
Department of Computer Science and Computational Engineering

Drone Swarm Simulator

Luka Jeroncic

Master’s Thesis in Applied Computer Science, DTE3900, May
2021

Summary

This thesis is about the research of available and development of drone
swarm simulators. The simulator in this work, developed with the AirSim
plugin for Unreal Engine 4, shows that there is a possibility of a real-time,
accurate simulator with high graphical quality.

i

Preface

I’ve chosen to write about this topic because I was interested in drone swarm
systems, especially ones without external positioning systems. I was inter-
ested in different kinds of control methods and collision avoidance within
the swarm.
I would like to thank my advisor and supervisor for their limitless patience
and high tolerance for my unseriousness. I would also like to thank my
grandma for giving me a room to work in.

ii

Contents

Summary i

Preface ii

Contents iii

List of Figures iv

1 Introduction 1
1.1 Literature review . 1
1.2 Contributions and scope of the thesis 3
1.3 Existing simulators . 3
1.4 Limitations . 4
1.5 Report outline . 4

2 Preliminaries 5
2.1 Notation . 5
2.2 Unreal Engine 4 and AirSim 5
2.3 Quadrotor UAV dynamics . 6
2.4 Repulsion and attraction preliminaries 7

2.4.1 Activation functions 7
2.5 Sensors preliminaries . 7

3 Methods 9
3.1 Task completion time . 9
3.2 Repulsion-Attraction . 9
3.3 Environment collision avoidance 10
3.4 User interface . 13
3.5 QUAV control . 14
3.6 Scene setup . 14

4 Result 15

5 Discussion 19

6 Conclusion 21
6.1 Future work . 21

References 22

A Digital Attachment 25

iii

List of Figures

1 Unreal Engine 4 editor . 6
2 Quadrotor sketch, showing rotations of each propeller 6
3 Activation functions example 7
4 Sensor function example, Sensor maximum range set to 4 meters 8
5 Activation functions . 10
6 Quadrotor sketch, showing directions of sensors numbered 1-8 11
7 Sensor function . 11
8 Larger domain sensor function 12
9 User interface . 13
10 Input for different commands 13
11 Starting formation . 14
12 Top-down view of scene setup with barriers (white circles),

starting are of the swarm (red circle), and finish line (red line) 15
13 Time to complete for simulation 1 16
14 Time to complete for simulation 2 17
15 Time to complete for higher velocity, simulation 3 17
16 Time to complete for greater distance, simulation 4 18
17 Drones flying between obstacles 18
18 Drones after clearing the obstacles 19
19 Logarithmic sensor function 20

iv

1 Introduction

Lately, a lot of attention has been brought to unmanned aerial vehicle (UAV)
technologies due to their increasing use in military and commercial purposes.
For certain tasks such as tracking, surveillance, path planning, and coordi-
nation, swarms of UAVs have been shown to provide great usefulness and
much better properties and operational parameters than applications run-
ning on a single UAV [1]. The cooperation of the drones within a swarm
raises additional problems not present in a single UAV operation. Swarms
operating as one unit need systems for collision avoidance among the drones
in the swarm itself as well as avoidance of obstacles found in the environ-
ment [2]. Failure in these systems can cause material damage and increase
the cost of developing such systems. Therefore, a simulator capable of visu-
alizing the performance of the drone swarms should be a welcome addition
to the industry.
An unmanned aerial vehicle (UAV) is an aircraft without a pilot, controlled
from the ground or by a computer onboard [3].
The first uses of UAVs were recorded in the 19th century for military use
[4]. The drones first came in the form of balloons. The first-ever practice of
aerial surveillance emerged in 1898. when the U.S. military fitted a camera
to a kite. A few decades and many innovations later, in mid 20th century,
more efforts were put into the research of UAVs to minimize the use of hu-
man on-board pilots. Since then drones have been developed for commercial
uses, the most popular one being for video recording purposes.
There are two main types of modern UAVs: fixed-wing and multi-rotor.
Fixed-wing uses velocity to generate uplift, while multi-rotor uses multiple
rotors to generate uplift like a helicopter. The main drawback of a multi-
rotor UAV is very high power consumption, resulting in limited endurance
[5].
A simulation is the imitation of the operation of a real-world process or
system over time [6]. Keith Douglas Tocher created the General Simulation
Program, the first general-purpose simulator for building a simulation of an
industrial plant in 1958 [7]. Since then, many simulators have been devel-
oped for various purposes, greatly reducing the development cost and time.

1.1 Literature review

There is plenty of drone flight simulators around. Usually, drone simulators
offer control of a single UAV [8, 9]. These simulators offer very accurate,
true-to-life representations of drones and their controls. Accurate simula-
tion of physics is important in these simulators to resemble reality and make
the switch from a simulation onto real performance as seamless as possible.
These simulators, however, do not provide any swarming mechanics.

1

When it comes to simulators for UAV swarms, the existing ones largely
focus on mathematical models of swarming and sub-par visualization meth-
ods [10, 11]. This work is an attempt at bridging the gap between accurate
physics and realistic visuals of a proper simulator and the mathematical
concepts of swarming.
Some highly modular simulation software exists for development of such
systems, including Gazebo [12], Modular open robotics simulation engine
MORSE [13], Flightmare [14] and AirSim [15]. These frameworks provide
groundwork in physics and sensor simulation and allow for further develop-
ment of robotic systems.
Flocking or swarming is a phenomenon observed in natural organisms which
have been a subject of many studies. Consequently, there are many re-
search papers devoted to different aspects of flocking. One such research is
[16] which describes the collective motion as a system of units that, among
other things, move with nearly constant absolute velocity and are capable
of changing their direction. This work is thus more applicable when a UAV
in question would be of a fixed-wing type. Nevertheless, the work mentions
simple interaction methods between units such as attraction and repulsion.
It also emphasizes the importance of a simple model to capture the essential
features of a swarm.
In [17] flocks of birds are compared to particle systems in computer graphics.
While usually just a graphics programming issue, flocks as a particle system
here are achieved through simulation of each particle unit. Even though it
is mainly oriented towards the animation of the flock or particle system, a
big part of the paper is also collision avoidance of environmental obstacles.
It gives insights and ideas for modeling and avoidance of obstacles.
Extensive work on creating a quadrotor swarm that works in reality was
presented in [18]. It identifies a gap between simulators and reality by intro-
ducing real-life conditions such as delays, uncertainties, and kinematic con-
straints. It shows good results both in simulation experiments and real-life
counterparts with the minimum inter-drone distance being 5-15 meters. The
work uses a repulsion mechanism and even though it mentions attraction, it
actually only implements space boundaries for the agents. It provides algo-
rithms and equations for repulsion and velocity alignment when the drones
are in the mid-range distance from each other.
A good source for different concepts and methodologies can be found in [19].
It collects and categorizes many different pieces of research on the topics of
robotic swarms. While not providing a lot of material that this work could
directly benefit from, it is a very good pointer to other works that could be
of use throughout this work.
Similarly to [18], [20] provides an algorithm that is proven to work in re-
ality. It also accounts for the delay in communication and noise. It shows
how these affect the results and swarming performances. It was tested and
proven in a swarm of 9 quadrotor UAVs.

2

1.2 Contributions and scope of the thesis

The first task is to research previous works and identify gaps and shortcom-
ings of the same. This has partly already been covered in the Literature
review section above.
After the research, an attempt will be made to create a simulator or modify
an existing one to allow for the swarming of quadrotor UAVs. The simulator
is to be in 3D and account for all six freedoms of movement for the UAVs.
The UAVs are expected to behave correctly according to laws of physics as
much as possible considering the limitations of simulation software. Some
exceptions apply which will be named in the limitations section.
To realize the swarm simulator it is imperative that the simulator is con-
sistent and modifiable while maintaining the number of collisions as low
as possible. Meaning that when parameters are unchanged the simulator
should yield similar results. The parameters, however, should be modifiable
so different combinations of parameters can be compared.
Consistency will be measured using standard deviation from average time
to complete a task.
The core of the task is to successfully implement swarming algorithms. Pri-
marily using any means available provided by the software, and following
that by implementing features such as UAV to UAV communication, delay,
and noise. The visual quality of the simulation is of high importance to
make it appealing to a wider audience.

1.3 Existing simulators

RotorS, Hector, Gazebo RotorS and Hector use Gazebo for the simu-
lation of quadrotor models. They sacrifice visual quality for performance.
They are flexible and with some work swarming could be implemented.
Gazebo uses the DART physics engine [21] by default and OpenGL for ren-
dering. Other than DART, it also supports Bullet [22], Open Dynamics
Engine [23], and Simbody [24] physics engines.
AirSim: Unreal Engine 4 [25] is the latest iteration in the Unreal Engine
series of game engines developed by Epic Games. ”Game engine” is not a
well-defined term but it is widely used for software intended to develop video
games. It provides tools such as a renderer and a physics engine which are
needed not only for the development of video games but for anything that
could benefit from those tools, such as simulators.
AirSim [15] is a plugin for Unreal Engine 4. It benefits from Unreal’s class
structure and renderer by using it as an environment for running and vi-
sualizing simulations. It uses its own physics engine that can operate at a
high frequency for real-time hardware-in-the-loop (HITL) simulations with
support for popular protocols. It is designed from the ground up to allow
for the addition of new types of vehicles, platforms, and protocols.

3

Flightmare: Similar to Airsim, Flightmare uses Unity Engine for rendering
high-quality visuals. It is separated into main components: a configurable
rendering engine built on Unity and a flexible physics engine for dynamics
simulation. It supports multiple drones, just like Airsim. However, it only
provides API in Python.

1.4 Limitations

In order to make this work possible some limitations have to be defined in
the beginning. Considering the main task of the thesis, which is swarming,
some assumptions are made in order to simplify the work. Putting a lower
limit on the number of drones is just guesswork but following the examples
of other works, at least eight drones should be an achievable goal. There will
be no external disturbances such as wind or turbulences. The world will be
assumed as a flat, non-rotating earth. The UAVs will fly at a relatively low
altitude with constant gravitational forces. As the work gets more compli-
cated and sensors and communication techniques are implemented, realistic
attributes of such technologies should be considered and imitated.

1.5 Report outline

A large part of the thesis has been covered in the above chapters. Research
and analysis of previous works and available technologies are important for
the first part of this thesis.
The chapters below mostly deal with the development of a swarm simulator
by using the API provided by Airsim. It starts with preliminaries which
are good to know for understanding the subsequent content of the thesis. It
includes notation and brief descriptions of concepts used later.
After that, methods used in the development are described in order to famil-
iarize the reader with the way that the simulator works. It defines a task of
the swarm and algorithms used for swarming and collision avoidance. The
scene setup which is used for gathering results is described.
After methods, the results of the simulations are shown with times to com-
plete the task and relevant data such as the number of collisions. Results
of different simulations are gathered in a table for easier comparison and
analysis.
In discussion, the results are given an interpretation. The work is viewed
with a critical view, the drawbacks are discussed and improvements are
suggested.

4

2 Preliminaries

In this section mathematical notations which define the state of the swarm
and its agents are defined which will be used later in the work. Some con-
cepts regarding swarm control and other relevant topics are presented. A
further description of Unreal Engine 4 and AirSim is also included as those
will be a large part of this work.

2.1 Notation

A swarm of QUAVs (Quadrotor Unmanned Aerial Vehicles) is a set:

S = {d1, d2, ..., dn} (2.1)

where:
di(t) = {x, y, z} is a three-dimensional position of a drone i with respect

to time t, and n is the number of drones in the swarm.
Distance between a pair of drones (di, dj) ∈ S is |di − dj |. The unit vector
which points from d1 to d2 is ^(di, dj)

2.2 Unreal Engine 4 and AirSim

Unreal Engine 4 (UE4) is used for a very large variety of applications be-
cause of its availability and modularity. It offers one of the best free-to-use
renderers. Additionally, it boasts a very large marketplace of different sorts
of assets that are very easily added to projects. It also allows for a very
easy in-engine addition of simple geometrical objects to the project scene,
such as cubes, spheres, and cylinders. UE4 also allows plugins. Plugins are
described on the UE4 website as ”collections of code and data that devel-
opers can enable or disable within the Editor on a per-project basis” [26].
Plugins can add runtime functionality, modify engine features and add new
ones, and more. A screenshot from the UE4 editor can be seen in Fig. 1
AirSim is developed as a plugin for UE4. It uses its own physics engine and
allows for the addition of AirSim vehicles from its settings file. The set-
tings file is used to define AirSim defined objects and their attributes, such
as vehicles, sensors, and their starting positions, while the environment is
handled within the UE4 editor. AirSim provides APIs for controlling the
drones, gathering data from sensors, and other functionalities. One example
of a control API is a function that takes a velocity vector as a parameter for
control of a drone.

5

Figure 1: Unreal Engine 4 editor

2.3 Quadrotor UAV dynamics

Quadrotor UAV (QUAV or just quadrotor) uses four propellers to generate
lift. A sketch of a QUAV is shown on Fig. 2. The quadrotor is moved
by creating a disbalance in power given to each propeller. Each propeller
provides lift and torque to the quadrotor. Two of the propellers rotate
clockwise, and two rotate counterclockwise, as shown in the figure 2. For
moving the drone up or down, power to all motors is equally added or
reduced. For tilting it forward, more power is given to propeller 3 and 4,
while is given to propellers 1 and 2. Tilt in other directions is realized
similarly, by a combination of such disbalances. Yawing the quadrotor is
achieved by creating a disbalance between torques provided by propellers
with opposite rotation directions.

Figure 2: Quadrotor sketch, showing rotations of each propeller

6

2.4 Repulsion and attraction preliminaries

The concept of repulsion and attraction (R&A) is important for the agents
of the swarm to act cohesively, controlling the swarm size and behavior. The
core of R&A is the wanted inter-UAV distance Dint. Wanted inter-UAV dis-
tance is the distance at which each drone wants to stay at from every other
drone. To make that happen, virtual R&A forces are introduced [27].
The virtual force between a pair of drones (di, dj) ∈ S is attractive if
|di − dj | > Dint, and repulsive if |di − dj | < Dint.

2.4.1 Activation functions

In order to translate the distance between drones into the force an activation
function f(D) is introduced. For the drones safety, it is imperative that
the repulsive force is larger than the attractive force for the same distance
magnitude |D|. A class of R&A functions for stable swarm aggregations is
described in [28]. In order to keep it simple, linear forces will be used in this
work.
The activation function f(D) can be divided into separate functions for
R&A: fa(D), D > Dint, and fr(D), 0 < D ≤ Dint. Since the functions
depend on Dint the function frel(D) can be offset by Dint so we define
fr(Dr) = f(D −Dint). An example of f(Dr) is shown on Fig.3.

−2 −1 1 2 3

−2

−1.5

−1

−0.5

0.5

Dr

frel(Dr)

fr(Dr) = D

fa(Dr) = D/4

Figure 3: Activation functions example

2.5 Sensors preliminaries

In this work, AirSim’s distance sensors are used. These sensors are attached
to the center of the drones and are defined by their orientation and maximum
distance Smax that they can detect. Both parameters are configurable in

7

AirSim’s settings file. The data from the sensor comes in the form of a
floating point number S, distance in meters from the drone detected in the
sensors orientation.
The distance sensor in this work will be used for environmental collision
avoidance, with a similar function to the repulsion aspect of R&A. The
sensor will thus have another activation function fs(S) with a limited domain
0 < S < Smax. Increasing Smax will increase the distance at which a drone
can react to a detected obstacle. An example of the sensors activation
function is given in Fig. 4, where Smax is set to 4 meters.

0 1 2 3 4 5 6

0

0.25

0.5

0.75

1

1.25

distance S

f s
(S

)
=

(6
−
S

)
∗

0.
2

Figure 4: Sensor function example, Sensor maximum range set to 4 meters

8

3 Methods

AirSim has been chosen for implementing swarm systems simulation due to
claims of multiple quadrotor support, the use of Unreal Engine 4 for ren-
dering, and the C++ API which is preferred by the author of the thesis.
Unreal Engine 4 should provide the highest quality visuals from the avail-
able selection of simulators.
A method of measurement is needed to keep track of the simulation perfor-
mance. Time to complete a task and the number of collisions are the most
important parameters to follow in a swarm application. The information
about collisions is easily gathered by a call to an AirSim API function.

3.1 Task completion time

A task in this simulation is defined as moving a swarm from a starting
position to an end position and completing the swarmed condition in the
end. The swarm starts moving from a predetermined position towards the
goal, reaches it, and swarms around it. The swarm condition is considered
complete when

|di − dj | < ε,∀(di, dj) ∈ S (3.1)

where:

� |di − dj | is the distance between a pair of drones di and dj

� (di, dj) is any pair of drones di and dj

� S is a swarm, or a set of drones as described in Eq. 2.1

� ε is the maximum allowed distance between any two drones in order
for it to be considered a swarm, or the size of the swarm.

The time to complete a task is thus defined as the time from the start of
the task to the end of the task. It is measured using chrono, a part of the
c++ standard library [29].

3.2 Repulsion-Attraction

Since a quadrotor has the ability of hovering, the algorithm for keeping a
swarm of quadrotors relatively close is much simpler than that of fixed-wing
type UAVs. Every effort to keep the drones swarmed includes attracting
them towards each other when they are too far apart, and repulsing them
away from each other when they are too close.
A number of parameters can be changed here in order to compare perfor-
mances and justify the use of the simulator. Some of these are the target

9

distance between the drones, which also affects the size of the swarm, the
functions which a drone uses to generate the response to the distance from
another drone, and the number of drones itself. Finding the right desired
distance is a balance between keeping the drones from spreading out too far
or crashing into each other.
In this project, a system is implemented such that each drone takes into
account distances to all the other drones in the swarm and reacts to them
separately. The sum of these reactions results in the final result, which is
the movement of the drone by a velocity vector.
The drones’ safety is considered a priority, so different activation functions
have been implemented for repulsive and attractive forces. Both functions
are made linear, with varying gradients. The gradient of the repulsive force
is larger to prevent drones from flying too close to each other and crashing.
The default reaction functions are shown in Fig. 5. where Dr [m] is the
distance between the drone to the wanted distance to the other drone, and
frel(Dr) [m/s] is the reaction strength.

−2 2 4 6

−0.4

−0.2

0.2

Dr

f(Dr)

frep = 0.2 · x, x ≤ 0
fatt = 0.03 · x, x > 0

Figure 5: Activation functions

The final repulsion and attraction vector Ci for the control of the drone
di is:

Ci =
∑

frel(|di − dj |) · ^(di, dj), dj ∈ S\{di} (3.2)

3.3 Environment collision avoidance

AirSim offers an API for distance sensors. The sensors are defined in the
settings file by orientation and the maximum distance they can detect. To
ensure sufficient coverage of the surroundings, multiple distance sensors are
defined for each drone.
The sensors don’t cover a range from an angle to an angle but a single ray

10

cast in the direction of the sensor. Eight sensors, denoted as si, i ∈ N, i ≤ 8,
are set up in circular pattern with uniform angular offset, as shown in Fig.
6. The sensors directions are denoted as ^(si). The maximum range Smax

of each sensor is set to 4 meters. The feedback is provided in distance S in
meters to the nearest obstacle in the respective direction.
Because of the way that the sensors have been set up, the optimal collision
object should not have sharp edges and it should be relatively large compared
to the drone size. Thus the obstacles used in the project are large, pillar-like,
round objects.
The function fs1(S) is a sensors activation function. It returns the reaction
intensity in m/s as a function of distance S detected by the sensor, it is
described in Fig. 7.

Figure 6: Quadrotor sketch, showing directions of sensors numbered 1-8

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.25

0.5

0.75

1

1.25

distance S

f s
(S

)
=

(4
−
S

)
·0
.3

Figure 7: Sensor function

11

In addition to the first sensor activation function shown on Fig. 7, an-
other function with a larger domain is made. It supports a sensor which has
a slightly larger maximum detection distance. Both functions are shown in
Fig. 8 for comparison.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

1

2

distance x

f
(x

)

New function
Previous function

Figure 8: Larger domain sensor function

The final sensor input vector Csi for the control of the drone di is:

Csi =
8∑

i=1

fs(si) · ^(si) (3.3)

12

3.4 User interface

A simple user interface is made to be used in the programs console, it is
shown on Fig. 9.

Figure 9: User interface

It supports different commands, some of those are:

� Following the leader which is controlled by an RC controller

� moving as a swarm in a set direction by a set velocity for a set amount
of time, shown on Fig. 10a

� changing the wanted inter-drone distance, shown in Fig. 10b

(a) Move command (b) Changing the inter-drone distance

Figure 10: Input for different commands

13

3.5 QUAV control

A QUAV is controlled by calling a function provided by AirSim which takes
a desired velocity as parameter. The desired control velocity vector Vci for
the drone di is the combination of the repulsion-attraction result from Eq.
3.2 and distance sensor result from Eq. 3.3.

Vci = Csi + Ci (3.4)

3.6 Scene setup

The scene is set up with 6 drones in a defined starting position, shown on
Fig. 11. Close to the drones, several large cylinders are placed to act as
barriers to the drones, spaced out in a way to allow for the drones to fly in
between. The formation of the barriers is shown on Fig. 12.
The timer starts and the drones start moving as a swarm in the direction of
the obstacles. The drones keep moving until all drones have passed to the
other side of the obstacles. The drones then start swarming together and
the timer stops when the swarming condition is satisfied.
This process is then repeated 15 times to gather data on average time to
complete, standard deviation of the same, and the number of collisions.

Figure 11: Starting formation

14

Figure 12: Top-down view of scene setup with barriers (white circles), start-
ing are of the swarm (red circle), and finish line (red line)

4 Result

The results of simulations running different parameter sets are shown on
table 1 below. Each parameter set was simulated fifteen times. The number
of QUAVs for each set was six. The parameters that were changed are sen-
sor activation function, wanted drone velocity, wanted inter-drone distance.
Data gathered is average time to complete the task, standard deviation of
the same and average collision count per run of the parameter set over the
fifteen runs.
Two sensor activation functions are used, in the table denoted as fs1(S) and
fs2(S), which refer to Eq. 7 and Eq. 8 respectively.
Some collisions happened during the simulation, all of which were drone
against obstacle. In this case, the drone would get stuck for a short amount
of time, and eventually break free and continue its journey.

Changing the sensor reaction function to one with larger a domain shown
on Fig. 8, yields results shown in Fig. 14.

Keeping everything the same but increasing the velocity by 50% gives
results shown on Fig. 15

And finally, changing the target distance between drones by 50% to 6m
gives results shown in Fig. 16

Screenshots of drones travelling between obstacles are shown on Fig. 17,
and after clearing the obstacles on Fig. 18.

15

Table 1: Simulation results table

Sim 1 Sim 2 Sim 3 Sim 4

Drones nr 6 6 6 6

Inter-distance 4m 4m 4m 6m

Velocity 0.8m/s 0.8m/s 1.2m/s 1.2m/s

Sensor Function fs1(S) fs2(S) fs2(S) fs2(S)

Avg. task time 82.6s 83.1s 59.1s 59.9s

Standard deviation 2.75s 1.49s 4.05s 5.92s

Avg. collisions 0 0 0.2 0.27

2 4 6 8 10 12 14
50

60

70

80

90

100

Simulation nr.

T
im

e
to

co
m

p
le

te
[s

]

Figure 13: Time to complete for simulation 1

16

2 4 6 8 10 12 14
50

60

70

80

90

100

Simulation nr.

T
im

e
to

co
m

p
le

te
[s

]

Figure 14: Time to complete for simulation 2

2 4 6 8 10 12 14
40

45

50

55

60

65

70

Simulation nr.

T
im

e
to

co
m

p
le

te
[s

]

Figure 15: Time to complete for higher velocity, simulation 3

17

2 4 6 8 10 12 14
40

45

50

55

60

65

70

75

80

Simulation nr.

T
im

e
to

co
m

p
le

te
[s

]

Figure 16: Time to complete for greater distance, simulation 4

Figure 17: Drones flying between obstacles

18

Figure 18: Drones after clearing the obstacles

5 Discussion

As has been demonstrated, a real-time simulator that is accurate and looks
visually appealing is possible. There is, however, a glaring issue that came
up during the development of the swarm simulator in AirSim.
The reason that the swarm size was limited to only six QUAVs is because
of performance issues. The simulator struggles significantly with a greater
number of drones, the framerate drops and the simulator becomes unusable.
The results presented in this thesis were generated on a PC with a quad-
core AMD Ryzen 3550H CPU, NVIDIA GTX 1650 GPU, and 16GB of
dual-channel RAM. Perhaps a machine with more capable hardware could
support a larger number of drones and make the simulation run better. This
problem could also be due to AirSim not being optimized for receiving a lot
of commands in a very short time and controlling multiple agents at the
same time.
The simulator itself shows consistent results considering limitations. Chang-
ing the sensor activation function to one with a wider domain seems to
have made an impact on the consistency of the result. This could be due
to QUAVs reacting to the obstacles from farther away and thus having a
smoother path in between them.
The change to drones’ desired velocity seemed to have made the most im-
pact, which shouldn’t come as a surprise. It decreased the average time to
complete the task significantly, A change of 50% to the wanted velocity cut
the task time by about 29%. However, it came at a price of a few collisions,
the wanted velocity combined with repulsion and attraction sometimes over-
powered the input given by the distance sensor and a drone would collide

19

with an obstacle. This in turn resulted in longer runs when a collision hap-
pened, causing a higher standard deviation of time to complete the task.
Collisions at higher velocities could be fixed with further modification of the
activation functions. A logarithmic function could be worth trying out, so
the repulsion from the obstacle could be fine when the drone is far away
from the obstacle but rise exponentially as it gets closer to the obstacle, an
example is given in Fig. 19. implementing a safety distance as described in
[27] is also a viable option.
The change to the swarms wanted inter-drone distance doesn’t seem to have
made any impact other than a slightly longer time to complete a task. This
makes sense because some drones start from farther back when the inter-
drone distance is set to a higher number.

0 0.5 1 1.5 2 2.5 3 3.5 4

0

2

4

6

distance S

f s
(S

)
=

2
−
lo
g 2

(S
)

Figure 19: Logarithmic sensor function

The method of input could also be improved, as the current one offers
limited possibilities. Compatibility with a controller is supported by AirSim,
but it would require some modifications to work for the swarm in this case.
The data from the distance sensors for obstacle avoidance is noisy, realistic,
and applicable when developing a real drone swarm. However, the technique
used to get the distance between drones provides the exact distance given
by the simulator. There is room for improvement here, with the possibilities
of simulating some existing methods of finding range between drones.

20

6 Conclusion

There is a shortage of good UAV simulators which support multiple UAVs
and swarming. There are virtually no simulators that combine high graph-
ical capabilities and multi-drone systems.
The proposed simulator delivers on the task to an extent. It shows consistent
results given limited velocity and swarm size parameters. The simulator has
been shown to perform well for the size of up to six UAVs.
The drones successfully avoid colliding with each other, but occasionally col-
lide with environmental obstacles, depending on the set parameters. Never-
theless, with or without collisions, the task gets completed and the drones
find their way through the cluttered course.
The movement of the drones looks smooth and has high visual quality due
to the rendering process provided by Unreal Engine 4. However, this is true
only for a limited number of drones, as performance issues arise quickly with
the addition of more drones.

6.1 Future work

Several things can be improved here. AirSim can be explored more in order
to improve performance, different and more efficient swarming algorithms
can also be implemented.
The same can be done using other simulators such as Flightmare, which also
provides great visual quality. Unity does not require hardware as strong as
Unreal Engine 4 does, which could help with performance.
Developing such a simulator using Gazebo or any of its derivatives is also
an option, albeit it requires more work, especially for graphics.

21

References

[1] G. Chmaj and H. Selvaraj, “Distributed processing applications for
UAV/drones: A survey,” in Progress in Systems Engineering, pp. 449–
454, Springer International Publishing, 2015.

[2] A. Bürkle, F. Segor, and M. Kollmann, “Towards autonomous mi-
cro UAV swarms,” Journal of Intelligent & Robotic Systems, vol. 61,
pp. 339–353, oct 2010.

[3] “Unmanned aerial vehicle definition.” http://www.

oxfordlearnersdictionaries.com/definition/english/uav.
Accessed: 2021-02-15.

[4] “A brief history of us drones.” https://understandingempire.

wordpress.com/2-0-a-brief-history-of-u-s-drones. Accessed:
2021-01-24.

[5] H. V. Abeywickrama, B. A. Jayawickrama, Y. He, and E. Dutkiewicz,
“Empirical power consumption model for UAVs,” in 2018 IEEE 88th
Vehicular Technology Conference (VTC-Fall), IEEE, aug 2018.

[6] J. Banks, J. Carson, B. Nelson, and D. Nicol, Discrete-Event System
Simulation. Prentice Hall, 5 ed., 2010.

[7] D. Goldsman, R. Nance, and J. Wilson, “A brief history of simulation,”
pp. 310 – 313, 01 2010.

[8] “Dji flight simulator.” https://www.dji.com/hr/simulator?ite=

brandsite&from=nav. Accessed: 2021-02-15.

[9] “Zephyr simulator.” https://zephyr-sim.com. Accessed: 2021-02-15.

[10] E. Soria, F. Schiano, and D. Floreano, “Swarmlab: a matlab drone
swarm simulator,” May 2020.

[11] P. Cybulski, “A framework for autonomous UAV swarm behavior sim-
ulation,” in Proceedings of the 2019 Federated Conference on Computer
Science and Information Systems, IEEE, sep 2019.

[12] N. Koenig and A. Howard, “Design and use paradigms for gazebo,
an open-source multi-robot simulator,” in 2004 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS) (IEEE
Cat. No.04CH37566), IEEE, 2004.

[13] G. Echeverria, N. Lassabe, A. Degroote, and S. Lemaignan, “Modular
open robots simulation engine: MORSE,” in 2011 IEEE International
Conference on Robotics and Automation, IEEE, may 2011.

22

http://www.oxfordlearnersdictionaries.com/definition/english/uav
http://www.oxfordlearnersdictionaries.com/definition/english/uav
https://understandingempire.wordpress.com/2-0-a-brief-history-of-u-s-drones
https://understandingempire.wordpress.com/2-0-a-brief-history-of-u-s-drones
https://www.dji.com/hr/simulator?ite=brandsite&from=nav
https://www.dji.com/hr/simulator?ite=brandsite&from=nav
https://zephyr-sim.com

[14] Y. Song, S. Naji, E. Kaufmann, A. Loquercio, and D. Scaramuzza,
“Flightmare: A flexible quadrotor simulator,” 2020.

[15] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “Airsim: High-fidelity
visual and physical simulation for autonomous vehicles,” May 2017.

[16] T. Vicsek and A. Zafeiris, “Collective motion,” Physics Reports,
vol. 517, pp. 71–140, aug 2012.

[17] C. W. Reynolds, “Flocks, herds and schools: A distributed behavioral
model,” ACM SIGGRAPH Computer Graphics, vol. 21, pp. 25–34, aug
1987.

[18] G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A. E. Eiben, and
T. Vicsek, “Data from: Optimized flocking of autonomous drones in
confined environments,” 2019.

[19] M. Brambilla, E. Ferrante, M. Birattari, and M. Dorigo, “Swarm
robotics: a review from the swarm engineering perspective,” Swarm
Intelligence, vol. 7, pp. 1–41, jan 2013.

[20] C. Virágh, G. Vásárhelyi, N. Tarcai, T. Szörényi, G. Somorjai, T. Ne-
pusz, and T. Vicsek, “Flocking algorithm for autonomous flying
robots,” Bioinspiration & Biomimetics, vol. 9, p. 025012, may 2014.

[21] J. Lee, M. X. Grey, S. Ha, T. Kunz, S. Jain, Y. Ye, S. S. Srinivasa,
M. Stilman, and C. K. Liu, “DART: Dynamic animation and robotics
toolkit,” The Journal of Open Source Software, vol. 3, p. 500, feb 2018.

[22] E. Coumans, “Bullet physics library.” bulletphysics.org.

[23] R. Smith, “Open dynamics engine.” http://www.ode.org/index.

html.

[24] “Simbody api reference documentation.” https://simbody.github.

io/3.5.0/index.html. Accessed: 2021-05-11.

[25] Epic Games, “Unreal engine.”

[26] “Unreal engine documentation.” https://docs.unrealengine.com/

en-US/index.html. Accessed: 2021-05-11.

[27] E. Falomir, S. Chaumette, and G. Guerrini, “Mobility strategies based
on virtual forces for swarms of autonomous UAVs in constrained en-
vironments,” in Proceedings of the 14th International Conference on
Informatics in Control, Automation and Robotics, SCITEPRESS, 2017.

[28] V. Gazi and K. Passino, “A class of attraction/repulsion functions for
stable swarm aggregations,” in Proceedings of the 41st IEEE Conference
on Decision and Control, 2002., IEEE, 2002.

23

bulletphysics.org
http://www.ode.org/index.html
http://www.ode.org/index.html
https://simbody.github.io/3.5.0/index.html
https://simbody.github.io/3.5.0/index.html
https://docs.unrealengine.com/en-US/index.html
https://docs.unrealengine.com/en-US/index.html

[29] “Iso international standard iso/iec 14882:2020(e) – programming lan-
guage c++.” https://isocpp.org/std/the-standard. Accessed:
2021-05-11.

24

https://isocpp.org/std/the-standard

A Digital Attachment

The digital attachment includes all the source code for the drone swarm
project, a build for running it and a readme file explaining the setup.

25

	Summary
	Preface
	Contents
	List of Figures
	Introduction
	Literature review
	Contributions and scope of the thesis
	Existing simulators
	Limitations
	Report outline

	Preliminaries
	Notation
	Unreal Engine 4 and AirSim
	Quadrotor UAV dynamics
	Repulsion and attraction preliminaries
	Activation functions

	Sensors preliminaries

	Methods
	Task completion time
	Repulsion-Attraction
	Environment collision avoidance
	User interface
	QUAV control
	Scene setup

	Result
	Discussion
	Conclusion
	Future work

	References
	Digital Attachment

