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ABSTRACT 

The world is evolving towards automation at a rapid rate. With this, there are lot of gaps that 

need to be filled as we switch from conventional methodology of doing things to the adaptation 

of newer automated technology. One of those many news aspects is Additive Manufacturing, 

also known as 3D printing. 3D Printing has changed significantly over the years, from it being 

used for making prototypes for the designs, to its being used for making actual functional parts. 

Having the potential to revolutionize the manufacturing industry in many different aspects, it 

has become very important for every industry to penetrate the technology in their mainstream 

methodology of doing things.  

The aim of this thesis is to takes all of the factors into account and develop suitable guidelines 

for increasing application of 3D Metal Printing. The project is done in collaboration with 

Equinor ASA, where in a case study was performed on a standard part provided with them. The 

methodology of conducting the study focuses on realizing the received part, that is 

manufactured using conventional technique, to be produced using 3D printing technology. The 

first part of the thesis consists of a thorough literature survey about the 3D printing technology 

and its market. The survey is followed by the experimentation phase which involves reverse 

engineering, redesigning, analysis, simulation, and cost estimation with a comparison study on 

each. During this course of realization, guidelines with suitable justification are prepared. 

Furthermore, the challenges and opportunities offered by the additive manufacturing 

technology are also discussed. This will also provide a direction in order to integrate additive 

manufacturing technique in the conventional manufacturing technology.        
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1 INTRODUCTION 

The complexity of manufacturing in the race of developing a newer product or technology has 

increased exponentially and has made it necessary for the development of those manufacturing 

processes in the first place. Manufacturing processes, thus, have evolved drastically past few 

decades to meet these demands. Inclusion of additive manufacturing to the earlier subtractive 

manufacturing/ metal removing process has opened different doors in the field of 

manufacturing and one of such technology is 3DMP or the 3D Metal Printing. In simple words, 

3DMP is similar to a computer jet printer but unlike forming a 2D digital image on a paper by 

extruding ink through a nozzle, it oozes out a metal on a print bed corresponding to the design 

fed to the printer resulting a 3D structure or any desired shape. But having that said, 3D Metal 

Printing has many other ways to make a product e.g., Powder Bed Fusion, Material Jetting, 

Binder Jetting, etc. 

Since the technology of 3DMP is still very immature and the cost comes at premium, it is very 

difficult for the small and medium scale enterprises (SMEs) to replace it with conventional 

manufacturing techniques. Thus, it is of prime importance to prepare guidelines so as to 

facilitate in switching to the 3D metal printing technology, without or minimal changes in the 

operation and production level[1]. The guidelines will stand as a gateway to achieve the scope 

of the additive manufacturing system. It will be a key element for the industrial 4.0 and provides 

a great opportunity for working alongside with the automation. Additive Manufacturing will 

enable the transition from mass production to mass customization in a number of existing and 

rapidly growing sectors such as, aeronautics, automotive, medical, energy, defence, and 

consumer good[2]. Having seen such a huge potential, the major stakeholders of these sectors 

are in a race to make new breakthroughs every day. It can also be seen even in the lowest level 

such as SMEs trying to take a shift from the conventional way of manufacturing because of the 

advantages it offers in terms of every element. With suitable guidelines, it will be a great boon 

for all different scales of the enterprises to reach out to adapt changes.  

 

1.1 Background and Overview 

Additive manufacturing has been around for around three decades since it was first patented as 

stereolithography in 1986. There has been a number of newer developments every year within 

the Additive Manufacturing System to cope up with the competition and to offer better 
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techniques. From using it for prototyping using polymers to printing actual working parts using 

metals and composite, Additive Manufacturing has become a very big pool of tools and 

techniques for futuristic and sustainable progress. Making a fully functional part in a small desk 

has become a reality eliminating all the complex work, big machines, huge workforce, supply 

chain network, and many other factors which have always been challenging. There have been 

a number of key events since the development of the first additive manufacturing system to the 

present-day advancement. The first patent expired in 2014 making it possible for more 

development and the recent day’s progress is evident about how fast the technology has evolved 

in the recent years. Some of the major events marked in the history since the first notable work 

until the expiration of the patent has been listed along with the year below[3]. 

1981–1984: The Early Minds 

• In 1981, Dr. Hideo Kodama described the laser beam curing system. 

• In 1984, Alain le Méhauté with his two colleagues working on rapid prototyping. 

1984–1988: The Invention of Stereolithography 

• In 1986, Charles Hull patented for stereolithography 

• In 1988, 3D systems produced the SLA-1 

1988–1992: An Era of Innovation 

• SLS (Selective Laser Sintering) developed in 1988 

• FDM (Fused Deposition Modelling) developed by Stratasys in 1992 

2014- : Revolution 

• Patent expired in 2014  

3D printing might be considered as a recent technology, but it can be seen that the 

Stereolithography, SLS and FDM, were developed in between 1980 and 1995 and all the new-

born methods of 3D printing are in one or the other way derivatives of these technologies[3]. 

Among all of the new systems, 3D metal printing which has revolutionised the metal industry 

in the recent years has become one of the major elements of the additive manufacturing system. 

With the maturity of the technology taking place rapidly and the freedom of development which 



 

Page 3 of 61 

metal printing has offered have become of a great interest to all sorts of industries. However, 

the technology is still quite immature, and the high cost and other complexities involved has 

made it quite challenging for 3D metal printing to penetrate as a major production system. Thus, 

knowing the potential of the metal 3D printing, it is necessary to make suitable guidelines about 

how it can be replaced or work alongside the mainstream conventional manufacturing system. 

In order to achieve this objective, we chose one of the cases of Equinor ASA and made suitable 

guidelines so as to test its applicability. Equinor ASA is a multinational energy company 

operating in more than 30 countries. It is primarily engaged in exploration, development and 

production of oil and gas, as well as wind and solar power[4]. Equinor is expecting to reduce 

its warehouse size conditioned with the same level of responsiveness and preparedness. The 

company is envisioning through Just-In-Time (JIT) methodology, a digital warehouse where 

spare parts compatible with additive techniques to be ordered for their production. Then through 

Additive Manufacturing, they can get their products delivered promptly.  The idea is to produce 

the part in an onshore printing facility/firm before transporting the component to their platform. 

The guidelines suitable to fit this objective can be, therefore, generalized so as it fit for all small 

and big enterprises. 

1.2 Scope 

The project will highlight the challenges and opportunities that are faced and discovered 

throughout the course of preparing the guidelines. The main topics that it would cover include 

additive manufacturing techniques, especially 3D metal printing, and its related subjects. A 

special focus when establishing the guidelines will be attached to the technical aspect regarding 

the materials, design, and related printer technologies. The project will start with following four 

core fields when discussing the possibility of transformation from subtractive to additive 

manufacturing: Materials, construction methods, production methods and business models 

related to production capacity planning. 

Different design considerations would be tested to assist the metal printing of parts. The designs 

could be printed on the 3D printers to check for practicality of it in the real-time applications. 

The approach would also consider the sustainability factors and find ways to develop guidelines 

that would consider the environmental factors as well. 
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2 LITERATURE SURVEY 

2.1 Additive Manufacturing 

There are different methods by which a product can be manufactured, each of them having their 

own characteristics. The method selected is based on the attributes of the finished product. All 

the different methods can be classified under the following manufacturing systems: 

i. Subtractive Manufacturing 

ii. Formative Manufacturing 

iii. Additive Manufacturing 

The main reason behind this classification is the way the raw materials are handled. As per the 

name says, subtractive manufacturing is defined as the reduction of a block of material to 

desired shape and size. The most common examples are milling, turning, grinding, etc[5]. On 

the other hand, formative manufacturing uses a mould or replica of the desired part with 

necessary dimensional tolerances. Different combinations of stresses are applied which causes 

the plastic deformation of the required material corresponding to the mould, for example, 

injection moulding, die casting, pressing, etc. These methods have been used for centuries and 

involve an abundance of technology. Additive manufacturing is, however, a recently developed 

technology, which involves sequential addition of layers of material throughout a 3D envelope 

which is automatically controlled. It is still in its early stages of development, which was first 

patented in 1986 as stereolithography  by Chuck Hall. Earlier, the materials generally used were 

polymers but as the time advanced, different metals and composites were able to be printed 

using various printing technology[6]. Unlike now where it has been used in mainstream 

manufacturing, additive manufacturing was only used for prototyping in the starting days. 

Among the number of 3D printers available now, only Selective Laser Sintering (SLS) and 

Fused Deposition Modeling (FDM) techniques were used in the early days [7].  

With recent development in the number of different methods to print practically all the 

commercial materials, the demand for 3D manufacturing is exponentially rising. It has been 

able to address many challenges faced in conventional manufacturing. Additive manufacturing 

has given a new room for research and innovation as scaled prototyping has become a 

possibility and the precision achieved is exceptionally high. Although it has many challenges 

of its own regarding to various factors, it has been able to show a great potential to overcome 

in the days to come. 
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2.1.1 Working 

Usually, additive manufacturing is considered as a technique in which the required raw material 

is fed to the machine and then the printer prints navigating the motorized nozzle, layering 

material one over the other to form the required shape. It is true but it involves many underlying 

steps as the required printed part is achieved. The first steps involve making a 3D file from the 

correctly dimensioned drawing in a Computer Aided Designing (CAD) software. While design, 

all the necessary changes are made so as to facilitate the manufacturing of the part in the printer. 

This may include adding suitable supports, changing dimension, selection of the base, etc., 

based on the requirement. Once all the necessary precautions are taken in order to ensure that 

the manufacturing is possible without any errors, it is converted into a standard 3D format and 

is exported to be sliced in a slicing software. Slicing is one of the most important steps as it 

gives a visual animation of how the part will be manufactured layer by layer. The resulting file 

is then exported to the 3D printer in a format, such as .stl, .AMF or .3MF[8-10]. However, .stl 

is the most common standard format of conversion. The file is then sent to the printer and all 

the necessary parameters such speed, layer width, temperature, etc. are selected. All of these 

factors give an estimated production time the printer will take to print the required part. Once 

the part is completed it is suitably extracted from the printer bed and sent to the post processing 

phase. Figure 1 represents the basic Additive Manufacturing Process [2].  

 

 

 

 

 

 

 

Figure 1  Steps involved in the Additive Manufacturing Process[2]  

2.2 Additive Manufacturing Techniques 

Additive Manufacturing is a very wide branch involving many different methodologies to print. 

The techniques vary depending upon many different factors such as power beds, heating source, 
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type of material used and so on. Depending on that, additive manufacturing can be categorized 

into 7 major different technologies which in turn has sub-categories[11]. This has been 

discussed below. 

i. Powder Bed Fusion 

• Multi Jet Fusion (MJF) 

• Selective Laser Sintering (SLS) 

• Laser Powder Bed Fusion/Direct Metal Laser Sintering (LPBF/DMLS) 

• Electron Beam Melting (EBM) 

ii. Material Jetting 

• Material Jetting  

• Nano-Particle Jetting (NPJ) 

• Drop-On-Demand (DOD) 

iii. Binder Jetting 

iv. Direct Energy Deposition 

• Laser Metal Deposition (LMD) 

• Electron Beam Additive Manufacturing (EBAM) 

• Wire Arc Additive Manufacturing (WAAM) 

v. Material Extrusion 

• Fused Deposition Modeling (FDM) 

vi. Sheet Lamination 

• Ultrasonic Additive Manufacturing (UAM) 

• Laminated Object Manufacturing (LOM) 

vii. Vat Photopolymerization 

• Stereolithography (SLA) 

• Digital Light Processing (DLP) 

• Continuous Digital Light Processing (CDLP) 

The major technologies as listed above are further explained to understand their working, 

advantages, and the shortcomings.  

2.2.1 Powder Bed Fusion (PBF) 

This is the most common and matured form of metal printing where a powder which is located 

on a fusion bed is consolidated with the help of a heat source, a laser, or an electronic beam. 
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The powder, typically 20-120 microns, is of the desired metal, usually with specific properties 

so as to make it suitable for the process. The heat beam melts the powder into desired geometry. 

It works on the principle of melting and recoating. The print or the fusion bed is a thick metal 

plate over which the first layer of metal is melted which bonds with the plate as it cools. The 

first layer is then recoated with powder and the process of melting and recoating is repeated 

until the required 3D model is formed. Heat source is programmed manually based upon the 

desired 3D model. Powder Bed Fusion technique comprises of Selective Laser Melting (SLM) 

and Direct Metal Laser Sintering (DMLS). The major difference between them being SLM is 

used to produce a 3D model which is of a single metal whereas DMLS produces 3D models 

from different metal or metal alloy[12]. 

 

Figure 2  Infographic of Powder Bed Fusion Metal Printing[13] 

Advantage of this method of 3D printing is that it can offer a wide range of material to be 3D 

printed and no support structure needs to be provided as then powder itself provides it a base 

which the 3D model can be made. Major drawback of this methodology is the fatigue fracture. 

The primary cause of these fractures is crack growth where small voids and cracks within the 

part can force stress to divert and pile up in sharp corners and thus exceed the metal’s strenght 

locally and causes the crack to grow, therefore, more the imperfections are present more the 

fatigue life of the material is going to suffer. This is the reason the 3D parts formed require 

additional finishing to reduce the stress concentration areas[14]. 
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2.2.2 Material Jetting (MJ) 

Although the material jetting was developed for 3D Printing of resins and polymers, the 

development of the Nanoparticle Jetting by XJet, in 2016, has given an opportunity to print 3D 

parts using metal as well as ceramics. Its working is quite similar to an inkjet printer which ink 

jets out from the nozzle tip on a paper. In this technology, a nozzle jets out metal and forms the 

cross-section layer by layer on a build tray. The metal is jetted based on either of the two 

methods i.e., continuous jetting or drop on demand (DOD). 

 

 

 

 

 

 

 

 

In this technique, metal is not melted but instead present in a liquid form which is sintered after 

the metal is jetted out of the nozzles, thus give a safety advantage. Similarly, it is the faster 

process to 3D print a model.  

The process allows for a very good surface finish as well as better strength because of the 

nanoscale jetting. Since it uses a special fluid form instead of the powder form, it is easy to 

handle and work with. The major drawback is it is still limited to small parts only. The price of 

making a part using this methodology is very expensive for commercial printing[15]. 

2.2.3 Binder Jetting (BJ) 

The process of Binder Jetting lies between the Powder Bed Fusion and Material Jetting in a 

sense that it consists of a powder bed and a binder supply which jets from the nozzle on the 

powder forming an adhesive bond between the powder material. Once the first layer of the 

powder is completed, a new layer of powder is spread and the earlier layer acts as the bed of 

the new layer. The process of binding and recoating continues until the complete 3D model 

Figure 3  Infographic of Metal Material Jetting[15] 
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forms. The binder is in a liquid form and once the 3D model is completed, the excess powder 

is cleaned, and an additional layer of binder is applied to improve its mechanical and structural 

properties because the properties are inferior as compared to the parts made from other methods 

of 3D printing. The binder is basically an adhesive with suitable properties depending upon the 

corresponding metal on the powder bed. 

 

 

 

 

 

    

   

 

This technology is used for printing large parts rather than small ones due to the high degree of 

porosity but are suitable for fabricating moulds, specially which are multicoloured. There are 

very little residual stresses but the parts are brittle in nature so chances of fractures are very 

high if an additional treatment of an extra layer of adhesive is not provided[16]. 

2.2.4 Direct Energy Deposition (DED) 

Direct Energy Deposition(DED) uses gravity or the pressured gas to deposit melted powder 

metal directly on the build platform to form a desired 3D shape. It consists of a multi axis arm 

one of which feeds powder metal and the other arm focuses a laser beam of a very high intensity 

coaxially to the powder arm such that the powder melts as it falls on the built platform or the 

existing part on which a 3D model is to be built. The process takes place in a conmtrolled 

environment usually in the presence of an inert surrounding so that no oxidation occurs 

resulting in good material properties. The arm moves in the vertical direction wher as the bed 

is allowed for horizontal movement[17]. 

Figure 4  Infographic of binder jetting 
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The ease of use and the freedom to use different kinds of metal makes this process very suitable 

for repairing existing parts however, the elimination of the support material makes it difficult 

to print complex geometries[18]. 

2.2.5 Fused Deposition Modelling (FDM) 

Fused Deposition Modeling(FDM), also referred as Fused Filament Fabrication(FFF) makes 

use of a metal filament which is heated and extruded through the nozzle onto the build platform 

layer by layer so as to print a part of desired geometry. 

 

 

 

 

 

 

 

 

Figure 5  Infographic of Direct Energy Deposition[18] 

Figure 6 Infographic of Fused Deposition Modelling [19] 



 

Page 11 of 61 

The metal passes through a heated element which melts the filament which then oozes out of 

the nozzle tip. As it comes in contact with the base or the platform, it cools and solidifies. It is 

similar to a hot glue gun, with the only difference being the thermoplastic adhesive sticks 

replaced by the metal filament. It has limitations with its application as it cannot accommodate 

complex geometries. Also the cohesive bond between its vertical layer is very poor making it 

irresistible tension. The attractive feature of this process is its low price and ease of use[19]. 

2.2.6 Sheet Lamination (SL) 

Sheet Lamination technique uses rollers to feed the thin metal sheets. Another roller heats the 

sheet and such sheets are layed layer after layer forming an adhesion between the layers. The 

desired length of the layer when achieved is cut with the help of a layer. This way a 3D part is 

formed on the platform. 

 

 

 

 

 

 

 

 

This process is quite cheap and can be used to make large models and can work very fast as 

compared to other 3D modelling methods. But layer on layer of metal sheet placement has a 

very weak cohesion bond, therefore, the model is poor under tension. Similarly, complex 

geometry cannot be obtained by this method. 

Although there are many different methods of metals 3D printing, only few of them are 

researched upon for their commercialization. It is very important to choose the most suitable 

technologies so as to facilitate the maximum productivity along with the superior properties. 

With that in consideration the below listed are the two technology which have been extensively 

used by industries for printing of metals[20]. 

Figure 7  Infographic of Sheet Lamination [20] 
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i. Powder Bed Fusion Metal Printing 

 i. Electron Beam Melting (EBM) 

 ii. Laser Melting (LM) 

 iii. Laser Sintering (LS) 

ii. Direct Energy Deposition 

 i. Laser Metal Deposition (LMD) – Powder-Based and Wire-Feed. 

 ii.  Arc- Based DED 

  -Shielded Metal Arc Welding (SMAC) 

  -Gas Metal Arc Welding (GMAC) 

  -3D Micro Welding (3DMW) 

  - Plasma Arc Welding (PAW) 

2.3 Printing Materials 

For the metal printing, the printing materials are divided into two categories. They are 

• Pure Metal 

• Alloy Powders 

The selection of the material is done based on the requirement for the specified application and 

the printing technology is selected based on the material which best suited for the production. 

Pure metals are generally used for making jewelleries and other customized products and are 

very widely used because of their limited properties. For commercial application, alloys and 

other composites are used for printing materials with required properties. This gives control 

over the parts that needs to be printed. Materials are used in the powdered form because of easy 

handling. Also, it offers easy cleaning of the printers after the completion of printing[21]. Some 

of the advantages of using metal powders over  any other forms of metal are listed below. 

• The spherical shape of the power helps to ensure the good flow/coating ability and offers 

a high packing density, 

• The size of the particles is usually below 50 μm or 150 μm depending on type of 

machine and finishing of the surface, 

• The particle distribution allows it to be tailored to the desired application and properties, 

• Powder offers a controlled chemical composition and gas content. 
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Table 1 represents some of the common materials used for 3D printing along with their 

properties. 

Table 1  Some Materials and their basic properties 

Materials  Properties 

Aluminium Alloys Good mechanical & thermal properties 
Low density 
Good electrical conductivity 
Low hardness 

Stainless steel & tool steel High wear resistance 
Great hardness 
Good ductility and weldability 

Titanium alloys High wear resistance 
Great hardness 
Good ductility and weldability 

Cobalt-Chrome superalloys Excellent wear & corrosion resistance 
Great properties at elevated 

temperatures 
Very high hardness 
Biocompatible 

Nickel superalloys (Inconel) Excellent mechanical properties 
High corrosion resistance 
Temperature resistant up to 1200

o
C 

Used in extreme environments 

Precious metals : Pure Metals Used in jewellery making 
Not widely available 
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Based on the list of printing technologies which are mostly used for commercial printing, table 

2 shows the printing technique used to print the pure metals. 

Table 2  Pure Metals and their respective printing technology 

Metals Printing Technology 

Gold LM (Selective) 

Titanium LS, LM and LMD 

Iron EBM 

Niobium EBM 

Copper LM and EBM 

 

Similarly, the alloy powder also has the respective printing technologies which offers printing 

the alloy powder better as compared to other technologies. Some of the alloys along with their 

printing technologies are listed below. 

i. Aluminium-based: Al-40Ti-10Si, Al-Si-10Mg and Al-15Cu 

 Printing Technology- Selective Laser Melting(LM) 

ii. Cobalt-based: Co-29Cr-6Mo, Co-26Cr-6Mo-0.2C 

 Printing Technology- Selective Laser Melting (LM) for Co-29Cr-6Mo 

                       - Electron Beam Melting (EBM) for Co-26Cr-6Mo-0.2C 

iii. Copper-based: Cu-30Ni 

 Printing Technology- Direct Energy Deposition (DED) 

iv. Iron-based: Stainless Steel, Tool Steel and Alloy Steel 

 Printing Technology- Selective Laser Melting(LM), Laser Metal Deposition, Electron 

Beam Melting(EBM) 

v. Nickel-based: IN625, IN718 

 Printing Technology- Selective Laser Melting(LM), Laser Metal Deposition,  
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              Electron Beam Melting(EBM) 

vi. Titanium-based: Ti-6Al-4V 

 Printing Technology- Selective Laser Melting(LM), Laser Metal Deposition, 

              Electron Bed Melting(EBM), Gas Tungstenm Arc Welding. 

2.4 Market Situation 

Although additive manufacturing has been for over more than three decades, it is still very 

immature to penetrate the manufacturing industry with a bigger stake. This is primarily because 

of the fact that the transition from the subtractive manufacturing comes at a cost and the risks 

that the decision maker has to take. The technology is still in the research phase for its 

commercialization and is very slow. It has been able to address some of the issues seen in the 

conventional manufacturing methodology but still it takes a lot more work to completely switch 

to additive manufacturing. The industries that have started producing parts using 3D metal 

printers are using it in parallel with the conventional processes which has helped to avoid some 

of the foreseen risks. 

Looking at the brief history of the 3D manufacturing, it was introduced and patented in 1986 

and had been growing ever since at a very slow rate but the growth became significant after 

2014 when the patent for the Additive Manufacturing equipment had expired. It has taken an 

exponential leap and the technology which was limited to prototyping has now been one of the 

major manufacturing methods. Figure 8 shows the number of additive manufacturing units sold 

from 2002 to 2018 representing an exponential trend with a big difference in number of the 

system sold after the year 2014[1, 22]. 

 

 

 

 

 

 Figure 8 Metal AM systems sold from 2002 until 2018[1] 
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As per the Wohlers Associates’ Report in 2019, “The average annual growth rate of worldwide 

revenues produced by all products and services by the additive manufacturing technology over 

the past 30 years is an impressive 26.9%. The average growth over the past four years (2015-

2018) is 24.4%.” This shows how fast the technology of 3D printing is penetrating the 

manufacturing industry either replacing or working in union with the conventional 

manufacturing processes. Sales of different additive manufacturing systems have grown from 

1,768 units in 2017 to 2,297 units in 2018, an increase of 29.9% only in one year.   

USA leads in the total market share of this technology with almost half of the market accounting 

to 42.7% with Israel trailing behind with 25.2% of the total market and, Europe and Asia sharing 

19.9% and 10% respectively. As per 2018 data, additive manufacturing technology is a massive 

$9.795 billion industry growing at 33.5% from $7.336 billion in 2017. The growth has been at 

a rate of 25.9%, 17.4% and 21% in the years 2015, 2016 and 2017 as compared to the previous 

year. The growth has been increasing as a result of growing competition worldwide for coming 

up with a better manufacturing technology which could effectively and efficiently replace the 

conventional technology, for better[23]. 

Similarly, with the growth in the technology, the demand for the metal used for the purpose is 

also growing rapidly. In 2018, out of a $1.495 billion market for different materials used for 

3D printing, about 17.4% i.e., $260.2 million accounted for metals. This number rose from 

$183.4 million in 2017 with an increase of 44.6%. The pie chart in figure 8 shows the market 

share of different materials used in 3D Printing[24]. 

 

 

 

 

 

 

 

 Figure 9  Market share by material type in 2018 [23] 
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Figure 10 illustrates the sales of metal for additive manufacturing from 2009 until 2018. It can 

be clearly seen that as the additive manufacturing technology has grown since last one decade 

in an exponential rate, sales of metal for printing have also grown in the similar fashion. 

 

Figure 10  Sales of metal for printing from 2009 to 2018 [23] 

Since the industry is growing exponentially, it is really necessary to prepare a business model 

so as to make the penetration of the technology without hampering the operation of the present 

manufacturing methodology[22]. 
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3 METHODOLOGY 

The project aims to prepare guidelines for the application of Additive Manufacturing and to 

impart knowledge about different parameters involved in the technology. In order to prepare 

the guidelines, a case study was prepared in collaboration with Equinor AS. The approach 

towards the case to find a viable solution would result in suitable guidelines for the Additive 

Manufacturing. Furthermore, a number of already performed case studies and experiences in 

additive manufacturing were taken into account to achieve the objective. Each step performed 

during the course of experiment is considered to be a guideline for applying the additive 

manufacturing technology. 

 

3.1 Case Study 

For the purpose of performing experiment the task was to consider an already existing standard 

part being used in an assembly, which earlier was manufactured using conventional techniques 

such as subtractive or formative manufacturing, and prepare it for the producing through 

additive manufacturing technique. The procedure included a number of steps from the point the 

part was first received to the point it was prepared for additive manufacturing. 

All the experiments were performed at the UiT’s Metal Lab. The tools and the software used 

during the process are mentioned in each of the steps. 

The part received from Equinor, as seen in figure 11, was a housing of an actuating which is an 

integral part of a larger unit for centering the Turret on Norne FPSO (warehouse buck). It is 

originally manufactured by IP-Huse on Harøya. The part is delivered according to marine 

standard, which originates in DNVGL's requirements for mechanical structures. The material 

is carbon steel and the  quality corresponding to S355J2H according to EN 10219-1. During the 

event of leakage, the housing is filled with pressurized hydraulic oil and the housing is over 

pressed and deformed. 
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3.1.1 Pre-processing of the part 

The main step of preparing the part for additive manufacturing is to redesign it, as the design 

for the existing parts are often not suitable for 3D printing. Design approach for the 

conventional manufacturing technique is usually, to make it as easy as possible for production 

whereas for additive manufacturing, it can as complex as required, taking into account the 

limitations of the metal printers used. Also, the key is to use as little material as possible. In 

order to redesign the existing part, the dependent attributes such as holes, flanges, etc has to be 

structured suitably or else the redesign part would not fit in the original assembly. Therefore, 

the true dimension of the part has to be known and then redesigned accordingly. Since, the 

standard CAD drawings of for the parts were not available, the first task was to perform reverse 

engineering on the part. Reverse Engineering is extraction of information from an existing 

engineered structure or design[25]. In order to do it, 3D scanning technique was employed. 3D 

Scanning is process of capturing the visual image and information of the real part with precision 

instrument. The scanned part can be modified, improved, and converted into CAD files to 

prepare blueprints for the scanned parts[26]. Since the part received had a lot of irregularities, 

deformations and a layer of paint which would deviate the true dimension, the paint was 

removed using tools such as angle grinder, hammer, chisel, metal brushes and sandpapers. It 

was one of the destructive methods of removing the paints and the non-destructive methods 

such as chemical treatment can be employed if the information about applied paint is available. 

The figure 12 illustrated the part after the removal of paint using the specified tools. 

 

Figure 11 Original part 
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3.1.2 3D Scanning 

The paint free part was then shifted to the 3D scan table and oriented the best way possible so 

that the maximum information about the part can be extracted. It is really important to decide 

beforehand how it should be oriented as once the 3D scanning process is initiated any 

movement of the part results in inaccurate results. The scanner used for the purpose was 

Hexagon Romer Absolute Arm 3D at the UiT’s facility. The scanner was supported with PC-

DMIS CAD++ 2019 R2 software to visualize the scanned data and feed the necessary 

instructions to the scanner. The scanned data is shown in the figure 13 in the PC-DMIS CAD++ 

2019 R2’s environment[27]. 

 

 

 

 

 

 

Figure 12 Pre-processing step 1 

Figure 13 3D scanning using Hexagon Romer Absolute Arm in PC-DMIS CAD++ 2019 R2 
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3.1.3 Processing of the scanned data 

The scanned data with all the required information was then transferred to Geo Magic Design 

X. This software is used for reverse engineering which makes 3D scanned data easy to handle, 

modify and further extract more information from it. It is used to transform the raw scanned 

data into required CAD models. As seen in the figure 14, the coloured patches can be formed 

from the scanned data and each of them can be worked independently in order to filter the 

scanned data. 

 

 

 

 

 

 

 

 

 

 

The coloured patches are called as regions and local planes can be made in each of the area. All 

the unnecessary scanned data can be removed using it and the file can be transferred to any of 

the CAD software directly to generate required drawings from it. The scanned data as seen in 

the above figure 14 was processed in the Geo Magic design X and the improved scanned model 

is shown in the figure 15. The different colour scheme in this figure indicates the deviation in 

the data after processing as compared to the scanned data. It ranges from blue to red indicating 

the negative and the positive change, with green colour indicating the mean[28]. 

 
Figure 14 Processing the Scanned Data in Geo Magic Design X 
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3.1.4 Drawing Extraction 

Upon the completion of processing the scanned data, the resulting model was exported to 

Autodesk Inventor for further improving it and extracting the drawing with dimensions from it. 

The purpose of exporting it to a CAD software is to make the changes within the model with 

greater freedom. Figure 16 illustrates the completed revere engineered model after repeated 

trials, analyses, and modifications in  Autodesk Inventor.  

 

 
Figure 15 Improved scanned data in Magic Design X environment 

Figure 16 Complete model in Autodesk Inventor Environment 
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This was then converted into CAD drawing with all necessary dimensions shown in it. The 

figures 17 and 18 are the final drawings in two different views. Since the reverse engineering 

was performed in a deformed part, the dimensions were subjected to some tolerances. 

The model, as seen in the drawings is rectangular in structure. Also, the centre part is completely 

hollow. Therefore, 3D printing this as it is, would be very costly. Similarly, the support material 

required during the 3D printing would be a lot making it unsuitable for printing. Similarly, it 

would require an equal amount of time and effort for post processing and the removal of the 

supports once the printing is completed. Hence, it was really important to redesign the part 

which would function the same way as well as became suitable for realizing it with additive 

manufacturing. The design approaches are explained in detail in the next chapter. 

 

 

 

 

 

 

 

 

  Figure 18 Front View with dimensions Figure 17 Back View with dimensions 
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4 DESIGNING AND PROOF OF CONCEPT 

4.1 Iterative Process of Technical Design 

The part received from Equinor upon which the Reverse Engineering was performed, was not 

only considered in order to realize it for additive manufacturing but also to redesign it in a way 

such that the reasons that caused it to fail could also be resolved. A total of 67 such parts are 

used in the total in order to centre the turret on the Norne FPSO. Each of the part has a life cycle 

of 3 years and the failure occurred during an event of leakage. The problem is that the part is 

filled with the pressurized hydraulic oil during leakage in the actuating valve which cause the 

housing to be over pressed and deformed. Therefore, during the design approach it had to be 

taken into account so that it could be overcome as well.  

Thus, the objective of redesigning process has been to 

• Overcome the failure 

• Make the part suitable for additive manufacturing 

• Analyse and compare between the old and the new design. 

The redesign approach was divided into steps and each step led to some improvement or an 

idea of do’s and don’ts for the additive manufacturing design approach[29]. Moreover, no 

previous design approaches were adapted with an aim to come up with a new approach if 

possible. Therefore, the redesigning was initiated by simply trying to make changes that can be 

applied just by the visual inspection of the part and its drawings[30]. 

The approaches were followed with constraints as follows: 

• No changes in the functionality of the part. 

• Holes or other features had to remain in same location and orientation so as not to affect 

the other part of the turret assembly. 

• Any changes with the features had to be suitably adjusted with justification. 

• Basic design standards were followed. 

 

 



 

Page 25 of 61 

4.2 Execution of redesigning 

4.2.1 Design 1 

The first redesign approach was very basic as seen in figure 19, and the only aim was to remove 

any extra material that was present. The only location in the part where some extra material 

was noticed was the front face of the housing near the holes. The triangular shape initially 

present in it was due to the fact that the conventional approach for production is to make a part 

as quickly and easily as possible so making curves present near the holes in the front face 

requires an additional time and precision to achieve[31]. However, for 3D printing, this is not 

an issue if proper codes of command are fed to the printer. Similarly, no changes in any of the 

features were made during this design approach. 

 

 

 

 

 

 

 

 

 

Figure 19 had some improvement than the original design, but it was not enough for it to be 

realized for the additive manufacturing. The pros and cons for the given design approach  are 

mentioned below. 

Pros 

• The design had, although a very little, but reduction in weight due to removal of 

material. 

• The part functionality and the assembly dependency were not altered. 

Figure 19 Redesign approach 1 
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Cons 

• The failures were not overcome and during the event of leakage, the same problems 

with the part would occur. 

• This could not be 3D printed because it would have a lot of overhangs as the internal 

structure is hollow and it would require an extensive amount of support material during 

the printing of the part. 

• Additionally, the removal of the supports after the printing and the post processing 

would have been completed would be very difficult. 

• The overall printing would be extensively expensive. The price perspective for the 3D 

printing has be discussed in the later chapters. 

4.2.2 Design 2 

The points considered to improve were the cons as mentioned in the design approach 1 and the 

approach was to work with them to come up with an improved design resolving the problems 

as much as possible. Therefore, the design achieved after several trials and errors is illustrated 

in the figure 20. 

 

 

 

 

 

 

 

As seen in the above figure, the volume of the part was reduced. This was done in order to 

prevent the failure of the part during leakage. The location for leakage was at the contact point 

between the hinged wheel arrangement and the actuating valve which had the pressurized oil 

represented by Contact C in figure 20. This contact point was present inside the housing and 

the only way to prevent the leaked oil from filling inside the housing was by situating the 

Figure 20 Redesign approach 1 
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contact point outside it. Thus, as seen a small slot was made at the top face and the contact 

would have been outside the housing. The length of the slot had to be decided based on the 

rotation of the wheel if applied. This would result in the leaked oil from filling inside the 

housing and preventing it from deforming due to the pressure which was initially built. Also, 

the rectangular opening as seen in figure 19 was removed as it was present in the original design 

in order to adjust the contact point. Since the contact point was outside the housing in this new 

design, this opening was not required and therefore, could be excluded from the design.  

 

 

 

 

 

 

 

 

These changes made the design compact and practically more realizable for additive 

manufacturing. The pros and cons for this design are discussed below. 

Pros 

• The failure due to leakage could be overcome by this design. 

• The volume reduced and thus, would result in reduction in weight and use of the 

material. 

• The design had not major changes with the part functionality and could be adjusted 

easily in the assembly with minor arrangements. 

• The design would reduce material, both built and the support, as well as cost due to 

reduction in the time if 3D printed. 

 

Figure 21 Illustration of the contact point 



 

Page 28 of 61 

Cons 

• The shape was still rectangular, and the support material required would still be high 

during printing. 

• The changes made for the contact point has to be properly adjusted resulting in the same 

functionality. 

• A cover has to be made for inclosing the contact C in order to prevent it from external 

environment as the arrangement is present offshore. 

• The post processing work would be difficult for this part as well. 

• The printing of the part would be lower compared to initial design approach but still 

very high. 

• Since the contact C is situated outside the housing, an additional holding support for the 

actuating vale has to be made separately and fixed precisely so that it does not affect the 

other aspects of the assembly. 

Although this new design resolved the issues as seen in the design 1, it gave rise a number of 

problems as well. Moreover, the design was still not fit for 3D printing looking as its structure 

as it could still be made using conventional methods of manufacturing in a CNC machine with 

some special arrangements. Therefore, to make a design suitable for 3D printing along with 

tackling all the problems seen in above cases, different literatures discussing the design 

approaches for additive manufacturing were explored and the part was tried to be fit inside the 

boundaries of the designs which were explained in it. A lot of considerations have to be made 

while validating a part fit for additive manufacturing. One of the key things to consider is to 

optimize the part topologically. Topology Optimization was first introduced in 1988 by 

Bendsøe and Kikuchi and it has been one of the major breakthroughs for designing when 

adopting additive manufacturing[32]. 

5 TOPOLOGY OPTIMIZATION 

In simple terms, topology optimization means achieving an improved design for a structure by 

optimally distributing the material based on loads, density and all the other factors to be 

considered within a domain of the design[33]. When we consider the conventional methods, 

such as subtractive and formative manufacturing techniques, they have lot constrains for 

manufacturing that has to be taken into account in order to ensure that the design is feasible 

such as, for machining the tool access, the removal of the part from a mould during casting, etc. 
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Due to these constraints, optimizing the topology becomes very difficult to realize and a 

decision has to made between optimality or the attaining the manufacturing of the part easily. 

Therefore, whenever topology optimization is considered for these conventional methods either 

the constrains are suitably adjusted or it is performed around the unconstraint parameters[34].  

On the other hand, in additive manufacturing a part is built by subsequent addition of layer of 

material one over the other. This limits most of the constraints as the end product is obtained 

upon the completion of the process. Also, parts with a very high degree of complexity can be 

obtained which was in most cases not entertained by the former technologies. All of these give 

an opportunity to design a part with freedom resulting in an optimal final part production. 

Therefore, employing topology optimization becomes realizable and in turn benefits in the end 

result[35].  

 

Figure 22 Steps in  topology optimization for additive manufacturing[34] 

In the illustration shown in figure 22, the flow of work for topology optimization is represented 

along with a sub flowchart which shows the stages for modification in geometry during the 

process. Figure 23 shows an example for optimizing the topology of a part.  

 

 

 

 

The figure shows how the overall geometry and functionality of a part can be maintained but 

the structural geometry can be optimized based on the requirement. Similarly, overall geometry 

of the part can also be changed in some cases with main focus on maintaining the functionality 

aspect. This procedure was then employed for the redesign purpose in order to come up with a 

design having optimal structure suitable for realizing it for the additive manufacturing[36]. 

Figure 23 Illustration of topology optimization 
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5.1.1 Design 3 

As the improvement in design progressed, each trial and error resulted in a direction for coming 

up with a design which would take all the pros into account and eliminate the shortcomings 

with the best possible solution. After an insight about the topology optimization, the approach 

towards optimally designing each of the basic structures within the parts was followed. For this, 

the design 1 for the part was considered to the broken into sub-parts and each fragment was 

separately designed and finally consolidation of the redesigned fragments would result in a new 

design. The sub-parts were chosen based on the features in the part. Since each of the dependent 

feature had to be suitably adjusted, the face that contained any features such as holes, flanges, 

etc. were considered as a sub part[37]. 

The first sub-part considered was the front face for the part. The main features of this face i.e., 

the holes were fixed in their position, the loads on the parts were simulated and the design of 

the front face was finally optimized such that the part functioned the same way. The figure 24 

represents the transformation and the new design for the front face can be seen.  

 

 

 

 

 

 

 

 

The same approach was applied for the back face of the part. The back face was also similar to 

the front face consisting of many holes. But, in this case location of the holes were changed 

such that it did not affect other assembly parts. As seen in the figure 25, the position of the two 

holes is interchanged. This was done to make the contact point C from figure 21. Under the 

housing rather an over it as suggested in design 2. This is because, during the leakage, the oil 

would fall directly on the housing top and any penetration of the oil through the slots, or any 

Figure 24 Topology Optimization of the front face 



 

Page 31 of 61 

other holes would eventually fill the unit with oil and the earlier seen failure could arise again. 

Therefore, situating it below would restrict all any entry of oil inside the housing and the 

problem of deformation is completely eliminated[38].  

 

 

 

 

 

 

 

 

After the major changes on the two face, the only part remaining was the hollow rectangular 

area which is almost empty and only consists of the shaft and the hinged mechanism. The 

diameter of only shaft was 32mm. Therefore, if the roller mechanism can be adjusted, the center 

body can be a 35 mm inner diameter hollow tube with a wall thickness of 8-10 mm. The 

dimension of the hollow tube could be chosen such that standard size of it is available and can 

be separately order as printing it would not be feasible from the cost perspective. The final 

optimized parts can be seen in the figure 26, and the figure 27 represents the final design after 

parts consolidation. 

 

 

 

 

 

Figure 25 Topology Optimization of the back face 

Figure 26 Optimized subparts before consolidation Figure 27 Final Design 
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This new design had all the features present in the original design. For making it to a final end  

part, front and the back face as seen in figure 26 and 27 would be 3D printed and the center 

tube of a standard size based on our design dimensions can be purchased from an external 

supplier.  Then the necessary post processing works such as making holes, slots, threads, etc. 

can be done in a CNC machine and all the sub-parts can be welded as one[39]. All the necessary 

arrangements for the roller mechanism are made same as it was in the previous design, 

therefore, it can be assembled exactly in the same manner with slight adjustments. The pros and 

cons for this design are discussed below. 

Pros 

• The design had all the advantages as present in the above designs. 

• Only the front and the back faces has to be printed, hence, the cost and time for the 

printing is  greatly reduced. 

• Using the center tube of standard dimension saves a lot of time than producing it. Also, 

it is easily available as well. 

• The weight of the part is greatly reduced because of the optimized designed. 

• The failure of the part due to leakage is completely eliminated. 

• The design can be realized for 3D printing as manually printing such part can be very 

difficult and time consuming. 

Cons 

• The design had to be analyzed a number of times before as during the actual printing 

any deviations can cause it to fail. 

• There is a high risk of the roller mechanism not to function as it functioned in the 

original design. 

• Reverse Engineering was performed on any already damaged part, therefore, the 

dimension as compared to an original part. 

• Additive Manufacturing is still a very expensive technology and realizing this for actual 

production can cost a lot. 
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• The new design might not fit in the actual assembly line, as not enough information 

about the surrounding assembly was available and they are considered based on 

speculations. 

Similarly, there can be many other pro and cons upon actual printing of the part. However, they 

can be adjusted based on requirements. The designs look printable, but they have to withstand 

the same stresses as the previous design. Therefore, a thorough stress analysis was performed 

on both the original and the new design and the results were compared. The material used for 

the purpose was carbon steel, the load and the pressure values were taken from when the part 

underwent failure. The analysis was performed in Autodesk  Inventor. The analysis results are 

discussed in the next section. 

6 ANALYSIS AND COMPARATIVE STUDY 

It was noted from the previous experience that the original designed failed when the pressured 

hydraulic fluid leaked inside the housing causing it to deform. The pressure value was found to 

be 65 bars at that instance. Thus, the analysis was performed for this value of pressure and 

designed. Although the failure was resolved by isolating the contact point C from inside the 

housing and placing it outside, the new design was analyzed for the values that cause the initial 

design to fail. Since, no design for any other parts were available to analyze the design for the 

entire system, bearing loads along the direction where the shaft reciprocated was applied and a 

bearing moment around the point where the hinged wheel mechanism rotated back and forth 

due to the movement of the shaft was applied.  

Assumptions: 

• Material: Steel, Carbon 

• Pin & Fixed Constraints 

• Mesh Values: 

➢ Average Element Size: 0.05  

➢ Grading Factor: 1.50 

➢ Maximum Turn Angle: 20 degrees 
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Bearing Loads 

The diameter of the shaft was 32mm. Taking this value for calculating the area, the  maximum 

force that could be applied would be when the shaft and the wall of the center tube for the new 

design are in contact during failure. However, in the new design the tube greater than 32 mm. 

If the corresponding load for this value can be endured by the new design, it would not fail for 

the diameter of the tube greater than 32 mm. 

Radius(r) = 32mm = 0.032 m  

Area(A)= πr2 =3.14 x (0.032)2 = 3.21 x 10-3 m2 

Maximum Pressure in the system(P) = 65 bar = 6.5 x 106 Pascals 

 

Therefore, Bending Load (F) =P x A = 6.5 x 106 x 3.21 x 10-3 = 20899.84 N 

 

Bearing Moment 

As mentioned earlier, the bearing moment was applied around the point where the hinged wheel 

mechanism rotated back and forth due to the movement of the shaft. The value for this was also 

chosen during the failure condition i.e., when it is under the load(F) of 20899.84 N. Since 

moment is the Force applied across the perpendicular distance, the distance can be considered 

Figure 28 Mesh View with inputs 
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as the distance from the center of the roller mechanism to the surface of the tube. Since both of 

them are concentric, the distance can be taken as the inner radius i.e., 16mm. 

Load(F) = 20899.84 N 

Perpendicular distance (d) = 16mm 

Bearing Moment (M) = F x d = 20899.84 x 16 = 334384 Nmm 

These values were applied to both the designs to inspect their reaction under the following 

instance 

 

The loads and the moment can be seen the figure 28, marked in yellow. 

 

6.1 Analysis Result 

6.1.1 Physical Attributes 

 

 

 

 

 

 

Note: Physical values could be different from Physical values used by FEA reported below. 

The results for the given set of data are shown in the above tables 3 and 4. From it is clear that 

the mass of the new design is greatly reduced, almost 1/6th the original mass. However, the 

hollow tube can add up some extra mass to the design resulting to a mass to around 2 kg in total 

which is still 1/3rd of the original. This reduction in mass is one of the key elements of switching 

from conventional methods to the additive manufacturing methods[39]. This results in saving 

a  lot of material, in turn saving a lot of money. Similarly, the other results are superior in terms 

of number. 

  

6.1.2 Static Analysis 

The stress induced, displacement and the safety factors under load was analyzed for both old 

and the new design under same condition.  

Table 3 Physical Attributes for New 
Design 

Table 4 Physical Attributes for Old Design 
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6.1.2.1 Original Design 

The results in the table 5 and the figure29 represents the maximum and minimum values of 

each parameters under the specified conditions and values of loads and moments. The color 

scheme ranges from red to blue corresponding to the maximum and the minimum in each of  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 Analysis Value for original design 

i. Von Misses Stress 
ii. Displacement 

iii. Safety Factor 

Figure 29 Analysis results for the original design 
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the regions. It is evident from the analysis that the stresses are within the limits but the other 

factors parameters i.e., the displacement and the safety factory exceed it and is the reasons for 

part failure during the leakage. The safety factor which refers to the strength of a part under 

applied load[40], eventually shows the main reason for the bulging of the part . These values 

were considered during redesigning with an aim to overcome them. 

6.1.2.2 Proposed Design 

The redesigned part would eventually be of no use if it cannot withstand the specified 

conditions, even it is optimized topologically and made suitable for metal 3D printing. For the 

proposed design, the regions where the failure was most likely to occur was focused although 

the reason for the failure i.e., the leakage would not occur in it. The table 6 and the figure 30 

illustrates the results for the proposed design. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6 Analysis Value for proposed design 

i. Von Misses 

Stress 

ii. Displacement 
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It can be clear seen from the color scheme that most of the reguion is covered in blue, indicating 

that under the same condition that caused the older design to fail could be endured by this new 

design. Some region near the point where moment was applied has varition of color, but the 

analysis is performed under the assumption that there is a contact between the shaft and the 

inner housings het filled with the pressurized fluid, but in practical application if it would not 

happed due to the proper adjustments. Hence, these region would be taken care in real 

application and the design would not fail for the applied load condtions. 

Therefore, a conclusion can be drawn from this repeated trial and error to achieve a new design 

that not only additive manufcaturing can be considered as an alternative manufacturing process 

but the freedom of design that it offers can resolve many causes of faliure and introduce 

different special features and properties to an existing part as well[41]. 

7 COST ANALYSIS 

There is a substantial amount of costs associated with application of additive manufacturing. 

The process sounds very simple theoretically, where in the material and design is fed into the 

3D printer and a required final output is obtained but in fact, there are a number of tasks one 

after the other which makes it complex and in addition each of these steps comes at a premium 

cost[42]. All these factors make additive manufacturing very much limited to prototyping and 

the commercial production using this technology is still very low compared to the other 

manufacturing techniques. However,  the rapid progress and the thrive to bring down the cost 

for each factor have been a boon[43]. The machine which can metal print a precise functional 

part still ranges in  millions of dollars. 

iii. Safety Factor 

Figure 30 Analysis results for the purposed design 
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This chapter shows a cost comparison between the old and the proposed design wherein, the 

cost of technology is not taken into account. The printer considered for this purpose was the 

Matsuuara LUMEX Avance –60 Hybrid metal 3D printer at the metal lab in UiT Narvik’s 

facility, the material is Stainless Steel 17-4 PH, and all the standard costs were provided by the 

Department of Industrial Engineering at UiT Narvik. Since this cost estimation was prepared 

as a research, no profit or surplus charges were included. Both the designs were simulated in 

LUMEX CAM to find out an estimate printing time in order to prepare a detailed cost analysis. 

The basic cost structure is shown in the table 7 below. 

Table 7 Standard Costs at UiT's facility 

 

The cost was first calculated for the original design without any changes made to it. Although 

this was not a feasible design for 3D printing as it would require a huge amount of material for 

the support, it was simulated in order to find out the improvement in costs that it would bring 

by redesigning. 

Title Cost 

Material Cost (Stainless Steel 17-4 PH)  1991 NOK/kg 

Machine Hourly Rate 598 NOK/hr 

Manual Labor(Operator Cost) 900 NOK/hr 

Advanced Parameters (Servicing, Base Plate, 

Part Programming, etc.) 

Estimation based on 

parameters 

Additional Profit ( 25 %) Not Applicable 
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As seen in the figure 31, cost estimation is prepared based on the total printing time as 

approximately 75 hrs. In practical the total time can be twice because of the extensive use of 

support it would require. However, only the simulated time is used for the calculation purpose. 

i. Material Cost 

Since the total weight of the part was around 6 kgs, it would require approximately 12 kgs of 

powder in order to fill up the powder bed. But some powder can be recovered after the 

printing is completed, therefore, considering 10kgs as material used. 

Material Usage = 10 kg  

Cost = 1991 x 10 = 19910 NOK  

ii. Printing Cost 

Time to print as per software = approx. 75 hrs. 

Calculated Cost = 75 * 598 = 44850 NOK  

iii. Manual Labor Cost ( Considering only one operator) 

Time may vary between 50  to 100 hrs. depending upon a lot of handling required during the 

printing of the part. Taking the least time i.e., 50hrs for the purpose of calculation. 

Figure 31 Simulation in LUMEX CAM for the original design 
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Cost = 50 x 900 = 45000 NOK 

iv. Advanced Parameters 

1. Time to preparation and start printing = 9hrs  

Cost = 9 x 598= 5382 NOK 

2. Base Plate( preferably c45 steel) = 2000 NOK 

3. Time for Part removal from the machine and clean up = 8hrs 

Cost= 8 x 900= 7200 NOK 

4. Part Removal from the base plate = 1 hr = 900 NOK 

5. Servicing of 2 hours each every 9 to 10 hours. 75 hrs. of printing mean 7 services of 2 hrs. 

each = 14hrs 

Cost = 14 x 900 = 12600 NOK 

6. Part Programming = 5 hrs. 

Cost = 5 x 900 = 4500 NOK 

7. Time for Machining = 8 hrs. 

Cost = 9 x 900 = 8100 NOK 

8. Setup for Machining ( 1hrs) = 900 NOK 

9. Post Processing (3 hrs.) = 3 x 900 = 2700 NOK 

Total advanced parameter costs = 5382 + 2000 + 7200 + 900 + 12600 + 4500 + 8100 + 900 

+ 2700 = 44282 NOK 
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Cost for producing the part  

Cost =  Material Cost + Printing Cost + Manual Labor Cost + Advanced Parameters 

         = 19910 + 44850 + 45000 + 44282 

         = 154042 NOK 

These calculations are made based past experiences on printing different parts. Since no parts 

as big as the one taken into consideration is printed before, the actual cost might vary slightly 

from the calculated cost. 

Furthermore, the design needs to be optimized because the design is not suitable for 3D printing. 

The hollow structure present internally will be filled with support material if printed as it is. 

Therefore, the removal of which during post processing can be very difficult and in worst cases 

not possible in some unreachable areas. This will lead to extensive rise in the use of material 

and the total cost for printing might be high. 

In a similar manner price were calculated for the redesign part as well. All of costs in this case 

reduced to a great extent because of the small size and comparatively futuristic design. As 

mentioned in the former chapters that only the front and the back faces would be printed so the 

cost is calculated based on procuring the center tube from a supplier and its cost has been 

adjusted accordingly. Also, both the faces that is to be printed can be made at the same time 

because of its small size, therefore it would save a lot of time and cost as well.  

The cost calculation for the purposed design is discussed below. 

 

 

 

 

 

 

 
 Figure 32 Simulation result for the purposed part in LUMEX CAM 
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Figure 32 represents the total time simulated for printing the front face and the back face. The 

total time is approximately 35 hours. The current setup at UiT Narvik facility is set at a layer 

pitch of 0.05mm. The machine is in queue for update and the layer pitch is assumed to increase 

to 0.1. Therefore, the time for printing would drop down by half i.e., approximately 17 hours. 

Therefore, the cost calculation is made based on both the layer pitch is tabulated as seen in the 

table 8. 

The yellow highlighted region represents the cost for producing the completed part, along with 

welding the center tube and performing all the necessary processing for the current setup. Upon 

updating, the price would drop down to the one shown in the green highlight.  

Comparing the cost for the two design, we can see that the cost has been significantly dropped 

to 1/3rd of the earlier mentioned cost for original design in the current setup and 1/5th of the 

earlier mentioned cost after updating the setup at the UiT’s facility. This gives an idea about 

what redesigning a part can offer. This reduction in price gives a room for realizing the 

penetration of the additive manufacturing technology in the mainstream manufacturing. 

  

Table 8 Cost estimation for the proposed design 
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8 Discussion 

The overview of additive manufacturing along with its core fields was discussed in the first 

chapters, then the methodology and experimentation in the second followed by an entire 

redesigning and cost estimation for this project. The main objective of this project was to 

prepare guidelines for additive manufacturing as it has been growing at a pace but still very 

hard to work in parallel with the subtractive or formative manufacturing techniques. Although 

a huge amount of research and development has been made in this, it is still a great challenge 

to imagine the practicality of additive manufacturing to the fullest. However, the opportunities 

involved are of greater interest and the new revolution it shall bring to the manufacturing 

industry is huge. Some of the basic challenges and opportunities associated are discussed below. 

8.1.1 Challenges 

The main aim of this study is to identify the major challenges, and to create the suitable 

guidelines in adopting the technology of metal 3D printing in their manufacturing process 

which has been very rare due to various reasons. The return that it can provide in a long run is 

so huge that it has become very vital to suitably include the technology without hampering their 

ongoing process and the progress. The first and the foremost challenge with the inclusion of 3D 

metal printing is the cost of the technology which is in many cases very tough to cope with. 

Although the technology has been growing very rapidly for over more than three decades, it is 

still very immature when it comes to actually using the technology for manufacturing, 

especially for mass production and still limited to prototyping only or very limited applications. 

Even if it is not about achieving  mass production, the requirement for post-processing the 3D 

printed product adds on the additional cost to already expensive technology. Similarly, the 

expertise required for running this high maintenance and complex technology comes at a price 

that is again very difficult for the industries to bear. Moreover, industries usually look for easy 

to handle and easy to process methodology such that it does not hamper or affect any other 

processes. 3DMP, still being in its immature state, is expected to go through a lot of changes 

with time, which makes it difficult to cope up with these changes in order to remain in the 

competition. On the other hand, the manufacturing of desired parts by 3D printing is very slow, 

which in some cases can correspond to days or even weeks, depending upon the complexity of 

the design. All these factors make it very difficult to include the 3DMP technology even though 

it has so much to offer. The technology is very unpredictable when it comes to maintaining 

certain attributes usually associated with quality and repeatability. Furthermore, the industries 

need to educate their stakeholders in each stage about the technology for assuring that the 
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products maintain the required quality, which demands a lot of effort and very often the 

stakeholders are very skeptical about the changes. Another challenge that can be seen is that 

the 3D metal printing technology is growing application by application only. Printing a 3D 

structure of metal requires a very complex pre-processing task of designing the required product 

with all the correct dimensions and necessary tolerances. Along with that, it also requires 

different controlled parameters and environment, which determines the actual fate of the output. 

To sum up, it requires highly skilled, both pre-and post- processing tasks to print the desired 

metal product[44]. The information about the technology in different industries as well as in 

academia is very limited. Therefore, it is very important to make sure that the information about 

the 3D manufacturing of metal is of high quality and more importantly correct. The price 

associated with procuring the metal printers and the equally important raw material added by 

the limited availability of the expertise and the information about the technology has made it 

hard for it to penetrate the manufacturing industries to replace the existing methods. These are 

some of the most common challenges faced for the implication of 3D metal printing and tend 

to increase as their practicality is explored.  

8.1.2 Opportunities 

It is evident that whenever there are challenges for a certain thing, there are even more 

opportunities associated with the same thing. In the case of 3D metal printing also, there is a 

number of opportunities it offers to bring a very impactful revolution in the field of 

manufacturing. Since the technology is still very mature it opens a number of door for research 

and developing the technology to make it suitable for the manufacturing industries[45]. The 

most effective way to achieve it would be to bring the cost of the 3D printers as down as 

possible. This will give an opportunity not only to afford the technology, but also help in 

providing greater independence with using the technology. Since the technology is in its early 

stage, any breakthrough will help the responsible make a big name in the market. When it comes 

to sparsely populated areas, the technological advantage that metal 3D printers can offer is 

huge. The regions which are very far from the main market but are completely dependent on 

every single product, for example, spare parts of the machines, nuts, bolts, etc. Having a metal 

3D printer would allow the enterprises to print such parts on their own which would be very 

beneficial and save a lot of time. The availability of 3D printers allows making a very similar 

prototype for any complex design, which would help to avoid making big investments but 

explore the possibilities, capabilities, and test for the efficiency in the prototypes themselves. 

Another boon it has to offer would be that it will allow the end-users as the generator of the 
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technical solutions themselves and providing them an opportunity to develop new technology. 

The inclusion of 3D metal printers would help in logistical optimization. This can be seen as 

that the 3D printers would eliminate a section of logistics saving both cost and time and making 

it easy for the other sections of the logistics to be optimized. Some small but high-end product 

supplying enterprises can benefit even from the high cost of both the printers and the materials 

used for 3D metal printers in a way that the cost comes secondary when compared to the luxury 

for some customers[46]. They are ready to pay for the fulfilment of their desired products. 

Metal 3D printers have also made their mark in the medical industry aiding in making implants 

as well as frameworks for the implants much easier as well as incorporating complexity that is 

required. 3D printers also allow much clean environment as compared to conventional 

manufacturing processes as it has very limited use of coolants or lubricants[47]. This also makes 

it environmentally friendly. Similarly, as compared to subtractive manufacturing the wastage 

of the raw material is very limited. The 3D manufacturing technology is very safe as compared 

to the conventional ones due to the very limited human-to-machine interaction. Since the 

technology is very expensive, there is always a room for bringing down the cost which can be 

seen as the biggest opportunity for all the different industries competing in the race of making 

a name in the 3DMP industry. 

8.1.3 Guidelines 

The entire task of redesigning and a thorough survey of the core fields gave an opportunity to 

explore the technology and the underlying aspects very closely. The development in this field 

can change the face of how the manufacturing industry operates, especially in the competition 

of manufacturing very high-quality products but the mass in production is not a concern. The 

advantages of the technology are a lot in general, but the course of redesigning the part resulted 

in some specific ones which are as follows: 

i. Reduction in material: 

As documented in the results for the project, the mass of the part realized for 3D printing 

reduced to 1/3rd of the original part. This means with the same amount of material 

required for manufacturing one part using conventional manufacturing process results 

in three parts using additive manufacturing. This equation might not be validated for all 

kinds of part but in most cases, there is a considerable amount of material that is saved 

because the manufacturing is very smart and do not have a lot of constraints to obstruct. 

Unlike in subtractive and formative, which has to deal with big chunks of materials in 
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most cases, for additive manufacturing, a small change in each layer can be made. This 

small change adds up resulting in a very complex yet superior results. A very common 

term referred to as buy-to-fly ratio, especially used in the aerospace industry, is defined 

as the ratio of the amount of material initially present or fed to the machine to the weight 

of the final part. The ratio very close to 1, meaning no material or very little material is 

wasted during the additive manufacturing process. To sum up, the technique offers a lot 

of room for a reduction in material usage. 

ii. Topology Optimization: 

Optimizing the design offers to produce very smart yet equally strong and functional 

parts which is another very important aspect of 3D printing. Additive manufacturing is 

not only a technology but a procedure where 50% of the work is basically designing of 

the parts and the remaining is the actual production. The design determines whether the 

part is suitable for manufacturing or not. Along with the smart structures, it can also 

produce advanced geometries which otherwise cannot be made easily. 

iii. Part consolidation and inventory management: 

Maintaining an inventory is a very difficult and expensive task in the industry. A big 

portion of the budget has to be spent on it. Additive Manufacturing can eliminate or 

greatly reduce this issue. Firstly, it can produce a part with very few assemblies reducing 

the maintenance of complex inventories with various parts and secondly, setting up a 

3D printer along with an advanced predictive maintenance technique can help to 

eliminate the section of inventory completely but producing the part expected to fail 

right before the estimated end of the life cycle of the part.  

iv. Tooling: 

In comparison to the existing techniques, additive manufacturing eliminates the need 

for tooling completely which is a very sensitive as well as time-consuming process. 

Also, it can help to produced parts with different materials at the same time requiring 

some adjustments. 

Furthermore, the task of making the guidelines can be divided into several sections as 

the case study was performed. Throughout the course of the case study, right from the 

designing phase to the cost analysis resulted in several footnotes that can be realized to 

create a set of guidelines in during each stage. However, there are a lot of 3D printers 

in the market today whose underlying principle is similar, but the working is different 

from each other, the guidelines were made such that it would address the overall additive 

manufacturing technology. 
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The guidelines are thus made taking all of these into account and divided based on the following 

stages. 

 

i. Design Phase 

As discussed in the project, what design accounts for additive manufacturing, it can be clearly 

stated that this technology is most about the designing of what needs to print than performing 

the actual printing of the part . For example, after the reverse engineering process was 

completed and the drawings were obtained, the task of design optimization was conducted. The 

optimization of the part topologically is demanding in order to realize 3D printing, but it is a 

very complex task that makes designing to be overlooked and therefore, not to incorporate the 

technology in the mainstream manufacturing. Also, the task of redesigning can be very time-

consuming and expensive. The time and cost along with the complexity as a barrier open the 

door for coming up with smart technology that can itself perform the optimization. The 

technology can be software that does a thorough analysis of the part under consideration and 

gives the best possible solution or a number of different options for the part to be redesigned. 

Some of the available software like Autodesk Nastran, GENESIS, etc are available for the 

purpose but still require a lot of human effort for the result[48].  

Similarly, a dimensionally correct drawing is of must in order to progress with the redesigning 

because unlike in the conventional techniques where making adjustments after the process starts 

is easy to conduct, additive manufacturing is not yet developed to that extent in order to make 

such adjustments. Although, there are possibilities of manually rectifying it, but it diverts the 

goal of attaining automated manufacturing. A viable solution of it can be to incorporate 3D 

scanning which makes sure both before and after the 3D printing that the end product is 

dimensionally correct.  

3D printing is not only about feeding the material and design to the machine and getting the 

end result but performing it in a way that the resulting part is innovative in its own manner. The 

initiation of the project was to simply 3D print the received part but upon exploring the depth 

of technology, it was proved to be wrong, and the entire re-designing process was performed. 

This has to be the key for incorporating the technology will all above pointed out inclusions. 

 

ii. Structural Analysis 

After an optimal design is obtained, it is required that it addresses its functional attributes as 

well as should be able to adjust suitably in its assembly environment. A smart design with good 

performance should be the main object of the end product in most cases. The usage of the 3D 
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printing technology can be widely seen in the aerospace and health industry which are very 

sensitive in terms of the final output, therefore, the designed part is required to go through a 

series of tests both before and after the printing is done. For this purpose, there is advanced 

software such as ETABS, ANSYS, etc for standard applications as well as basic ones like 

Autodesk Inventor which is used in the case study[49]. Other tailored software based on 

requirements can also be developed which are very application-oriented and result in better 

output. The comparison results clearly show in the study that the design improvement can result 

a number of issues that were earlier seen with the part. Such assessment helps the industries to 

come up with more futuristic, sustainable as well as innovative end results. 

 

iii. Cost Analysis 

The cost of the final product is the main point of interest if the commercialization of additive 

manufacturing technology is to be imagined. Additive manufacturing has not been able to 

replace the conventional technology because the cost associated with it are very high in 

comparison. For example, let us consider a traditional way of manufacturing such as injection 

moulding for production and compare it with additive manufacturing. In the case of injection 

moulding, a very high initial cost is accounted for creating an injection mould but once it is 

created and set up, the machine can churn out piece after piece in rapid succession. Thus, the 

trends as seen the figure 33 represented as traditional referring to conventional manufacturing 

is obtained. As the volume increases, the cost becomes dominated only by the material cost 

over time, therefore, the unit cost decreases over time. On the other hand, if we plot the price 

of a 3D printed part as a function of the number of parts created, the trend would be similar to 

the one illustrated in the figure 33. The price will be dominated by the initial machine cost and 

the line will only marginally trend downwards as we print more parts because of the insane 

amount of time it takes to print a single part. In order to scale up the manufacturing, additional 

machines are required which again increases the cost. This turns the traditional economies of 

scale on their head. Therefore, it is only beneficial for the 3D printing part which falls behind 

the breakeven point represented by the shaded region in the graph. This case is usually in case 

of rapid prototyping hence, we do not see extensive use of additive manufacturing for 

commercial manufacturing .  



 

Page 50 of 61 

 

 

 

 

 

 

 

 

 

The application of 3D printing can be increased if we can lower down the raw material cost by 

making the supply more efficient as well as reduce the cost of 3D printers as a whole. This will 

lower the line of the 3D printing as seen in figure 34 and open room for more parts to be printed 

by using the 3D printers. The rapid development of this technology in the past few years and 

the increase in the demand for additive manufacturing has given a hope that the trend can be 

lowered over time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Furthermore, it is really important to realize the benefits that can be achieved by  manufacturing 

parts using 3D printing rather than only taking the cost factor into account. The usage of rapid 

prototyping over the years has given us an opportunity to explore its potential and make major 

advancements in it.  

Figure 33 Illustration of Unit Cost vs Output trend 

Figure 34 Illustration for increasing the application 
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9 CONCLUSION 

The manufacturing industry is facing intense competition in the global market, therefore, in 

order to compete effectively, the manufacturing industries need to work on reducing time for 

reaching their product to the market as well as a cost without compromising in the quality of 

the product[50]. To achieve these objectives, 3DMP technology can play a very important role 

because of the wide range of products that can be manufactured in the same printer. Not only 

that, but it is also capable of producing products with different metals in the same 

manufacturing process. All the challenges that arise in the field of 3DMP can be overcome by 

introducing the technology in academics as detailed as possible, giving an opportunity to 

explore more about the technology. The present time Covid-19 crisis has also made us realize 

the importance of having a mobile and in-house production backup. The supply chain disruption 

caused in various events as such, makes it necessary in order to make changes with the existing 

manufacturing methodology. 3D printing, being a very versatile technology, can stand out as a 

tool to address this issue. 

The guidelines discussed should provide a starting point in order to bring 3D metal printers into 

practise. The project was started without having any prior experience with this technology, 

therefore, a lot of things were done which would not add any value to the finished part if 3D 

printed. The guidelines will help anyone without any prior experience with 3D printing 

technology, to save a lot of time as well as money by not wasting them in unnecessary activities. 

Similarly, the guidelines does not address to any specific 3D printers but the entire printing 

technology as a whole. Thus, it can be followed for  every existing 3D printing  technology. 

Also, the guidelines can  be considered to create guidelines for any specific 3d printers as well. 

The basic workflow explained throughout the experimentation phase can be further 

standardized in order to make a workflow chart for applying additive manufacturing 

technology. 

It has been really important to create awareness about the additive manufacturing technology 

because of so many underlying attributes that can bring a boon to the manufacturing industry. 

In order to do so, research and development centres should be funded by the private as well as 

governmental institutions in collaboration with the different industries, so that the opportunities 

that arise can be looked into more closely. In contrast, the existing advancement in the 

technology can be exploited by collaboration, installing a 3D printer, and using it for 

manufacturing achievable parts. This helps to cut down the high investment cost to be faced by 
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an individual enterprise. Different enterprises should educate their customer about the 

technology as much as possible. 3DMP can bring a drastic change in the manufacturing industry 

and solve different manufacturing as well as logistical problems existing currently[51]. With 

the advancement in science and technology as well as the intense competition aiming to attain 

sustainability, it necessary for every size of an enterprise to experiment with newer technology. 

Therefore, 3DMP technology can be seen as a strong medium in order to revolutionize the field 

of the manufacturing industry.  

9.1 FUTURE SCOPE 

There are lot of assumptions and speculations made during each stage of the case study. 

Therefore, a study with more concrete data and justifications should be conducted. As 

mentioned, there are many different types of 3D metal printers available in the market today. 

Thus, guidelines more specific for each of the metal printers can be made along with the 

application and other related parameters in focus. Further, the future scope for both the case as 

well as the project is huge and is mentioned below. 

i. With respect to the case: 

a) Exploration for further Improvement in the proposed design  

b) Analysis with more concrete data 

c) Upon the completion of verification and validation of the proposed design, printing the 

part physically and testing can be conducted. 

d) Finally, the printed part can be tested in the actual facility. 

ii. With respect to the project: 

a) Explore more possibilities and limitations of the additive manufacturing technology. 

b) Redesign more parts following the guidelines to further improve them 

c) Design a dedicated warehouse which consists elements of Industry 4.0. 

Furthermore, this thesis work can be considered as a reference to make more detailed guidelines 

and improve the practicality of the additive manufacturing technology 

 

 

 



 

Page 53 of 61 

10  REFERENCES 

1. Ingesbo Sjöström, L., Metal Additive Manufacturing on the Nordic Market: 

Opportunities and Challenges. 2020. 

2. Additive manufacturing feasibility study & technology. European Defence Agency, 02 

November 2020. 

3. https://all3dp.com/2/history-of-3d-printing-when-was-3d-printing-invented. All3dp. 

4. https://www.equinor.com/en/about-us.html. 

5. Butt, J.S.-E., Shabnam & Shirvani, Hassan, Subtractive and Additive Manufacturing 

Applied to Drilling Systems. 2020. 

6. Bashir, R.R.a.R., Stereolithographic 3D Bioprinting for Biomedical Applications. 

2015: p. 33. 

7. Greguri´c, L., History of 3D printing: When Was 3D Printing Invented? 

8. STL File Format description. 3D Systems. 

9. SO/ASTM 52900:2015 (ASTM F2792) Additive manufacturing -- General principles -- 

Terminology. ASTM. (n.d.). 

10. http://www.3mf.io/what-is-3mf/. 3MF Consortium. (n.d.). 

11. Additive Manufacturing Technologies: An Overview. 3D Hubs. 

12. ALL3DMP https://all3dp.com/2/selective-laser-melting-slm-3d-printing-

simplyexplained/. J. Murphy. 

13. A. M. R. Group, L.U., [Online], 

https://www.lboro.ac.uk/research/amrg/about/the7categoriesofadditivemanufacturing/

materialjetting/. 

14. Sutton, A.T., et al., Powder characterisation techniques and effects of powder 

characteristics on part properties in powder-bed fusion processes. Virtual and 

physical prototyping, 2017. 12(1): p. 3-29. 

15. Yap, Y.L., et al., Material jetting additive manufacturing: An experimental study 

using designed metrological benchmarks. Precision engineering, 2017. 50: p. 275-285. 

16. Gokuldoss, P.K., S. Kolla, and J. Eckert, Additive manufacturing processes: Selective 

laser melting, electron beam melting and binder jetting—Selection guidelines. 

Materials, 2017. 10(6): p. 672. 

17. Javidani, M., et al., Additive manufacturing of AlSi10Mg alloy using direct energy 

deposition: microstructure and hardness characterization. Journal of Thermal Spray 

Technology, 2017. 26(4): p. 587-597. 

18. Gibson, I., D. Rosen, and B. Stucker, Directed energy deposition processes, in 

Additive manufacturing technologies. 2015, Springer. p. 245-268. 

19. Vyavahare, S., et al., Fused deposition modelling: A review. Rapid Prototyping 

Journal, 2020. 

20. Bhatt, P.M., et al., A robotic cell for performing sheet lamination-based additive 

manufacturing. Additive Manufacturing, 2019. 27: p. 278-289. 

21. Bourell, D., et al., Materials for additive manufacturing. CIRP Annals, 2017. 66(2): p. 

659-681. 

22. Campbell, I., et al., Wohlers report 2018: 3D printing and additive manufacturing 

state of the industry: annual worldwide progress report. 2018: Wohlers Associates. 

23. Associates, I.W., Wohlers Report 2019 - 3D printing and Additive Manufacturing - 

State of the Industry. 

24. Najmon, J.C., S. Raeisi, and A. Tovar, Review of additive manufacturing technologies 

and applications in the aerospace industry. Additive manufacturing for the aerospace 

industry, 2019: p. 7-31. 

https://all3dp.com/2/history-of-3d-printing-when-was-3d-printing-invented
https://www.equinor.com/en/about-us.html
http://www.3mf.io/what-is-3mf/
https://all3dp.com/2/selective-laser-melting-slm-3d-printing-simplyexplained/
https://all3dp.com/2/selective-laser-melting-slm-3d-printing-simplyexplained/
https://www.lboro.ac.uk/research/amrg/about/the7categoriesofadditivemanufacturing/materialjetting/
https://www.lboro.ac.uk/research/amrg/about/the7categoriesofadditivemanufacturing/materialjetting/


 

Page 54 of 61 

25. Varady, T., R.R. Martin, and J. Cox, Reverse engineering of geometric models—an 

introduction. Computer-aided design, 1997. 29(4): p. 255-268. 

26. Krznar, N., A. Pilipović, and M. Šercer, Additive manufacturing of fixture for 

automated 3D scanning–case study. Procedia Engineering, 2016. 149: p. 197-202. 

27. Karasik, A. and U. Smilansky, 3D scanning technology as a standard archaeological 

tool for pottery analysis: practice and theory. Journal of Archaeological Science, 

2008. 35(5): p. 1148-1168. 

28. Weyrich, T., et al., Post-processing of Scanned 3D Surface Data. SPBG, 2004. 4: p. 

85-94. 

29. Salonitis, K. and S. Al Zarban, Redesign optimization for manufacturing using 

additive layer techniques. Procedia CIRP, 2015. 36: p. 193-198. 

30. Otto, K.N. and K.L. Wood, Product evolution: a reverse engineering and redesign 

methodology. Research in engineering design, 1998. 10(4): p. 226-243. 

31. Dalquist, S. and T. Gutowski. Life cycle analysis of conventional manufacturing 

techniques: sand casting. in ASME International mechanical engineering congress 

and exposition. 2004. 

32. Sigmund, O. and K. Maute, Topology optimization approaches. Structural and 

Multidisciplinary Optimization, 2013. 48(6): p. 1031-1055. 

33. Gaynor, A.T. and J.K. Guest, Topology optimization considering overhang 

constraints: Eliminating sacrificial support material in additive manufacturing 

through design. Structural and Multidisciplinary Optimization, 2016. 54(5): p. 1157-

1172. 

34. Brackett, D., I. Ashcroft, and R. Hague. Topology optimization for additive 

manufacturing. in Proceedings of the solid freeform fabrication symposium, Austin, 

TX. 2011. 

35. Huang, X. and M. Xie, Evolutionary topology optimization of continuum structures: 

methods and applications. 2010: John Wiley & Sons. 

36. Klocke, F. and H. Willms, Methodology to describe the influence of manufacturing 

processes on the part functionality. Production Engineering, 2007. 1(2): p. 163-168. 

37. Harzheim, L. and G. Graf, A review of optimization of cast parts using topology 

optimization. Structural and multidisciplinary optimization, 2006. 31(5): p. 388-399. 

38. Blache, K.M. and A.B. Shrivastava. Defining failure of manufacturing machinery and 

equipment. in Proceedings of annual reliability and maintainability symposium 

(RAMS). 1994. IEEE. 

39. Zietarski, S., System integrated product design, CNC programming and 

postprocessing for three-axis lathes. Journal of Materials Processing Technology, 

2001. 109(3): p. 294-299. 

40. Burdekin, F., General principles of the use of safety factors in design and assessment. 

Engineering Failure Analysis, 2007. 14(3): p. 420-433. 

41. Liu, Y., et al., Optimal design, analysis and additive manufacturing for two-level 

stochastic honeycomb structure. International Journal of Computer Integrated 

Manufacturing, 2019. 32(7): p. 682-694. 

42. Westerweel, B., R.J. Basten, and G.-J. van Houtum, Traditional or additive 

manufacturing? Assessing component design options through lifecycle cost analysis. 

European Journal of Operational Research, 2018. 270(2): p. 570-585. 

43. Atzeni, E. and A. Salmi, Economics of additive manufacturing for end-usable metal 

parts. The International Journal of Advanced Manufacturing Technology, 2012. 62(9-

12): p. 1147-1155. 



 

Page 55 of 61 

44. Wu, F. and A.M. EL-Refaie, Toward additively manufactured electrical machines: 

opportunities and challenges. IEEE Transactions on Industry Applications, 2019. 

56(2): p. 1306-1320. 

45. Vaezi, M., H. Seitz, and S. Yang, A review on 3D micro-additive manufacturing 

technologies. The International Journal of Advanced Manufacturing Technology, 

2013. 67(5-8): p. 1721-1754. 

46. Lipton, J., et al. Multi-material food printing with complex internal structure suitable 

for conventional post-processing. in Solid freeform fabrication symposium. 2010. 

47. Klemm, I., J. García-Arranz, and M. Özcan, 3D Metal Printing-Additive 

Manufacturing Technologies for Frameworks of Implant-Borne Fixed Dental 

Prosthesis. The European journal of prosthodontics and restorative dentistry, 2017. 

25(3): p. 143-147. 

48. Vayre, B., F. Vignat, and F. Villeneuve, Designing for additive manufacturing. 

Procedia CIrP, 2012. 3: p. 632-637. 

49. Mostafa, K.G., C. Montemagno, and A.J. Qureshi, Strength to cost ratio analysis of 

FDM Nylon 12 3D Printed Parts. Procedia Manufacturing, 2018. 26: p. 753-762. 

50. Huang, T., W.D. Solvang, and H. Yu. An introduction of small-scale intelligent 

manufacturing system. in 2016 International Symposium on Small-scale Intelligent 

Manufacturing Systems (SIMS). 2016. IEEE. 

51. Alabi, M.O., D. De Beer, and H. Wichers, Applications of additive manufacturing at 

selected South African universities: promoting additive manufacturing education. 

Rapid Prototyping Journal, 2019. 

 

 

 

 

 

 

 

 

 

 

 

 



 

Page 56 of 61 

Appendix 

i. Gantt Chart 

 

ii. 1st Principle Stress Analysis Result for the proposed design:   
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iii. 3rd Principle stress Analysis Result for the proposed design 

 

 

 

 

 

 

 

 

 

 

iv.     1st Principle Stress Analysis Result for the origional design 
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v.     3rd Principle stress Analysis Result for the original design 

 

 

 

 

 

 

 

 

 

vi.     Received part in different views 

a) 
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b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c) 
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d) 

 

 

 

 

vii.   Part shown in the actual assembly indicated by the red oval 
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viii. 3D printer at UiT’s facility: Matsuuara LUMEX Avance – 60 Hybrid 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ix. Technical specifications of the printer 

  



 

 

 

 


