting to the
back-end, of which the full implementation can be seen in Appendix D or
slicer-frontend/src/Types.ts.

As with the bar charts, the choropoleth layer updates when a filtering happens.
To reflect the changes made by a filtering operation, each polygon gets a
new color based on the updated bin values. To set this color, the chroma-
js library2 is used. The implementation of the rendering is seen in Listing
5.2, and the full implementation for GeoJsonLayers can be seen in the file
slicer-frontend/src/GeoJsonLayer.ts.

Code Listing 5.2: GeoJsonLayer.updateView() method.

1 private updateView(): void {
2 this.group.eachLayer((d: any) => {
3 const idx = this.config.lookup[d.feature.properties[this.key]];
4 const val = this.rs.values[idx];
5 const r = val / this.rs.max_value;
6 const i = val > 0 ? true : false;
7 const o = val > 0 ? 0.6 : 0.0;
8 d.setStyle({
9 fillColor: this.colorscale(r).hex(),
10 interactive: i,
11 fillOpacity: o });
12 });
13 }

5.2.4 Tile Handler

Filtering is the main feature of Slicer and is implemented with its data
tiles. Data tiles are handled by the TileHandler, which is implemented in

1. https://leafletjs.com/
2. https://gka.github.io/chroma.js/

https://leafletjs.com/
https://gka.github.io/chroma.js/

5.2 front-end 41

slicer-frontend/src/TileHandler.ts. Notified by its mediator subscrip-
tions, the tile handler fetches new tiles when a new active view is set and
updates bin values when filters change.

To fetch data tiles, the tile handler uses the API-connector and JavaScript
promises[33] to establish concurrent downloads as seen in Listing 5.3. For
small downloads, the HTTP-handshakes[34] make up a large portion of the
time. Data tiles are small, often less than 1kB in size. Thus it is important to
ensure that the time taken by each handshake overlaps.

Code Listing 5.3: Fetching Data Tiles.

1 private async setTiles(configs: TileConfig[]): Promise<void> {
2 const promises = configs.map(c => this.api.getTileData(c.name));
3 Promise.all(promises)
4 .then(data => {
5 configs.forEach((c, i) =>
6 this.tiles[c.name] = { config: c, data: data[i] }
7);
8 });
9 }

When a view is filtered, it sends a Filter-message to the mediator. Slicer
differentiates between two types of filters. One type is the Range-filter, which
has a start bin and a stop bin. Range-filters are the result of a brush selection.
The other type of filter is the Category-filter, which contains a list of bin
indexed which are selected. Category-filters are the result of single-selecting.
In Appendix E, the definition of the filter types can be seen. The tile handler is
subscribed to these messages, and calculates the delta from the previous filter
when received. The delta is then used when updating bin values.

Deltas are stored as two arrays: One for added bins and one for removed bins.
Calculating the delta for a Range-filter is done by determining the difference in
the start and end bins for the selection. Bins between the previous selection and
the current one are added to the added or removed array, depending on whether
they are in the current selection or not. Deltas between Category-filters are
calculated by looking at the intersection between the previous selected bins
and the current. This is implemented in the code shown in Listing 5.4.

Code Listing 5.4: Computing filter delta.

1 if (previous.type == FilterType.Range
2 && current.type == FilterType.Range) {
3 const additions = [];
4 const removals = [];
5

42 chapter 5 implementation

6 if (previous.range[0] < current.range[0])
7 removals.push(...getRange(previous.range[0], current.range[0]));
8 else if (previous.range[0] > current.range[0])
9 additions.push(...getRange(current.range[0], previous.range[0]));
10 if (previous.range[1] < current.range[1])
11 additions.push(...getRange(previous.range[1], current.range[1], true));
12 else if (previous.range[1] > current.range[1])
13 removals.push(...getRange(current.range[1], previous.range[1], true));
14
15 if (!additions.length || !removals.length)
16 this.delta = false;
17 else
18 this.delta = [additions, removals];
19 }
20 else if (previous.type == FilterType.Categorical
21 && current.type == FilterType.Categorical) {
22 const additions = current.categories.filter(x =>
23 !previous.categories.includes(x));
24 const removals = previous.categories.filter(x =>
25 !current.categories.includes(x));
26 this.delta = [additions, removals];
27 }

Updating the bins of a view is done by iterating the delta arrays. For each
bin index, each value on the y-axis of the data tile is added to or removed
from the corresponding view bin. Data tiles are implemented as flat typed
JavaScript arrays. Accessing a value from an x and a y coordinate therefore
requires knowledge of the dimensions of the data tile. The tile handler has this
knowledge and specific indexes in data tiles are calculated as: 𝑖𝑑𝑥 = 𝑥 +𝑦 ∗𝑤 .
The code iterating the delta and updating a views bins is shown in Listing
5.5.

Code Listing 5.5: Updating bins using data tiles and deltas.

1 for (let x of additions) {
2 for (let y = 0; y < h; y++)
3 bins[y] += tile.data[x + y * w];
4 }
5 for (let x of removals) {
6 for (let y = 0; y < h; y++)
7 bins[y] -= tile.data[x + y * w];
8 }

5.3 back-end 43

5.3 Back-end

5.3.1 Initialization

The primary task of Slicer’s back-end is to compute data tiles based on filtering
done client-side quickly. To do so, the life cycle of the back-end consists of
two parts: Initialization and runtime. The initialization prepares metadata and
data structures to be used at runtime serving clients.

During the initialization phase, the supplied configuration file and dataset are
processed. The phase consists of 5 primary steps:

• Compute bin information for each view; The category or value intervals,
the represented dimensions, and which reduce function are among the
information needed.

• Create a database based on the previous step; Reading data from CSV
into the database and adding indexes and columns for bins. Compute
initial bin values for each view, so these can be sent immediately to
connecting clients.

• Compute initial bin values for each view, so these can be sent immediately
to connecting clients.

• Compute unfiltered data tiles for each view. These are sent to clients
when a new active view is set without any present filters and used to
compute data tiles when >50% of the dataset is selected.

• Compute histograms for each view. These are similar to the initial bin
values but only use count for reduction. Using histograms can estimate if
>50% of the dataset is selected - and thus if the cached data tiles should
be used when computing new tiles.

5.3.2 Communication

Communication between clients and the back-end is enabled by the FastAPI
package[28]. Endpoints for data, metadata, and WebSocket communication
are set up as seen in slicer-backend/slicer/main.py. The endpoints use
the GET path[34] to determine which data to respond with. For example,
the endpoint for data tiles seen in Listing 5.6 shows how application name,
WebSocket session id, and view names are used to return data tiles.

44 chapter 5 implementation

Code Listing 5.6: Data tile endpoint.

1 @api.get("/{app_name}/{session_id}/tile/{view_name}")
2 async def get_tile(app_name: str, session_id: int, view_name: str):
3 app = app_lookup[app_name]
4 data = io.BytesIO(app.get_tile(session_id, view_name).tobytes())
5 return StreamingResponse(
6 content=data,
7 media_type="application/octet-stream"
8)

The API sends two types of responses: JSON and octet-streams (raw bytes).
When the front-end will use the message as JavaScript objects internally, JSON
responses are used. Consequently, all messages except those sending data tiles
and initial bin values are JSON. These messages are encoded as text and have
to be decoded and parsed client-side3. Therefore, data responses are sent as
byte arrays, avoiding overhead; the server avoids extra data encoding, and the
clients avoid decoding and parsing. The responses are also smaller, as encoding
numbers as text is space-inefficient.

5.3.3 Database

The columnar database used by Slicer is DuckDB[35]. DuckDB instances are
in-process and can keep data in-memory. The in-process nature removes any
need for setting up a separate database before using Slicer. As long as the
duckdb python package⁴ can be installed, Slicer will create the database itself.
Being in-process, DuckDB gets a performance benefit since it can use intra-
process Local Procedure Calls (LPC), which are faster than alternative Remote
Procedure Calls (RPC)⁵.

5.3.4 Creating data tiles

Slicer relies on its database to compute data tiles. Clients requesting tiles send
filters and the name of their active view to the server. This information is then
translated into several SQL-queries, one for each passive view. An example of
such a query is seen in Listing 5.7 and the code for creating the SQL queries
can be seen in Appendix A. The queries result in collections of tuples on the
form (x, aggregate, y), where grouping is done on x and y, ensuring a single

3. https://tc39.es/ecma262/multipage/structured-data.html#sec-
json.parse

4. https://pypi.org/project/duckdb/
5. See: https://raima.com/database-terminology/

https://tc39.es/ecma262/multipage/structured-data.html#sec-json.parse
https://tc39.es/ecma262/multipage/structured-data.html#sec-json.parse

5.3 back-end 45

tuple for each combination. The value in aggregate represents the aggregate
of values in the filtered dataset belonging to bin x in the active view and bin y
in the passive view.

Code Listing 5.7: SQL-query used to create data tiles. This example is for a dataset
of fishing catches. This specific SQL query creates a tile from
an active view displaying months to a passive view displaying
species.

1 SELECT month_bin, SUM(CatchWeight), species_bin
2 FROM data
3 WHERE (year_bin BETWEEN 2 AND 14) AND (tool_bin IN (3,6,9))
4 GROUP BY month_bin, species_bin

Since Slicer clients do not expect collections of tuples as data tiles, so they
have to be converted. Both Slicer front-end and back-end stores data tiles in
typed arrays, which python does not support natively. Therefore the NumPy[25]
package, which has an interface for creating arrays in C, is used. The first step
to convert a set of tuples is to create an empty array big enough to store the
tile, hence the length is set to the product of number of bins in the active and
passive view. Then the tuples are iterated and the x and y values are used to
find the respective index in the array, and the aggregate value is inserted at
that index. This code implementing this process is shown in Listing 5.8.

Code Listing 5.8: Code for turning SQL result into data tile.

1 def result_to_nparray(result, from_view, to_view):
2 w, h = from_view.nbuckets, to_view.nbuckets
3 data = np.zeros(w * h, np.uint32)
4
5 # References to avoid hash table lookups inside the loop
6 x = result[’x’]
7 y = result[’y’]
8 v = result[’v’]
9
10 for r in range(x.size):
11 data[x[r] + (y[r] * w)] = v[r]
12 return data

Using cached tiles

To improve response times, cached tiles are used. If a request without filters is
received, the server responds with cached tiles immediately. If a request where
the filters are assumed to filter out less than 50% of dataset is received, the
cached tiles are used in the computation of new tiles.

46 chapter 5 implementation

Estimating the rows selected by the active filters is done by applying the filters
to the histogramsmentioned in Section 5.3.1. For each filter and each histogram,
the counts in the selected bins are summed. These sums represent the number
of selected rows in the database, if the respective filter was the only one.

If the most restrictive filter results in a row count of less than half row in the
database, we know for sure that more than half of the dataset is filtered out.
However, if the most restrictive filter results in a row count bigger than half
the total row count, we assume that less than half of the dataset is filtered out.
The code for estimating row count is shown in Appendix F.

When it is assumed that less than half of the dataset is filtered out, filters are
inverted before converting them to SQL. This inversion results in very few SQL-
queries where more 50% of the dataset is visited. After the tiles are computed
with the inverted SQL, they are subtracted from the unfiltered cached tiles.
Consequently, if a user has selected 90% of the dataset, only 10% is used to
compute the new tiles.

5.4 Creating an application

The process of creating an application with Slicer is designed to require minimal
effort by developers. For the backend part of Slicer to work, a configuration
file and CSV-file with data needs to be provided. If a map with a choropleth
overlay is to be used, a GeoJSON-file containing the related polygons also has
to be provided.

The configuration file has to be a JSON-file similar to the one seen to the right
in Figure 5.2. It has to contain the location of the data and the descriptions of
the views for the application. The descriptions depend on the type of view, but
all include a name for the view. For bar charts it has to state if the data on the
x-axis is categorical or quantitative, which dimension to use for the y-axis, and
which aggregate function to use. Map layers (choropleth), need to state the
key linking each data point to a polygon in the GeoJSON, which dimension
decides intensity, and which aggregate function to use.

The front-end is created as a regularweb-site which imports the Slicer JavaScript
library. To place views in the application, the developer creates DIVs⁶ where
the id⁷ attributes correlate to the name set in the config file. Instantiating the
Slicer components is done by passing in parameters for the URL of the backed

6. https://www.w3schools.com/Tags/tag_div.asp
7. https://www.w3schools.com/htmL/html_id.asp

https://www.w3schools.com/Tags/tag_div.asp
https://www.w3schools.com/htmL/html_id.asp

5.4 creating an application 47

server and the name of the application. The HTML and JavaScript code for the
application shown in Figure 4.1, can be seen to the left in Figure 5.2

Figure 5.2: HTML and JS required for the example application (left) and some of the
JSON configuration for the same application (right).

6
Evaluation
The primary focus of Slicer’s design and implementation, has been to add
features while preserving the performance of existing work. Slicer supports
more aggregate functions, view types, data types, and selection types than
earlier work with the same performance goals. In this chapter we investigate
how adding these features has affected Slicer’s performance.

There are two primary sources of potential latency in Slicer: Filtering and
computing new data tiles. We will run benchmarks for each of these.

6.1 Experimental Setup

The Slicer application used in the benchmarks is the same as can been seen
in Figure 4.1 (note: there is one more bar chart below "Artkode", which is not
show in the screenshot for the figure). The dataset contains records of fishing
hauls and has a total of approximately 20 million records. In the benchmarking
application there are six different views with a total count of 1637 visible bins.
These six views are:

1. Fangstfelt A choropleth layer with 1385 bins showing months with Catch-
Weight sum-aggregated to set the color intensities.

2. Måned A bar chart with 12 bins showing months with CatchWeight sum-

49

50 chapter 6 evaluation

aggregated on the y-axis.

3. Lufttrykk A bar chart with 20 bins showing air pressure with CatchWeight
sum-aggregated on the y-axis.

4. Redskapkode A bar chart with 7 bins showing fishing tool code with
CatchWeight sum-aggregated on the y-axis.

5. Artkode A bar chart with 204 bins showing fishing tool code with Catch-
Weight sum-aggregated on the y-axis.

6. Lengdegruppe A bar chart with 9 bins showing fish length groups with
CatchWeight sum-aggregated on the y-axis.

Two separate computers are used to do the different benchmarks. A laptop
is used to benchmark filtering performance. While tile computation is bench-
marked on a desktop computer. The specifications of these are listed in Table
6.1.

Laptop
Model Lenovo Ideapad 720S-14IKB
CPU Intel i7-8550U @ 1.8GHz (4.0 max)
RAM 8GB DDR4 @ 2400
OS Pop!_OS 20.04 (Linux)
Browser Chromium 93

Desktop
CPU AMD Ryzen 5900x @ 4.5GHz
RAM 32GB DDR4 @ 3200MHz
OS Windows 10 Education 20H2

Table 6.1: Specifications of computers used in benchmarks.

6.2 Benchmarks

6.2.1 Filtering

Procedure

To measure filtering performance, 250 filter operations were timed. These
operations included brushing in all the bar charts and single selecting in
choropleth map. Timing the operations was done by exploiting the fact that
all filtering operations are propagated through the mediator. When callbacks

6.2 benchmarks 51

for all listener to Filter messages have been called, the updating of all views is
done. The implementation of the timing is seen in Listing 6.1. Here it can be
seen how the mediator send method is modified to measure the time before
and after a message is propagated, and if the message is a filter message, the
time between measurements is stored the this.timings array. When 250
filter operations have been measured, the timings are printed to the console.
In addition to these 250, additional operations were inspected separately by
printing the timing after each one.

Code Listing 6.1: Mediator.send() modified to time filtering.

1 public send(msg: MediatorMsg): void {
2 const t0 = performance.now();
3 this.subscriptions[msg.subject].forEach((cb) =>
4 cb(msg.content));
5 const t1 = performance.now();
6
7 if (msg.subject == MediatorSubject.Filter) {
8 this.timings.push(t1 - t0);
9 if (this.timings.length == 250)
10 console.log(this.timings);
11 }
12 }

Results

The resulting measurements can be seen in Figure 6.1, where they are plotted
as regular and cumulative histograms. As the left part of the figure shows,
most operations (232 out of 250) took less than 8 milliseconds. The cumulative
histogram shows that 90% of operations took less than 6ms and 99% took less
than 15ms. All the outliers, 1% of the operations, took less than 30ms.

Figure 6.1: Regular (left) and cumulative (right) histograms of latency for 250 filter
interactions.

52 chapter 6 evaluation

Inspecting the timings of operations one by one made it possible to see dif-
ferences in timings between the views. For all the bar charts there was no
measurable difference in time taken to handle operations. The only persistent
difference was seen when filtering in the chorolpleth, where the operations
were much faster, averaging about 1ms v.s. 4ms in the other charts. This differ-
ence can be explained by the vast difference in bins between the choropleth
view and the others. The choropleth has 1385 bins, while the others range from
7 to 204. As filtering a view updates all other views, but not itself, filtering in
the choropleth leads to much fewer bin updates than filtering in any other
view. The performance of a filter operation is determined by the number of bin
updates it results in, which is reflected in the height of the data tiles.

We were not able to consistently reproduce outlier measurements, taking more
than 15ms. There was found no relationship between view or type of filtering
and outlier measurements. This observation leads to the assumption that these
measurements are results of external factors affecting the resources available
to the browser. Such factors may be the result of for example: OS-tasks or CPU
boosting.

6.2.2 Data tile computation

Procedure

Data tile computation was investigated by measuring time when computing
tiles for different data sizes and tile resolutions. To do this, four subsets of
the dataset were made. These subsets contained 1, 5, 10, 15, and 20 million
records each. The application from Section 6.1 was made with each of these
datasets.

In the application, six bars in the "Måned"-chart were selected, and then the
"Lufttrykk"-chart was hovered. This triggers a computation of data tiles in the
back-end where approximately 50% of the dataset is selected. The computation
of these tiles was then measured using Pythons built in time1 package. Both
the total time, and the time for each tile was computed. The code with the
measurement for all tiles can be seen in 6.2 and for each tile in Appendix
B.

Code Listing 6.2: Tiler.set_tiles() method with timing.

1 def set_tiles(self, session_id, from_view, filters):
2 t0 = time.time()
3 [...]

1. https://docs.python.org/3/library/time.html

https://docs.python.org/3/library/time.html

6.2 benchmarks 53

4 for tile in self.tiles[session_id].values():
5 tile.set_data(self.data_provider.get_tile(from_view, [..]))
6 print("setting tiles took:", time.time()-t0)

Results

The result of the data tile benchmark can be seen in Figure 4.6. Excepting the
jump from one to five million records, performance appears to scale close to
linearly with data size.

Figure 6.2: Performance measures of tile computation for the benchmark application.
Measured with a 50% brush selection in "Måned" and "Lufttrykk" as the
active view.

Table 6.2 shows measurements for each individual tile when the dataset had
20 million records. The figure shows that bin count affects tile computation
performance as "fangstfelt" with its 1385 bins is by far the slowest tile to compute.
This observation was reproducible and consistent. Interestingly, "art", which
has 10 times as many bins as "lufttrykk", took shorter time to compute.

Data Tile Milliseconds
fangstfelt 221
lengdegruppe 79
redskapkode 78
artkode 70
luttrykk 80
Total 528

Table 6.2: Detailed time taken when creating data tiles with a 20 million record
dataset.

54 chapter 6 evaluation

6.3 Analysis

The requirements in Section 4.1, state that filtering operations should be
possible to do at 60Hz on a commodity laptop. To achieve 60Hz for continuous
filtering, each operation has to take less than 16 milliseconds since 1𝑠/60 =

16.6𝑚𝑠. With 90% of the operations taking < 6𝑚𝑠 and 99% taking < 15, most
operations were able to be done at above 160Hz, 100 frames per second more
than the laptops display can handle. The next 9% of operations ran above 66Hz,
while the outliers dipped to around 33Hz. The outlier measurements did not
come in clusters however, so the dips usually lasted for a single frame at a time
and were not perceivable in our experience.

Slicer was designed to scale with the resolution of the view, and not the dataset
size. Therefore, the total number of bins in the application should decide its
filtering performance. Here, we saw that views with high amounts bins were
measurably slower to update than views with with fewer. This difference was
only a couple of milliseconds at most, even when the amount of additional bins
was more than 10x as many (e.g. "Måned" v.s. "Fangstfelt"). This small difference
indicates that Slicer applications should be able to scale to much higher amounts
of bins, while keeping most updates below 60Hz on a laptop.

According to the requirements, Slicer should be able to switch to a new active
view in less than 500ms, while supporting at least datasets of 20 million records.
This means that new data tiles should be computed faster than 500ms. Here,
we have seen that Slicer almost meets this requirement - in the benchmark
application at least. We also uncovered that the time it takes to compute a
data tile not only depends on how many records it is built from, but also how
many bins it has. In an application with six views with around 20 bins per
view, we extrapolate from the benchmark numbers that Slicer would meet its
requirements, even for dataset above 20 million records.

6.3.1 Comparison with Falcon

Falcon[14] is the natural project to compare Slicer’s performance with. It
was designed with similar goals and has commonalities in approach. The
performance benchmark in Falcon’s paper does not state the exact number
of bins in the application used, but extrapolating from the illustrations, it is
around 130, with 20-25 in each of its six views. In their graph showing filtering
performance, it seen that that Falcon averages 50Hz in this application. This
translates to 20ms per update. In contrast, Slicer’s benchmark was done with
more than 10 times as many bins and the same number of views with an average
of 4.5ms per update. Falcon’s benchmark was run on 3 year older hardware
(2014 v.s. 2017 model laptop), which might accommodate for the performance

6.3 analysis 55

difference.

Data tiles are also used in Falcon, and are computed in a similar way as in
Slicer. In their paper, they state that they compute the data tiles2 for their
benchmark application in 130ms when the dataset has 7 million records. The
most comparable benchmark we have done is with 5 million records, for which
the same amount of tiles were computed in 112ms. In this comparison, our
benchmark had 2 million fewer records, but approximately 1500 more bins. At
these data sizes, the performances are close. However, Falcon scales better with
size. They have a benchmark of the same application with 180M records in the
dataset, where the tiles are computed in 1.7s. A difference in performance was
expected as Falcon uses a GPU-accelerated database. Therefore it is surprising
that Slicer is competitive for smaller datasets. Aggregate functions cannot
be embarrassingly parallelized3, hence the GPU-database is likely to have
an overhead for combining calculations. This overhead does not necessarily
scale with size, and might explain Falcon’s favorable scaling compared with
Slicer.

2. At visual bin resolution, not pixel resolution. Falcon does both, but this is most comparable
to Slicer.

3. Even if a GPU has one core for each record, combining the counts or sums has to be
synchronized.

7
Discussion
7.1 Geographical visualizations

Earlier works either do not support geographical visualization[14], or imple-
ments it using gridded heatmaps[13][36]. Gridded heatmaps create a fine
mesh of the area with data points. This mesh consists of uniform cells (bins)
filling the area, regardless of where the data points are. As a result there
are created many bins, many of which often are empty. The performance of
Slicer’s tile based approach is tightly coupled with the amount of bins in the
visualizations, making it undesirable to use gridded heatmaps. Instead, Slicer
exploits the fact that the worlds geography has many natural divisions(bins).
Using these natural sections are not only easier to understand, but will often
offer a more meaningful way of filtering. In a heatmap, selecting an area is
often done as a box select, which makes it virtually impossible to select a city
for example. Using polygons from GeoJSON however, makes it possible to click
on the respective polygon to use it as a filter in data analysis.

7.1.1 Datasets without a link to GeoJSON

Many datasets have natural attributes that can be linked to a GeoJSON-file, e.g.,
a city or country name. But this is not true for all datasets with geographical
data. Some only contain coordinates as latitude and longitude attributes. To
solve this problem, a geofencing algorithm can be used. Geofencing is the
procedure of determining if a point is inside a polygon, which suits our use

57

58 chapter 7 discussion

case perfectly. These algorithms usually rely on ray-casting and the rule saying
that "if a point is inside a polygon, any ray cast from it will cross the polygons
perimeter an odd number of times"1. This is applicable to the coordinates in
a dataset and the polygons in a GeoJSON file. So far, we have used a utility
script written in Python to do this ourselves, but it is not yet built into Slicer
and remains as future work.

7.2 Incremental computation of data tiles

In the current implementation, data tiles are computed either from scratch if
the size of the filtered dataset is assumed to be less than 50% the total size.
Otherwise, the filtering is reversed and the tiles are computed by first creating
tiles corresponding to opposite of the actual selection done client side which is
then subtracted from the cached tiles corresponding to the unfiltered dataset.
This ensures that the database never has to calculate aggregates on more than
50% of the dataset each time tiles are requested.

Crossfilter’s observation that explorative selections often are incremental (sub-
sets of subsets), could be translated to Slicer’s task of creating data tiles. Falcon
as well as this work has been mainly concerned with how to compute data tiles
from a data set as quickly as possible. But it makes sense to ask the question
how data tiles can be computed from existing data tiles as well. An incremental
approach could be taken by caching tiles returned to clients. Then, when a
client requests new tiles they can be computed as deltas from the most similar
cached tiles. Thus reducing the portion of the dataset needed to calculate
aggregates on could be reduced further than 50%. This would potentially lead
to significant improvements in latency when swapping between which charts
are filtered (which is what triggers a recalculation of tiles) since the aggregate
functions are the most time consuming work done by the database and is tied
directly to how many rows are read.

This caching approach would require some way to calculate the similarity
between the filters active in the current request and the filters active in the
cached tiles. A limit would also had to be set as to how many tiles can be
cached. Because caching all possible tiles would end up creating essentially an
in-memory data cube. Limiting how many tiles are to be cached further calls
for a strategy to select which ones to cache. These questions stand as topics for
future research and would benefit Falcon as well as this work. Even if Falcon
already has very fast tile computation using a GPU-accelerated database, this

1. The geofencing algorithm is clearly explained here:
https://www.baeldung.com/cs/geofencing-point-inside-polygon

7.3 sql performance 59

approach would be fully compatible with their work.

7.3 SQL performance

It is common to optimize query times by making one large query instead of
many small ones2. In Slicer, one query is done for each data tile. We attempted
to avoid this by combining all the queries into one and grouping on all the
chart-dimensions. The result of that query was tuples on this form: (tile_id, x,
y, value). The list of tuples was then iterated and the data tiles were updated
according to id, x and y positions in the tile and the value. This approach was
slower than running the queries separately, so it was abandoned.

Observing that all the queries operate on the same rows, another approach was
also tested. We wanted to first query for the selected rows and then run the tile
queries as sub-queries. The idea is the tile queries then only do aggregation and
avoids redoing the same selecting for every tile. Databases have the concepts
of Views and Materialized views. A view is functionality that makes it possible
to store a query so that later queries can be on that view instead of directly
on the tables. This is convenient for the developer because it reduces the
amount of duplicated SQL code in the queries. It does not however provide
any performance benefits (usually). Materialized views on the other hand are
essentially new tables based on a view3. Creating these materialized views
however comes with the cost of creating a new table, and we found that the
overhead outweighed the speedup significantly. We found that the filtering
takes a too small portion of the query times, and that the aggregation is the
bottleneck.

7.4 Client-side tile engines

The only way to completely avoid network latency on some user interaction
in Slicer, would be to generate the data tiles in the client. Doing so means
sending the dataset to the client. For smaller datasets this might be sensible
if the server has scarce resources or the application is known to be used by
clients with varying network conditions.

2. See discussion at: https://dba.stackexchange.com/questions/76973/what-
is-faster-one-big-query-or-many-small-queries

3. This is a simplification, and materialized views are usually used for different goals than
sub-queries. More in-depth explanation can be seen at: https://www.complexsql.
com/materialized-view/

https://dba.stackexchange.com/questions/76973/what-is-faster-one-big-query-or-many-small-queries
https://dba.stackexchange.com/questions/76973/what-is-faster-one-big-query-or-many-small-queries
https://www.complexsql.com/materialized-view/
https://www.complexsql.com/materialized-view/

60 chapter 7 discussion

Falcon has an implementation where the tiles are created on the client. The
way they do it is by iterating the entire dataset and updating the corresponding
values in the tiles along the way. This works fairly well up to 1 million records
in our testing (beyond that, it can take >0.75 sec to generate the tiles). Slicer’s
front-end code is written to be agnostic as to where the tiles comes from, so
changing out the tile engine from the server-side is trivial. Two ways of creating
tiles client-side have been considered so far.

The first idea for a client-side engine revolves around the fact that DuckDB has
been successfully compiled to WebAssembly⁴. If the backend-code responsible
for creating the data tiles is rewritten in a language that can be compiled to
WebAssembly, it is thinkable that the back-end and front-end engines can share
most, if not all, of their code. There exists runtimes such as wasmtime⁵, which
could make it possible to run the same binary on the client (a web browser)
and the server.

The second idea is based on one of the first prototypes for Slicer. The first
prototype was purely client-side and not tile based. It uses WebGL[37] to filter
and aggregate the data as well as rendering visualizations. To be able to use
WebGL, the datasets were encoded into textures and sent to the clients. This
implementation was able to filter, aggregate, and render 5 million data points
in 10ms on the same laptop used in our experiments. Although this was with
only one bar chart view and two possible filters, we thought the performance
was very promising. The prototype was abandoned however, because it was
considered more important to be able to use datasets that are too large to send
to the client. Therefore a server-side solution was prioritized. After creating
the tile-based version of Slicer, we now realize that the GPU-approach might
be used to create the data tiles. And since WebGL is a subset of OpenGL, a
tile engine is made this way can be run both in the clients browser and on the
server.

7.5 Datasets too large to keep in-memory

Slicer currently uses an in-memory DuckDB instance to make data tiles. Many
datasets will be too large to fit into memory - depending on the capacity of
the server and the size of the dataset. Relying on main memory, was made
as a trade-off to avoid relying on video memory, which is considerably more

4. See announcement at: https://github.com/duckdb/duckdb/pull/1424
5. Wasmtime website: https://wasmtime.dev/

https://github.com/duckdb/duckdb/pull/1424
https://wasmtime.dev/

7.5 datasets too large to keep in-memory 61

expensive⁶. Still, for many applications it does not make sense to host a Slicer
application using main memory. If the application is rarely used it may be seen
as a waste of resources or the server might simply not have the capacity to
keep the entire database in memory.

For instances where this is true, DuckDB has a convenient mode of operation
available: DuckDB can be run with the data itself residing on disk while
keeping indexes in memory. This keeps the performance of the filtering and
grouping the same, while slowing down the aggregate functions somewhat
(depending on the size of the dataset and read-speed of the disk). This is a
both a feasible and agreeable solution as is, and will be exceedingly appealing
if the incremental computation discussed in Section ?? yields results. That
would further minimize how much needs to be read from disk, mitigating the
performance cost of keeping the database on disk. It is presumable that such a
mode of operation will be made default for Slicer in the future. Keeping the
database on disk frees up memory which can be used to cache more data tiles.
It is imaginable that this could lead to performance increases that transcends
the benefit of having the database in-memory. This however, is left as a future
research question.

Using another SQL-database altogether is also possible if none of the DuckDB
approaches are convincing or if it makes sense to use a shared database for
Slicer and other applications. In situations where the dataset is already stored
in an SQL-database it can be redundant use of resources for Slicer to create its
own database. The SQL used to compute the data tiles consists solely of basic
SQL operations, which makes switching out the database engine as trivial as
replacing the connection string. This means that Slicer can be configured to use
sampling or GPU accelerated databases as BlinkDB or OmisciDB (which Falcon
uses). DuckDB will be kept as default for its combination of performance and
convenience from being in-process.

6. A curent generation GPU with 24GB vRAM costs around $2000, while 32GB main memory
cost from around $160 and up. See: https://www.nvidia.com/nb-no/geforce/
graphics-cards/30-series/rtx-3090/ and https://www.prisjakt.no/c/
ddr4-minner?rg_95336=32-32&sort=price. (Both urls visited August 2021)

https://www.nvidia.com/nb-no/geforce/graphics-cards/30-series/rtx-3090/
https://www.nvidia.com/nb-no/geforce/graphics-cards/30-series/rtx-3090/
https://www.prisjakt.no/c/ddr4-minner?rg_95336=32-32&sort=price
https://www.prisjakt.no/c/ddr4-minner?rg_95336=32-32&sort=price

8
Conclusion
8.1 Concluding remarks

In this work we have presented the design and implementation of Slicer, a
framework for building CMV-style interactive applications for data exploration.
The design builds upon earlier works in the field to provide similar perfor-
mance with more features and simpler setup. Through exploring trade-offs
and optimizations Slicer has further validated the data tile approach to data
exploration: More types of visualizations can be based on them, they can sup-
port more aggregate functions than Count, and they do not need to be limited
to brushing but can be used with single-select as well. Slicer also opens the
approach to more datasets. Many datasets are to big to handle client-side, but
not big enough to justify investing in a GPU-accelerated server1.

Unsatisfied with existing solutions, we set out to find and validate a method
for creating better CMV-applications for data exploration. Our findings show
that Slicer can offer satisfactory performance and functionality for our use
cases. Yet we still have ideas for improvement and further research. These are
outlined in Section 8.2.

1. Falcon’s mechanism to quickly compute data tiles for larger datasets relies on OmniSciDB.

63

64 chapter 8 conclusion

8.2 Future work

8.2.1 Exploit the symmetry of Slicer’s data tiles

Slicer data tiles are diagonally symmetric; if flipped along the axis show in
Figure 8.1 a tile can switch between which view is active and which is passive.
The obvious implication of this when switching views without filtering, the
tile between the old and new active view does not have to be computed. It
can simply be flipped. In addition to this observation, we wish to investigate if
further performance increases can come from the symmetric property.

Figure 8.1: Illustration of the symmetric nature of data tiles in Slicer.

8.2.2 Further utilization of bin arrays

Bin arrays are elementary in Slicer. It is what the visualizations are based on
and what the data tiles aim to compute. We have capitalized on the observation
that they can be used in cooperation with the data tiles to update themselves
based on current and precious filters.

We wish to flip the idea that data tiles compute the bin arrays, and investigate
if bin arrays can help compute data tiles. This idea is based on the fact that
all bin arrays are known at any time in a Slicer-application - that is how the
visualizations are made. In a data tile, the bins for the active and passive views
are the same as its column- and row-sums respectively. Row- and column-sums
can be used to create matrices that satisfy the sums. The problem is that there
are multiple possible matrices for any set of sums2. What becomes a topic for
future research is to examine if the sums can be combined with other factors
making it possible to find the correct matrix. If these factors can be computed
fast, it might lead to significant improvements in data tile computation.

2. This problem can be seen discussed here: https://math.stackexchange.com/
questions/1969542/find-a-matrix-with-given-row-and-column-sums

https://math.stackexchange.com/questions/1969542/find-a-matrix-with-given-row-and-column-sums
https://math.stackexchange.com/questions/1969542/find-a-matrix-with-given-row-and-column-sums

8.2 future work 65

8.2.3 Chart improvements

The bar charts in Slicer are currently missing labels on the x- and y-axes.
This not because the labels are unavailable, it has just not been implemented.
A proprietary HTML-canvas3 renderer was created since the most existing
ones were based on D3⁴ and thus were SVG-based. SVG-based renderers
creates DOM-elements for each part of the visualizations. DOM-elements have
overhead on creation and update, and clutters the DOM-tree degrading the
performance of the entire website⁵. We will therefore keep our canvas renderer
and add the axis labels using D3, in the same way we have used its brush
implementation.

8.2.4 Client-side caching of tiles

In the current implementation of Slicer, each time a new active view is set,
new tiles are requested from the server. This happens regardless of new filters
being set or not. Slicer’s data tiles range from bytes to kilobytes in size, while
browser tabs have one to several gigabytes memory available⁶. A user moving
the cursor around in the application will trigger new active views, but it does
not necessarily mean that any filtering has been done. This makes recomputing
the data tiles every time a user moves the cursor between two views without
changing any filters redundant. Instead, all tiles could be cached as long as no
new filters are applied - and when they are, the cache can be cleared out.

An example of a situation where this will be beneficial is when a user makes a
selection in a chart and then goes on to zoom-in or pan in a map view (without
making any selections in it). Then after adjusting the map view, the user goes
on to make further selections in the initial chart. Currently, moving the cursor
to the map view triggers a re-computation of tiles, and then another one is
triggered when the cursor is moved back to the chart. This last re-computation
can be avoided by caching the tiles until the filters are changed.

3. See: https://www.w3schools.com/html/html5_canvas.asp
4. See: https://d3js.org/
5. See discussion at: https://stackoverflow.com/questions/5882716/html5-

canvas-vs-svg-vs-div
6. See discussion about RAM available in tabs here: https://stackoverflow.com/

questions/29620041/is-there-any-memory-limit-for-google-chrome-
browser

https://www.w3schools.com/html/html5_canvas.asp
https://d3js.org/
https://stackoverflow.com/questions/5882716/html5-canvas-vs-svg-vs-div
https://stackoverflow.com/questions/5882716/html5-canvas-vs-svg-vs-div
https://stackoverflow.com/questions/29620041/is-there-any-memory-limit-for-google-chrome-browser
https://stackoverflow.com/questions/29620041/is-there-any-memory-limit-for-google-chrome-browser
https://stackoverflow.com/questions/29620041/is-there-any-memory-limit-for-google-chrome-browser

66 chapter 8 conclusion

8.2.5 Speeding up tile generation

We are satisfied with the interactivity of Slicer applications when interacting
with the data tiles. And for datasets up to the tested sizes we are content with
the delay taken to compute new data tiles when changing active view. We wish
to test the system with larger data sets and investigate possible avenues for
improvement on data tile computation. Primarily, we intend to investigate the
iterative approach as discussed in Section 7.2.

Concurrent database queries is another other avenue of interest. Since the
database is loaded as read-only, concurrent and possibly parallel querying of it is
possible. Implementing this would reduce the time to create the requested data
tiles and improve how many concurrent clients the server can handle.

Inspecting Figure 6.2, we see that tile computation does not scale linearly
for smaller dataset sizes. Investigating the reason for this, might open up for
improvements. If the scaling cannot be improved, optimal database sizes for
datasets might be investigated instead. Datasets can be divided in subsets, each
with their own DuckDB instance, which can either work parallel, or sequentially
to improve on performance.

References
[1] H. Koh and C. Magee. “A functional approach for studying technologi-

cal progress: Application to information technology.” In: Technological
Forecasting and Social Change 73 (2006), pp. 1061–1083.

[2] AI Impacts. Trends in the cost of computing. url: https://aiimpacts.
org/trends-in-the-cost-of-computing/ (visited on 01/30/2021).

[3] John C. McCallum. Disk Drive Prices 1955+. url: https://jcmit.net/
diskprice.htm (visited on 01/30/2021).

[4] Andy Klein. Hard Drive Cost Per Gigabyte. url: https://www.backblaze.
com/blog/hard-drive-cost-per-gigabyte/ (visited on 01/30/2021).

[5] Henry F. Korth Abraham Silberschatz and S. Sudarshan. Database System
Concepts 7th ed. New York: McGraw-Hill, 2019.

[6] Microsoft. PowerBI. url: https://powerbi.microsoft.com/ (visited on
01/29/2021).

[7] Google Cloud. BigQuery. url: https://cloud.google.com/bigquery/
(visited on 01/29/2021).

[8] Tableau. Tableau. url: https://www.tableau.com/ (visited on 01/29/2021).
[9] J. C. Roberts. “State of the Art: Coordinated Multiple Views in Ex-

ploratory Visualization.” In: Fifth International Conference on Coordi-
nated and Multiple Views in Exploratory Visualization (CMV 2007). 2007,
pp. 61–71. doi: 10.1109/CMV.2007.20.

[10] Emanuel Zgraggen et al. “How progressive visualizations affect ex-
ploratory analysis.” In: IEEE transactions on visualization and computer
graphics 23.8 (2016), pp. 1977–1987.

[11] Zhicheng Liu and Jeffrey Heer. “The Effects of Interactive Latency on
Exploratory Visual Analysis.” In: IEEE Transactions on Visualization and
Computer Graphics 20.12 (2014), pp. 2122–2131. doi: 10.1109/TVCG.2014.
2346452.

[12] Albert Ng et al. “Designing for Low-Latency Direct-Touch Input.” In:
Proceedings of the 25th Annual ACM Symposium on User Interface Software
and Technology. UIST ’12. Cambridge, Massachusetts, USA: Association
for Computing Machinery, 2012, 453–464. isbn: 9781450315807. doi:
10.1145/2380116.2380174. url: https://doi.org/10.1145/2380116.
2380174.

67

https://aiimpacts.org/trends-in-the-cost-of-computing/
https://aiimpacts.org/trends-in-the-cost-of-computing/
https://jcmit.net/diskprice.htm
https://jcmit.net/diskprice.htm
https://www.backblaze.com/blog/hard-drive-cost-per-gigabyte/
https://www.backblaze.com/blog/hard-drive-cost-per-gigabyte/
https://powerbi.microsoft.com/
https://cloud.google.com/bigquery/
https://www.tableau.com/
https://doi.org/10.1109/CMV.2007.20
https://doi.org/10.1109/TVCG.2014.2346452
https://doi.org/10.1109/TVCG.2014.2346452
https://doi.org/10.1145/2380116.2380174
https://doi.org/10.1145/2380116.2380174
https://doi.org/10.1145/2380116.2380174

68 REFERENCES

[13] Zhicheng Liu, Biye Jiang, and Jeffrey Heer. “imMens: Real-time Visual
Querying of Big Data.” In: Computer Graphics Forum 32.3pt4 (2013),
pp. 421–430. doi: https : / / doi . org / 10 . 1111 / cgf . 12129. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12129.

[14] Dominik Moritz, Bill Howe, and Jeffrey Heer. “Falcon: Balancing Inter-
active Latency and Resolution Sensitivity for Scalable Linked Visualiza-
tions.” In: Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems - CHI '19. ACM Press, 2019. doi: 10.1145/3290605.

[15] Square. Crossfilter. url: https://square.github.io/crossfilter/
(visited on 01/29/2021).

[16] Highcharts. Highcharts. url: https://www.highcharts.com/ (visited
on 01/24/2021).

[17] Peter J. Denning et al. “Computing as a discipline.” In: Computer 22.2
(1989), pp. 63–70.

[18] Alan R Hevner et al. “Design science in information systems research.”
In: MIS quarterly (2004), pp. 75–105.

[19] Sameer Agarwal et al. “BlinkDB: Queries with Bounded Errors and
Bounded Response Times on Very Large Data.” In: Proceedings of the
8th ACM European Conference on Computer Systems. EuroSys ’13. Prague,
Czech Republic: Association for Computing Machinery, 2013, 29–42.
isbn: 9781450319942. doi: 10.1145/2465351.2465355. url: https:
//doi.org/10.1145/2465351.2465355.

[20] Sameer Agarwal et al. BinkDB. url: http://blinkdb.org/ (visited on
01/23/2021).

[21] H. Butler et al. The GeoJSON Format. RFC 7946. Aug. 2016. doi: 10.
17487/RFC7946. url: https://rfc-editor.org/rfc/rfc7946.txt.

[22] I. Fette et al. The WebSocket Protocol. url: https://datatracker.ietf.
org/doc/html/rfc6455 (visited on 05/24/2021).

[23] Saurabh. WebSocket vs HTTP Calls - Performance Study. url: https:
//browsee.io/blog/websocket-vs-http-calls-performance-study/
(visited on 05/24/2021).

[24] Python Software Foundation. Python. url: https://www.python.org/
(visited on 06/15/2021).

[25] NumPy. NumPy. url: https://numpy.org/ (visited on 06/15/2021).
[26] Pandas. Pandas. url: https://pandas.pydata.org/ (visited on 06/15/2021).
[27] Ami Marowka. “Python accelerators for high-performance computing.”

In: The Journal of Supercomputing 74.4 (2018), pp. 1449–1460.
[28] Sebastián Ramírez (alias: tiangolo). FastAPI. url: https://fastapi.

tiangolo.com/ (visited on 06/15/2021).
[29] Microsoft. TypeScript. url: https://www.typescriptlang.org/ (visited

on 06/15/2021).
[30] R.C. Martin. Clean Code: A Handbook of Agile Software Craftsmanship.

Robert C. Martin Series. Pearson Education, 2008. isbn: 9780136083252.
url: https://books.google.no/books?id=_i6bDeoCQzsC.

https://doi.org/https://doi.org/10.1111/cgf.12129
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12129
https://doi.org/10.1145/3290605
https://square.github.io/crossfilter/
https://www.highcharts.com/
https://doi.org/10.1145/2465351.2465355
https://doi.org/10.1145/2465351.2465355
https://doi.org/10.1145/2465351.2465355
http://blinkdb.org/
https://doi.org/10.17487/RFC7946
https://doi.org/10.17487/RFC7946
https://rfc-editor.org/rfc/rfc7946.txt
https://datatracker.ietf.org/doc/html/rfc6455
https://datatracker.ietf.org/doc/html/rfc6455
https://browsee.io/blog/websocket-vs-http-calls-performance-study/
https://browsee.io/blog/websocket-vs-http-calls-performance-study/
https://www.python.org/
https://numpy.org/
https://pandas.pydata.org/
https://fastapi.tiangolo.com/
https://fastapi.tiangolo.com/
https://www.typescriptlang.org/
https://books.google.no/books?id=_i6bDeoCQzsC

REFERENCES 69

[31] E. Gamma et al. Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley Professional Computing Series. Pearson Edu-
cation, 1994. isbn: 9780321700698. url: https://books.google.no/
books?id=6oHuKQe3TjQC.

[32] Web Hypertext Application Technology Working Group. HTML Canvas
Specification. url: https://html.spec.whatwg.org/multipage/canvas.
html#the-canvas-element (visited on 04/24/2021).

[33] Ecma International. Promise Objects Spesification. url: https://tc39.
es / ecma262 / multipage / control - abstraction - objects . html # sec -
promise-objects (visited on 06/02/2021).

[34] Henrik Nielsen et al. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616.
June 1999. doi: 10.17487/RFC2616. url: https://rfc-editor.org/
rfc/rfc2616.txt.

[35] Dr. Mark Raasveldt and Dr. Hannes Mühleisen et al. DuckDB. url:
https://duckdb.org/ (visited on 03/12/2021).

[36] Lauro Lins, James T Klosowski, and Carlos Scheidegger. “Nanocubes for
real-time exploration of spatiotemporal datasets.” In: IEEE Transactions
on Visualization and Computer Graphics 19.12 (2013), pp. 2456–2465.

[37] Khronos Group. WebGL Specification. url: https://www.khronos.org/
registry/webgl/specs/latest/1.0/ (visited on 04/24/2021).

https://books.google.no/books?id=6oHuKQe3TjQC
https://books.google.no/books?id=6oHuKQe3TjQC
https://html.spec.whatwg.org/multipage/canvas.html#the-canvas-element
https://html.spec.whatwg.org/multipage/canvas.html#the-canvas-element
https://tc39.es/ecma262/multipage/control-abstraction-objects.html#sec-promise-objects
https://tc39.es/ecma262/multipage/control-abstraction-objects.html#sec-promise-objects
https://tc39.es/ecma262/multipage/control-abstraction-objects.html#sec-promise-objects
https://doi.org/10.17487/RFC2616
https://rfc-editor.org/rfc/rfc2616.txt
https://rfc-editor.org/rfc/rfc2616.txt
https://duckdb.org/
https://www.khronos.org/registry/webgl/specs/latest/1.0/
https://www.khronos.org/registry/webgl/specs/latest/1.0/

A
Code for generating SQL
queries

Code Listing A.1: This code generates the SQL needed to query for data to create
a data tile from an active view to a passive view with filters. This
code is vulnerable to SQL-injection and needs to be rewritten to
be parameterized before being used in production.

1 def get_tile_sql(self, from_view, to_view, filters):
2 x_bin = f"{from_view.name}_bin"
3 y_bin = f"{to_view.name}_bin"
4 if to_view.reduce == "sum":
5 reduction = f"SUM({to_view.y_dimension})"
6 elif to_view.reduce == "avg":
7 reduction = f"AVG({to_view.y_dimension})"
8 else:
9 reduction = f"COUNT(*)"
10 filter_sql = self.filters_to_sql(filters, from_view.name, to_view.name)
11 return f"SELECT {x_bin} AS x, {y_bin} AS y, {reduction} AS v " \
12 f"FROM Data {filter_sql} " \
13 f"GROUP BY x, y"
14
15 def filters_to_sql(filters, from_view, to_view):
16 if not filters:
17 return ""
18 sql_filters = []

71

72 appendix a code for generating sql queries

19 for view_name, f in filters.items():
20 if view_name == from_view or view_name == to_view:
21 continue
22 if f[’type’] == FilterType.Range:
23 sql_filters.append(f"({view_name}_bin BETWEEN"
24 f" {f[’range’][0]} AND {f[’range’][1]})")
25 elif f[’type’] == FilterType.Categorical:
26 cats = [str(c) for c in f[’categories’]]
27 sql_filters.append(f"({view_name}_bin IN ({’,’.join(cats)}))")
28 if sql_filters:
29 return "WHERE " + " AND ".join(sql_filters)
30 else:
31 return ""

B
Code for generating data
tiles (with timing)

Code Listing B.1: DuckDbDataProvider.get_tile() method (with timing).

1 def get_tile(self, from_view, to_view, filters=None):
2 t0 = time.time()
3 f = self.config.views[from_view]
4 t = self.config.views[to_view]
5 cur = self.conn.cursor()
6 sql = self.get_tile_sql(f, t, filters)
7 cur.execute(sql)
8 res = cur.fetchnumpy()
9 cur.close()
10 res = self.result_to_nparray(res, f, t)
11 print(f"Creating tile for {to_view} took:", time.time()-t0)
12 return res

73

C
Extract from slicer-
frontend/src/Mediator.ts

Code Listing C.1: Extract from slicer-frontend/src/Mediator.ts

1 export enum MediatorSubject {
2 SetActive,
3 NewActive,
4 InitialDataReady,
5 Filter
6 }
7
8 export type MediatorMsg = {
9 subject: MediatorSubject,
10 content?: string | Filter
11 }
12
13 export function subscribe(subject: MediatorSubject, cb: Callback) {
14 Mediator.instance.subscribe(subject, cb);
15 }
16
17 export function send(msg: MediatorMsg) {
18 Mediator.instance.send(msg);
19 }

75

D
Extract from
slicer-frontend/src/Types.ts

Code Listing D.1: Extract from slicer-frontend/src/Types.ts

1 export interface AppConfig {
2 app: string;
3 views: Record<string, ViewConfig>;
4 tiles: TileConfig[];
5 }
6
7 export interface ChartConfig {
8 name: string;
9 type: "barchart";
10 dimension: string;
11 nbuckets: number;
12 lookup: string[];
13 }
14
15 export interface LayerConfig {
16 name: string;
17 type: "map_layer";
18 dimension: string;
19 nbuckets: number;
20 lookup: {[key: string]: number};
21 key: string;

77

78 appendix d extract from slicer-frontend/src/types.ts

22 geojson: string;
23 }
24
25 export type ViewConfig = ChartConfig | LayerConfig;
26
27 export interface TileConfig {
28 name: string;
29 x: string;
30 y: string;
31 w: number;
32 h: number;
33 }

E
Extract 2 from
slicer-frontend/src/Types.ts

Code Listing E.1: Extract 2 from slicer-frontend/src/Types.ts

1 export enum FilterType {
2 Range = 0,
3 Categorical = 1
4 }
5
6 export interface RangeFilter {
7 type: FilterType.Range,
8 view: string,
9 range: Range
10 }
11
12 export interface CategoryFilter {
13 type: FilterType.Categorical,
14 view: string,
15 categories: number[]
16 }
17
18 export type Filter = RangeFilter | CategoryFilter;

79

F
Code for estimating row
count based on filter

Code Listing F.1: Code for estimating row count based on filters

1 def estimate_selected_row_count(self, filters):
2 lowest_count = math.inf
3 for view_name, f in filters.items():
4 count = 0
5 hist = self.histograms[self.view_lookup[view_name]]
6 view = self.views[view_name]
7 if f[’type’] == "range":
8 for i in range(f[’range’][0], f[’range’][1]):
9 count += hist[i]
10 elif f[’type’] == "categorical":
11 for cat in f[’categories’]:
12 count += hist[view.order_lookup[cat]]
13 lowest_count = min(count, lowest_count)
14 return lowest_count

81

	Abstract
	List of Figures
	List of Tables
	List of Code Listings
	1 Introduction
	1.1 Problem definition
	1.2 Targeted Applications
	1.3 Assumptions and Limitations
	1.4 Methodology
	1.5 Context
	1.6 Contributions
	1.7 Thesis Outline

	2 Background
	2.1 Data reduction
	2.1.1 Sampling
	2.1.2 Binning

	2.2 Aggregate functions
	2.3 Data visualization
	2.3.1 Binned aggregates
	2.3.2 Overplotting

	2.4 Coordinated and Multiple Views
	2.5 Optimizations
	2.5.1 Caching
	2.5.2 Progressive loading

	2.6 Prefix sum

	3 Related Work
	3.1 Databases
	3.2 Crossfilter
	3.3 Nanocubes
	3.4 imMens
	3.5 Falcon
	3.6 Summary

	4 Design
	4.1 Requirements
	4.1.1 Non-functional requirements
	4.1.2 Functional requirements

	4.2 User Interfaces
	4.3 A tile-based approach
	4.4 Slicer's data tiles
	4.4.1 Using data tiles
	4.4.2 Assigning bins
	4.4.3 Creating data tiles

	4.5 Database design
	4.6 Architecture

	5 Implementation
	5.1 Programming languages
	5.2 Front-end
	5.2.1 Mediator
	5.2.2 API-connector
	5.2.3 Views
	5.2.4 Tile Handler

	5.3 Back-end
	5.3.1 Initialization
	5.3.2 Communication
	5.3.3 Database
	5.3.4 Creating data tiles

	5.4 Creating an application

	6 Evaluation
	6.1 Experimental Setup
	6.2 Benchmarks
	6.2.1 Filtering
	6.2.2 Data tile computation

	6.3 Analysis
	6.3.1 Comparison with Falcon

	7 Discussion
	7.1 Geographical visualizations
	7.1.1 Datasets without a link to GeoJSON

	7.2 Incremental computation of data tiles
	7.3 SQL performance
	7.4 Client-side tile engines
	7.5 Datasets too large to keep in-memory

	8 Conclusion
	8.1 Concluding remarks
	8.2 Future work
	8.2.1 Exploit the symmetry of Slicer's data tiles
	8.2.2 Further utilization of bin arrays
	8.2.3 Chart improvements
	8.2.4 Client-side caching of tiles
	8.2.5 Speeding up tile generation

	References
	A Code for generating SQL queries
	B Code for generating data tiles (with timing)
	C Extract from slicer-frontend/src/Mediator.ts
	D Extract from slicer-frontend/src/Types.ts
	E Extract 2 from slicer-frontend/src/Types.ts
	F Code for estimating row count based on filter

