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ABSTRACT

Satellite observations of pan-Arctic sea ice thickness have so far been constrained to winter months. For radar
altimeters, conventional methods cannot differentiate leads from meltwater ponds that accumulate at the ice
surface in summer months, which is a critical step in the ice thickness calculation. Here, we use over 350 optical
and synthetic aperture radar (SAR) images from the summer months to train a 1D convolution neural network for
separating CryoSat-2 radar altimeter returns from sea ice floes and leads with an accuracy >80%. This enables us
to generate the first pan-Arctic measurements of sea ice radar freeboard for May-September between 2011 and
2020. Results indicate that the freeboard distributions in May and September compare closely to those from a
conventional ‘winter’ processor in April and October, respectively. The freeboards capture expected patterns of
sea ice melt over the Arctic summer, matching well to ice draft observations from the Beaufort Gyre Exploration
Program (BGEP) moorings. However, compared to airborne laser scanner freeboards from Operation IceBridge
and airborne EM ice thickness surveys from the Alfred Wegener Institute (AWI) IceBird program, CryoSat-2
freeboards are underestimated by 0.02-0.2 m, and ice thickness is underestimated by 0.28-1.0 m, with the
largest differences being over thicker multi-year sea ice. To create the first pan-Arctic summer sea ice thickness
dataset we must address primary sources of uncertainty in the conversion from radar freeboard to ice thickness.

1. Introduction

Sea ice extent in the Arctic has declined at an unprecedented rate in
recent decades (Stroeve and Notz, 2018), affecting polar amplification of
global warming trends (Serreze et al., 2009), changes in precipitation
(Webster et al., 2014) and Arctic Ocean freshwater content (Morison
etal., 2012). Eight of the lowest ever recorded September sea ice extents
have occurred in the last ten years (Fetterer et al., 2017). These changes
have fostered growing stakeholder interest in the Arctic Ocean, partic-
ularly during summer and autumn months when open water area is
greatest (Barnhart et al., 2016), the sea ice is most dynamic (Kwok et al.,
2013) and ocean primary productivity (Arrigo et al., 2012) and
biogeochemical processes (Barber et al., 2015) are most active. Accurate
forecasts of summer sea ice conditions weeks to months in advance
would revolutionize polar numerical weather prediction, increase
commercial shipping and cruise ecotourism throughout the Arctic, and
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improve planning of resource exploitation, fishing, and hunting activ-
ities in the marginal ice zone (Guemas et al., 2016).

Our understanding of and ability to predict changes in the Arctic sea
ice cover during summer are limited by the availability of remotely
sensed sea ice observations. State-of-the-art forecasting systems for
short-term (weeks to a few months) sea ice conditions demonstrate
significantly improved fidelity when initialized from winter ice thick-
ness observations (Chen et al., 2017; Allard et al., 2018; Blockley and
Peterson, 2018) or sub-model grid ice thickness distributions (Schroder
et al., 2019). Through idealized sea ice model experiments, Day et al.
(2014) and Bushuk et al. (2017) have demonstrated that ice thickness
observations can theoretically offer predictions of pan-Arctic and even
regional September sea ice area up to 4-5 months in advance. However,
initializing sea ice models with thickness observations prior to May/
June is less effective because synoptic episodes of sea ice advection and
negative ice-growth feedbacks in spring diminish the impact of winter
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thickness anomalies on summer ice area (Bushuk et al., 2020). A sharp
increase in predictability occurs at the onset of the sea ice melting sea-
son, when the ice-albedo feedback acts to enhance remaining thickness
anomalies (Sigmond et al., 2016; Babb et al., 2019). This transition has
been termed the “spring predictability barrier” and is a robust feature
across most of the GCMs in CMIP5 (Bonan et al., 2019).

To date, pan-Arctic sea ice thickness observations from satellite laser
altimetry (Petty et al., 2020), radar altimetry (Laxon et al., 2013) and L-
band radiometry (Kaleschke et al., 2012) are only available for the
winter months of October-April. Airborne electromagnetic (EM) sensors
and moored upward-looking sonar (ULS) instruments have provided
snapshots of the sea ice thickness distribution over limited areas and/or
time periods (Haas and Howell, 2015; Belter et al., 2020, 2021). How-
ever, consistent pan-Arctic sea ice thickness observations remain elusive
for the months of May-September when they would arguably be most
valuable.

A critical step of the sea ice thickness processing chain for radar al-
timeters is the separation of measurements from sea ice floes and leads
(cracks in the ice that form when ice floes diverge). Lead detection relies
on the ability to distinguish different surface types (open ocean, leads
and ice floes) from backscattered radar echoes. In the winter months
(Oct-Apr), each surface will reflect the return echo differently. Leads
tend to return specular reflections resulting in a high backscatter since
they present a mirror-like surface. Returns from ice floes are less spec-
ular with lower backscatter, while returns from the open ocean have a
smooth functional form. This allows parameters such as the calibrated
backscatter coefficient sigma naught (c°), the waveform shape
(including parameters derived from the shape like the waveform power,
pulse peakiness and leading-edge width), and contextual information (e.
g., sea ice concentration from passive microwave satellites), to distin-
guish the different surface types. For synthetic aperture radar (SAR)
altimeters, such as CryoSat-2, further parameters can be derived from
the echo stack information (range integrated power (RIP), stack kurto-
sis, stack peakiness and stack standard deviation) to classify surface
types. The usefulness of physical models to parameterize each surface
type is limited and tends to be governed by any assumptions made in the
modelling. Thus, thresholds can either be chosen empirically (Laxon
et al., 2003; Peacock and Laxon, 2004; Ricker et al., 2016; Passaro et al.,
2017), or statistically, for example, by machine learning techniques
(Poisson et al., 2018; Miiller et al., 2017; Dettmering et al., 2018). The
accuracy of these lead-ice floe classifiers generally ranges from 80 to
95% (Lee et al., 2016; Dettmering et al., 2018).

Over the summer months (May-Sep), high backscatter specular re-
flections originate from leads and melt ponds, making reflections from
the sea ice surface varied and difficult to distinguish from leads
(Drinkwater, 1991). Reflective leads and melt ponds covering as little as
1% of the sensor footprint can produce a specular radar return (Kwok
et al., 2018). Thus, traditional surface type classification algorithms
perform poorly during the summer. For instance, algorithms developed
for Arctic winter months regularly classify >50% of the sea ice-covered
area in May onwards as leads despite ice concentrations exceeding 90%
(e.g., Lee et al., 2018). Regardless of the challenge to detect leads in
summer months, observations of the sea surface height including all
specular returns are biased high between June and October, compared
to other months (Armitage et al., 2016). This indicates the radar detects
bare ice and melt pond surfaces elevated above sea level and can
potentially still measure the ice freeboard.

Here, we use a novel approach to accurately separate leads and
summer sea ice floes in CryoSat-2 observations of the Arctic Ocean to
retrieve sea ice freeboard. We (i) collate images from optical and SAR
satellites overlapping altimeter orbits, enabling us to characterize re-
flections from different surface types, ii) use local along-track variations
in echo parameters instead of absolute values to account for the strong
variability of summer sea ice conditions, and iii) include the local
variation in elevation as a classification variable to distinguish sea ice
surface water from leads. Machine learning techniques are applied for
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the final classification. Radar freeboards are derived from the elevation
differences between classified ice floes and leads. We first compare sea
ice radar freeboards between May and September to those obtained from
a standard CryoSat-2 processing chain for the winter months. We then
validate the derived freeboards against independent sea ice freeboard,
draft, and thickness observations from airborne laser scanner, ULS, and
airborne EM surveys, respectively. We identify sources of apparent bias
in the summer radar freeboards, before finally discussing prospects for
converting freeboards into a first pan-Arctic sea ice thickness data
product for May-September 2011-2020.

2. Methods
2.1. CryoSat-2 data

The CryoSat-2 satellite launched in 2010, is equipped with the Ku
band SAR/Interferometric Radar ALtimeter (SIRAL) instrument and uses
either SAR or SAR interferometric (SARIn) altimeter mode over sea ice.
A limitation of obtaining reliable elevation measurements over ice floes
and leads is that there can be significant backscatter and waveform
shape variation depending on the reflecting surface. To partially account
for this we applied the SAR Altimetry MOde Studies and Applications +
(SAMOSA+) physical retracker (Dinardo et al., 2018) based on the SA-
MOSA2 delay-doppler analytical radar echo model (Ray et al., 2015).
SAMOSA2 estimates the epoch, waveform power and significant wave
height, while SAMOSA+ estimates an additional parameter, the mean
square surface slope, that is designed to model surfaces with a range of
backscattering properties from quasi-specular sea ice to fully specular
leads. Our available dataset included zero-padding to increase wave-
form sampling but did not include a Hamming window filter. This
filtering step is designed to reduce the effects of side lobes on the an-
tenna main beam but can introduce bias in the lead elevation data and is
not explicitly required for the SAMOSA+ retracking (Laforge et al.,
2020). We used CryoSat-2 data processed from Level-1B to Level-2 for
May-September 2011-2020 with the SARvatore and SARINvatore
modules provided by the European Space Agency Grid Processing On
Demand (GPOD) service (Dinardo et al., 2016) (Data repositories #45
and #46 available from http://wiki.services.eoportal.org/tiki-index.ph
p?page=SARvatore-+Data-+Repository).

2.2. SAR and optical data

We used six satellites, three optical (Landsat-8 and Sentinel-2A and
2B) and three SAR sensors (RADARSAT-2 and Sentinel-1A and 1B), to
identify overlapping scenes with CryoSat-2 orbits that were a maximum
of 15 min apart. This ensured that we did not have to use a sea ice drift
model to align the sensors as, for example, a drift speed of 0.4 m/s for 15
min would result in a 360 m offset, which is approximately the along-
track sampling of CryoSat-2. Sea ice drift speeds are typically well
below 0.2 m/s in the Arctic (Kwok et al., 2013). All missions except
RADARSAT-2 started operating after the CryoSat-2 launch (2010), and
all have a lower maximum latitude (see Table 1). Thus, no coincident

Table 1
Optical and SAR satellite scenes with overlapping CryoSat-2 tracks along with
how many scenes could actually be used to create the testing/training database.

Satellite First year of ~ Orbital Coincident Coincident

operation inclination images found images used.
(degree)
SAR SARIn  SAR  SARIn

Landsat-8 2013 98.2 108 25 9 0

Sentinel-2 2015 (A) 98.6 56 20 1 0
2017 (B)

Sentinel-1 2014 (A) 98.2 1588 276 330 17
2016 (B)

RADARSAT- 2008 98.6 54 0 5 0

2
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passes could be obtained for the northernmost 4° of the CryoSat-2 orbit.
Overall, we found 209 and 1918 coincident images for the optical sat-
ellites and SAR satellites, respectively. The largest number of coincident
images were found between the twin Sentinel-1A and —1B satellites and
CryoSat-2 (1864 images). Fewer Sentinel-1 images coinciding with
CryoSat-2 SARIn data (N = 58) than SAR data (N = 1806) were iden-
tified as the SARIn sea ice data are mostly limited to coastal regions.
There was an experimental SARIn area in the open Arctic Ocean, known
as the Wingham Box, included in the CryoSat-2 mode mask from
November 2010 to July 2014. Only RADARSAT-2 started operating
before the mode for this box was changed to SAR, however we could not
obtain any overlapping images.

We manually checked each corresponding image to find locations of
leads that intersected with CryoSat-2 tracks. By manually screening, we
were able to detect leads with minimal processing on the images and
without using pre-existing optical or SAR image classification schemes.
Leads were determined visually from variations in the image intensity
and their shape, as leads are typically elongated linear features
compared to rounded melt ponds or ice floes. We used a true colour
image from the visible bands as the primary method to find leads in
optical satellite images because leads are less reflective than ice floes in
the visible spectrum. As a secondary check, we also used the difference
between the red and blue bands as melt ponds tend to reflect more light
at blue wavelengths than leads (Istomina et al., 2016). Both Landsat-8
(USGS, NASA) and Copernicus Sentinel-2 (ESA) data were accessed
through the Google Public Cloud (https://cloud.google.com/storage/d
ocs/public-datasets).

For the SAR satellites we used the backscatter from both HH and HV
polarization images to discriminate leads. The microwave backscatter
intensity is mainly governed by the dielectric constant and roughness of
the surface along with the incidence angle, polarization and frequency of
the incident wave (Carsey, 1992). Thus, the ice type, roughness, wind
speed over water, and melt pond fraction all play a role in the back-
scatter intensity (Scharien et al., 2014). In the HH image, a lead could
either appear bright or dark based on incidence angle and wind speed. In
the HV image leads typically appear dark but tend to have lower contrast
owing to the proximity of the HV signal to the sensor noise floor
(Komarov and Buehner, 2017). For Sentinel-1 we used the pre-
processing scheme described in (Filipponi, 2018), which involves
border and thermal noise reduction, speckle filtering using the refined
Lee filter and a conversion to sigma naught (¢°). The RADARSAT-2 data
were calibrated to ¢° and speckle filtered with a Lee sigma filter.
Copernicus Sentinel data were retrieved from the ASF DAAC (https://as
f.alaska.edu/data-sets/sar-data-sets/sentinel-1/), processed by ESA,
while RADARSAT-2 data were provided by the Natural Resources Can-
ada’s Earth Observation Data Management System (www.eodms-sgdot.
nrcan-rncan.gc.ca) We only recorded leads with a notable corresponding
change in elevation in the CryoSat-2 SAR or SARIn data, and when a lead
could be clearly identified in the optical or SAR image, thus the mini-
mum lead size identified was approximately the size of the CryoSat-2
footprint (~300 m).

2.3. Training/testing database of CryoSat-2 summer sea ice classes

We found that roughly 10% of the images could be used in the
manual classification. This was due to a combination of cloud cover for
the optical satellites, the image being over open water, or only a small
part of the CryoSat-2 orbit crossing the image. While we roughly ob-
tained the same number of coincident images for each month, in the
early and mid-summer months (April-July) it was difficult to manually
determine leads from the Sentinel-1 SAR images and CryoSat-2 elevation
differences. This was caused by melting/saturated snow and melt ponds
in their initial stage of formation on the surface of the ice which reduced
the contrast between leads and floes in the SAR image. Such a reduction
in contrast has been documented previously over first-year ice (FYI) in
May and June (e.g., Barber et al., 1992; Scharien et al., 2014). Thus,
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most of the lead classifications were from August and September (N =
117, 109 SAR and 8 SARIn) as opposed to April-July (N = 48, 43 SAR
and 5 SARIn).

Along with the classified leads we defined two further classes: ‘good’
floes and ‘noisy’ floes. This allowed us to create a training and testing
dataset that represents the complete CryoSat-2 observational record
over Arctic sea ice in summer months. ‘Good’ floes were defined visually
where we could be confident that a sea ice floe was present in both the
CryoSat-2 elevation data and its coincident optical or SAR image. ‘Noisy’
floes were defined visually where the coinciding image showed sea ice
floes but the local surface parameters from the CryoSat-2 data were too
variable to classify (caused for example by off-nadir reflections from
melt ponds, heavily mixed surface types or areas of rough ice). The three
classification types: leads, good floes and noisy floes, allowed us to
separate where there were local changes in CryoSat-2 parameters (e.g.,
elevation, 6° or waveform shape) associated with a lead, versus large
local changes owing to noise. We only distinguished between floe types
in the manual classification scheme and did not separate the good from
noisy floes when estimating sea ice freeboards from CryoSat-2.

Overall, we classified 170 (157 SAR and 13 SARIn mode) leads along
with 236 examples of good ice floes and 193 examples of noisy ice floes.
The current data set is available in the supplementary materials, and the
spatial distribution of leads is shown in Fig. 1. We obtained good
coverage in the Central Arctic Ocean, but there were fewer classified
leads over thin sea ice near the lower sea ice concentration ice pack
margins. In these marginal ice zone (MIZ) locations, it was more difficult
to manually identify leads between thinner sea ice floes because the
change in elevation at a lead was often obscured by background eleva-
tion variability (noise) over neighbouring sea ice floes. This resulted in
only 6% of the classified leads originating from areas of thin ice where
freeboards <0.05 m.

The elevation, ¢, pulse peakiness (PP: maximum of waveform
divided by the average of all bins over a noise floor) and RIP peakiness
(RP: maximum of RIP divided by all average of all bins), of leads, good
floes and noisy floes in the training/testing dataset were detrended using
a 30-point (8.5-km) boxcar filter and are shown in Fig. 2. All four pa-
rameters show a clear change over the classified lead, with the o°, PP
and RP showing a local increase while the elevation decreases. We also
tend to observe a rise in elevation either side of the lead. This is because
adjacent radar footprints include off-nadir brighter reflections from the
lead which can cause the retracker to ‘snag’ and measure an incorrect
elevation. Over good floes and noisy floes, there was no clear pattern;
however, the noisy floe samples exhibited considerably more variability
in all parameters. For the SARIn data we observed the same overall
patterns (Fig. 2); however, due to the limited number of samples, the
mean varied. Other parameters, such as the stack standard deviation,
stack kurtosis, and waveform leading edge width were also investigated;
however, the four parameters in Fig. 2 showed the clearest evidence of a
lead.

2.4. Machine learning lead classification

We used 1D convolutional neural network (CNN) supervised
learning for our primary classification scheme. The 1D CNN is consid-
ered a deep form of learning as it allows us to use the data at any stage of
processing, and its features are learned within the algorithm. CNNs, like
other deep learning algorithms, are a series of layers where the raw data
is transformed (in this case by a 1D convolution) into increasing
meaningful representations of the data.

We used the detrended elevation, o°, pulse peakiness, and RIP
peakiness over an 11-point (3-km) window centred on the classification
point. The 11-point window allowed us to capture the lead classification
signal without including too many data points from adjacent sea ice floes
that a larger window size could introduce. We implemented the CNN in
TensorFlow using the Keras API (https://www.tensorflow.org/api_d
ocs/python/tf/keras) (Abadi et al., 2015). The CNN consisted of two
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Fig. 1. Examples of manually classified leads in Sentinel 1 SAR images (HH polarization), b) for September in the Central Arctic ocean c) for September near the ice
margins, and d) for a Landsat-8 optical image in July in the Central Arctic Ocean. The solid black line denotes the location of the coinciding CryoSat-2 track. a) shows
the location of classified floes (black circles) and noisy floes (black crosses) for the SAR and SARIn data and location of classified SAR leads (blue) and SARIn leads
(red). The background map displays average sea ice concentration for the 2011-2020 study period. (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)

16-point convolution layers (3-point filter size) with a Max Pooling layer
to down sample the data between the two layers. The input wasa 11 x 4
matrix comprised of 4 parameters (detrended elevation, ¢°, pulse
peakiness and RIP peakiness) over the 11-point window size. The final
output was a 3-element matrix of the probability of each classification
type. We used the ‘softmax’ activation on the final output layer, which
enabled us to obtain the classification confidence, and the rectified
linear unit (‘relu’) activation on the convolutional layers.

We split the 632 samples from the classification database into 568
training samples and 64 testing samples and ensured there were equal
proportions of lead, floe, and noisy floe classifications within each
group. Overall, the 1D CNN correctly classified 80% of the testing data.
Only 5% of samples that were actually floes or noisy floes were mis-
classified as leads. If we compared only the lead classification with all
sea ice floes and did not distinguish between good or noisy floe types,
the overall accuracy of the CNN increased to 90%. The accuracy of the
classification scheme on the testing data only partially indicates how
well it will perform on the complete CryoSat-2 observational record.
Despite the classification sample database being intentionally designed

to represent as much of the overall population as possible, any part of the
full observational record that is not represented in the training/testing
database will not be reflected in the classification scheme’s accuracy.
Therefore, we further tested the CNN classification scheme visually by
applying it to a series of coincident image tracks that contained no
training data used in the classification. Figs. 3 and 4 show two examples
of the classification schemes in June and August, respectively. The 1D
CNN performed well, and where there was a false positive, this tended to
be a lower confidence classification. It is notable in both cases, but
particularly in June (Fig. 4), that a number of leads appearing in the SAR
image are not detected by the CryoSat-2 classification scheme (and often
do not show any discernible signal in the CryoSat-2 waveform param-
eters or elevation). This emphasizes how leads can easily be obscured in
the CryoSat-2 data by noise during summer months, when strong re-
flections from melt ponds can mask the signal from a lead within the
same footprint (Kwok et al., 2018). These ‘errors of omission’ will not
significantly affect the estimation of sea ice freeboard. However, it is
important to note that melt-pond covered ice floes erroneously classified
as leads, that would bias derived freeboards low, represented just 5% of
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Fig. 2. Residual elevation, backscatter (¢°), pulse peakiness (PP), RIP peakiness (RP) for the leads (left), good floes (middle) and noisy floes (right), centred on the
classification point, for all samples in the training/testing database. The grey lines are the individual classified samples and the black and blue lines are the mean for
the SAR and SARIn data, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

the misclassified samples.

We also tested the same training data on a decision tree classification
algorithm. This allowed us to compare with a classification scheme that
is commonly used and easy to visualize and interpret. Decision tree
classification is essentially a set of questions inferred from the data that
allows the model to predict the target variable. The main disadvantage is
that decision tree classification is considered to be a shallower form of
learning as it requires us to extract several features of the data ourselves
prior to training. Here we used the same detrended parameters and
window size as the CNN classification, then calculated the standard
deviation of the data over the window and the difference between the
classification point and the average of the 10 other points in the window.
This resulted in 8 different parameters for the decision tree classifica-
tion. These features allowed us to capture the local variation and
quantify the noise level within a window using a relatively simple set of
parameters. We used the scikit-learn decision tree package (https
://scikit-learn.org) with a maximum tree depth of 7 and using the Gini
Index to define how the classification questions are split. The decision
tree classification had an accuracy of 88% while 5% of the floe or noisy
floe samples were again misclassified as leads. However, when we tested
the data on the series of coincident tracks that contained no data used in
the classification (Figs. 3 and 4), this method produced more false
positives which will likely bias the final freeboard estimates. It is also
evident that the CNN and DT algorithms regularly classified different
samples along these tracks as leads (Figs. 3 and 4), while missing many
other leads visible in the imagery. We expect the DT algorithm may not
fully capture the change in signal when CryoSat-2 samples a lead,
despite performing well on the test dataset.

Finally, we performed a point-to-point comparison on the freeboard
measurement derived for all leads classified in the arbitrarily selected

summer months of 2012. A point-to-point comparison is typically used
to evaluate the measurement consistency; however, a higher variability
in freeboard measurements would indicate that there are more points
misclassified as leads. The method for deriving freeboard is given below.
We compared all pairs of freeboard points within 40 km and 7 days of
each other, and we found the paired freeboard measurements from the
decision tree method and the CNN had standard deviations of 0.22 m
and 0.14 m, respectively. This method is limited by the long time in-
terval of pairwise comparisons, reflected by the high standard de-
viations. However, the CNN had better consistency than the decision
tree classification in this experiment, suggesting that the CNN mis-
classifies fewer leads.

2.5. Radar freeboard calculation

The sea ice freeboard in winter months is conventionally calculated
by finding the difference between sea ice floe elevations and the along-
track sea level interpolated from proximal lead elevations, following
appropriate range corrections (i.e., removing the mean sea surface
height and atmospheric or tidal effects). This method performs well in
the winter months when there is a sufficient density of leads along-track;
however, in the summer months, detectable leads can be sparse and
using this method would lead us to interpolate over long distances
(>100 s km). Instead, we calculated one freeboard estimate at each lead
point by interpolating the elevations from nearby sea ice floes (using
both points classified as good floes and noisy floes). The mean ice floe
elevation around a lead was calculated by fitting a 2nd order polynomial
over a span of 7 km centred over each lead point. This span included a
sufficient number of floe elevation samples to obtain realistic freeboard
measurements even when there was high local variability in elevation.
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Fig. 3. Example of the CNN and decision tree lead classification results for a coincident SAR image in August 26th 2018 in the Central Arctic Ocean, with the
corresponding CryoSat-2 along-track data for a) RIP peakiness (RP), b) pulse peakiness (PP), c) backscatter (6°) and d) residual elevation. The CNN classification is
shown in e) with blue (confidence >50%) and red (confidence <50%) classified leads. The decision tree classified leads are shown in f) and are green. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

We used robust fitting as the ice floe samples closest to the lead location
can exhibit large, unrealistic elevation changes caused by snagging (e.g.,
Fig. 2). This involves iteratively recalculating the least squared regres-
sion with a bisquare weighting that reduces the impact of outlying re-
siduals from the previous fit iteration. The machine learning method can
select several lead points in succession, over gaps in the ice wider than a
single CryoSat-2 footprint (>300 m); hence, we treat successively clas-
sified leads as one freeboard measurement. In some cases, the lead
classification selected a point where the local change in elevation was at
a minimum plus or minus one point along-track. Thus, we labelled
points either side of classified lead samples as leads also, to avoid
calculating the freeboard not centred on this minimum (which is likely
the correct lead location). This means that every lead is treated as at
least a set of three successive CryoSat-2 samples. We performed the fit on
ice floe elevations centred over the middle point of the consecutive leads
and used the largest estimate as the single freeboard measurement from
that consecutive group of lead points. We exclude 7 km segments where

more than 50% of the points are labelled as leads, because our machine
learning algorithm was not trained on data with a low sea ice concen-
tration. We did not include any point where the mean square error from
the polynomial fit through ice floe surface heights (including noisy floes)
was greater than 0.5 m to remove unreliable freeboard measurements.

We used inverse distance weighted gridding to produce 15-day
freeboard fields at a cell size of 80 km. This cell size is 2-3 times
coarser than the 25 km resolution of standard CryoSat-2 freeboard
products developed for winter months, which is a limitation of the
spatial density of valid freeboard observations from our summer pro-
cessing scheme. We used a search radius of r = 80 km and measurements
weighed by 1 /(1 + (3d /r)z), where d is the distance from the grid node.
To remove any anomalous measurements, we flagged cells where either
the difference between 6° or freeboard and the median of the adjacent
cells in the same grid and the grids 15 days before and after the current
grid was greater than manually defined cutoff thresholds of 15 dB and
0.1 m respectively. We also removed any cells where the average
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Fig. 4. Example of the CNN and decision tree lead classification results for a coincident SAR image in June 16th 2018 in the Central Arctic Ocean, with the cor-
responding CryoSat-2 along-track data for a) RIP peakiness (RP), b) pulse peakiness (PP), c) backscatter (6°) and d) residual elevation. The CNN classification is
shown in e) with blue (confidence >50%) and red (confidence <50%) classified leads. The decision tree classified leads are shown in f) and are green. The lack of
contrast between ice floes and leads is common for SAR images obtained in May and June. This is reflected by the high variability (noise) in retracked elevation
measurements from CryoSat-2 in d. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

classification confidence was less than 50%, to filter out freeboards
derived from points with a high probability of being misclassified.

3. Results
3.1. Radar freeboard

An example of the gridded radar freeboards and freeboard anomalies
estimated for 2013 are shown in Figs. 5 and 6 respectively, and the
freeboard climatology from 2011 to 2020 is shown in Fig. 7. We can
produce freeboard maps for most of the summer months, only July and
early August occasionally exhibit a significant loss of coverage when we
expect melt pond coverage on the ice to be highest (Kwok et al., 2018),
producing a higher proportion of noisy measurements. Despite the ma-
jority of training data coming from August and September, we could still

obtain good coverage of valid freeboards in May and June. This is un-
expected because we found it challenging to identify leads in the coin-
cident SAR and optical images for this early summer period. However,
there are similar levels of noise in the CryoSat-2 observations in May and
June compared to later in the summer, so the nadir-looking altimeter
appears to be less affected by the transition from a cold to melting/
saturated snowpack than off-nadir SAR imaging sensors (Mahmud et al.,
2016; Scharien et al., 2014). We also lose coverage in areas around the
margins of the sea ice pack and this is evident from the climatology
(Fig. 7). We could not obtain valid freeboard observations in marginal
sea ice zones with low ice concentration and the thinnest sea ice floes;
for instance, our method is unable to resolve freeboards lower than
about 4 cm. This is because we had to use local elevation changes as a
key parameter of the classification scheme and therefore could not
reliably include leads showing minimal elevation changes (below 4 cm)
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Fig. 5. CryoSat-2 summer (May-September) radar freeboards for 2013, with freeboards for April and October 2013 from a conventional ‘winter’ processing scheme
by Landy et al., (2020). The grey areas represent the presence of sea ice but no valid ice thickness measurements.

in the training dataset. Few reliable leads were identified in the marginal
ice zone (Fig. 1) with the training dataset biased geographically towards
the thicker sea ice pack resident in the Central Arctic.

The yearly radar freeboard maps and climatology (Figs. 5, 6 & 7) and
time series (Fig. 8) show an expected seasonal evolution with thickness
decreasing in May, June and July and increasing in late August and
September (Blanchard-Wrigglesworth and Bitz, 2014). The freeboard
patterns evolve in a consistent manner over the summer, with relatively
thinner and thicker areas of the ice cover generally persisting from one
time interval to the next. By including April and October radar freeboard
maps from a conventional ‘winter’ processing scheme (Landy et al.,
2019, 2020), we see that the spatial patterns of the freeboard from
shoulder months of the summer processing scheme (May 1st-15th and
Sept 16th-30th) closely match the winter data.

It is noticeable that the radar freeboards generally increase between
April and May 2013, before declining thereafter (Figs. 5 and 6). This is a
robust feature of the summer freeboard fields in every year of the record
(Fig. 7) despite the fact we do not expect significant sea ice growth
during May (Lindsay and Schweiger, 2015). One likely explanation for
this is the scattering horizon of the CryoSat-2 Ku-band radar shifts sys-
tematically upwards within the snowpack between April and May. It is
typically assumed for the winter processing schemes (Oct-April) that the

Ku-band radar penetrates fully through snow to the snow-sea ice inter-
face (e.g., Laxon et al., 2003, 2013). However, studies have demon-
strated that in certain conditions, when the temperature of the snow is
higher (Willatt et al., 2009), or the snowpack contains significant
layering or ice lenses (Willatt et al., 2011; Ricker et al., 2015), the
principal Ku-band scattering horizon can shift upwards. It is very likely
that the seasonal warming and melting of the Arctic snowpack on sea ice
in May, particularly around the peripheral seas, would introduce
moisture between snow grains and prohibit the Ku-band radar from fully
penetrating to the snow-ice interface. However, it is also possible that
the processing scheme for summer months contributes to increasing
radar freeboards in May. By performing a direct comparison of the
winter and summer processing schemes in April 2016 (Fig. 9) we see that
radar freeboards from the summer processor are marginally thicker in
the Arctic peripheral seas.

The apparent differences between winter and summer processors are
much clearer for the direct comparison in October 2015 (Fig. 9). We did
not include newly formed sea ice in this comparison; however, summer
processed data still significantly overestimate the freeboards (<0.04 m)
of thin sea ice around the edges of the Central Arctic ice pack compared
to the winter processed data. It is also notable that radar freeboards of
the remaining MYI in October are generally underestimated by the



G. Dawson et al.

Remote Sensing of Environment 268 (2022) 112744

Aug 16th-31st Sept 1st-15t

Sept 161-30t

@ ) Radar Freeboard Anomaly (m)
I [

-0.1 0

Fig. 6. CryoSat-2 summer (May-September) radar freeboard anomalies for 2013, with winter freeboard anomalies included for April and October from a con-
ventional ‘winter’ processing scheme by Landy et al., (2020). The data is relative to 2011-2020 averages.

summer processing scheme in comparison to the winter one (Fig. 9f),
which we discuss further below. We do observe clear correlation be-
tween the patterns of summer and winter freeboards in both April and
October, despite these regions of over- and under-estimation.

3.2. Validation against independent airborne and mooring observations

We use independent observations of the sea ice freeboard, draft, and
thickness to evaluate the CryoSat-2 estimates of radar freeboard in
different regions of the Arctic Ocean and periods of the summer melting
season. These validation data have nonnegligible uncertainties. To
examine the radar freeboards directly, we derived airborne estimates for
sea ice freeboard from the Operation IceBridge Arctic summer cam-
paigns in the Chukchi Sea on 16th and 19th July 2016 and the Lincoln
Sea 24th and 25th July 2017 (Fig. 10). We assume that most of the snow
accumulated on sea ice floes over winter has melted by these mid-
summer dates (Kwok et al., 2020), so we can compare airborne laser
scanner freeboards directly to the CryoSat-2 radar freeboards without
requiring corrections for snow penetration or loading. IceBridge
Airborne Topographic Mapper (ATM) returns from sea ice and leads
which typically have an absolute elevation accuracy of about 10 cm, are
classified with coinciding aerial photographs (Buckley et al., 2020) and

used to derive a laser freeboard estimate along the flight track (details in
the supplementary). We averaged all valid observations along 7 km
sections of the flight track and performed a point-to-grid comparison
with the CryoSat-2 freeboard grids. For the 2016 campaign in the
Chukchi Sea, the difference between the laser freeboards from the ATM
and the CryoSat-2 radar freeboards is 0.02 + 0.06 m (Fig. 10). However,
for the 2017 campaign in the Lincoln Sea, the distributions of ATM laser
freeboard are significantly thicker than the coinciding distribution from
CryoSat-2. We find that the airborne freeboards vary as a clear function
of the sea ice surface roughness (Supp. Fig. S4). Separating the laser
freeboards into smoother and rougher sea ice using an arbitrary
roughness threshold of 0.35 m, we find the freeboards are under-
estimated by 0.10 + 0.06 m and 0.20 + 0.10 m below and above this
threshold, respectively (Fig. 10). This suggests that rougher ice will be
more significantly underestimated in thickness by CryoSat-2 than the
smoother ice will be.

We further compare the summer freeboards to airborne EM induc-
tion sounding observations of sea ice thickness (Krumpen et al., 2016)
and ULS observations of sea ice draft from the Beaufort Gyre Exploration
Program (BGEP) moorings (https://www.whoi.edu/beaufortgyre).
These datasets are chosen to evaluate the spatial and temporal validity
of the satellite observations, respectively. To make these comparisons
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Fig. 7. CryoSat-2 summer (May-September) radar freeboard climatology for 2011-2020, with climatological freeboards for April and October from a conventional
‘winter’ processing scheme by Landy et al., (2020). The grey areas represent the presence of sea ice but no valid ice thickness measurements.

we need to convert the CryoSat-2 radar freeboards to estimates of
thickness and draft, respectively (e.g., Tilling et al., 2018). For both
comparisons, we use a fixed sea ice density of 930 kg/m® and do not
include any snow/meltwater loading in the conversion. It is a reasonable
approximation to ignore snow or meltwater loading for the mid-summer
months of July and August, as we expect the snowpack to have mostly
depleted by this point (Kwok et al., 2020; Stroeve et al., 2020) and ponds
to have drained to sea level (Eicken et al., 2004; Landy et al., 2014).
However, we can expect significant snow loading in May and June, and
some new snowfall accumulating towards the end of the summer season.
Additionally, melt ponds on the sea ice surface significantly affect the
freeboard to ice thickness calculation that we do not account for here
(see discussion). Finally, we know sea ice density differs between first-
year and multi-year sea ice (Alexandrov et al., 2010) and may poten-
tially vary throughout the summer. It is beyond the scope of this study to
correct for these factors, but we have used a fixed relatively high sea ice
density to partially account for them. It is an active area of our research
to develop realistic corrections for more accurately converting the new
radar freeboards from CryoSat-2 to estimates of summer sea ice
thickness.

The EM dataset is comprised of data from the Alfred Wegener
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Institute (AWI) POLARSTERN ARK-XXVI/3 (TransArc) campaign in
2011 and the IceBird campaigns from 2016 to 2018. For the IceBird
campaigns, the ice thickness was measured using the EM-bird sensor
towed by a fixed-wing aircraft. Data are concentrated near the coast of
Northern Greenland and the Fram Strait (see Fig. 10) and recorded in
late-July and August. The TransArc campaign acquired helicopter-
borne, EM-bird ice thickness data in the Central Arctic Ocean in
August and September. The EM-bird estimates sea ice thickness by
measuring the electrical conductivity difference between ice and ocean
water (Haas et al., 2009), and the accuracy of these measurements is of
the order of 0.1 m over flat ice (Pfaffling et al., 2007; Haas et al., 2009)
and can be reduced in the presence of melt ponds (Haas et al., 1997). As
the datasets are at a spatial resolution of 10s meters compared to the
lower-resolution gridded CryoSat-2 data, we average the airborne data
over a 10 km window and then perform a point-to-grid comparison
between the down-sampled EM data and CryoSat-2 thickness grids.
There is high spatial variability in the comparison between sea ice
thickness estimates from CryoSat-2 and EM surveys. If we assume the
EM data represent a true reference for the ice thickness, the CryoSat-2
observations acquired around the coast of Northern Greenland and in
the Lincoln Sea underestimate the ice thickness by 1.0 + 0.4 m. In the
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Fig. 8. Average radar freeboard for the Central Arctic (purple), Beaufort Sea (orange) and the Chukchi & East Siberian Seas (green). The solid lines are the average
over the 15-day periods and the transparent region is the standard deviation. Shoulder months of April and October from conventional ‘winter’ processing scheme by
Landy et al., (2020) are also shown before and after the grey dashed lines, respectively. The bottom left row is the distribution of freeboard measurements for the
entire summer (May to September), for the Central Arctic (purple), Beaufort Sea (orange) and the Chukchi & East Siberian Seas (green), for 2011-2020. The regions
are displayed on Fig. 10. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fram Strait, CryoSat-2 underestimates sea ice thickness acquired by the
airborne EM sounder by 0.76 + 0.4 m, while observations in the Central
Arctic Ocean underestimate the ice thickness by 0.28 + 0.2 m (Fig. 10).
Despite using a higher ice density than we realistically expect for Central
Arctic multi-year ice in August, the satellite observations still underes-
timate those from the independent airborne reference. Moreover, the
mean difference and variability on the difference both increase from
thinner sea ice at the periphery towards the thickest ice in the Lincoln
Sea. This pattern to the bias matches the results from the direct com-
parison of CryoSat-2 radar freeboards with OIB airborne laser free-
boards. The systematic nature of the bias indicates that it has a physical
explanation with the attendant possibility of correcting for it in the
conversion from freeboard to thickness, which we discuss below.

The BGEP moorings have been maintained in the Beaufort Sea since
2003, monitoring freshwater and heat content in the Arctic Ocean
including the solid freshwater flux through observations of sea ice draft.
ULS ice draft observations (which have uncertainties ranging from
+0.05-0.1 m, Krishfield and Proshutinsky, 2006) from Moorings A, B
and D are available for the period between 2011 and 2018 coinciding
with our CryoSat-2 sea ice thickness observations, enabling us to vali-
date the magnitude and timing of the ice melting rates obtained from our
new product. We also include estimates for the ice draft obtained from
CryoSat-2 in winter months, using the LARM (Landy et al., 2020) and
SnowModel-LG (Stroeve et al., 2020) sea ice thickness dataset (available
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from https://data.bas.ac.uk/full-record.php?id=GB/NERC/BAS/PDC/
01257) which does include all relevant corrections for the snow load,
ice type etc. Satellite-derived ice drafts from a radius of 150 km around
each mooring are compared against a 31-day rolling average of daily
measurements of the mean ice draft from the mooring ULS (excluding
draft measurements <5 cm).

The CryoSat-2 observations appear to capture the timing of sea ice
growth and melt cycles in the Beaufort Sea very closely (Fig. 11). The
satellite draft estimates in summer exhibit considerably more scatter
than the winter estimates but still clearly observe the sea ice thinning
and decay between May and September, and in many cases, the mea-
surements at shoulder points between winter and summer processing
schemes match closely. We also observe similar variation in magnitude
of ice thickness between years. For example, in 2013 and 2014, the ULS
had lower summer melting rates and thicker sea ice remaining at the end
of the melt season (Tilling et al., 2015), and this is reflected in the sat-
ellite observations (Figs. 6 and 11). However, there are some disparities
between the CryoSat-2 and ULS data. In some winters, the CryoSat-2
draft estimates from our conventional processor do not match the ULS
well, for instance, between November 2014 and April 15 at Mooring D,
which provides some evidence for the radar scattering biases high-
lighted by Khvorostovsky et al. (2020). Despite assuming a high sea ice
density, CryoSat-2 ice draft estimates regularly underestimate those
from the ULS in May and June, indicating that it is still necessary to
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Fig. 9. Freeboard maps comparing summer and winter processing algorithms. Winter processed data (a & d), summer processed data (b & e), and the differences
between the summer and winter processed data (c & f) are shown for April 2016 (a to ¢) and October 2015 (d to f). For (e) we mask out areas of newly formed ice
where the sea-ice concentration was less than 5% in September and larger than 5% in October.

account for the snow load into the early melting season. In a few years,
the satellite-derived drafts consistently underestimate the ULS for the
entire duration of the summer (e.g., 2013 at Moorings B and D), which
may reveal a similar bias to those identified in the Lincoln Sea through
comparison with the IceBridge ATM and AWI AIREM data. Overall, the
correlation coefficients between CryoSat-2 and ULS sea ice drafts, for
only data between May and September, are 0.76, 0.63 and 0.62 for
Moorings A, B and D, respectively. The mean bias and standard devia-
tion on the bias are —0.13 + 0.45m, —0.33 4 0.52 m, and — 0.29 + 0.51
m, for Moorings A, B and D, respectively.

4. Discussion
4.1. Potential sources of radar freeboard bias

Comparisons with winter radar freeboard maps, airborne laser
scanner, EM and mooring based ULS observations identify clear limi-
tations with the current summer radar freeboard maps. For example,
inter-comparing the summer and winter processing schemes in October
indicates that the summer processing cannot resolve radar freeboards
thinner than 4 cm (Fig. 9); thus, areas of the thinnest sea ice are either
overestimated or unmeasured. In contrast, applying a physically based
radar retracking approach enables the detection of radar freeboards as
low as 2-3 cm in October for the winter processing scheme (Landy et al.,
2020). The inter-comparison between summer and winter processors
also reveals that the thickness of the thickest multi-year sea ice is typi-
cally underestimated by the summer scheme (Fig. 9). This is confirmed
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by the airborne laser freeboard and EM observations which demonstrate
that CryoSat-2 underestimates the thickness of late-summer sea ice in
the Lincoln Sea, with the magnitude of the difference increasing as the
sea ice gets thicker and rougher (Fig. 10). The sources of these biases in
summer radar freeboards are likely due to a range of factors which can
be broadly grouped into three categories: the classification scheme, the
elevation measurement of the radar altimeter and conversion from radar
freeboard to ice thickness.

Ideally, we would not have to use local elevation change as a
parameter in the classification scheme, as this can potentially add con-
straints to the magnitude of detectable freeboards. However, we found
that the elevation change was vital for separating specular leads from
melt ponds (Fig. 2), so the parameter had to be included in the summer
classifier. As we did not have enough testing/training samples from the
marginal ice zone where the ice tends to be at its thinnest, we could not
robustly classify leads that displayed a small elevation change. This is
apparent when we compare the winter and summer processing schemes
in October: the thickness of new sea ice, which our classifier has not
been trained on, is truncated (Figs. 8 & 9). Additionally, any misclassi-
fication will potentially result in an underestimation of the freeboard.
For example, ice floes misclassified as leads will underestimate free-
board. These only represent 5% of the misclassified samples when
compared to the testing data. In contrast, misclassification of leads as ice
floes caused by strong reflections from melt ponds that mask the signal
from a lead (which may potentially result in an erroneous ice floe
elevation measurement) is more frequent in occurrence. However, this
will only impact the freeboard calculation if the misclassified points are
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Fig. 10. (Left) Map of airborne observations for sea ice freeboard and thickness validation. Three annotations in the Beaufort Sea mark the locations of the BGEP
Moorings. (Middle column) Comparison of CryoSat-2 gridded radar freeboards with independent airborne observations of laser freeboard from the Operation Ice-
Bridge ATM. The 2016 Chukchi Sea campaign covered mainly first-year sea ice whereas the 2017 Lincoln Sea campaign covered mainly multi-year ice. For the 2017
data we separate freeboard distributions for sea ice with a surface roughness height (derived from the OIB data) lower and higher than 0.35 m. (Right column)
Comparison of CryoSat-2 sea ice thickness observations with airborne EM thickness measurements. The CryoSat-2 thickness estimates were obtained from radar
freeboards assuming no snow/meltwater loading and a fixed sea ice density of 930 kg/m®.

used in the polynomial fit to the ice floe elevation. To test the effect of
misclassification, we randomly selected 10% of leads and purposefully
misclassified them as floes (which is intentionally larger than what is
indicated in the training data test). To maintain the same number of
leads in the data, we then randomly selected the same number of ice
floes and misclassified them as leads. We then performed this 100 times
over the arbitrarily selected month of August 2018 and found an average
underestimation of the freeboard of 0.3 + 0.2 cm when compared to the
‘correctly’ classified data. While we cannot fully quantify the bias as we
are unable to accurately determine how much data are misclassified
over the entire dataset; the results indicate that it will not significantly
contribute to the underestimation of the freeboard, especially as we
chose a larger percentage of misclassified leads than the training data
test.

The elevation measurement of the radar altimeter is another signif-
icant source of uncertainty. Radar altimetry for estimating sea ice free-
board relies on accurate detection of the mean level of ice floe surfaces.
If the principal scattering horizon of the radar is not located at the same
height as the mean ice floe surface height, the altimeter range mea-
surement will be biased (e.g., Armitage and Ridout, 2015; Ricker et al.,
2015). It is well understood, for example, that the troughs of ocean
waves reflect the nadir Ku-band radar altimeter pulse more effectively
than crests (Melville et al., 1991), lowering the centroid of the scattering
horizon with respect to mean sea level. This is known as the electro-
magnetic (EM) sea state bias which increases with wind speed (i.e., sea
surface roughness) up to a bias of around 40 cm (Tran et al., 2010).
There is some evidence for a similar bias over sea ice floes in winter, for
instance Xia and Xie (2018) discovered that CryoSat-2 increasingly
underestimates the freeboard of coincident observations from OIB as the
sea ice gets thicker. Moreover, Arctic sea ice floe echoes are generally
specular in the summer months (Kwok et al., 2018). This indicates the
waveform peak power will frequently be referenced to the surface of
reflecting ponds. If the pond surfaces do not lie at the mean ice floe
surface elevation, but below it, an EM bias will be added to the range
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measurement over ice floes. This type of EM-bias over summer sea ice
floes with mixed bare ice-ponded surfaces would generally bias the
range high, thus freeboard low, and would be larger over rougher sea ice
(equivalent to the sea state bias). This EM-bias could be a major
contributor to CryoSat-2 underestimating ice thickness versus the in-
dependent airborne observations (Fig. 10). Our comparisons with the
ATM laser freeboards and airborne EM thickness data support this
argument, showing a bias that increases from marginal sea ice in the
Central Arctic (2011 data) to Fram Strait (2016) into the roughest, oldest
MYI in the Lincoln Sea (2017-2018) (Fig. 10). Since the sea ice rough-
ness is higher for thicker ice (Supp. Fig. S4), we can expect the bias to
also be larger for thicker sea ice floes. This mixed-footprint scattering
bias is not currently accounted for in the SAMOSA+ retracker over sea
ice nor any other conventional retracking algorithm for winter or sum-
mer processing.

The range to the sea surface may also be underestimated at leads as
the CryoSat-2 footprint will generally be larger than a lead and the radar
is sensitive to specular scatterers covering just 1% of the SAR-limited
footprint (Kwok et al., 2018). The radar returns classified as leads may
comprise reflections from ponds located closer to the nadir point than a
nearby lead, causing the retrieved sea surface elevation to be biased
high, resulting in an underestimation of freeboard. We have investigated
this bias by comparing CryoSat-2 data processed at an 80 Hz posting rate
as well as the standard 20 Hz rate. The 80 Hz data has an along-track
footprint of ~80 m compared to ~320 m for the 20 Hz data (although
the same across-track footprint) and thus will be less susceptible to re-
flections that do not originate from the lead. We compared the retracked
elevation of all lead samples in the testing/training dataset between 20
minus 80 Hz observations and found a median difference of —5 mm.
Therefore, we do not expect mixed pond/lead reflections to be a major
source of the apparent sea ice thickness underestimation.

The final potential source of uncertainty is in the conversion from
radar freeboard to ice thickness. Alexandrov et al. (2010) provide a
range of densities for multi-year ice in winter of 720 to 910 kg/m®. One
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Fig. 11. Comparison of sea ice draft measured by the Beaufort Gyre Exploration Programme Mooring ULS (Upward Looking Sonar) with ice draft estimates by
CryoSat-2 in a 150 km radius surrounding each mooring. CryoSat-2 draft observations in winter are from the LARM algorithm (Landy et al., 2020). CryoSat-2 draft
observations in summer are obtained by converting radar freeboard to thickness assuming no snow/meltwater loading and a fixed sea ice density of 930 kg/m3. BGEP
Mooring A is located at approximately 75°N 150°W, Mooring B at 78°N 150°W, and Mooring D at 74°N 140°W and are shown in Fig. 10.

set of ice core observations from level multi-year ice found mean and
one sigma ice density of 887 + 20 kg/m® (Eicken et al., 1995) but the
authors acknowledge regular desalination during sampling. If sea ice
floes in summer are completely permeable, then air pockets below sea
level will be filled with ocean water (although this will vary regionally
and between new and multi-year ice). Thus, the actual density of the
liquid filled sea ice below sea level might be much higher than desali-
nated ice core observations. In this analysis, we used a relatively high
fixed ice density of 930 kg/m>, which would tend to overestimate ice
thickness. Hence, it is unlikely that the underestimation of ice thickness
seen when we compare the EMI and mooring based ULS observations is
predominantly due to the conversion from radar freeboard. Moreover,
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this bias is seen in the freeboard comparison before conversion to ice
thickness any local or regional difference in sea ice density will likely
contribute to additional sources of uncertainty in the ice thickness
calculation. To account for this we would require an improved under-
standing of the constraints on summer sea ice density.

Residual snow load on the sea ice or melt pond water accumulated on
the ice, above sea level, must also be accounted for in the conversion to
thickness. This is unlikely to have affected our comparison of CryoSat-2
with the AEM data as the sea ice north of Greenland in August does not
support a significant snow load (Kwok et al., 2020; Stroeve et al., 2020).
However, it is clear from our comparison to the mooring ULS observa-
tions that sea ice draft is regularly underestimated in May—June (Fig. 11)
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because a residual snow load has not been corrected for (Kwok et al.,
2020), while in July, this may be an additional source of uncertainty in
comparison to the ATM data.

4.2. Capturing regional and interannual freeboard variability

Regional patterns of the sea ice radar freeboard derived from
CryoSat-2 in summer months seem realistic. For instance, the distribu-
tions of the freeboard in shoulder months of May and September match
closely to those obtained from a conventional radar altimetry processing
scheme in April and October, respectively (Fig. 7). We can observe ice
freeboard anomalies persisting through the summer in the same loca-
tions, which we would not expect to if noise exceeded the CryoSat-2
freeboard signal. In April 2013, negative thickness anomalies are pre-
sent across the Central Arctic with positive anomalies in the marginal
seas, and these patterns persist in our new dataset until mid-June
(Fig. 6). It has been shown that the summer of 2013 was anomalously
cool, with 5% fewer melting days compared to the 1980-2014 average
(Tilling et al., 2015), and involved reduced export of sea ice to the North
Atlantic due to atmospheric circulation patterns (Lei et al., 2018) and
strong ice convergence against the Canadian Arctic coastline (Kwok,
2015). The freeboard maps in Fig. 6 suggest the switch between negative
and positive Central Arctic thickness anomalies occurred in July, with
much thicker-than-usual sea ice persisting throughout August and
September into the next winter (Tilling et al., 2015). The yearly time
series of regional sea ice thickness evolve smoothly throughout the
summer, capturing the thinning and advection of thicker sea ice out the
Arctic basin from May/June to August, through ice melt and the early
stages of ice regrowth in September. (Figs. 8 & 11).

The comparisons between CryoSat-2 estimates of sea ice draft and
those observed directly at the BGEP mooring ULS sensors confirm the
satellite can accurately resolve the full annual time series of sea ice
growth and decay (at least in the Beaufort Sea; Fig. 11). The volume,
type, and seasonal evolution of sea ice in the Beaufort Sea varies
considerably from year to year (Babb et al., 2019, 2020), providing a
challenging region for altimetry-based sea ice thickness retrievals
(Khvorostovsky et al., 2020). In most years, the timing of the transitions
between ice growth and melt in May/June and vice versa in September
are correct, albeit drafts are regularly underestimated by CryoSat-2 in
early summer without correcting for snow loading. Most encouragingly,
the satellite accurately captures interannual variations in the sea ice
draft remaining at the end of the summer melting season, including the
anomalously thick ice in 2013 and 2014. These two years of lower-than-
usual summer melting (Tilling et al., 2015) also stand out in regional
time series of CryoSat-2 radar freeboards (Fig. 11), with an anomalously
strong and early rebound of freeboard in the Central Arctic in August
and September 2013 (Fig. 8). In contrast, CryoSat-2 also resolves the
rapid melt and thinning of sea ice in July and August 2012, particularly
apparent in the Beaufort and Chukchi Seas (Figs. 8 & 11), that led to the
lowest ever recorded September ice extent (Parkinson and Comiso,
2013).

Although the radar freeboard fields can capture realistic spatiotem-
poral patterns of summer sea ice thickness variability, they still have
some limitations. For example, a conventional winter waveform classi-
fication scheme (Landy et al., 2020) identifies 309,000 and 155,000
leads within the region with sea ice concentration > 70% north of 65 N,
for October 2015 and April 2016, respectively. In contrast, our summer
classification scheme here identifies only 34,000 and 25,000 leads,
respectively, for the same months. The machine learning algorithm
naturally produces a conservative classification for leads to get an ac-
curate match between training and testing data, which excludes a lot of
leads (see Figs. 3 and 4). This is desirable because commission errors in
the classification (i.e., pond-covered ice floes erroneously classified as
leads) would bias the radar freeboards. Significantly more CryoSat-2
observations are also omitted during summer months due to noise
(Fig. 2), which is introduced by off-nadir snagging of the radar to melt
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ponds and occasionally SAMOSA+ retracking echo side lobes (no
hamming or other weighting has been applied). The combined impact of
noise and the classifier excluding leads is that we can only obtain valid
freeboards at relatively low resolution (80 km), while significant regions
of the ice cover can at times be completely missing data, for instance,
parts of the Western Arctic in July 2013 (Fig. 5).

4.3. Prospects for improvement

Two features of the classification scheme could potentially be
improved. Radar freeboards are overestimated in the marginal ice zone
because the classifier has been trained on samples geographically biased
to the region with high sea ice concentration (Fig. 1). The training
samples for leads include significant local variations in retracked
elevation that generally represent thicker sea ice floes adjacent to leads
in the Central Arctic (Fig. 2). Therefore, we require further training
samples representing leads in zones of thinner and less concentrated sea
ice at the ice pack margins. It may be possible to use the radar waveform
or the full stack of single look echoes for each CryoSat-2 sample in a
deeper machine learning classifier, rather than local profiles of derived
parameters as we have used here (Fig. 2). However, considerably more
training/testing data are required for the algorithm to learn patterns in
lower-level waveform observations and the classifier may be prohibi-
tively slow. There will be value in testing whether fully focused (FF-)
SAR processing (Egido and Smith, 2016) can reduce noise and improve
the classification, by narrowing the along-track footprint to 10s meters;
however, we found little improvement using 80 Hz versus 20 Hz posted
CryoSat-2 data. The prospective Copernicus Polar Ice and Snow
Topography Altimeter (CRISTAL) mission will use open-burst SARIn
mode over sea ice, with multiple radar frequencies. FF-SAR processing
and off-nadir lead/melt pond detection could enable improved lead
height estimation and noise removal with CRISTAL during Arctic sum-
mer months.

With the twin Sentinel-3A and —3B SAR altimeters offering coverage
up to a latitude of 81.5 N since 2018, it may be possible to improve both
the resolution and precision of the summer ice freeboard grids and
reduce areas of missing observations by combining all three sensors
(Lawrence et al., 2019). This will be particularly valuable in June and
July when CryoSat-2 observations are more frequently missing. A sig-
nificant area of the ice cover lies below 81.5 N (Fig. 7), which may allow
us to obtain more testing/training samples of the marginal ice zone.
Since March 2020 the RADARSAT Constellation Mission (RCM) has
routinely covered almost the entire pole (up to 90 N), which should
enable us to identify a larger training database in future. Early research
also indicates that it might be possible to measure sea ice freeboard with
NASA’s ICESat-2 laser altimeter during Arctic summer months,
following continued developmental work (Tilling et al., 2020). With
CryoSat-2 now on a migrated orbit, operating alongside ICESat-2 for
20+ long coinciding profiles every month in the Cryo2Ice campaign,
there may be future opportunities to intercompare radar and laser
freeboards over summer sea ice.

5. Conclusions

In this study we have presented the first estimates of pan-Arctic
summer sea ice freeboard from a satellite radar or laser altimeter. The
ten-year record covers May to September, between 2011 and 2020, and
stiches together a time series of observations from the CryoSat-2 radar
altimeter that have, so far, been limited to Arctic winter months.

Meltwater ponds accumulating at the surface of sea ice floes in
summer present the major obstacle to derive valid freeboards during
summer months. These ponds prevent conventional radar altimeter
waveform classification schemes from accurately separating ice floes
from leads. Here we identified almost 350 optical and SAR images
within 15 min of and coinciding in space with CryoSat-2 passes in order
to verify the surface type: ‘good’ sea ice floe, ‘noisy’ floe, or lead, of
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around 600 coinciding CryoSat-2 footprint samples. Samples were split
into two groups for training and testing a deep learning 1D CNN clas-
sification algorithm based on local variations of four CryoSat-2 param-
eters. The overall accuracy of the algorithm was ~80% but increased to
90% considering only the difference between all sea ice floes (good and
noisy) versus leads and included only 5% of ice floes misclassified as
leads. The final algorithm can classify the surface type with an estimate
of confidence for any CryoSat-2 observation over sea ice, without
requiring external information.

The classifier was applied to all CryoSat-2 SAR and SARIn mode
observations north of 65 N, retracked with the SAMOSA+ algorithm
through the ESA GPOD service. Sea ice radar freeboards were estimated
from the mean elevation of ice floes around each classified lead and
gridded to 80-km bi-monthly fields, accounting for observation un-
certainties. Valid radar freeboard fields could be obtained for all months
of the summer, although the data in June and July occasionally exhibit
significant loss of coverage owing to noise and a lack of leads. Freeboard
fields at the shoulder months of May and September have patterns that
closely resemble freeboards measured in April and October, respec-
tively, with a conventional ‘winter’ processing scheme. However, the
method cannot resolve freeboards thinner than around 4 cm because the
training data are confined to the Central Arctic and small elevation
variations reflective of leads in thin, marginal sea ice are thus not
classified.

Sea ice freeboards evolve as expected throughout the summer
months, thinning rapidly between June and August before stabilizing
and thickening slightly in September. The timing of the seasonal free-
board evolution and its interannual variations match closely to those
measured by independent ULS instruments mounted on the Beaufort
Gyre Exploration Program moorings. CryoSat-2 freeboard observations
also capture the distribution of airborne laser scanner freeboards
measured by Operation IceBridge in the Chukchi Sea in July 2016.
However, they underestimate IceBridge freeboards and airborne EMI
thickness observations collected over the oldest Arctic sea ice in the
Lincoln Sea, with a thickness bias that increases up to one meter as the
ice gets rougher. A likely source of bias comes from the radar over-
estimating the range to sea ice floes, with specular radar echoes tied to
the surfaces of reflective melt ponds sitting below the ice floe’s mean
level. This EM ranging bias should theoretically increase as a function of
the sea ice surface roughness.

Our ongoing research will use external datasets and numerical
modelling of radar echoes to develop the corrections required for con-
verting radar freeboards to summer sea ice thickness. This includes
correcting for the EM ranging bias and for residual snow loading in early
summer. We anticipate that a new 10+ year record of Arctic sea ice
thickness, including data from the autumn-spring ‘cold’ season and
summer melting season, could be valuable for many polar applications.
For instance, they could be assimilated into sea ice prediction systems to
improve the skill of weekly-monthly summer ice forecasts (Bushuk et al.,
2017), provide opportunities for estimating the sunlight reaching pri-
mary producers resident in and under sea ice (Stroeve et al., 2020), or
could support active marine operations during Arctic summer months.
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