
Faculty of Science and Technology
Department of Computer Science

Integration of HelseID with Third-Party Role Assignments Data

Thomas L. Fagermyr
INF-3981 Master’s Thesis in Computer Science - August 2021

This thesis document was typeset using the UiT Thesis LaTEX Template.
© 2021 – http://github.com/egraff/uit-thesis

http://github.com/egraff/uit-thesis

Abstract
The Norwegian healthcare sector is vast, with a substantial number of organi-
zations employing plenty of people, and thereof, 7,300 are customers of nhn.
Maintaining and keeping up-to-date information about access rights for these
customers is a difficult, time-consuming, andmanual task, especially since orga-
nizations often change personnel without notifying the system administrators.
The task is worsened since the access rights are often tied to an account using
username and password as login credentials, which are easy to forget in the
midst of many other login credentials.

This thesis proposes a proof of concept system for solving these problems. The
proof of concept system utilizes HelseID, a unified login solution designed for
health care personnel, offering authentication through known idps. Further,
Altinn, a trusted third-party state enterprise, offers an api for service owners
to extract information about organizational roles. The system acquires role
assignments data from Altinn and delegates it to users when they are authen-
ticated. The main goal is to automatically and dynamically keep information
about access rights up-to-date, alleviate the task from system administrators,
and make login simpler for the end-user by using a login solution they are
familiar with.

Acknowledgements
I would like to thank my supervisors, Håvard Dagenborg Johansen, Espen
Mæland Wilhelmsen, and Øyvind Guttvik Årnes, for being my supervisors,
for all the helpful discussions, and for the great feedback during this thesis.
Additionally, thanks to Norsk Helsenett for this opportunity.

Furthermore, I would like to thank my fellow study friends for great discussions
and invaluable input throughout the years. Especially thanks to Eirik Haugen,
who carried me through the semester when I fell ill. I could never have done it
without you.

Finally, I would like to thank my friends and family for always being there and
supporting me throughout the study. Special thanks to my Mother for always
pushing me to do my best. Further, I would like to express my appreciation for
my best friends, Frida Dalheim and Benjamin Bakli Aglen, for all the long talks
and support. You have been paramount to my success, and I could not have
accomplished this without you. Thank you.

Contents
Abstract i

Acknowledgements iii

List of Figures vii

List of Tables ix

List of Abbreviations xi

1 Introduction 1
1.1 Norsk Helsenett . 2
1.2 Problem definition . 3
1.3 HelseID . 4
1.4 Methodology . 5
1.5 Interpretation, Scope, and Limitations 6
1.6 Terminology . 6
1.7 Outline . 7

2 Background 9
2.1 OAuth2 . 9

2.1.1 Roles . 10
2.1.2 Grant Types . 11

2.2 OpenID Connect . 12
2.2.1 ID token . 13

2.3 IdentityServer4 . 15
2.4 Summary . 15

3 The NHN Customer Portal 17
3.1 Obtaining the data . 18
3.2 Statistics of the customer portal 20
3.3 Key insights . 24

4 Requirements Specification 27

v

vi contents

4.1 System Functional Overview 27
4.2 System Model . 28

4.2.1 The client . 29
4.2.2 API . 29
4.2.3 Back-end . 29

4.3 Non-functional requirements 30
4.3.1 Security and Privacy 30
4.3.2 Reliability and Availability 30
4.3.3 Fault-tolerance . 31
4.3.4 Dependency . 31
4.3.5 Interoperability and Extensibility 31
4.3.6 Usability . 32
4.3.7 Scalability and Performance 32

4.4 Summary . 32

5 Design and Implementation 33
5.1 Determining the API . 33
5.2 The client . 35
5.3 API . 39
5.4 Back-end . 43
5.5 Summary . 44

6 Evaluation and Results 47
6.1 Methodology and Methods 47
6.2 Experiments . 48

6.2.1 Role delegation experiments 48
6.2.2 API Benchmark . 51

6.3 Summary . 52

7 Conclusion 53
7.1 Achievements . 53
7.2 Concluding remarks . 54
7.3 Future Work . 54

A JSON Response from Altinn API 57
A.1 Subject 24065500317 . 57

A.1.1 With roleDefinitionId as access controller (4) 57
A.1.2 Without role specification 58

A.2 Subject 28065501580 . 60
A.2.1 With roleDefinitionId as access controller (4) 60
A.2.2 Without role specification 61

References 63

List of Figures
1.1 What HelseID can be used by. Figure altered from NHN. . . . 4

2.1 OAuth2 roles in the system. Figure altered from Microsoft. . 11
2.2 ID token payload data from an end-user in the proof of con-

cept system. 14

3.1 A typical log entry in Splunk. Personal information has been
redacted. 18

3.2 Six lookup requests within two seconds for a singular user-
name. Personal information has been redacted. 19

3.3 All username attempts within a given time period 20
3.4 In-depth statistics of 82,296 valid usernames 21
3.5 In-depth statistics of 26,925 invalid usernames 23

4.1 Abstract architecture of the system model 29

5.1 Presentation of the MVC design pattern. 35
5.2 Code snippet for configuration of the HTTP client to support

the API. API key redacted. 36
5.3 Test client login page displaying IDPs 37
5.4 Displayed reportees for subject 28065501580 in proof of con-

cept system. 38
5.5 Request information with description about the reportee call.

Figure from Altinn. 40
5.6 Reportee API call in the Altinn test environment using Postman. 41
5.7 Reportee API response from the Altinn test environment using

Postman. 42
5.8 ER-Diagram of model relations 44

6.1 List of reportees for subject 24065500317 in Altinn. 49
6.2 List of reportees for subject 24065500317 in proof of concept

system. 50
6.3 API request for unregistered subject 15037104229 50

vii

viii l ist of figures

6.4 Response to the unregistered subject in the proof of concept
system. 51

6.5 Latency benchmark of reportee API call done in Postman. . . 52

List of Tables
3.1 Displays the number of distinct users separated by user type 21

ix

List of Abbreviations
API Application Programming Interface

BRREG Brønnøysundregisteret

CGM CompuGroup Medical

HTTP HyperText Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IDP Identity Provider

JSON JavaScript Object Notation

JWT JSON Web Token

MVC Model-View-Controller

NHN Norsk Helsenett

OIDC OpenID Connect

PID Personal Identifier

REGEX Regular Expression

REST Representational State Transfer

SQL Structured Query Language

SSN Social Security Number

UI User Interface

xi

xii l ist of abbreviat ions

URI Uniform Resource Identifier

URL Universal Resource Location

1
Introduction
The healthcare sector is populated with large and complex organizations em-
ployingmany people with various roles. Maintenance of access rights to comput-
ing infrastructure within these organizations is often a manual and error-prone
task done by system administrators. It either requires the customer to inform
about organizational changes or the system administrators to request this infor-
mation at will, which can be tedious and may not coincide with all changes. As
the number of healthcare principals requiring access rights increases, the task
of requesting organizational information becomes substantially larger for the
system administrators, to a point where it is not feasible to request information.
In addition, access rights are often tied to an account consisting of username
and password as credentials. These credentials are often forgotten among users
if they are not used frequently; thus, aggravating the task of maintaining access
rights by making system administrators spend their resources on managing
the credentials.

Trusted state services, like the Norwegian national Altinn service and Brønnøy-
sundregisteret (brreg) registry platform, provide authoritative information
on the structure of organizations, including the identity of people with key
roles, like company owners and board members. This information identifies
the root of trust for an organization and should reflect the rights assigned
to objects within an organization’s digital infrastructure. With the ongoing
digitalization of trusted state enterprises, new official registries are becoming
available online as web services. In addition, many trusted state enterprises
already offer their own unique apis for verifying and extracting information

1

2 chapter 1 introduction

dynamically about a given user or organization, like the ones described in
Section 5. In this thesis, we propose using such services to maintain up-to-date
information to manage internal rights.

The Norwegian national registry, brreg, is a registry platform that consists
of a large variety of registries. The concerned registries for this thesis are the
registries containing information about Norwegian businesses, citizens, and
government agencies. brreg focuses on creating trusted, secure, organized,
and high-quality sources of information for the Norwegian community. Further-
more, they aim to simplify the dialog and relation with the public for citizens
and businesses.

Altinn [4] is a Norwegian web portal created to establish a good digital dialog
for businesses, private individuals, and government agencies. Altinn started
as a collaboration between Skatteetaten, Statistisk sentralbyrå and brreg.
Altinn was established to provide an alternative channel for reporting economic
data. The growth of Altinn has steadily increased since it was established, and
its collaboration has expanded to 63 unique service owners as of August 2021 1,
which includes Norsk Helsenett. The current platform is used by over 90% of
the Norwegian population and almost 100% of the businesses2.

1.1 Norsk Helsenett

nhn is a Norwegian state enterprise that connects the Norwegian healthcare
sector by establishing a secure digital arena for all of Norway’s health sector
actors. As a result, the Norwegian health sector can utilize this arena to commu-
nicate and exchange sensitive information safely and efficiently. nhn offers this
service, along with other services, through a membership subscription.

nhn has customers all over the country and facilitates their services to every
organ of the Norwegian healthcare sector. The customers range from hospitals
to dental offices to psychologists and doctors’ offices. All of whom have various
needs and requirements for the services.

The services nhn offers to its customers can be seen in nhn’s customer portal.
It allows its customers to manage their business and membership. Further, it
provides customers with various self-services such as e-mail accounts, placing
orders on a variety of services, managing their bandwidth subscriptions, view
invoices, and the home office solution, which allows health care personnel

1. https://www.altinndigital.no/om-altinn/om-altinn-samarbeidet/
2. https://docs.altinn.studio/teknologi/altinnstudio/about/

1.2 problem definit ion 3

to access their work computer remotely for work applications, among other
services.

1.2 Problem definition

nhn lacks up-to-date information about many of their customers because
they change their administrative personnel without notifying nhn about the
changes. nhn has more than 7300 customers, resulting in requesting this
information from the customers a tedious and difficult task. In addition, con-
tacting various customers can prove extremely complicated considering the
information is already out of date.

nhn is often informed about organizational changes when an organization
employee needs to use the customer portal and is unaware of their login in-
formation; thus, the customer contacts nhn’s customer service for assistance.
For example, if an employee from the health care principal contacts nhn’s
customer support to obtain the login information, they cannot receive it with-
out proving they are whom they claim to be. Furthermore, if nhn’s contact
information for that customer is outdated, the support center can only supply
the customer with its login information if a request is sent by e-mail from
someone registered under that organization in brreg.

nhn’s support center creates and delegates various customer accounts, in-
cluding administrative, e-mail, and home office accounts. Furthermore, the
administrative accounts can use self-services in the customer portal to create
e-mail, and home office accounts for their own organization. Username and
password are always delivered by two separate mediums: username over e-
mail and password on SMS. This mechanism is in place to ensure that any
individual with malicious intent cannot gather the login information.

This thesis proposes a proof of concept system that aims to solve the problem
of outdated rights access information and missing or forgotten login infor-
mation for nhn’s customers. The goal is to solve this problem by integrating
HelseID [1] with third-party role assignments data from brreg’s apis [7, 9]
or Altinn’s service owner api [3]. HelseID allows health care personnel to
log in using their Social Security Number (ssn) through a well-known idp
such as BankID [6] or Buypass. With these apis, the system will automat-
ically assign the appropriate role to any users given they have registered
affiliations, thus alleviating nhn from creating and delegating users.

Ideally, the system should work across other platforms and be a plug-and-play
system to allow the users to navigate nhn’s various platforms with ease. The

4 chapter 1 introduction

goal is to make it easier for the customers to log on to nhn’s Customer Portal,
decrease unnecessary workload for the support center, and create better and
more up-to-date information for nhn about its customers.

1.3 HelseID

HelseID[1] is a unified login system targeted at the healthcare sector in Norway.
Its purpose is to provide a secure and simple login for health care personnel. It
eliminates the necessity for usernames, as it utilizes the ssn for identification
through known idps. Various applications can use the service; for instance, it
is used on nhn’s registry platform (https://register.nhn.no).

Figure 1.1: What HelseID can be used by. Figure altered from NHN.3

HelseID is an authorization server that utilizes IdentityServer4 as its core

3. https://www.nhn.no/samhandlingsplattform/helseid/hva-er-helseid

1.4 methodology 5

component, and it is based on the security protocols OAuth2 and OpenID
Connect. HelseID provides services such:

Authentication as a Service offers centralized login logic and workflow
for applications.

Single Sign-on / Sing-out allowing the user to have one set of login
credentials that can be used to access multiple applications.

Access Control for apis by issuing access tokens for the client.

Federation Gateway allows for external idps. HelseID is a federation
gateway that allows for internal and external idps. Internal providers
can be regional health trusts and municipalities. External providers are
the likes of Buypass, BankID, and Commifides.

HelseID utilizes the ssn of the user as a known claim. This presents the ability
to use this identifier with an api to get information regarding the subject
from a third-party application such as the api from Brønnøysundregisteret or
Altinn.

1.4 Methodology

According to the final report of the ACM Task Force on the Core of Computer
Science [10], the computing discipline is divided into the following three major
paradigms:

• Theory is rooted in mathematics. Its approach is to define problems,
propose theorems, and determine whether the relationships are true to
interpret the results.

• Abstraction is rooted in the experimental scientific method. Its approach
is to investigate a phenomenon by forming a hypothesis, constructing
models, and make predictions. Then experiment and collect data from
interpreting results.

• Design is rooted in engineering. Its approach consists of three parts; To
construct a system or device to solve a defined problem by stating the
requirements and specifications. Then, design and implement the system
or device. Finally, testing and evaluation of the system or device are
performed according to the requirements and specifications.

6 chapter 1 introduction

Out of the three paradigms, the design paradigm is the most suitable for this
thesis which describes a proof of concept for using HelseID with third-party
assignments data for role delegation.

1.5 Interpretation, Scope, and Limitations

This thesis aims to develop a system that helps keep organizational access
rights and information up-to-date for nhn about its customers and simplify
the login system for end-users. The main focus will be to prove that the system
can automatically obtain the information without the interference of a system
administrator. Furthermore, the system dynamically collects the information
when the user logs into the login solution, similar to ID-porten, familiar to the
end-user, making it simple to use. In addition, the number of requests sent to
the customer service will lessen due to the system being automated.

The thesis will resolve the problems that are stated by designing and imple-
menting a proof of concept system. The system will include login through
known idps familiar to the user and a simple User Interface (ui) to present
the affiliations and access rights. In addition, it will have a backend component
in the form of a simple Structured Query Language (sql) database to store
user identities. This is to reduce the number of requests sent to the api and
limit dependency on the api.

The system will be evaluated according to the requirement specification stated
in Chapter 4. The goal is to prove that the system adheres to its specification
and limitations.

The limitations of the system will mainly be dependant on the api. When using
an api from a third party, there will always be some limitations regarding what
a developer can and cannot do. For instance, gaining access to read all the
necessary data can be a challenge, as discussed in Section 5.1

There are features beyond the scope of this thesis. The future work section de-
scribes such potential features. The evaluation of this thesis will focus on testing
how the client and api handle various people with different affiliations.

1.6 Terminology

Terminology important for this thesis includes:

1.7 outline 7

Claim: Assertions that one subject (e.g., a user or an Authorization Server)
makes about itself or another subject⁴.

Client: An application that requests access to a protected resource on behalf
of and with the authorization of the resource owner.

Component: An entity with its own functionality that is part of a larger
system.

End-user: An end-user is a person that uses the system, may be referred to as
user and resource owner.

Reportee: A legal entity that a user can represent and act on behalf of.

Scope: Scopes are a group of claims.

1.7 Outline

The remainder of this thesis is structured as follows:

Chapter 2 presents relevant information about the technical background
for the thesis.

Chapter 3 analyzes the usage of the customer portal to show the need
for a new login solution and automated role delegation.

Chapter 4 presents the requirement specifications for the proof of con-
cept system, including a system model, along with functional and non-
functional requirements.

Chapter 5 describes the design and implementation of the proof of
concept system.

Chapter 6 presents an evaluation of the system and results.

Chapter 7 presents future work and concludes the thesis.

4. https://curity.io/resources/learn/scopes-vs-claims/

2
Background
This chapter describes the necessary technical background to understand the
proof of concept system.

2.1 OAuth2

OAuth2[14] is an authentication protocol, which addresses the problems of
the traditional client-server authentication model. The client uses the resource
owner’s credentials to authenticate with the resource server to access a pro-
tected resource using the traditional model. This means that for a third-party
application to gain access to a protected resource, the resource owner will have
to share its credentials with the aforementioned third-party application. This
presents a range of problems.

Due to the resource owner having shared its credentials, the owner cannot
control or restrict access to its protected resource. The application which has the
credentials gains access to the entire protected resource. The resource owner
cannot set a finite access duration or limit which resources the third-party
application can access. The third-party application must store the resource
owner’s credentials for further use in the future, and servers must authenticate
passwords. In any case, where the third-party application faces a data breach,
the resource owner’s credentials will be revealed. This renders the protected
resource as being exposed.

9

10 chapter 2 background

The purpose of OAuth2 is to address all these issues. The protocol achieves this
by creating an authorization layer and separating the client and resource owner
into different roles. The protected resource is administered by the resource
owner and is hosted by the resource server. When the client requests access to
the protected resource, is it issued an access token rather than the resource
owner’s credentials. An access token is a string that represents an authorization
granted for the client, and it is used to access protected resources. It contains
information such as scopes, the lifetime of the token, and other access attributes.
It is granted by the resource owner and enforced by both the resource and
authorization server.

2.1.1 Roles

OAuth2 consists of four distinct roles:

• Client is an application that requests access to a protected resource on
behalf of and with the resource owner’s authorization.

• Resource Owner is the owner of a protected resource and can grant access
to the resource. When a resource owner is a person, it is referred to as
an end-user.

• Resource Server is the server responsible for hosting the protected resource.
It can accept and respond to requests using an access token for the
protected resource.

• Authorization Server is the server responsible for issuing the access token
to the client. This applies after authenticating the resource owner and
obtaining authorization.

The resource and authorization server are sometimes interchangeable. Meaning
they can be the same server, and other times they are separate entities. It is also
possible to have one authorization server that grants access tokens accepted
by several resource servers.

2.1 oauth2 11

Figure 2.1: OAuth2 roles in the system. Figure altered from Microsoft.1

In the case of this system, the resource owner is the end-user who logs onto
the client. The authorization server is HelseID. HelseID is responsible for au-
thenticating the end-user, granting and revoking access to restricted resources,
and issuing tokens to the end-user. In addition, the resource server is the api
owner. The client is configured to access the api along with an authenticated
user.

2.1.2 Grant Types

Authorization grants, or grant types, are mechanisms used to represent the
resource owner’s authorization. The client uses the grant credentials to obtain
an access token.

1. https://docs.microsoft.com/en-us/azure/active-directory/develop/active-directory-v2-
protocols

12 chapter 2 background

• Authorization Code is an authorization grant that uses the authoriza-
tion server as a middleman for an exchange between the client and
resource owner. The client directs to the authorization server rather than
requesting authorization directly. The resource owner is then directed
back to the client with the authorization code.

The authorization server authenticates the resource owner and obtains
authorization before directing it back to the client along with the autho-
rization code. Thus, credentials are never shared between the client and
resource owner since the authorization server authenticates the resource
owner.

Authorization code is the most common authorization grant type, and
the proof of concept application uses it.

• Implicit Grant is a simplified version of the authorization code grant. It
is designed for browser-implemented clients using scripting languages
like JavaScript. Rather than supplying the client with an authorization
code, it is granted an access token.

• Resource Owner Password Credentials can obtain an access token
directly. The only use case for this is when a high level of trust is estab-
lished between the client and resource owner and when other grants are
unavailable.

• Client Credentials is an authorization grant that can be used when the
client requests access for a protected resource in which the client is the
resource owner. In addition, the client credentials can be used when the
client is acting on its own behalf.

2.2 OpenID Connect

OpenID Connect (oidc) [21] is an identity layer that is situated on top of
OAuth2. In oidc, the identity of an end-user is verified by the client through
the authentication performed by the authorization server. The client can obtain
user profile information through authentication in an interoperable and similar
manner to Representational State Transfer (rest) [13, 12]. Its interoperability
stems from having a defined way of requesting and responding to claims. It
contains some standard scopes, such as openid, profile, and email, an ID token
that describes information about the authenticated user, and it has a userinfo
endpoint. The userinfo endpoint is used to get attributes about the user and to
translate tokens.

2.2 openid connect 13

2.2.1 ID token

An identity token, or ID token, is a security token that is represented as a
JSON Web Token (jwt). The ID token consists of claims about the end-user
which stem from the authorization server’s authentication of the end-user. In
addition, the ID token may contain other claims.

The required claims and their explanations of an ID token are:

iss is the issuer and represents who signed and created the token.

sub is the subject that the token refers to.

aud represents the intended recipient(s) of the token.

exp is the expiration time of the token represented in seconds since Unix
epoch.

iat is the time the token was issued at represented in seconds since Unix
epoch.

14 chapter 2 background

ID token payload

Figure 2.2: ID token payload data from an end-user in the proof of concept system.

Figure 2.2 presents the payload of an ID token directly from the proof of concept
system using a fictional test subject. It contains the standard claims of an ID
token along with the HelseID claims. The HelseID claims establish information
about the user’s identity. As seen in the figure, the claim relates to the user’s
security and assurance level and Personal Identifier (pid). The pid is the user’s
ssn. Security and assurance levels can determine what a given user can access,
but it is not relevant to this proof of concept system.

2.3 identityserver4 15

2.3 IdentityServer4

Security can be divided into two main parts; Authentication and api Ac-
cess.

Authentication is required when the current user’s identity has to be known
by the application. When an application requires authentication, it often acts
on behalf of the user. It has to verify that the user is allowed to access the
information it is attempting to access.

api Access is how this information is gathered or accessed. There are two main
ways for an application to utilize an api - either by using the user’s identity or
its identity (the application).

OpenID Connect and OAuth2 offer solutions to these concerns and are designed
to work together. As mentioned in Section 2.2 oidc is an extension that sits
on top of OAuth2. Although the protocols offer a solution to the concerns, it
can be a rather difficult and time-consuming task to implement; therefore,
IdentityServer4 was developed.

IdentityServer4 is an open-sourceoidc and OAuth2 middleware framework for
ASP.NETCore. It is an officially certified implementation ofOpenID Connect[20].
The purpose of IdentityServer4 is to act as a central authentication server for var-
ious applications and simplify the use of oidc and OAuth2 in your application.
The framework offers a range of features. These features are; Authentication
as a Service, Single Sign-on / Sign-out, Access Control for apis, and Federation
Gateways.

2.4 Summary

This chapter introduced technical background information for the thesis. The
protocols, OAuth2, and oidc, utilized in HelseID have been presented and
explained. Further, the IdentityServer4 framework which HelseID is built upon
has also been described.

3
The NHN Customer Portal
Kundeportalen [26] is nhn’s current customer portal, which is a website where
customers can manage their business and membership. It provides customers
with various self-service functions like the home office solution, which allows
health care personnel to access their work computer remotely for work applica-
tions. The customer portal also provides self-services such as e-mail accounts,
placing orders on various services, managing their bandwidth subscriptions,
view invoices, and much more. Orders are placed in the portal using an account
with administrative rights created by nhn, and the account is given to the
administrative contact of the customer’s principal. Unfortunately, health care
principals, perhaps except for hospitals, often have outdated information about
who can make administrative decisions for a given principal. When someone
tries to place an order without being the registered administrative contact or
the administrative contact is outdated, the problem occurs.

To better understand the necessity for a new system and how to design it, it is
necessary to study the current system. For example, one can determine if there
is a need for a unified login system by studying the current system. In addition,
it is helpful when determining the requirements and specifications for the new
system. For example, the current implementation uses an account lookup api,
which triggers anytime a user attempts to log in, designed to check whether
the account is valid or not.

17

18 chapter 3 the nhn customer portal

3.1 Obtaining the data

Splunk [15] is a software platform developed for analyzing, visualizing, and
searching through machine-generated log data from various sources within a
business in real-time. It was created to make machine-generated log data easily
accessible and manageable. The tool maintains a vast data lake consisting of
log data. It utilizes indexing to access log events and create smaller and more
manageable data sets that can be used to produce statistics, graphs, dashboards,
and alerts.

Log entry in Splunk

Figure 3.1: A typical log entry in Splunk. Personal information has been redacted.

Figure 3.1 presents a log event of a valid response to an account lookup request.
The log event displays all the information about the account in the response
string formatted as JavaScript Object Notation (json). From the log event, we
can make several observations. For instance, the account is an admin, it does
not have an email address listed on it, it has access to the home office solution,
and the home office solution has never used it due to the cert_serial field being
empty (null). It is easy to study one log event to determine the values of its
fields to gain a better understanding of the given account. Once this scales
to millions of log events that need to be aggregated, studying log events by
hand is no longer an option. It has to be automated; thus, Regular Expression
(regex) is required to specify and sort the wanted information. regex is a
sequence of characters designed to search and match text patterns.

The results presented below in this chapter stem from machine-generated log
data stored in Splunk, and all the graphs were produced using the tools within
Splunk. First, the data was gathered using the specific index and app log for the
customer portal’s log events. Then, custom-made regexes were created using

3.1 obtaining the data 19

a regex generator [24] and applied to the appropriate log events to capture
the wanted data. Finally, search macros were developed to extract the required
information using Splunk functions combined with the regexes.

Closely related requests

Figure 3.2: Six lookup requests within two seconds for a singular username. Personal
information has been redacted.

For all these requests, the service responded with http status code 200-OK,
meaning the system found the requested account.

Due to how the current login system is implemented, it can appear as if the
user attempts to log in several times within the same second and sometimes a
few seconds apart. In order to clearly define one login attempt, closely related
log events for the same username are aggregated as a singular login attempt.
In this case, closely related is a time frame within 5 seconds of each other.
Figure 3.2 shows an extreme case of this phenomenon, with six account lookup
requests occurring within two seconds of each other and four of them being
within the same second. For the sake of documentation, this example will count
as one login attempt since it is improbable that a singular user has attempted
six unique login attempts in a two-second period.

regexes were used to extract the http status from all of the responses
sorted by usernames, meaning the responses had to contain a username to
be evaluated. If a response was "200 OK", the username was valid. A "404 Not
Found" response determined that the username was invalid. When this was in
place, it was effortless to count the number of valid and invalid usernames that
made the login attempts shown in Figure 3.3. This was further aggregated to
go deeper into each of the two categories. regexes were applied to the valid
usernames to determine what account types were the most common, which is

20 chapter 3 the nhn customer portal

represented in Figure 3.4. The amount of distinct and valid usernames were
recorded, represented in Table 3.1, as a supplementary table for the previously
mentioned figure. Several regexes were applied to the invalid usernames to
show better what usernames nhn’s customers attempt in the customer portal,
displayed in Figure 3.5.

3.2 Statistics of the customer portal

The collected data results from a two-year and three-month period from the 1st
of January 2019 to the 9th of April 2021, equal to 829 days. Figure 3.3 represents
all the attempted logins during the given time period. Valid users are successful
attempts, meaning the username is correct. Invalid users represent all failed
attempts due to an incorrect username: figures 3.4 and 3.5 display the valid
and invalid attempts in further detail.

All attempted usernames

Figure 3.3: All username attempts within a given time period

A total of 109,221 attempted usernames were recorded within the given time
period, with nhn having about 7300 customers as of the 9th of April 2021. This
is about 132 login attempts per day, where several logins can result from the
same individuals. 82,296 (75,3%) login attempts were successful and 26,925
(24,7%) of the attempted logins were invalid. It is expected that a majority
of the valid users are a combination of avid home office users and recurring
administrative accounts. A quarter of all attempted logins are invalid, which
is quite a large chunk. It is expected that the invalid attempts can range from
attempting the username of another nhn portal to a simple typo.

3.2 statist ics of the customer portal 21

Statistics of valid login attempts

Figure 3.4: In-depth statistics of 82,296 valid usernames

As observed in Figure 3.4, out of the 82,296 valid users recorded, 44,8% are
administrative users, 43,8% are regular users, and 11,4% of the login are
impersonated users. As the name implies, administrative users are users with
administrative rights who can make changes and place orders on behalf of
their organization. Regular users are usually home office and e-mail accounts
used by staff at its organization. They cannot make changes or place orders
in the customer portal. Impersonated users are staff from the support center
who have logged onto customers’ accounts using an impersonate function
implemented in the portal. This allows the support center to see exactly what
the customer sees when they call for support, making it easier to understand
their needs and aid them.

Distinct users table
User type Amount of users Amount of home

office users
Admin 2,845 1,181
Regular 5,455 4,437
Impersonated 3,361
Total 11.661 5,618
Total w/o imper-
sonated

8,300 5,618

Table 3.1: Displays the number of distinct users separated by user type

The valid login attempts consist of various individual users who have logged

22 chapter 3 the nhn customer portal

in several times. Table 3.1 provides an overview of how many unique accounts
have been successfully logged onto from the 1st of January 2019 to the 9th
of April 2021. A total of 11,661 distinct accounts were recorded during the
period, where 3,361 consists of impersonated users. Impersonates are mostly
used by callees to aid the caller in real-time or for testing and experimentation
purposes. Therefore, it is unnecessary to count the home office service users
for impersonated users due to the nature of an impersonated account.

The remaining 8,300 unique users are actual customers who utilize the cus-
tomer portal avidly. Less than a quarter (24,4%) of the total users are adminis-
trative accounts, and less than half of these (1,181 out of 2,845) have enabled
the home office solution. Nevertheless, these administrative users account for
44,8% of the total successful logins. This helps to prove that the administrative
accounts are used for administrative tasks such as account creation, placing
orders, and checking documents. All of these are tasks that would require the
same individuals to log in repeatedly.

Regular users, who account for 46,8% of the total users, are responsible for
43,8% of all valid logins. The majority of regular users are accounts with home
office enabled, with 4,437 out of 5,455 having access to it. For the home office
solution to work, the user must attach its buypass certificate serial number
to the account. This is achieved by logging onto the customer portal and
registering it by using a buypass login solution. Therefore, a regular user’s only
need for the customer portal is to register its buypass serial and change the
password. In fact, most of the traffic generated from regular users consists of
health personnel who want to utilize the home office or change their password
in connection with either e-mail or the home office.

3.2 statist ics of the customer portal 23

Statistics of invalid username attempts

Figure 3.5: In-depth statistics of 26,925 invalid usernames

From the two years and three months of data, we observe that 24,7% of all
authentication requests contain invalid usernames. Figure 3.5 displays the
various usernames that were possible to sort out of all the invalid attempts.
The vast majority of incorrect username attempts result from customers who
attempt to log in with some sort of e-mail address (43,53%). The attempted e-
mail addresses vary from personal,work, andnhn e-mail addresses. Customers
likely attempt e-mail addresses because e-mails are often being used as a
username for logins.

Another large chunk of the requests is HerID, which represents 7,57% of the
requests. A HerID consists of digits and is utilized for secure communication
between health care principals. HerID, as a login means, was an ID used for
logging on to nhn’s registry platform. The HerID part of the graph accounts
for the organization users, consisting of the prefix "OrgUsr" followed by the
organization number. The login consisted of the prefix "Her" followed by digits,
which the regex has filtered in this graph. The HerID login provided adminis-
trative personnel to maintain and update their entry in nhn’s Adresseregister
(Address registry). HelseID replaced HerID as a login at the start of 2021,
and previous owners could migrate their HerID account to HelseID. However,
users attempt these out-of-date login credentials on the customer portal to this
day.

It can be difficult to decipher what the user has attempted when logging in,

24 chapter 3 the nhn customer portal

and sometimes it will be impossible. Some attempts to decipher and extract
include personal information such as HPR numbers, birth dates, ssns (birth
number), phone numbers, PIN codes, and buypass certificates (totaling 5,27%).
Customers have also attempted to log in using the ID for virtual meeting rooms
(0,63%) and remote support accounts (2,05%), both supplied bynhn and used
for other portals. The Other category accumulates all attempts that were not
possible to extract using regex sufficiently. It contains all sorts of interesting
attempts including but not limited to username typos, various passwords, and
usernames meant for other nhn login portals and services. This provides
evidence that customers are uncertain of their usernames and attempts all
sorts of credentials that they can think of until they either give up or contact
customer support.

3.3 Key insights

The customer portal is designed so that regular users only need it for self-
services such as registering buypass serials and changing passwords. Most of
the regular accounts are created for the sole purpose of utilizing the home office
solution and/or being an e-mail account. However, administrative accounts
utilize the same self-services along with several other services. For example,
administrative accounts can create e-mail and home office accounts, place
orders, and view important documents on behalf of its organization. Naturally,
administrative accounts have repeating occurrences in the customer portal, as
proven in Section 3.2, whereas regular accounts are used when self-services are
required. Thus, administrative users, who are nearly half the number of regular
users, make up nearly the same amount of logins as regular users do.

The valid users are often the customers who avidly use the customer portal,
and they will oftentimes remember their login credentials. Those who rarely
utilize it will often forget their login credentials or even not know they have
this access. The results from Section 3.2 shows that a quarter of all login
attempts were invalid. That is a huge margin considering there were only
11,661 distinct accounts over the course of 2 years and 3 months. Most of these
are users who attempt any credentials they can think of to log in. This causes
the customers to mix and match usernames within nhn because many portals
and logins use different credentials. They will most likely either give up or call
customer service for support when they cannot remember their login details.
This generates lots of traffic for the service center, and it can be frustrating for
the users.

This provides a need for a standardized login system, which in our case is
HelseID. HelseID utilizes the ssn for identification. It is usually achieved

3.3 key insights 25

through idps such as Buypass or BankID. Buypass is used by most health
personnel, thus making it easy for them to log in using this system. If they do
not have a buypass card, they can use BankID, which most citizens in Norway
have to access their bank, health journal, or taxes. Either way, they will have
an easy and standardized way to log in to the customer portal, and they never
have to remember their username. This eases the frustration on the customer’s
part of not knowing their login credentials. It also decreases customer portal-
related traffic to the support center, which frees up resources to complete other
tasks.

4
Requirements Specification
This chapter outlines the requirements specification based on the problem
definition in Section 1.2, the background knowledge provided in Chapter 2,
and the information about the customer portal presented in Chapter 3. Both
functional and non-functional requirements are stated, and the conceptual
system model is described. Finally, an abstract overview of the proof of concept
system and its main features and components are defined and outlined.

4.1 System Functional Overview

Some key functional requirements must be developed for the end-user to obtain
its access and the correct role. These requirements are:

• Authentication of the user to guarantee that it is the correct individual
that requests access.

• Obtaining data about the user from an api, and later from storage.

• Role delegation following the data collected from api.

• Storage of the end-users user identity for later use.

• Presentation of the data to the end-user.

27

28 chapter 4 requirements specif ication

• Update existing user identity in the event of affiliation changes.

Authenticating the user is necessary since the user requests access to restricted
information that must maintain its security. In addition, authentication ensures
that the user is who they claim to be; thus, they are allowed access to the
resource. Authentication occurs by using the HelseID client as described in
Section 1.3.

Once an idp has authenticated the user through the client, the client attempts
to obtain more information about the user. First, the client attempts to gather
the information from its storage if the user already has an identity stored
there. Otherwise, it extracts the information from the Altinn service owner api.
Then, roles are delegated per the api response to the concerning user. Finally,
the resulting user identity is stored in the database, and it is used in future
authentications of the user.

The data must be presented to the end-user in the client. The api response is
json formatted, and the data is stored in the database using the same manner.
As a result, it is effortless to display the information for the end-user in an
intuitive, simple way to understand.

If the affiliations of an end-user change, resulting in outdated information in
the system’s database, the user should be able to update their existing identity
in the proof of concept system. The consequences of an affiliation change can
be revoked access, gained a higher level of access, or simply obtaining or losing
access to an organization. In any case, the user is aware of the change and
shall therefore update their identity with an api call to Altinn.

4.2 System Model

From the requirements listed in the previous section, we devise a system
consisting of three distinct units. Figure 4.1 presents an abstract overview of
these three units.

4.2 system model 29

Figure 4.1: Abstract architecture of the system model

4.2.1 The client

The client represents the component with which the end-user interacts. The
client will request information from the Altinn service owner api automatically
when the user is authenticated and the user does not have an existing identity
in storage. Then, the client will present the received information to the end-user
who can interact with it, i.e., access its affiliation’s pages.

4.2.2 API

The api component represents the Altinn service owner api. It receives a
request from the client who asks for information about the end-user. The api
responds accordingly with the information retrieved from the call. However, it
will only reply to an authenticated service owner, meaning the client must be
configured with the correct enterprise certificate and api-key.

4.2.3 Back-end

The back-end is the component used for the storage of user identities which
are created after receiving a response from the api. The client requests the
authenticated user’s user identity, and the back-end responds with the identity

30 chapter 4 requirements specif ication

if it exists in the database. If not, the client has to request information from the
api.

The back-end component should contain a cache for maintaining the correct-
ness of the information. However, this is not implemented in the proof of
concept system and is considered future work.

4.3 Non-functional requirements

This section discusses the necessary non-functional requirements for develop-
ing the proof of concept system [30] according to the problem definition in
Section 1.2.

4.3.1 Security and Privacy

The system handles highly personal data, like ssns; therefore, security and
privacy are paramount to uphold. The security and privacy principles, such as
authentication, are handled in the HelseID client by the underlying protocols
and frameworks, i.e., OAuth2,oidc, and IdentityServer4. Therefore, the system
must handle the credentials safely and securely.

The information retrieved through the api over the web should use an end-to-
end encryption protocol such as Hypertext Transfer Protocol Secure (https)
to maintain its security. The data should be encrypted when stored to maintain
privacy and security. This thesis only uses fictional data, so it does not encrypt
the data when stored for its purposes. However, a realistic implementation
should enforce encryption when storing the information.

4.3.2 Reliability and Availability

The system depends on information from the api. The availability of the system
vastly increases with the use of database storage. The system’s availability will
be affected if a user does not have any affiliations in Altinn, and the availability
will only affect that user and its access rights. The system will be unavailable
because it tries to request information that is not there. Potential future work
to overcome this is to allow users to input their desired affiliations, which
employees with correct rights can then accept.

Reliability is a metric of the correctness of the information. Since the informa-
tion is retrieved from trusted state service, it is assumed to be correct. Therefore,

4.3 non-functional requirements 31

the system does not change the incoming information; it assigns it to the user,
presents it, and stores it for later use.

4.3.3 Fault-tolerance

An advantage of using an api developed by a state enterprise is that they make
it fault-tolerant. In the event of failure, it will likely recover quickly, perhaps
even without other parties noticing a failure. Thus, one can assume there will be
no downtime and unavailability for the api. Redundancy in back-end storage
can also improve fault tolerance, though this leaves the system vulnerable to
inconsistent information. In the event of information inconsistency, one can
depend on the api by invoking a call to correct the inconsistency. However, this
is not implemented in the system and is considered future work.

4.3.4 Dependency

The system is dependent on the Altinn service owner api for role delegation and
to update user affiliations. The api is developed by a trusted state enterprise,
and it is under constant and further development. Therefore, it is improbable
that the api is terminated in the near future.

It does not rely entirely on the api as the user identities are stored. The
customer support center can delegate roles and update affiliations in the case
of an api failure deeming it necessary.

4.3.5 Interoperability and Extensibility

The thesis is narrowed down to handle an api that returns responses formatted
as json. Any api calls either from Altinn or brreg use json as their response
format. Therefore, the system must be able to handle the responses using this
format.

The system design supports extensibility by making it easy to implement
new features. When implementing features using other parts of the api, the
developer needs to create a model for the information expected to be received
and create a handler that calls the api. The developer does not need to change
existing functionalities. The developer can rather use the existing functionalities
as inspiration for implementing the new models and handlers.

32 chapter 4 requirements specif ication

4.3.6 Usability

The targeted users are health care personnel with varying degrees of computer
skills. Due to this fact, the ui must be intuitive and simple to understand. An
intuitive design of the ui usually has an inherently high degree of usability. A
user survey would be beneficial to verify if the usability of the system and that
it has a good ui. However, due to practical limitations, this was not possible to
conduct. The system has a simple ui to prove that the role delegation works,
and better design of the ui is considered future work.

4.3.7 Scalability and Performance

As nhn’s amount of customers increase, so will the number of end-users
the system will have to support. Therefore, the scalability of the system is
dependant on HelseID and nhn’s storage. HelseID is expecting the login
platform to be used extensively in the near future; therefore, they aim to
improve its scalability [28]. Storage of user identities is already established for
the current customer portal. Due to practical reasons, evaluating the system’s
scalability with many end-users is out of the scope for this thesis.

The performance of a system is defined by the amount of time and resources
needed to complete a given task. The performance is dependant on the third-
party api, which is out of the system’s control. An experiment on the latency
of the api is performed in Chapter 6 to verify that the api is sufficient in terms
of performance and usability.

Design choices, such as storing user identities, can help reduce the system’s
latency, thus increasing performance.

4.4 Summary

This chapter has presented the system’s functional requirements and presented
an abstract architecture based upon those requirements. It also stated the non-
functional requirements, which are several criteria and limitations the system
must adhere to.

5
Design and
Implementation

In this chapter, the design and implementation of the proof of concept system
are presented. The design and implementation are based on the background
information in Chapter 2, the need for a unified login system as discussed in
Chapter 3, and the functional and non-functional requirements presented in
Chapter 4.

The system model was presented in Section 4.2, which shows that there are
three distinct components. The system description follows this template.

5.1 Determining the API

When designing and specifying the requirements for the system, both Altinn’s
and brreg’s apis were explored. Both apis allow the extraction of ssns, roles,
and affiliations of a given person or organization. However, the requirements
and how to access the information differs between the two apis.

33

34 chapter 5 design and implementation

Brønnøysundregistert’s API

brreg’s api [7, 9] demonstrated it possible to extract the ssn for employees
with signature and procurator rights from an organization’s entry. To obtain
the ssn of an organization’s employee, one must be authenticated through
the organization’s enterprise certificate. This requires the user to have access
to the organization’s enterprise certificate. To utilize the enterprise certificate,
the user must install the certificate in their browser, log in with the correct
certificate, and nhn must store the organization user safely and securely for
future use.

From the user’s point of view, this could be a tedious and difficult task as they
are likely not proficient with computers. However, it would only allow qualified
individuals to gain access because enterprise certificates should only be shared
among the heads of an organization.

Using the enterprise certificate, it would be possible to delegate roles using
brreg’s api.nhnwould have to trust that the certificate is strictly in the hands
of an individual in charge of the organization. Oftentimes, health care principals
outsource the installation of enterprise certificates to a third-party service
provider such as CompuGroup Medical (cgm) [18] because the employees
at the organization usually are not proficient enough with computers. cgm
is a verified third-party supplier for nhn [27], which does establish trust in
this example, but that might not be the case for all other third-party service
providers. Another downside with this possible system is that it would have to
support login with an enterprise certificate, which HelseID currently does not.
Due to these issues, the Altinn service owner api is also explored.

Altinn’s API

Altinn’s service owner api [3] allows service owners access to excerpt informa-
tion from organizations registered in Altinn. The api offers various features
such as extracting all the information about an organization, its reportees, and
what roles the reportees have. It is also possible to excerpt the exact roles
and organizations any reportee belongs to. This can all be done in the client,
and the user just has to log in with their credentials. All that is required on
the client is proof that it is a service owner. The proof comes in the form of
an api key and an enterprise certificate. The api key is issued by Altinn, and
the enterprise certificate belongs to the organization that is a service owner.
A client configured with the proof can utilize the entire service owner api.
Because of the simplicity in using the api both for the user and the developer,
the Altinn service owner api is chosen for this system.

5.2 the client 35

5.2 The client

The client represents the front-end and login system. The client authenticates
the end-user, and the user interacts with it and views its rights access informa-
tion. In addition, the client is the component that displays the information to
the user. Currently, the system does not offermany functionalities to perform on
this information. However, it does offer the opportunity to replace the current
login solution in the customer portal.

The client is based on the mvc software design pattern. mvc is one of the
most frequently used industry-standard web development frameworks to create
scalable and extensible applications1. It consists of three logical components;
model, view, and controller.

Figure 5.1: Presentation of the mvc design pattern.

In the mvc design pattern, the Model defines how the data should be rep-
resented, how to handle the data, and determines the application’s state. In
addition, the model defines how the information is represented in storage. The
system has two important models; the user model and the reportee model. As
the names state, they represent the end-users information, and the organiza-
tional information, respectively.

The View component is utilized for handling the ui. This is the component
that the user interacts with, and it displays everything the user sees on the
application, like the user model, given the current view. It consists of several
views of various pages, for instance, the main page or an account details

1. https://www.tutorialspoint.com/mvc_framework/mvc_framework_introduction.htm

36 chapter 5 design and implementation

page.

The Controller component acts as an interface between the model and view
components. It handles the processing of all business logic. The controller han-
dles communication with the database unit for storage, and it is the component
that requests api calls and handles the response. It operates on the data from
the model and interacts with the view to render the output for the user to
see.

The client is a HelseID test client that is supplied by nhn. The client uses
the HelseID test Universal Resource Location (url) as its authority, and a
client identity and client secret are supplied to set up the client. The client
supports a range of scopes. The scopes include the default scopes in oidc and
some HelseID scopes relating to identity claims about the user. Additionally,
The HelseID self-service team provided the api key and nhn test enterprise
certificate to configure the http client to support the service owner api.

http client configuration

Figure 5.2: Code snippet for configuration of the http client to support the api. api
key redacted.

The configuration setup of the http client can be seen in Figure 5.2. It is
configured to support the Altinn service owner api. First, the api key and
base Uniform Resource Identifier (uri) for the api endpoint is defined. Then,
they are added to the http client. Lastly, the nhn test enterprise certificate
is extracted from the local machine and added to the http message handler.
The client is initialized in the startup file using these functions as parameters.

5.2 the client 37

The http client allows the HelseID client to send requests to the Altinn api
and receive responses.

Login page

Figure 5.3: Test client login page displaying idps

38 chapter 5 design and implementation

The HelseID login page of the system is displayed in Figure 5.3. It is the first
page the user sees when accessing the system, and it presents the user with
a variety of external and internal idps to authenticate through. The external
idps are, such as ID-porten and Buypass, are familiar to most, if not all, health
care personnel. Internal idps refer to regional providers who are aimed at
specific regions and are known in those regions. Since this is a test client, it
also has the test idp option at the bottom. This allows the developer to log in
using virtually any valid ssn to test the application.

Reportees in proof of concept system

Figure 5.4: Displayed reportees for subject 28065501580 in proof of concept system.

Figure 5.4 provides an overview of a subject and its affiliations in the system.
This is the view the user is presented with once they have logged in. In the
figure, the subject has logged onto the system through HelseID test idp, and
its affiliations have been gathered.

When a user logs in, the controller is triggered to request the user’s affiliations.
If the user does not have an entry in the database, then the api calls are
invoked. Two requests are issued to Altinn for the user; one for all affiliate
roles and the other for the access controller role. This ensures that the user
will have all of its roles.

As observed in the figure, roles have been delegated according to the api
responses. The current implementation of the system only delegates two roles;
regular and access controller. The regular role represents a standard role with
limited access within the corresponding organization and is delegated to any
user affiliation. The access controller role dictates a user who has full access
to the organization, and it is delegated according to the access controller api
response. There can be multiple people with the access controller role for an
affiliation [25], and the roles define what privileges a user has regarding the

5.3 api 39

affiliation data [29].

The "Update affiliations" button is a placeholder action. The general idea for
this function is to allow users to update their own affiliations when they know
that their Altinn affiliations have changed. This function is considered future
work.

5.3 API

The proof of concept system consists of a HelseID test client, which utilizes the
Altinn service owner api to verify a user’s affiliation. The client is configured
with an api key and an enterprise certificate to access the Altinn service owner
api in its test environment. It also utilizes a database to maintain the user
identity. The database is used to limit the number of api calls required by the
system. The user identities are stored in the database along with their roles
and affiliations.

The complexity of implementing a system that utilizes the service owner api
is simpler than implementing the api from brreg. This is because the api
from brreg requires a log-in with an enterprise certificate for authentication,
which the client does not support. Besides this fact, the implementation of both
apis is fairly similar. The biggest difference is the ease of use for the user. When
using the Altinn api, the user just has to log in with their own credentials, and
the client handles the acquisition of role delegation information.

The service owner api consists of a vast range of various api calls. The reportee
call is the most relevant for this system, so the focus of this section will be on
that specific api call. The reportee api call from Altinn’s service owner api is
used by the proof of concept to prove that it is possible to delegate roles using
assignments data from a third party.

40 chapter 5 design and implementation

Altinn service owner - reportee api

Figure 5.5: Request information with description about the reportee call. Figure from
Altinn.2

Figure 5.5 presents the parameters in the reportee api call, along with descrip-
tions and additional information about the various parameters. For example,
the request must contain the query parameter "?ForceEIAuthentication" to
enforce authentication through the enterprise certificate. Without the query
parameter, the authentication fails, and the requesting client will receive a
status code referring to an error in retrieving the information.

The subject is the current user based on its ssn. The parameters serviceCode
and serviceEdition are optional arguments that can be used to determine
the specific service one is after, for instance, HelseID self-service. The service
parameters can be useful but are not required to obtain the current user’s
roles and affiliations. Finally, the roleDefinitionId is an optional parameter
that allows for requesting specific roles. For example, it allows the system to
request the access controller role of the given subject specifically. For the test
environment, this id is 4, and it is utilized by the proof of concept only to obtain
the affiliations of a user where the user has the access controller role.

2. https://www.altinn.no/api/serviceowner/Help/Api/GET-serviceowner-
reportees_subject_serviceCode_serviceEdition_roleDefinitionId_showConsentReportees

5.3 api 41

Reportee api example

Figure 5.6: Reportee api call in the Altinn test environment using Postman.3

Figure 5.6 displays an example of the reportee call made in Postman. It
requests to get the list of reportee entities that the subject can represent.
The subject is a fictitious test person, and the requested role is the access
controller. The subject is configured in Altinn to have access controller rights
for a few organizations and itself. The response will list all the entities that
the given subject can represent as an access controller. Figure 5.7 shows the
corresponding response.

3. https://www.postman.com/

42 chapter 5 design and implementation

Reportee api example response

Figure 5.7: Reportee api response from the Altinn test environment using Postman.⁴

As observed in the figure, the response provides information about what and
whom the subject can represent. To illustrate, the subject can represent three
fictitious organizations and himself as an access controller. This reflects that
this user has access to three organizations as an access controller. Once the
response has been received, access is granted to the user. All responses for test
subjects with Altinn affiliations are displayed in Appendix A.

This api provides ease of use for the end-user who simply log in to the system,
and its affiliations will be gathered from Altinn. The HelseID client uses simple
and known login options through idps that most health care personnel are
familiar with. The api is triggered with its required scopes and parameters

4. https://www.postman.com/

5.4 back-end 43

when the user logs in, as long as the user does not have an existing identity in
the database. The user is then given access according to the api response.

5.4 Back-end

The back-end is the storage component of the system. It consists of a sql
Server to maintain and store user identities. The main reason for having the
storage component is to increase the system’s performance and fault-tolerance
and reduce the number of requests sent to Altinn. For example, if the api is
unreachable or has restricted access, and the system experiences this, the system
is relatively unavailable. However, if users have previously been authenticated,
their identities will be stored in the database, and they will not experience
unavailability; thus, storage increases the system’s fault-tolerance. In addition,
having replication of the information further increases fault-tolerance. Storage
also helps decrease the load performed on the api, and improving performance
by accessing user information quicker.

In this system, the storage consists of a basic sql Server database. Realistically,
the database would consist of one or more of nhn’s databases. In addition,
the back-end component should contain a cache for maintaining information
and reassuring that the information is correct and up-to-date. However, this
is not implemented in the proof of concept system and is considered future
work.

44 chapter 5 design and implementation

ER-Diagram

Figure 5.8: ER-Diagram of model relations

Figure 5.8 presents the database models and their relations in terms of a
primary and foreign key. The user model consists of the user’s name, pid, and
a list of reportees. The user’s primary key is its pid, and the primary key of the
reportees is an automatically generated identification in the form of a number.
The reportee list consists of a list of reportee models. This model contains useful
information about the organization, such as name and organization number.
In addition, an affiliation is added to a user’s reportee list, which includes the
user’s pid and role tied to the given organization.

It is designed this way because a user can have several affiliations with various
roles. This way, it is easy to separate them, and it makes it effortless to find all
affiliations of a given user.

5.5 Summary

This chapter presented the design and implementation of the proof of concept
system. It describes the system’s three main components and how they interact
to tackle the problem defined in Section 1.2. The client utilizes an api from
Altinn, which provides third-party role assignments data for role delegation in

4. https://www.nhn.no/samhandlingsplattform/helseid/hva-er-helseid

5.5 summary 45

the system. The user identities are stored in the back-end in the form of an
sql server.

6
Evaluation and Results
This chapter presents the methods used to evaluate the proof of concept system.
Experiments are conducted, results gathered, and discussed in regards to the
specifications listed in Chapter 4.

6.1 Methodology and Methods

As stated in Section 1.4, the system follows the Design paradigm. The thesis
uses the prototyping [23] design process, which is the optimal approach for a
proof of concept system. First, the process starts with an idea, which shapes the
entire system. The idea provides an abstract overview of the problem and starts
the process of defining a solution for solving the problem. Then, the design
and architecture of the system must be defined, containing all the necessary
components to solve the problem in regards to the stated specifications. Lastly,
the system is implemented according to the requirements specifications, and
the system is evaluated.

As stated in Section 1.2, the system is a proof of concept, meaning its purpose
is to prove that the general idea is functional. Therefore, evaluations of the
system are done to investigate that the idea is, in fact, functional and that it
fulfills the problem statement.

47

48 chapter 6 evaluation and results

6.2 Experiments

All experiments were carried out on the following hardware and software:

• Dell Latitude 7390 with an Intel Core i5-8350U CPU 4C/8T @ 1.70GHz

• 8GB RAM

• Microsoft Windows 10 Enterprise

• Tested on Mozilla Firefox Version 68.9.0esr (32-bit) at the url localhost
on port 35454

The experiments demonstrate the different api responses in conjunction with
the subject. The api’s latency is benchmarked to obtain a better understanding
of its performance. A variety of scenarios are evaluated. The various api
requests include:

• A registered subject in Altinn with affiliations and the access controller
tole.

• Registered subject with affiliations but not the access controller role.

• Subject not registered in Altinn.

6.2.1 Role delegation experiments

According to the problem statement in Section 1.2, the system should automat-
ically assign the appropriate role to any given user as long as they have affilia-
tions registered in Altinn. nhn only has two known test subjects, 24065500317
and 28065501580, with affiliations in the Altinn test. The first subject will
be used for testing and displaying results in the first experiment. The third
subject, 15037104229, is a commonly known test subject. However, the subject
is not registered in Altinn’s test environment and will be used for testing in the
second experiment.

In the first experiment, it is tested how a subject with several affiliations with
a variety of roles in Altinn is represented in the system and how the various
roles are delegated from the retrieved information. The figures below present
how affiliations are viewed in Altinn and the implemented system.

6.2 experiments 49

Reportees in Altinn

Figure 6.1: List of reportees for subject 24065500317 in Altinn.

As observed in Figure 6.1, the subject has seven affiliations in total. It does
not provide which roles he has. However, it is possible to access each entry to
manage the organization and view the rights. In addition, the subject has an
entry for himself, which will be excluded from the system since it only handles
the organizational reportees. Four of the affiliations are organizations, with
two of them having a single subunit each; thus, making them affiliates of the
subject, giving the subject a total of six organizational affiliations.

50 chapter 6 evaluation and results

Reportees in proof of concept system

Figure 6.2: List of reportees for subject 24065500317 in proof of concept system.

Figure 6.2 provides a view of how the six affiliations are represented in the
system. The figure displays that the user has access to the corresponding affili-
ations in conjunction with those shown in Figure 6.1. From the api response,
the user has been delegated three regular roles. The "regular" role represents
the standard role of the system with the most basic rights. In addition, three
access controller roles have also been delegated to the subject.

In the second experiment, a subject that is not registered in Altinn’s test
environment is evaluated. The fact that the subject is not registered translates
to the subject not having any affiliations to delegate a role for. The subject logs
onto the client, which attempts to request organizational information about
the subject.

Figure 6.3: api request for unregistered subject 15037104229

Figure 6.3 shows the api response when requesting the reportees for the given
subject. As seen, the subject is not registered; thus, generating an "invalid ssn"
response.

6.2 experiments 51

Subject not registered in Altinn

Figure 6.4: Response to the unregistered subject in the proof of concept system.

The user can log onto the clientwith its credentials, but as observed in Figure 6.4,
the user will not be delegated any roles. Furthermore, since the user is not
registered in Altinn, it does not have any affiliations registered either. Therefore,
the user has not delegated any roles, as proven in the result.

In this case, the user is given the option to request access manually. The
textbox and submit button are placeholders, as this is not implemented and is
considered future work. In short, the idea is that the subject requests access
which an access controller can grant for a given affiliation.

6.2.2 API Benchmark

The time it takes to load any element of a website or computer system must be
short enough for the user to focus on the task at hand. The optimal speed of
operations makes the user feel as if the task happens instantaneously. According
to Jacob Nielsen in his book Usability Engineering [19], three important time
limits have remained the same for a long period of time. The three limits are
0,1 seconds, 1 second, and 10 seconds. When the load time is 0,1 seconds, the
user feels the system is instantaneous. At a 1 second limit, the user usually
notices the delay, but it is short enough to keep its attention. At 10 seconds, the
user’s attention is usually lost, and they commit to other tasks while waiting
for the computer to finish its task.

The general consensus is that 1 second is the maximum limit before users feel
like the loading time is slow and begin to lose their attention. Therefore, when
benchmarking the api a 1000milliseconds were chosen as amaximum response
time. Anything higher than 1 second would fail the test. The benchmark test
consists of 100 iterations of the request displayed in Figure 5.6, measuring the
response time. The test was run 10 times to get an average response time and
exclude skewed results. Figure 6.5 displays the result of the benchmark.

52 chapter 6 evaluation and results

api latency benchmark

Figure 6.5: Latency benchmark of reportee api call done in Postman.

The results show that all the tests were passed. Furthermore, the api has an
average latency of 299.8 milliseconds which is well under the 1-second limit.
The percentile response times represent the highest latency in the top 10, 5,
and 1 percentages. The highest response time, 368.68ms, is also well under the
1-second limit. The results prove that the performance of the api is good and
more than sufficient enough to be used in the proof of concept system.

6.3 Summary

This chapter has evaluated the system to determine if it is feasible through proof
of concept. It demonstrates that the system automatically delegates correct
roles on login, in correspondence with the information from api, for any subject
with affiliations registered in Altinn. Furthermore, the api performs well, with
an average response time of 299.8 milliseconds.

7
Conclusion
This chapter presents the achievements of the thesis, provides some concluding
remarks, and outlines potential future work.

7.1 Achievements

In this thesis, a proof of concept system has been designed, implemented,
and evaluated for role delegation using HelseID combined with third-party
role assignments data. The problem definition stated the following in Sec-
tion 1.2:

This thesis proposes a proof of concept system that aims to solve the problem
of outdated rights access information and missing or forgotten login infor-
mation for nhn’s customers. The goal is to solve this problem by integrating
HelseID [1] with third-party role assignments data from brreg’s apis [7, 9]
or Altinn’s service owner api [3]. HelseID allows health care personnel to log
in using their ssn through a well-known idp such as BankID [6] or Buypass.
With these apis, the system will automatically assign the appropriate role to
any users given they have registered affiliations, thus alleviating nhn from
creating and delegating users.

With all of nhn’s customers and their personnel changing, it is easy for access
rights information to get outdated. Especially since most customers usually do

53

54 chapter 7 conclusion

not report such changes. The proof of concept system provides a solution by
utilizing an api to extract organizational roles from a third-party service.

The solution lies in designing and implementing a system that utilizes HelseID
integrated with an api from a third-party service to request role assignments
data. The proof of concept system authenticates its users with well-known idps
through the HelseID client and automatically requests access rights information
for the given user. The client issues a request to Altinn’s service owner api with
the user’s ssn as the subject to acquire the access rights information. Roles
are delegated for the user according to the api response, and the user identity
is stored in a back-end for fault-tolerance and future use. The evaluations of
the system show that it can delegate roles for any subject according to its
registration in Altinn.

7.2 Concluding remarks

Through a proof of concept system, this thesis has shown that HelseID, in
combination with Altinn’s service owner api, makes it possible to dynamically
maintain access rights of healthcare principals. It also demonstrates that it is
possible to alleviate the traditional username and password accounts by using
HelseID, which authenticates the user through known idps using ssns.

One of the main issues when designing the system was to decide which third-
party service to utilize. Two different apis, serviced by brreg’s and Altinn,
were explored to solve this task. Altinn’s service owner api was chosen for
the task as it was more user-friendly and easy to implement. Furthermore, the
Altinn api offers a great opportunity for further development of the system
and its functionalities.

7.3 Future Work

HelseID, with the use of the Altinn service owner api, offers the possibility for
great features that can improve the user experience in nhn’s customer portal
and other nhn platforms. With the addition of the api, organizations can
potentially be entirely self-sufficient in administrating home office accounts,
e-mail accounts, and perhaps even virtual meeting rooms. Any organization
that has set up an access controller role in Altinn, and is a customer ofnhn, can
independently obtain the same access in this system. The access controller will
have full access to the membership of the organization and all of its existing
and upcoming features.

7.3 future work 55

The access controller can grant or revoke access for other employees and
delegate roles as they see fit. The api can be used to delegate other roles
besides the access controller or regular role. The api offers the opportunity
to extract any Altinn role; thus, allowing a developer to create their own role
hierarchy that can delegate roles in correspondence with api responses.

A user that is a part of an organization, but does not have an affiliation or
a role in Altinn, should have the option to input their desired organizations.
From there, the access controller will have the option to grant or deny access
to the potential employees. This feature can make the system fault-tolerant
and increase its availability. The proof of concept system has a placeholder
button for this feature, as seen in Section 5.2.

The proof of concept system does not focus on the ui. It only displays the
information for the user to demonstrate that it works. The ui can be further
developed to look better, provide more insight for the user, and add more
general functionality.

In the future, caching should be implemented in the database used by the
system. Caching would greatly help reduce outdated information by requiring
older information to be verified after a certain amount of time, making the
information more reliable and available for the user.

A
JSON Response from Altinn
API

Response data from Altinn service owner api for all requests regarding test
subjects with Altinn affiliations.

Test subject, 15037104229, without Altinn affiliation receives http status 400
Invalid social security number.

A.1 Subject 24065500317

A.1.1 With roleDefinitionId as access controller (4)

{
"_links": {

"self": {
"href":

"https://tt02.altinn.no/api/serviceowner/reportees?subject={subject}"
}

},
"_embedded": {

"reportees": [

57

58 appendix a json response from altinn api

{
"Name": "ASKILDSEN BENDIK",
"Type": "Person",
"SocialSecurityNumber": "24065500317"

},
{

"Name": "DRAG OG SVARTISDAL",
"Type": "Business",
"OrganizationNumber": "910725726",
"ParentOrganizationNumber": "910597019",
"OrganizationForm": "BEDR",
"Status": "Active"

},
{

"Name": "FJELBERG OG BOTNHAMN",
"Type": "Enterprise",
"OrganizationNumber": "911391007",
"OrganizationForm": "AS",
"Status": "Active"

},
{

"Name": "FLORNES OG BØRSELV",
"Type": "Enterprise",
"OrganizationNumber": "910597019",
"OrganizationForm": "AS",
"Status": "Active"

}
]

}
}

A.1.2 Without role specification

{
"_links": {

"self": {
"href":

"https://tt02.altinn.no/api/serviceowner/reportees?subject={subject}"
}

},
"_embedded": {

"reportees": [
{

a.1 subject 24065500317 59

"Name": "ASKILDSEN BENDIK",
"Type": "Person",
"SocialSecurityNumber": "24065500317"

},
{

"Name": "DRAG OG SVARTISDAL",
"Type": "Business",
"OrganizationNumber": "910725726",
"ParentOrganizationNumber": "910597019",
"OrganizationForm": "BEDR",
"Status": "Active"

},
{

"Name": "FJELBERG OG BOTNHAMN",
"Type": "Enterprise",
"OrganizationNumber": "911391007",
"OrganizationForm": "AS",
"Status": "Active"

},
{

"Name": "FLORNES OG BØRSELV",
"Type": "Enterprise",
"OrganizationNumber": "910597019",
"OrganizationForm": "AS",
"Status": "Active"

},
{

"Name": "HOVIN I GAULDAL OG NEVLUNGHAMN",
"Type": "Enterprise",
"OrganizationNumber": "910596993",
"OrganizationForm": "ASA",
"Status": "Active"

},
{

"Name": "LAVIK OG EIDSVOLL VERK",
"Type": "Business",
"OrganizationNumber": "910725696",
"ParentOrganizationNumber": "910579959",
"OrganizationForm": "BEDR",
"Status": "Active"

},
{

"Name": "SÆBØVÅGEN OG SKAVNAKK",
"Type": "Enterprise",

60 appendix a json response from altinn api

"OrganizationNumber": "911438178",
"OrganizationForm": "AS",
"Status": "Active"

}
]

}
}

A.2 Subject 28065501580

A.2.1 With roleDefinitionId as access controller (4)

{
"_links": {

"self": {
"href":

"https://tt02.altinn.no/api/serviceowner/reportees?subject={subject}"
}

},
"_embedded": {

"reportees": [
{

"Name": "HOVIN I GAULDAL OG NEVLUNGHAMN",
"Type": "Enterprise",
"OrganizationNumber": "910596993",
"OrganizationForm": "ASA",
"Status": "Active"

},
{

"Name": "HÅGENSEN JEPPE",
"Type": "Person",
"SocialSecurityNumber": "28065501580"

},
{

"Name": "LAVIK OG EIDSVOLL VERK",
"Type": "Business",
"OrganizationNumber": "910725696",
"ParentOrganizationNumber": "910579959",
"OrganizationForm": "BEDR",
"Status": "Active"

},
{

a.2 subject 28065501580 61

"Name": "SÆBØVÅGEN OG SKAVNAKK",
"Type": "Enterprise",
"OrganizationNumber": "911438178",
"OrganizationForm": "AS",
"Status": "Active"

}
]

}
}

A.2.2 Without role specification

{
"_links": {

"self": {
"href":

"https://tt02.altinn.no/api/serviceowner/reportees?subject={subject}"
}

},
"_embedded": {

"reportees": [
{

"Name": "DRAG OG SVARTISDAL",
"Type": "Business",
"OrganizationNumber": "910725726",
"ParentOrganizationNumber": "910597019",
"OrganizationForm": "BEDR",
"Status": "Active"

},
{

"Name": "FJELBERG OG BOTNHAMN",
"Type": "Enterprise",
"OrganizationNumber": "911391007",
"OrganizationForm": "AS",
"Status": "Active"

},
{

"Name": "FLORNES OG BØRSELV",
"Type": "Enterprise",
"OrganizationNumber": "910597019",
"OrganizationForm": "AS",
"Status": "Active"

},

62 appendix a json response from altinn api

{
"Name": "HOVIN I GAULDAL OG NEVLUNGHAMN",
"Type": "Enterprise",
"OrganizationNumber": "910596993",
"OrganizationForm": "ASA",
"Status": "Active"

},
{

"Name": "HÅGENSEN JEPPE",
"Type": "Person",
"SocialSecurityNumber": "28065501580"

},
{

"Name": "LAVIK OG EIDSVOLL VERK",
"Type": "Business",
"OrganizationNumber": "910725696",
"ParentOrganizationNumber": "910579959",
"OrganizationForm": "BEDR",
"Status": "Active"

},
{

"Name": "SÆBØVÅGEN OG SKAVNAKK",
"Type": "Enterprise",
"OrganizationNumber": "911438178",
"OrganizationForm": "AS",
"Status": "Active"

}
]

}
}

References
[1] Steinar Noem Alex Somby and Håvard Wang. Helse id dokumentasjon.

Web site v1.8, Norsk Helsenett SF, https://nhn.no/helseid/, dec 2020.
accessed 6 may 2021.

[2] Altinn. About altinn 3. Web site, Digitaliseringsdirektoratet, https://
docs.altinn.studio/teknologi/altinnstudio/about/. accessed 25 May
2021.

[3] Altinn. Altinn service owner api. Web site, Digitaliseringsdirektoratet,
https://www.altinn.no/api/serviceowner/Help, 2021. accessed 27 July
2021.

[4] Altinn. Om altinn. Web site, Digitaliseringsdirektoratet, https://www.
altinn.no/om-altinn/, 2021. accessed 25 may 2021.

[5] Altinn. Om altinn samarbeidet. Web site, Digitaliseringsdirektoratet,
https://www.altinndigital.no/om-altinn/om-altinn-samarbeidet/,
2021. accessed 31 August 2021.

[6] BankID. Om oss. Web site, Vipps AS, https://www.bankid.no/privat/om-
oss/, 2021. accessed 5 May 2021.

[7] Brønnøysundregisterene. Fullmakttjenesten: Api-dokumentasjon. Web
site v1.0, https://data.brreg.no/fullmakt/docs/index.html, jul 2021.
accessed 30 April 2021.

[8] Brønnøysundregisterene. Home page. Web site, https://www.brreg.no/,
2021. accessed 23 March 2021.

[9] Brønnøysundregisterene. Åpne data - enhetsregisteret: Api-
dokumentasjon. Web site v1.0, https://data.brreg.no/
enhetsregisteret/api/docs/index.html, jul 2021. accessed 30 April
2021.

63

https://nhn.no/helseid/
https://docs.altinn.studio/teknologi/altinnstudio/about/
https://docs.altinn.studio/teknologi/altinnstudio/about/
https://www.altinn.no/api/serviceowner/Help
https://www.altinn.no/om-altinn/
https://www.altinn.no/om-altinn/
https://www.altinndigital.no/om-altinn/om-altinn-samarbeidet/
https://www.bankid.no/privat/om-oss/
https://www.bankid.no/privat/om-oss/
https://data.brreg.no/fullmakt/docs/index.html
https://www.brreg.no/
https://data.brreg.no/enhetsregisteret/api/docs/index.html
https://data.brreg.no/enhetsregisteret/api/docs/index.html

64 references

[10] Douglas E Comer, David Gries, Michael C Mulder, Allen Tucker, A Joe
Turner, and Paul R Young. Computing as a discipline. Communications of
the ACM, 32(1):9–23, 1989.

[11] Curity. Scopes vs claims. Web site, https://curity.io/resources/learn/
scopes-vs-claims/, 2017. accessed 17 March 2021.

[12] Roy T Fielding and Richard N Taylor. Principled design of the modern web
architecture. ACM Transactions on Internet Technology (TOIT), 2(2):115–
150, 2002.

[13] Roy Thomas Fielding. Architectural styles and the design of network-based
software architectures. University of California, Irvine, 2000.

[14] Dick Hardt. The OAuth 2.0 Authorization Framework. RFC 6749, October
2012.

[15] Splunk Inc. The data-to-everything platform. Web site, https://www.
splunk.com/, 2005. accessed 9 April 2021.

[16] Simen Lomås Johannessen. Girji. metacode extensibility in girji. Master’s
thesis, UiT Norges arktiske universitet, 2014.

[17] Ida Jaklin Johansen. Láhttu-a system for retrieval and consolidation of
personsal data from activity-tracking web services. Master’s thesis, UiT
Norges arktiske universitet, 2014.

[18] CompuGroup Medical. Hva er et virksomhetssertifikat? Web site, https:
//www.cgm.com/nor_no/artikler/artikler/virksomhetssertifikat-
hva-er-dette-og-hvorfor-trenger-vi-det-1.html, nov 2020. accessed
4 July 2021.

[19] Jakob Nielsen. Usability engineering. Morgan Kaufmann, 1994.

[20] OpenID. Openid certification. Web site, https://openid.net/
certification/, 2021. accessed 6 July 2021.

[21] OpenID. Openid connect: The internet identity layer. Web site, https:
//openid.net/connect/, 2021. accessed 7 July 2021.

[22] Tutorials Point. Mvc framework - introduction. Web site, https://www.
tutorialspoint.com/mvc_framework/mvc_framework_introduction.htm,
2021. accessed 5 August 2021.

https://curity.io/resources/learn/scopes-vs-claims/
https://curity.io/resources/learn/scopes-vs-claims/
https://www.splunk.com/
https://www.splunk.com/
https://www.cgm.com/nor_no/artikler/artikler/virksomhetssertifikat-hva-er-dette-og-hvorfor-trenger-vi-det-1.html
https://www.cgm.com/nor_no/artikler/artikler/virksomhetssertifikat-hva-er-dette-og-hvorfor-trenger-vi-det-1.html
https://www.cgm.com/nor_no/artikler/artikler/virksomhetssertifikat-hva-er-dette-og-hvorfor-trenger-vi-det-1.html
https://openid.net/certification/
https://openid.net/certification/
https://openid.net/connect/
https://openid.net/connect/
https://www.tutorialspoint.com/mvc_framework/mvc_framework_introduction.htm
https://www.tutorialspoint.com/mvc_framework/mvc_framework_introduction.htm

references 65

[23] Roger S Pressman. Software engineering: a practitioner’s approach. Pal-
grave macmillan, 2005.

[24] regex101. build, test, and debug regex. Web site, https://regex101.com/,
2021. accessed 20 April 2021.

[25] Ravi S Sandhu and Pierangela Samarati. Access control: principle and
practice. IEEE communications magazine, 32(9):40–48, 1994.

[26] Norsk Helsenett SF. Kundeportalen. Web site, https://kunde.nhn.no,
apr 2021.

[27] Norsk Helsenett SF. Tredjepartsleverandører i helsenettet. Web site, ,
2021. accessed 10 August 2021.

[28] Norsk Helsenett SF. Utbredelse av tjenesten. Web site,
https://www.nhn.no/samhandlingsplattform/helseid/hva-er-
helseid/utbredelse-av-tjenesten, 2021. accessed 27 July 2021.

[29] Andrew S Tanenbaum and Herbert Bos. Modern operating systems. Pear-
son, 2015.

[30] Maarten Van Steen and A Tanenbaum. Distributed systems principles
and paradigms. Network, 2:28, 2002.

https://regex101.com/
https://kunde.nhn.no
https://www.nhn.no/samhandlingsplattform/helseid/hva-er-helseid/utbredelse-av-tjenesten
https://www.nhn.no/samhandlingsplattform/helseid/hva-er-helseid/utbredelse-av-tjenesten

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Norsk Helsenett
	1.2 Problem definition
	1.3 HelseID
	1.4 Methodology
	1.5 Interpretation, Scope, and Limitations
	1.6 Terminology
	1.7 Outline

	2 Background
	2.1 OAuth2
	2.1.1 Roles
	2.1.2 Grant Types

	2.2 OpenID Connect
	2.2.1 ID token

	2.3 IdentityServer4
	2.4 Summary

	3 The NHN Customer Portal
	3.1 Obtaining the data
	3.2 Statistics of the customer portal
	3.3 Key insights

	4 Requirements Specification
	4.1 System Functional Overview
	4.2 System Model
	4.2.1 The client
	4.2.2 API
	4.2.3 Back-end

	4.3 Non-functional requirements
	4.3.1 Security and Privacy
	4.3.2 Reliability and Availability
	4.3.3 Fault-tolerance
	4.3.4 Dependency
	4.3.5 Interoperability and Extensibility
	4.3.6 Usability
	4.3.7 Scalability and Performance

	4.4 Summary

	5 Design and Implementation
	5.1 Determining the API
	5.2 The client
	5.3 API
	5.4 Back-end
	5.5 Summary

	6 Evaluation and Results
	6.1 Methodology and Methods
	6.2 Experiments
	6.2.1 Role delegation experiments
	6.2.2 API Benchmark

	6.3 Summary

	7 Conclusion
	7.1 Achievements
	7.2 Concluding remarks
	7.3 Future Work

	A JSON Response from Altinn API
	A.1 Subject 24065500317
	A.1.1 With roleDefinitionId as access controller (4)
	A.1.2 Without role specification

	A.2 Subject 28065501580
	A.2.1 With roleDefinitionId as access controller (4)
	A.2.2 Without role specification

	References

