UiT The Arctic University of Norway

Department of Computer Science and Computational Engineering
Investigating representation of tablature data for NLP music prediction

Tor Eldby

Master’s Thesis in Applied Computer Science...DTE3900...May 2021

Contents

(1 _Introduction|

[2.3 Sequential Models|.00
231 RNNI. . . .

[3.2.1 Input representation|
[3.3 Traming|
[3.4 Composition|

[4 Training and composition experiments|

M1 Multitrackl

[5_Resultsl

SN

—_ =

17
17
19
20
20

21

23

24

25

25

List of Figures

(1 Simple classical music notation compared with it’s equal tablature.| 4
[2 A neuron with 3 inputs, weighted sum function and sigmoid activation. |
| Source: [1, Figure. 6] oo o o 7
[3 Shallow and deep neural networks. Source: [2] Figure. 2.1 8
[4 An RNN node, depicted as a recurring cell and an untolded sequential |
| graph. Source: [3, Figure. 18] 9
[> An LSTM cell with its gates. Source: |4, Figure. 1| 10
(6 'T'he different representations of the tabs produced by the preprocessor| 13
[7 All the layers of the CharRNN training model| 15
(8 Multi-track model training history|. 18
[9 Composition results for a multi-track input representation. The first |
| few lines are input| 18
(10 Row model training history| 19
(1T Comparison of 2 generated tabs by a row-heavy trained model. Mul- |
[tiple lines are a result of line wrapping. They are both in fact only a |
| single line.| 19
(12 Character model training accuracy| 20
(13 Sequence model training accuracy| 21
(14 Comparison of composition for character to character, and sequence |
| O SeqUENCE| o e e 21
List of Tables
(1 The statistics from a data file comprised of tablatures extracted from |
[80 files from the main set of classtab fileg 14
[2 Final results from training the different character predictor models|. . 22

IT

Acknowledgement

I would first like to thank Sasha, for all her love and support through this heavy
work period, and all her words of wisdom and guidance in times where I felt lost and
exhausted in my work, not only through this thesis period, but throughout these
now 5 years of studies. Her support has been the deciding factor many times in my
life when times were hard, for me to persevere through it all. T look forward to many
more years of mutual love and support.

I would also like to thank Shayan Dadman and Professor Bernt Bremdal for their
support and knowledge, which was invaluable and crucial for the past few months’
work to really manage to go anywhere. They were available at any time I needed
them, and our discussions were one of the crucial factors for this thesis work’s progress
to accelerate the way it did in slow periods.

Finally I would like to thank my parents who, with love, support, and sage-advice,
have helped me continue to progress in my life as a student and a man, and I'm sure
will still be a large factor of my life as I move out into the big world to carve my
own path.

Thank you, all.

II1

Investigating representation of tablature data for
NLP music prediction

Tor Eldby
May 15, 2021

Abstract

In this thesis, the ability of CharRNN models learning to compose guitar
music using varying representations of guitar tablature is explored.

I utilize a well-versed sequential model of LSTM cells, and investigate the
ability of said model to input, and predict both character to character, and se-
quence to sequence, following the principles of natural language processing and
music information retrieval. The study was conducted on datasets consisting
of data naively retrieved from a subset of classical guitar tablature.

With regards to tablature structure, the experiments uncover a clearly
superior form for character to character prediction, producing a model capable
of composing seemingly musically coherent phrases. The work is not fully able
to compare the character predictor with the sequence predictor and further
details how this could potentially be alleviated.

1 Introduction

Automatic music generation is the task of using algorithmic composition, machine
learning and artificial intelligence methods to generate music. In recent years, with
the growth of powerful deep learning architectures and methods like RNN [5 (6]
and CNN [7, 8], it has become a widely researched field of study. With rapidly
growing progress we have seen several models emerge like WaveNetE]7 for general
audio waveforms, and MuseNeiﬂ specifically for music composition. There are a
few different ways of which researchers has approached these problems. Some of

"https://deepmind.com/blog/article/wavenet-generative-model-raw-audio
?https://openai.com/blog/musenet/

https://deepmind.com/blog/article/wavenet-generative-model-raw-audio
https://openai.com/blog/musenet/

which form algorithms by looking at the rules of music theory, like [9, [10], whilst
others approach the generation from a machine learning perspective by training a
deep neural network through large amounts of musical data [7, 11}, 12} 13]. These all
follow the concept of Music Information RetrievalP MIR), which covers a vast field
of backgrounds and applications concerning music. In machine learning, problems
boil down to data representation, extracting and learning features, and generating
music that sound pleasing to human ears as well as being coherent with regards
to music theory. The vast majority of artificial music generators are deep neural
networks based on RNN architectures that generate music step-by-step using MIDI
with promising results [14], 13} Q).

In this paper I choose to focus on leveraging recurrent deep learning concepts like
RNN to investigate data representation and form for composition of guitar music in
tablature space, using a CharRNN-based model to iteratively generate music as a
prediction by training upon tablature data, taking inspiration from [I5]. I wish to
answer the questions of what would be the best performing form and representation
of data, along with how well both a character to character predictor, and a sequence
to sequence predictor, well suited for natural language applications, would perform
with regards to tablature music.

All the Python code used is made available on my project repositoryf_f]

1.1 Data representation

Musical representation comes in various forms and flavours, and each offer their ad-
vantages and disadvantages. The most widely used for music representation and
generation is MIDI and ABC, whilst the most commonly used by end-users are pure
audio data like MP3 and waveform. With regards to machine learning, the advan-
tages and disadvantages of the different forms of data comes down to information
density, ease of use and complexity in computing. This section will discuss the dif-
ferent forms of representation for audio/music data, and conclude with a reasoning
for choosing tabs for this thesis work.

Audio is by far the most information dense datatype with regards to music. Sim-
ple waveform can be interpreted by the brain to form an understanding of musical
intention and projection like story, feelings, memories and so on, all from a combina-
tion of base musical features like notes, chords, progressions, timbre, harmonies, and
structure, which can again be decomposed further into frequencies, beats, rhythm,

3https://en.wikipedia.org/wiki/Music_information_retrieval
4https://source.coderefinery.org/Ascended/master-thesis—tor-eldby

https://en.wikipedia.org/wiki/Music_information_retrieval
https://source.coderefinery.org/Ascended/master-thesis-tor-eldby

etc. This is of course an incredibly complex proces{’} Although this data is infor-
mation dense, extensive preprocessing upon the raw waveform is necessary to obtain
these base features. For brevity I refer to [16], [I7] for a deeper look into the tech-
niques and uses for audio data processing. Another drawback to audio data is that
to process all these features for a machine learning system would take large amounts
of computations if one would hope to model an artificial composer able to compose
at human levels.

MIDI and ABC are promising middle-ground representations, as they inherently
highlight the musical features of the data, which makes them quite flexible and
robust for different machine learning methods with regards to preprocessing into an
understandable input format. They contain information that helps with sampling
and encoding data into time-dependent sequences that can be input into a machine
learning algorithm for fitting and prediction [7], although MIDI tends to work best
with keyboard-like instruments [I3]. Similarly, ABC notation has been used for
artificial music generation [15] [I8], although not as exhaustively as MIDI.

Tablaturd| is a type of music notation designed for string-instruments, in par-
ticular guitar, and is meant to represent tuning, finger positions, strum direction,
transitions, chords, and so on [19]. As with piano, guitar is a highly popular instru-
ment and as such it’s musical notation has evolved to become efficient and robust for
humans to read and play with specifically as a stringed instrument [I3]. Additionally
there are some larger datasets of guitar music available for download, although tab-
latures usually come as TXT [20] and MIDI [21] format. With some preprocessing,
the TXT format could become as useful information-wise as MIDI and ABC. A part
of the complexity of tablature springs up from how several notes of the same pitch
can be represented by several fingerings, posing a challenge for generating tablature
with human-playable fingering.

Both because of the lack of research with regards to using tablature to generate
music, aside from the few previously mentioned, as well as the promising results from
[15], I believe it would be interesting to look into using tablature character data and
investigate how one could optimally form and represent it for a character prediction
model.

Shttps://neuro.hms.harvard.edu/centers-and-initiatives/
harvard-mahoney-neuroscience-institute/about-hmni/archive-brain-1
®https://en.wikipedia.org/wiki/Tablature

https://neuro.hms.harvard.edu/centers-and-initiatives/harvard-mahoney-neuroscience-institute/about-hmni/archive-brain-1
https://neuro.hms.harvard.edu/centers-and-initiatives/harvard-mahoney-neuroscience-institute/about-hmni/archive-brain-1
https://en.wikipedia.org/wiki/Tablature

" 4 J D
AP T _ete PO
B T 7] oo
[Y) ZJ— t = O
8 14 L//

5 3 2 2—0 0

I —— P —— —

LA 0 —— = hd 0

Figure 1: Simple classical music notation compared with it’s equal tablature.

1.2 Related works

Although it is little, there is some research and production that focuses on AI music
composition in tablature space.

Using a genetic algorithm, Tuohy et al.[10] analyse and converges guitar tablature
towards more playable formats using a set of valid guitar tablature for a specific song
(e.g. any given note can be represented by several different strings and fret positions),
and selecting and breeding genetic populations of said tabs based on a heuristic fit-
ness function that analyses and scores hand and finger movement throughout the
generated tabs. What results from this is guitar tablature which is musically indis-
tinguishable from the original, but more easily playable, according to their heuristic.
Their primary challenge and background for this work was that often times, guitar
tablature is created to be musically accurate, as it relies too heavily on music theory,
and not necessarily easily playable for guitarists. When that is the case, they wished
to be able to automatically discover or generate good and valid equivalents of the
oriinal tablature. In genetic algorithms, the main problem is representing the data
as a set of genes and other biological equivalents. The researchers solved this by first
representing each fretboard position as a gene, and any two arbitrary pair of differ-
ent tablature as the parent’s set of genes. Then they cut their gene-sets at multiple
points and crossed those splices between each, and finally randomly mutated some
frets/genes into their potential musical equivalents. Alongside this implementation,
they needed to understand how they score the different tablature for their playability.
The researchers acknowledged this difficulty and that their approach isn’t necessar-
ily as accurate as some other methods could be. Rather than utilizing some fitness
function, they found it more practical to devise a heuristic for hand movement and
hand manipulation. They each basically estimate the total movement accross the
fretboard, and the potential difficulty of playing a specific chord at a time, respec-
tively. I believe their approach is well viable for their work, and I agree with their
chosen method for generating and approaching viable tablature. It stays within the

musicality of the original music, and with their fitness function approaches some
"best playability”. Although I understand their choice for heuristic function, I won-
der how their algorithm would perform if their fitness function was more like what
they avoided in trade for their heuristic method. How fast would their algorithm
converge if the fitness function was more precise? I believe it that were the case, it
take less iterations for the music to reach some maximum playability, although the
increase computation cost for the fitness function could potentially be detrimental.

For generating guitar solos, [22] detects musical phrases and generates fitting
guitar solos accordinglyﬂ Their motivation was that allowing less skilled music com-
posers to use guitar solos in their compositions. In part, this paper faces challenges
regarding phrase boundary detection primarily, and guitar music composition secon-
darily, but it’s methods diverge into using hidden markov models for detecting these
boundaries and generating a distribution of initial phrases and phrase transitions.
With this, their methods for tuning these phrases and exploiting them comes down to
a stochastic random walk upon this state space. They utilized input data in the Mu-
sicXML format that they got from GuitarProf] Their results are favorable and I do
not believe I have much to say about it or their methods. The linked demonstration
speaks for itself.

Shayan Dadman [I5] uses NLP techniques to generate new music from input
examples using data represented as ABC notation, specifically using jazz music,
amongst other methods. His paper addresses several different challenges and forms
of music information retrieval in experiments. I highlight the final experiment, of
which uses recurrent neural networks to generate music from jazz examples. The
challenges relating to this work is that of representing the data in such a way as
to be able to efficiently perform NLP techniques upon it, alonside doing neural
network computations whilst avoiding common issues like fitting and insufficient
regularization. As the data is pure ASCII text, this is solved by using a form of
conversion vocabulary, where every character present in the dataset is converted to
some number within the range 0 to N, where N is the amount of unique characters
in the dataset. With this, the researcher trains a variety of models using a sizeable
dataset. According to the results, the best trained model achieved sufficient accuracy
and managed to produce music given a small input string.

"Demonstration: https://www.youtube.com/channel/UC7 jBPwdo30yqgzihSj_kB6Q
8GuitarPro: http://www.gprotab.neti/

https://www.youtube.com/channel/UC7jBPwdo3oyqgzihSj_kB6Q
http://www.gprotab.neti/

2 Artificial Neural Networks

An artificial neural network is classified as a network of artificial neurons built as
simple input-output computation machines. It is fundamentally designed around our
current simplest understanding of how neurons in the brain function as a network [23]
p. 280]. For instance, the simplest form of a neural network is a single perceptronﬂ.

Using machine learning concepts, like input and output, activation, bias, errors,
and backpropagation, it is capable of learning to perform linear regression tasks quite
confidently. This is thanks to the concept of gradient descent, which the aforemen-
tioned backpropagation performs as the perceptron iteratively trains to classify it’s
input.

The following sections will be brief, but required, explanations and definitions
of the concepts and tools used in this project with regards to algorithmic music
composition with NLP techniques, which were utilized in the thesis work. First an
introduction to feed forward networks and network architecture, moving on to se-
quential models like recurrent neural networks (RNN) and long-short term memory
(LSTM), along with how they learn. Finally some information about Natural Lan-
guage Processing (NLP), and Keras and Tensorflow, which were the primary methods
and tools used in this work.

2.1 Feed-forward Neural Networks

The fundamental element of processing for artificial neural networks is the concept
of feeding forward data. In short, data moves from input towards output between
weighted paths, passing through previously mentioned neurons where brief weighted-
sum calculations are performed and processed with activation functions, ”feeding”
the data forward through the network, neuron-to-neuron. The final result is obtained
from the neurons at the output layer. The calculation before activation is:

r=b+> WX;=W'X+b (1)

=1

Here, W is the weights of the inputs to the node, and X is the values being input
into the node on these weighted paths. b is a standard bias applied to every neuron
to guide the network towards some specific behaviour. r is the result of this weighted
sum and will pass on into an activation function before finally passing as output
from the neuron (And maybe then be the input for the next layer of neurons). You

Yhttps://en.wikipedia.org/wiki/Perceptron

https://en.wikipedia.org/wiki/Perceptron

can also see that the weighted sum calculation gets defined as a linear multiplication
between a row matrix W and a column matrix X. Figure [2| illustrates this process.

weights

activation
function

/ output
Wi _J— /
2 /

transfer
function

inputs

treshold

Figure 2: A neuron with 3 inputs, weighted sum function and sigmoid activation.
Source: [1, Figure. 6]

Activation functions are used to guide the output of neurons for different pur-
poses, and a comprehensive list of these can be found on Wikipediam. It is important
to note that the choice of activation function for neurons is crucial for a network to
function optimally. The most commonly used are ReLu [24], Sigmoid and tanh.

During training, every epoch is defined as taking input and feeding it forward into
the network. The final output ¢ is compared with the expected output y (In the case
of supervised learning) and results in some error e. Backpropagation ”propagates”
this error backwards through the network and updates each of the weights accord-
ingly. The choice of activation function is important because of the Gradient Descent
performed during backpropagation, meaning it is dependent upon the derivative of
the activation function of each neuron [23] p. 289-292].

2.2 Network Architecture

Traditional neural networks occur when you string together a series of these com-
puting neurons, for instance a series of perceptrons, into a linear network. The final
output of the network is dependent upon the relationship of the calculations between
the nodes, and as such is capable of storing multiple instances/dimensions of learned
information based on the training sets the network is provided. As such, these net-
works always come in a layered form, like that of shallow- and deep neural networks.
The neurons of a neural network does not necessarily have to be simple perceptrons,
and the behaviour and functionality of these nodes can vary. The choice of which to
use is dependent upon the task the model is designed for.

Onttps://en.wikipedia.org/wiki/Activation_function

https://en.wikipedia.org/wiki/Activation_function

Neural networks generally come in the form of an input layer, hidden layers,
and an output layer. The amount of hidden layers is what determines whether a
network is deep or shallow, typically 1 or 2 layers is the max for a shallow network
[25]. The simplest form of neural networks are those with only two layers, the input
and output layers, known as single-layer neural networks. Multi-layer neural
networks are known as Deep Neural Networks (DNN), and they consist of the rest
of the set of neural networks, where hidden layer counts reach above 2. These hidden
layers allow a network to perform higher order, more complex, functions [26]. Figure
shows an example of a deep network. In a shallow network, only 1 or 2 hidden
layers would be present in the figure. Notice how layer size does not matter for the
definitions.

Input #5 ’
Input #6 »

Output #5

Input Hidden Hidden Output
[RN]
layer layer 1 layer v layer
C " i Output #1
Input #2 - ~(pi? " : b
: :',“ rl Output #2
Input #3 » :f‘ : :Z‘
: eee oo : Output #3
Input #4 » ':. : :}
C ::4 : Output #4
= Wy
W m W®

Figure 3: Shallow and deep neural networks. Source: [2, Figure. 2.1]

2.3 Sequential Models

Sequential models are the most common type of neural network models. Their
general form is comprised of sequentially connected layers of neurons, as described
in the previous section, and they are widely used with architectures all over the field
of neural networks. In it’s essence, a sequential model only defines how it’s layers are
connected, so it can really be applied in any context. For instance, figure |3 depicts
a sequential neural network.

The behaviour of a model comes down to it’s neurons and how they function and
relate to one another. In the case of working with sequential data (i.e: Data that
has some form of temporal or otherwise sequential dependency), recurrent neural
networks are well versed and will be discussed next.

2.3.1 RNN

Recurrent Neural Networks [0] are classes of artificial neural networks where
connected nodes have recurrent output connections to their own inputs, along with
the standard input. Because of this, an RNN node in a network not only uses the
input of the current time step for it’s calculations, but also takes into account it’s
previous output. This connectedness allows for the node itself to learn temporal
dependencies in the input data. Figure 4] helps visualise this. Notice the unfolded
view is a stepwise series of nodes through time. The output of the previous state of
the cell h;_; is the input to h;, along with the second input x; from the dataset X

®» ® ()
IHLJL
d .. 4

Figure 4: An RNN node, depicted as a recurring cell and an unfolded sequential
graph. Source: [3, Figure. 18]

®
®

2.3.2 LSTM

An LSTM [5] is a more complex RNN architecture, in which several feedback connec-
tions and gates filter, manage, and keep information that both passes through and
is being kept in the cell. Figure || illustrates the most common LSTM architecture
with it’s gates, inputs and outputs.

Output | g<t>

o | dfdnd] || =
o /_'

Figure 5: An LSTM cell with its gates. Source: [4, Figure. 1]

Cell

@

o}

_,,E

The general LSTM cell contains 3 controlling logistic gates, whose task it is to
regulate the information that the LSTM has seen before, simultaneously with the
input it gets at the current step. The values of these gates range between 0 and 1
and they function as follows:

e Forget gate: Learns to control when or how the long-term state should be
erased

e Input gate: Learns to control which parts of the input to add into the long-
term state

e Output gate: Learns to control what part of the long-term state should be
given as output

Put simply these gates learn to recognise important input, store it long term, preserve
it until it is not needed, and output it when needed [5, 23].

Described briefly, the process of how an LSTM cell functions can be seen as a
small feed-forward network in and of itself, and the following equations are gotten
from[23, p. 517]. The cell has two inputs feeding into 4 nodes with activations
0f,0u4, 00, tanh. There, weighted sum and activation is applied and the values are
passed into the different logistic gates and used to modify the long-term state c. The
modified state is then copied, where one copy is passed on to the next iteration for
the current cell, whilst the other copy is given a tanh activation and gated through
the output gate, before being copied again and passed as both output and recursive
input a~*>

10

2.4 Keras and Tensorflow

Tensorflow]'] is a machine learning framework built for researchers and development
engineers to perform the entire process of machine learning, being data loading and
preprocessing, model creation, training and management, and full scale deployment
and management of functioning machine learning models. It offers powerful and
flexible tools and solutions for both Python and Javascript, along with well made
tutorials and API documentation. On top of it’s development frameworks, it is also
built to be applicable on mobile devices and offers a lite version for low-power devices.

Kerad™is a Python API built on top of Tensorflow. It is primarily marketed as
a high-level API for Tensorflow and offers massive efficiency and scalability. It is a
widely used platform for quick and simple machine learning prototyping and testing
and allows for even faster and more flexible usage of Tensorflow, along with its solid
implementation by many high-profile corporations and expertsr_gl It offers curated
tutorials dependent upon your usage of it.

2.5 Natural Language Processing

A Natural Language Processor is a machine which is capable of taking in se-
quences of data and learning features from the input text. An NLP model is used
in a variety of linguistic applications{ﬂ like translation, text-to-speech, command
and voice detection, grammar tagging, summarisation tasks, and so on. Famously,
Alan Turing’d™| Turing Test, also known as the Imitation Game, is in it’s essence
a NLP task for a machine to seem so human that it is capable of fooling a human
to think it is itself a human, and in the case of Turing’s description it is quantified
using written language. Nowadays, this would be known as a chatbot [23 p. 525].
Crucially, linguistic data like words, sentences, paragraphs, and so on, are similar
to music data in many ways. In written form, they are represented by sequences of
characters. Along with this, they are both temporally dependent (references in time)
and contain deterministic rules (grammar and music theory). Therefore, I believe
implementing NLP techniques to the task of both generating music from tablature
character data, along with using their results in investigating representations and
forms of this character data is possible.

Hhttps://www.tensorflow.org/about

Znttps://keras.io/about/

Bhttps://keras.io/why_keras/
Yhttps://www.ibm.com/cloud/learn/natural-language-processing
https://en.wikipedia.org/wiki/Alan_Turing

11

https://www.tensorflow.org/about
https://keras.io/about/
https://keras.io/why_keras/
https://www.ibm.com/cloud/learn/natural-language-processing
https://en.wikipedia.org/wiki/Alan_Turing

3 Methods, Tools and Experiments

The following sections will detail the tools and methods created for and used in the
experiments towards investigating representations for the tablature character data.
First, a talk about the preprocessing and loading of the datasets acquired for the
experiments, along with the dataset itself. Following this will be a description of the
4 experiments conducted and their respective results and discussions.

3.1 Data

The data was acquired from the Classtab[l;gl set of files, which has, as of the time it
was downloaded, a total of approximately 3060 .txt files of tablatures. Giving the
data a quick look-through it has lots of redundant data, with regards to musical
information. Introductory information like history, name, dates, etc. Following will
be descriptions of the tasks and solutions for the data preprocessor and loader created
during this thesis work.

3.1.1 Preprocessor

As each of the classtab .txt files carries parts of no value to the music of the tabs
whatsoever, the preprocessor’s task is to filter all the information in the data such
that there is only tablature data left. Along with this, the preprocessor outputs 4
distinct formats for the tablature data, illustrated in figure [6], where the same bar of
the same song is illustrated.

The preprocessor uses regular expressions to take a raw tab file, containing both
tablature and other raw-text and non-music information, and extracts (very strictly)
only the pure tablature parts. As the whole classtab dataset is around 3000 files and
regular expressions are effective, yet hard to design, I chose to let it be very strict
in what it deems as proper tablature. If at any point the tabs are detected to be
not purely tabs containing alphanumerics surrounded by | and —, the simplest and
fastest decision is to reject the tabs and continue with the next tabs, and this is what
it does.

With these tabs it then generates the different forms of the data. The data is
either 6 rows of N characters (row-heavy), like usual tabs, or N rows of 6 charac-
ters (column-heavy), which can be seen as N chords where N is the length of the
tablature. Along with this the data can also be multiple tracks split into widths
of tabs between the barlines |. If filtering is desirable, the preprocessor also filters

https://www.classtab.org/

12

https://www.classtab.org/

out any characters that are not wanted. Either the tabs can have barlines removed,
have maximum widths of pure silence (chords of only non-activated strings), all non-
numeric characters replaced with — (Except for the — character, of course), or any
combination of these filters. Note that filtering is only ever output as column-heavy
tabs.

|-12-18-8-7----| 1

(a) Row heavy, normal tabs e

(b) Column heavy, trans-
pose of row-heavy

(c) Multi-track, neatly di- (d) ljillzered, RO~ UNNeces-
vided rows to be more hu- > @atd

man readable

Figure 6: The different representations of the tabs produced by the preprocessor

3.1.2 Loader

The loader loads a given preprocessed file into a tensorflow dataset suitable for the
model’s architecture (character to character, or sequence to sequence), along with
generating statistics about the preprocessed file, like the amount of activations for
strings, most used characters in the vocabulary, and so on. The loader also takes in a
specific split ratio for it’s dataset and requires the ratios to sum up to 1. This makes
it easy to generate any number of unique splits of the data into several datasets.
Table [1] is an example of the stats extracted by the loader as it reads through a
source file. This file in particular seems to have 54% silence, which is particularly

13

interesting for the purposes of analysing why generated music seems to have quite a

bit of silence within it

Barline count: 3068 String activation count
Silent chord count: | 18190 E B G D A E
Chord count: 15388 || 5904 | 6360 || 4950 | 3776 | 3004 | 1828
Fret activation count
Open string | Fret 1 | Fret 2 | Fret 3 | Fret 4 | Fret 5 | Fret 6 | Fret 7 | Fret 8 | Fret 9
7267 2733 | 4718 | 2997 | 1867 | 1920 776 1907 825 812
Vocabulary usage
| \n — 0 1 2 3 4 5 6 7 8 9
18408 | 0 | 175640 | 7267 | 2733 | 4718 | 2998 | 1867 | 1920 | 776 | 1907 | 825 | 812

Table 1: The statistics from a data file comprised of tablatures extracted from 80
files from the main set of classtab files

3.2 Model

The model is based on a promising model from [I5], and is essentially a sequen-
tial model of a few large layers of LSTM cells with regularization methods applied.
Although I deem it necessary to describe a few parts of this model, I refer to the
original paper for more detailed technical information about them

14

mput: | [(16, 7)]
output: | [(16, 7)]

embedl_imput: InputLayer

mput: (16, ?)

embedl: Embedding
output: | (16, 7, 512)

l

batch_normalization: BatchNormalization

l

mput: | (16, ?, 512)
output: | (16, 2, 512)
input: | (16, ?, 512)
output: | (16, ?, 512)
mput: | (16, ?, 512)
output: | (16, 2, 128)

|
'

mput: | (16, ?, 128)
output: | (16, 2, 128)

l

batch_normalization_1: BatchNox

|
l

prediction(dense): TimeDistributed(Denge)

mput: | (16, 2, 512)
output: | (16, ?, 512)

Istml: LSTM

dropout: Dropout

Istm2: LSTM

nput: | (16, 2, 128)
output: | (16, 2, 128)

dropout_1: Dropout

Istm3: LSTM

input: | (16, 7, 128)
output: | (16. 7, 128)

mput: | (16, 2, 128)

dropout_2: Dropout
output: | (16, 2, 128)

nput: | (16. 2, 128)
output: (2.2.12)

Figure 7: All the layers of the CharRNN training model

For each of the layers, the input and output parts of the plot are dependent
on their specification and/or previous layers. For example, the embedding layer
"embed1” takes in a 2-dimensional input batch of size 16, but outputs a 3-dimensional
set of batches, as the Istm1 layer requires a 3-dimensional input, there are 512 nodes
on it’s layer, and the batch normalization layer preceding Istm1 simply takes an input
and normalizes it’s content (i.e: scales it’s content to between 0 and 1, which helps
to control the gradients of the model [27]).

The dropouts after each LSTM layer are meant to avoid over-fitting, which is
a problem for many recurrent architectures, by increasing the regularization of the
weights in the network [23| p. 365-367] and [28]. Essentially it helps to distribute

15

training to weights that, if they weren’t dropped, would potentially be favored against
in most training instances, along with helping to avoid the chance of weights becom-
ing overfitted.

3.2.1 Input representation

Inputting to the model is done as a set of vocabularized characters. It is again similar
to the vectorization method of [I5], but with a few differences with regards to the
tablature itself.

With regards to the character to character model, as a set of characters in sliding-
window sequences, where the following character is predicted based on the input set
of characters. Once predicted, the "window” slides one character to the right and
predicts the next character again, keeping the width of this window at a constant
size. For sequence to sequence, this same method applies but instead of a sequence
of characters there is a pair of sequences of 6 characters each, wherein the next
sequence is predicted based on the input pair. These sequences are chords, so the
representations are arbitrary, since any one sequence will be the same 6 characters.

Regardless of the structure, the tablatures being input into the model both for
training and generation will be linear sequences of character-indices, i.e. they look
like sequences of vocabular character indices with periodic or semi-periodic instances
of newline character indices.

3.3 Training

Training is straight forward. An amount of epochs, batch size, sequence lengths and
other specifications are used to generate a dataset using the aforementioned loader.
The training model is loaded, loss, optimizer, and metrics are compiled in (For now
only sparse categorical crossentropy as a loss function, and adam as an optimizer has
been tested), and finally the model is fit with training and validation data, along with
using callbacks for saving the weights as it trains. In the end a sample prediction
and training history is visualised for loss and accuracy. If desirable the user can then
save the logs for future evaluation. For character to character training, a sequence
length of 140 was default and used on most all experiments as preliminary tests gave
favourable results with that sequence length

3.4 Composition

For composition, the appropriate weights from the desired trained model are loaded
and built, then the composition method for the model is run. Depending on the

16

model, composition either predicts and categorically samples single characters or
sequences of 6 characters for any desired amount of predicted chords. After compo-
sition the user can visualise and choose to save the music if so desired.

What is crucial for the composition of the tablature to be deemed as valid, is that
it upholds the structural trend of the training data. Figure [6] shows all the different
representational forms I use for the original tablature data. As such, the generated
tabs need to be representative of these structures in every detail. For example, the
multi-track compositions need to be formed as an arbitrary amount of chunks of 6
lines with width N. Alternatively, the row-heavy representation is simply 6 lines of
tabs, all of width N, whilst column-heavy is row’s transpose of N lines of width 6.
This can be referred to as a representation’s structural dependency, and it must be
upheld in tablature generation.

4 Training and composition experiments

The following will be a few brief subsections about the different trainings and com-
positions from the different data representations. Afterwards, the results of each of
these will be compared and discussed.

For all data representations a character to character model was utilised with
a sequence length of 140 and 50 epochs. Batch sizes varied from experiment to
experiment, as it was limited by the power of my hardware, but the final results
depict the batch sizes for the chosen models. For the sequence to sequence model,
only a simple sliding window of sequence pairs was used.

4.1 Multi track

Training the model was straight forward for either amount of epochs and the history
can be seen in the following figure. Please note that because of hardware limitations,
the training only lasted for around 20 epochs before it crashed.

17

Training vs validation Training vs validation

1.5F ; ;
— loss 0.9} :
—val loss >
2 1| | § 0.85 8
Q =
= g 08} 8
<< — accuracy
0.5}) 0.751 | |—val accuracy ||
| | | | I I
0 10 20 0 10 20
Epoch Epoch

Figure 8: Multi-track model training history

Figure [9] shows the composition results and I’d like to highlight the formatting
problem of the prediction. It seems to somewhat understand that newline is impor-
tant, but it does not manage to reliably predict chunks with the limitations implied
by the multi-track format.

|-12-10-8-7----|

Figure 9: Composition results for a multi-track input representation. The first few
lines are input

18

4.2 Row-heavy

Following is a figure of the training history of the model trained upon row formatted
data.

Training vs validation Training vs validation
].5 [i : M T T T
— loss
— val loss .. 09
w 1F 8
051 | < 08 — accuracy
— val accuracy
| | | | I I
0 20 40 0 20 40
Epoch Epoch

Figure 10: Row model training history

Once again a promising convergence between the training and validation results
for each epoch. Figure [11] shows a comparison of composition results between this
model and one trained on 20 epochs.

. a--

(b) 50 epochs

Figure 11: Comparison of 2 generated tabs by a row-heavy trained model. Multiple
lines are a result of line wrapping. They are both in fact only a single line.

19

4.3 Column-heavy

Columnated datasets is where results start to show some promise beyond that of
simple training performance. Figure [6D] shows how they are styled, and as you can
also see it bears a striking resemblance to [6d] which is the filtered datasets.

4.3.1 Method

Thanks to the regularity of the format, the data can be easily interpreted for either
character to character, or sequence to sequence datasets. Each row in the matrix
would be a chord, and given how musical structure follows sequences of chords it is
safe to decide that sequences would be 6 characters representing the 6 strings on each
chord. With this I created and trained models using datasets designed for character
prediction and sequence prediction.

Training both models for 50 epochs on the largest possible dataset of 69268 rows
(415608 characters) was done only a small number of times due to time constraints.
Nevertheless, according to the following accuracy plots, there wouldn’t be much
need for training beyond 20-30 epochs, as there were diminishing returns beyond
these points.

Character to character was trained using a sequence length of 140, whilst both
models were trained with a batch size of 16. The reason the sequence length is a
multiple of 7 is because I wanted the model to learn using sets of chords, 6 characters
+ 1 newline character

Char2char loss Char2char accuracy
— loss
20 —val loss || >
7 = 0.8f .
3 2
1t - 3]
< — accuracy
0 0.6 | |—val accuracy ||
. | | = | T T
0 20 40 0 20 40
Epoch Epoch

Figure 12: Character model training accuracy

20

Seq2seq loss Char2char accuracy

I T T T
— loss
0.7 —val loss [
) val loss ? 0.88 |
3 =
= 0.6 : iﬁ
08| | |[— accuracy |
— val accuracy
05 [| |] | T T
0 20 40 0 20 40
Epoch Epoch

Figure 13: Sequence model training accuracy

Character to character seems to show promise, whilst the sequence to sequence
model is very erratic during it’s validation steps. I do not believe that model manages
to learn anything with regards to seeing unexplored data. Disregarding those results,
the predictions using each trained model at a temperature of 0.9 can be seen in figure

14

generate stant

-12-10-8-7--

v

|- 312\1115151411“1\1@9 B e - ~ |-
BB B] [| B G PR I PR) - I [
‘ q. g - 9-g
I
-]
|-

\
-19-3--8- -+~ R EECEEEERRRRRR
-

generate start

(b) Sequence to sequence

Figure 14: Comparison of composition for character to character, and sequence to
sequence

5 Results

First, a point to make is that in all the different training sessions for the character to
character models, we see that the plots are quite promising with regards to training

21

progress and stability. Table [2[shows the configuration and final results of these

trainings.

Data form | Seq. length | batch size | epochs | Loss (train|val) | Accuracy (train|val)
Multi 140 32 20 0.42 0.41 0.90 0.91
Row 140 32 20 0.34 0.30 0.91 0.92

Column 140 16 50 0.19 0.35 0.95 0.92

Table 2: Final results from training the different character predictor models

Something to note is that these results are quite good. High accuracies, with
minimal loss, along with favorable convergence between training and validation.
However, the resulting compositions for both the multi-track, and the row-heavy
representations failed to uphold the structural requirements for them to be deemed
valid tablature.

In the case of the multi-track model’s composition, we can observe that there
is an attempt by the model to uphold the structure it has been learning from the
data, but it fails to really learn these patterns, as I can only assume is because of how
irregular it is. For row-heavy, the model completely fails at even trying to understand
the crucial 6-line structure of the data it is trained upon, producing only a single
line of tablature characters when composing.

The column-heavy model, though, produces not only favorable structure, but
also parts that seem to uphold some musical rules. Using an online too[] I played
the composed tabs and personally do not think it sounds good. But, disregarding
if the music sounds good, 1 believe that at least the tablatures contain elements
of musicality. There are parts that harmonise nicely, having both a short span of
repeating fingering, along with chords harmonising at regular intervals. I believe the
model managed to pick up on elements of musical harmony and temporal dependence,
on top of the physical structure of the training data.

The reason for how these results came to be comes down to a combination of the
physical structure of the data the models are trained upon, along with the sequence
length, or window size, given to the models upon training. A CharRNN model
inherently reads text from left to right, and as such the sequencing must be adjusted
in such a way that it envelops the parts of the data that is crucial for the model to
learn, i.e. recognisable patterns such as the usage of \n in tablature structure. This,
is infeasible for the structures that had large, unclear patterns like that of the row-
heavy representation, or many smaller patterns like that of the unclear block width

17toFret: http://www.tofret.com/tablature-player.php

22

http://www.tofret.com/tablature-player.php

of the multi-track representation. In fact, what was clear about the column-heavy
representation was that because of the simple and highly repetitious pattern of the
data, i.e. 6 characters followed by \n, the model was able to seemingly perfectly
represent it when being used to generate new music. Along with this, it seemed to
learn other patterns from the music itself, as seen in figure [14a

Additionally, there is the results of the sequence to sequence predictor. As it was
not limited to learning the structure of the tablature, it would be expected to better
learn the musical features of the data. But with regards to the training results, and
the generated tablature, it does not seem like it had really learned anything at all,
and the generated tablature is simply some random distribution of the characters
present in the vocabulary of the training data. The structure is, of course, simply
an emergence of how it runs. It always generates chords of 6 characters, and isn’t
limited by the structure of the tablature it reads.

6 Discussion

Something to note is that the multi-track representation didn’t completely fail in it’s
attempts at forming the tablature structures. As mentioned about the dependency
of sequence length to structure form, I believe that had the model been more stable
during training it would be able to potentially learn the structure, somewhat. The
most glaring issue with the structure of the representation is that it is quite complex.
Not only are there clear 6-line chunks, but each chunk seem to be of arbitrary width.
This turns the problem of representation into an issue which is different to that of the
issues with the row-heavy data. For the row-heavy data, there simply is no feasible
way to adjust the sequence lengths such that the structure can be learned, because
enveloping an entire line in a single sequence potentially thousands of characters
long is not efficient model input management. For the multi-track representation,
the sequence length could be adjusted such that it envelops several of these blocks,
in theory, but it would also make the size of training batches incredibly large, and
again mean that the model has an abnormally large input, similar to that of the
infeasible row-heavy suggestion.

Something to think about for the column-heavy dataset is that the way it is
formed helps to highlight the chord-like structure of music itself, and not only the
simple 6 characters + \n structure. Along with this, I believe it was a mistake to
form it’s dataset as pairs of sequential chords. Thinking about it with regards to
the character predictor input structure, it would rather be better to take several
sequential chords as input to the sequence predictor. This would be more similar to
the character predictor with the column-heavy dataset, in that logically speaking,

23

sequences of 140 characters as input means 20 chords are being input every 7 intervals
of inputs (i.e. every input, the 140-width window slides one character along the
data). Essentially, the character predictor sees entire sets of chords as well as their
transitions quite clearly. This would be replicated in the sequence predictor if the
inputs were of sets of chords, rather than pairs.

7 Further work

The data that is used is made from scouring through a set of around 3000 files
from ClassTab that are strictly evaluated only for their tablature, with no regards
towards musical style, theme, genre, etc. As such, because classical music is varied
and vast, there is an arbitrary mix of musical styles, themes, lengths, etc. that the
models are introduced to. Because of this, they are given a mix of musical features
to learn from, forcing them to expend learning capacity towards more features than
potentially necessary. Whilst recurrent networks excel at learning from data with
many features, it would be wise to limit unnecessary complexity. Further work would
be needed with gathering and more carefully selecting data for testing the model’s
capability of better specialising to specific musical features, e.g. music made by
specific artists.

Alongside this, more work is needed to solve other issues and limitations for the
preprocessor itself, like improving it’s ability to filter out non-tab data from provided
files.

The multi-track model seemed to show promise with it’s prediction results, and
I believe with more training, a variety of sequence lengths, and less complex data it
could viably learn to predict tabs with multiple tracks. One future test could be to
make sure the widths of each chunk stays constant, such that the model can learn
to predict them more easily.

The sequence predictor, whilst faulty, shows promise in concept and I believe
with more experimentation upon it’s implementation it could go further. I believe
one mistake was to make the input data come in pairs, rather than sets of chords in
some matrix form. I believe it would be valuable to look into this and correct it. As
previously stated, if the models weren’t constrained to learn the tablature structure
on top of the musicality, they would more readily expend resources towards learning
the latter and might produce better results. On top of that, I believe fixing the
mistake would result in the model being much more receptive of the music it learns
from, with regards to temporal dependencies.

With the promising results from the models trained on columnated datasets, it
would be beneficial to look into training models on data with more limited features.

24

Measures to manipulate and filter the datasets are implemented in the preprocessor.
I hypothesize that the sequence to sequence model might perform better if it were
to train upon data with less redundant data, like non-musical characters. Also, as
mentioned in the loader’s section, the datasets invariably have a lot of silence inside
it, which could contribute to the machines’ predilection towards predicting silence.
Using the filtered datasets, this should be looked into further.

8 Conclusion

These experiments have been used to uncover how different potential representations
of tablature can be used to train models for prediction of tablature music using
character datasets. Whilst training showed promising results, tests show that for
representations that have complex or non-regular structure, like the standard multi-
track and rows, the model fails to pick up the structural features of the data. Whilst
predicting characters alone went quite well for the models, understanding tablature
structure was too complex if there weren’t enough structural indicators like newline
patterns to denote the frequency and format of the other musical characters.

In conclusion, I believe that the best and most promising representation of tab-
latures for a character to character predictor of music is the columnated tabs. The
structure of this representation is regular, and allows the model to quickly pick up on
it and focus on learning the more complex musical features of the tabs. Furthermore,
the model trained upon this columnated data seems to pick up on musical features
like repetition, timing and harmony, and with a more carefully selected dataset might
even be able to learn more musical features like styles and themes.

9 Final discussion

Some points can be made about approximations and limitations of some of the tools.
The preprocessor functions quite well, although it is crude and strict and can po-
tentially miss some useful tabs or other items. Analysing some of the filtered files
shows that there could be some slight fault in the filtering methods, and should be
looked into further to generate more robustly filtered files. Additionally, the loader
works well, but it misses some characters when it statistically analyses the tab file for
activations and vocabulary usages, particularly special characters like newline and
space, although this isn’t too big of a problem since these characters do not affect
the musical value of the tabs at all.

25

I think that the work as it stands now only partially answers the original ques-
tions stated in the introduction. Whilst I am certain of my claims regarding the row
and multi-track representations being inferior to the column-heavy one, I believe that
the sequence predictor should be given further work towards having more represen-
tative training data and could potentially rival the character predictor model if it
managed to train properly. A fact to consider about the sequence predictor is that
it doesn’t need to also learn the structure of the tabs. It’s input and output format
means that the structure is given. This, as previously stated, means the model can
focus on learning musical structure instead. The limiting factor is it’s ability to train
with properly constructed training and validation data. I cannot make a conclusion
on whichever of the models are the superior to one another, as I feel the sequence
model is unjustly represented in the work. With this, further work is needed. Re-
gardless, I feel it is still clear that the columnated tablature is superior to the other
representations in the case of the character to character predictor

26

References

1]

[9]

[10]

[11]

[12]
[13]

A. Ibrahim, R. Alexander, M. Shahid, U. Sanghar, R. Dsouza, and D. Souza,
“Control systems in robotics: A review,” International Journal of Engineering
Inventions, vol. 5, pp. 2278-7461, 04 2016.

T. Epelbaum, F. Gamboa, J.-M. Loubes, and J. Martin, “Deep learning applied
to road traffic speed forecasting,” 09 2017.

L. Galante and R. Banisch, A Comparative Fvaluation of Anomaly Detection
Techniques on Multivariate Time Series Data. PhD thesis, 01 2019.

B. Soni, D. Patel, and M. Lépez-Benitez, “Long short-term memory based spec-
trum sensing scheme for cognitive radio using primary activity statistics,” IEFEFE
Access, vol. PP, pp. 1-1, 05 2020.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Compu-
tation, vol. 9, pp. 1735-1780, 1997.

A. Sherstinsky, “Fundamentals of recurrent neural network (rnn) and long short-
term memory (Istm) network,” Physica D: Nonlinear Phenomena, vol. 404,
p. 132306, Mar 2020.

L.-C. Yang, S.-Y. Chou, and Y.-H. Yang, “Midinet: A convolutional generative
adversarial network for symbolic-domain music generation,” 2017.

A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves,
N. Kalchbrenner, A. Senior, and K. Kavukcuoglu, “Wavenet: A generative
model for raw audio,” 2016.

Y. Deng, Z. Xu, L. Zhou, H. Liu, and A. Huang, “Research on ai composition
recognition based on music rules,” 2020.

D. Tuohy and W. Potter, “A genetic algorithm for the automatic generation of
playable guitar tablature,” 2005.

G. Li, S. Ding, Y. Li, and K. Zhang, “Music generation and human voice con-
version based on Istm,” 2021.

J.-Y. Liu and Y.-H. Yang, “Event localization in music auto-tagging,” 2016.

Y.-H. Chen, Y.-H. Huang, W.-Y. Hsiao, and Y.-H. Yang, “Automatic composi-
tion of guitar tabs by transformers and groove modeling,” 2020.

27

[14] M. Majidi and R. M. Toroghi, “Music harmony generation, through deep learn-

[15]

[16]

[17]
[18]

[19]

[20]
[21]

22]

23]

[24]

[25]

[26]

ing and using a multi-objective evolutionary algorithm,” 2021.

S. Dadman, “Synthetic composition of music,” Master’s thesis, UiT The Arctic
University of Tromsg, June 2020.

C. Hausner, “Design and evaluation of a simple chord detection algorithm,”
2014.

A. Lerch, “Audio content analysis,” 2021.

B. L. Sturm, J. F. Santos, O. Ben-Tal, and I. Korshunova, “Music transcription
modelling and composition using deep learning,” 2016.

“Reading guitar tabs for beginners.” https://www.schoolofrock.com/
resources/guitar/reading-guitar-tabs-for-beginners.

“Classtab: Classical guitar tablature.” https://www.classtab.org/.

Q. Xi, R. M. Bittner, J. Pauwels, X. Ye, and J. P. Bello, “Guitarset,” Aug.
2019. Changes from version 1.0.1: - Added Key Annotation in each jams file -
Removed impossible notes (negative frets) - Updated Pitch Contour annotations
to have the correct “index’* field in ‘obs.value‘. - Cleaned up .zip files.

M. McVicar, S. Fukayama, and M. Goto, “Autoleadguitar: Automatic gener-
ation of guitar solo phrases in the tablature space,” 2014 12th International
Conference on Signal Processing (ICSP), pp. 599-604, 2014.

A. Géron, Hands-On Machine Learning with Scikit-Learn, Keras & Tensorflow.
1005 Gravenstein Highway North, Sebastopol: O’Rielly Media, 2019.

B. Xu, N. Wang, T. Chen, and M. Li, “Empirical evaluation of rectified activa-
tions in convolutional network,” 2015.

M. Bianchini and F. Scarselli, “On the complexity of neural network classifiers:
A comparison between shallow and deep architectures,” IEEE Transactions on
Neural Networks and Learning Systems, vol. 25, no. 8, pp. 1553-1565, 2014.

S. Haykin, Neural Networks: A Comprehensive Foundation. Pearson Prentice
Hall, 1994.

28

https://www.schoolofrock.com/resources/guitar/reading-guitar-tabs-for-beginners
https://www.schoolofrock.com/resources/guitar/reading-guitar-tabs-for-beginners
https://www.classtab.org/

[27] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift,” in Proceedings of the 32nd International
Conference on Machine Learning (F. Bach and D. Blei, eds.), vol. 37 of Proceed-

ings of Machine Learning Research, (Lille, France), pp. 448-456, PMLR, 07-09
Jul 2015.

[28] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: A simple way to prevent neural networks from overfitting,” Journal
of Machine Learning Research, vol. 15, no. 56, pp. 1929-1958, 2014.

29

	Introduction
	Data representation
	Related works

	Artificial Neural Networks
	Feed-forward Neural Networks
	Network Architecture
	Sequential Models
	RNN
	LSTM

	Keras and Tensorflow
	Natural Language Processing

	Methods, Tools and Experiments
	Data
	Preprocessor
	Loader

	Model
	Input representation

	Training
	Composition

	Training and composition experiments
	Multi track
	Row-heavy
	Column-heavy
	Method

	Results
	Discussion
	Further work
	Conclusion
	Final discussion

