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Abstract
The arctic tundra is observed to collect data to be used for climate research.
Data can be collected by cyber-physical computers with sensors. However,
the arctic tundra has a limited availability of energy. Consequently, the nodes
rely on batteries and sleep most of the time to increase the battery-limited
operational lifetime. In addition, only a few nodes can expect to be in reach
of a back-haul wireless data network. Consequently, the nodes have on-node
wireless local area networks to reach nearby neighbor nodes.

To increase the availability for remote clients to the data collected by the nodes,
a set of shadow nodes are used. These are always on, and always have access to
a back-haul network. Data from an edge node on the arctic tundra propagates
to the shadow nodes either directly over a back-haul network, or via a neighbor
node with a back-haul network. The purpose is to make the data produced
by an edge node available to a client even when the edge node sleeps or no
network access is available.

A statistical analysis is done to characterize the prototype’s behavior under
a set of edge-node behaviors. To validate the statistical analysis a prototype
system is developed and used in a set of performance-measuring experiments.
Experiments are done with 10 to 1,000,000 nodes, different probabilities of
nodes being awake, and different probabilities of the back-haul network being
available. Edge and shadow nodes are emulated as Go functions and executed
on a high-performance computer with thousands of cores. Different wireless
networks are emulated albeit in a simplified way. A run-time simulation system
is developed to control the prototype and conduct the experiments.

The results for the prototype show that if the single synchronization chance
is low or the desired time to get the latest data should be minimized, an
additional data delivery path should be considered on the edge node’s side.
Synchronization via the right neighbor principle adds an extra communication
channel which increases the data availability level by 50%-100%, but the
resource demand grows by 30% per unit. The time required to get the latest
data from edge nodes decreases by a factor of 1.75.
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The results for the simulation show that the cumulative network throughput of
approximately ≈ 2100 MB/s and the Generated Data Amount ≈ 25000 MB/s
can be achieved at the cost of ≈ 80 KB RAM per emulated node.

The results show that the statistical analysis and the results from the prototype
as used by the simulation systemmatch, but the statistical expectation considers
a limited range of factors. Statistically derived values can be used as the input
for the simulation, where they would be adjusted to get a more comprehensive
result.

The conclusions are that the Mask provides instant access to data storage for
edge nodes. The Mask is fronted to clients which become able to retrieve the
data asynchronously, even when edge nodes are offline.
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1
Introduction
Observation of wildlife is an exciting and challenging process. It provides in-
formation about nature using non-invasive means which are environmentally
friendly for biocenosis. Such research requires complex systems for monitor-
ing, data collection, processing, and transfer. One example is the network
of observation units in the Arctic tundra. Such a system comprises a set of
cyber-physical nodes with sensors. Only a few nodes have a back-haul network.
However, they all have one or several on-node local area networks allowing a
single ad hoc node-to-node connection at a time.

The nodes are battery-limited and mostly sleep to conserve energy.

This project proposes to have a remote always-on node per mostly-sleeping
edge node.

The purpose is to make the data produced by an edge node available to a client
even when the edge node sleeps.

A prototype of the proposed approach is developed. The prototype comprises
emulated virtual edge nodes, emulated virtual always-on nodes, and emulated
networks. The prototype is executed on high-performance computer with
thousands of cores.

The performance characteristics of the prototype are documented through a
set of performance measuring experiments.

1
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1.1 COAT Project

Climate-ecological Observatory for Arctic Tundra (coat)1 project designed
and implemented a network of observation units for Norwegian Arctic tundra
[13]. Those units are spread across the Varanger Peninsula and Svalbard. The
coat project provides the data to other researchers and projects.

The Definition 1. Observation Unit

Observation Unit (ou) is an edge node in the observation network thatmonitors
the environment, stores and transfers the received data over the network.

Edge nodes - Observation Units are placed in remote areas with no usual
infrastructure such as roads or power supply. That is why ous are battery-
powered. Battery replacement and hardware repairs require physical manipu-
lation. Such expeditions are resource-demanding and can’t be conducted on a
daily basis.

ous can be fully unavailable because of technical failures or external reasons
such as interaction with animals or severe weather.

The connection to the back-haul network is provided for a limited time. ous
are in sleep mode most of the time in order to save battery. When ous wake
up, they check the back-haul network availability in order to synchronize and
transfer the data. If there is no connection, nodes make another synchronization
attempt during the next wake-up.

Several Observation Units can operate in the existing network reach of each
other. This is a neighborhood of nodes.

The Definition 2. Neighborhood

Neighborhood is the abstraction that includes all the Observation Units oper-
ating in the existing network reach of each other.

The Definition 3. Observation Network

Observation Network is the abstraction that includes all the Observation Units,
combining all the neighborhoods of ous together.

1. The COAT project: https://www.coat.no (accessed: 2021-11-10)

https://www.coat.no
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The Definition 4. Shadow Unit

There is a set of shadow nodes located in, say, the project’s data center. Those
nodes make the data available to clients. A shadow node contains a recent
copy of data from the Observation Unit.

A Shadow Unit (su) is the permanently available node that contains the replica
of the ou and which is fronted to the user.

The Definition 5. Shadow Network

All the Shadow Units form a shadow network. Shadow Network is the abstrac-
tion that includes all the Shadow Units and combines all the local networks of
sus together.

The shadow network is exposed to the user, it has enough energy to be always-
on and network connection with sufficient bandwidth. When an ou becomes
available, it gets the latest software updates from, and transfers the obser-
vational data to, the shadow network. An su, that represents one particular
ou, receives media, environmental data and metadata. Even if the su has not
received updates for a longer period, the old data would be still available for
users.

1.2 Distributed systems for data collection

Network of Observation Units is a practical scientific tool for empirical data col-
lection. As any distributed computer system, it has goals and challenges.

1.2.1 Goals

The main goal of the coat network is wildlife monitoring. It provides data for
complex environmental research purposes. Data collected in the Arctic tundra
helps to identify trends in the wild nature and make forecasts.

The Distributed Arctic Observatory (dao)2 project maintains the entire system
[39]. Additionally, such a system serves as a test platform for improvements of
network communication and orchestration patterns.

2. The DAO project: https://site.uit.no/dao (accessed: 2021-11-10)

https://site.uit.no/dao
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1.2.2 Challenges

There are several technical challenges actual for the dao nodes.

First, physical limitations of battery capacity require design based on the
energy-saving principle. The unavailability of a back-haul network at many
nodes means that a temporary network channel with sufficient bandwidth
must be delivered to ous. Distributed nature of the network assumes that extra
attention must be paid to data synchronization, communication, recovery from
failures, and node orchestration.

1.3 Problem identification

After combining goals and challenges, one problem can be identified. The
edge nodes are usually not available when clients need data from them. A
shadow network of always-on nodes caching the data from the edge nodes
can be used to mask edge node unavailability. However, observational data
in shadow network can be outdated, not synchronized due to edge nodes’
unavailability.

1.3.1 Motivation

The motivation here is to suggest a way how to increase the data availability
level. Recent observational data should be accessible by users.

1.3.2 Research question

What are the benefit and cost of masking edge node’s unavailability?

1.3.3 Research tasks

It is required to fulfill the following list of research tasks in order to come closer
to the research question solution:

1. create a simplified statistical model to get the expectation and the starting
point of the input for the prototype;

2. develop a prototype suited for emulation of several thousand ous;
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3. develop a shadow network emulation connected to the ou network;

4. emulate several network types with their technical characteristics;

5. make the prototype suitable for execution in hardware environments
with large memory;

6. run set of experiments to test scaling ability, expected network behavior,
resource demand;

7. make assumptions for the real-world network behavior based on the
results of the simulation.

1.3.4 Additional tasks

Two additional tasks can help to make a solution more comprehensive:

1. suggest and implement an algorithm for synchronization and data trans-
fer using neighbor nodes;

2. assess resource demand and data availability effect of employing syn-
chronization via a neighbor node;

3. add support for hundreds of thousands ous to check scaling effects.

1.3.5 Scope and limitations

The scope of the thesis includes modeling of general data delivery paths, the
schematic architecture of observational network represented by a computer sim-
ulation with limited functionality. When it comes to limitations, the prototyping
doesn’t assume real-world testing or interaction with the real observational
network. Another limitation is that the model doesn’t include all the character-
istics of the real-world network. Only some aspects that are subjects for study
in this thesis are taken into consideration in the model.

For instance, several types of networks with physical limitations are emulated,
but software updates propagation, clock synchronization patterns, energy con-
sumption, data storage and processing aspects can be absent or oversimplified.
Both the statistical approximation and the prototype are simplified represen-
tations of the ou network. Results derived from a set of experiments do not
pretend for absolute accuracy, as the simulation is not the exact copy of a
real-world observation network.
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1.4 Thesis outline

This master’s thesis has the following structure:

Chapter 1 - Introduction is the current chapter that defines the motivation,
research question, tasks, scope and limitations;

Chapter 2 - Theoretical Background illustrates main concepts and principles
employed in the master’s thesis;

Chapter 4 - Related Work shortly presents results of work of similar projects
with similar goals;

Chapter 3 - Methodology describes the chosen research method and helps
to logically connect all parts of the thesis;

Chapter 5 - Statistical Expectation provides the preliminary input for the
simulation and demonstrates how probability is estimated;

Chapter 6 - Prototype outlines architecture, design and implementation of
the prototype - the simulation of the network of ou;

Chapter 7 - Evaluation contains benchmarking, stress tests of the prototype
and description of experiments;

Chapter 8 - Results & Discussion lists the research results and highlights
their practical meaning;

Chapter 9 - Contributions - summarizes the main findings;

Chapter 10 - Future Work suggests possible vectors of the future develop-
ment;

Chapter 11 - Conclusion gives a short summary of the master’s thesis.



2
Theoretical Background
The goal of this chapter is to clarify some theoretical terms and concepts which
are not covered by other parts of the thesis. Such clarification eases the overall
model perception and serves as an introduction to the prototype development
process.

2.1 Observational distributed systems

The idea to use a distributed system of observational nodes to monitor the
wildlife and environment is not new. Some relevant examples are discussed in
chapter 4 - Related Work. One of the primary questions in such systems is how
to organize the network and balance the workload among network members.
Sensors are the main data sources for observational distributed systems and
for the coat project [13] in particular. Another important question is how and
where to process the data before the transfer to the end-user.

2.1.1 Edge computing

If the data is sent right away, the observational node would remain idle, would
have unused computational resources, but save some energy. If the data is
processed in place, there will be a growing demand for computational resources.
Edge computing means that the data is processed closer to its source. From the

7
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perspective of data security, the sensitive information is stored locally avoiding
centralized data aggregators [48]. From the point of workload balancing, edge
computing reduces the network workload by processing parts of data in place
[35, p.17]. A schematic representation of the data flow and the workload
distribution is illustrated in figure 2.1 (adaptation of illustration of "cloud-fog-
edge" principle [8] to the network of Observation Units).

Edge

Fog

Cloud

OU 1 OU 3

OU NOU 2OU 0

?

Shadow 

Network

number of
concurrent 
connections

data amount 

aggregated &

processed


Figure 2.1: Cloud-Edge network principle (adaptation of illustration [8])

The simulation of the observational network can be described using the cloud-
edge approach [35, p.17]. Figure 2.1 shows how observational network elements
correlate with cloud-edge principles. Here, in figure 2.1, Observation Units rep-
resent edge nodes, the shadow network is a cloud with sufficient computational
power. Thus, the simulated Observation Unit network can be seen as a net-
work of the edge nodes which partially do the data processing because they
collect, store and send the sensor data. The energy-saving perspective assumes
extra attention to the balance between in-place data processing and the net-
work availability rate. Even permanently available networks with sufficient
bandwidth like 5G may require in-place data processing, edge computation
can reduce the communication overhead [55]. Most data processing resources
should be spent where they are inexpensive - in the data center/cloud, as
illustrated in figure 2.1. From the perspective of the data flow forwarding and
processing, some fog abstraction as shown in figure 2.1 might be required in
future work (see chapter 10). The simulation can benefit from an adaptive
mechanism of edge load distribution [30]. More details on resource-demanding
cases are discussed in section 6.3.8 (neib mode), results can be found in the
experiment 4 description (see section 7.8).
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2.1.2 Parallel & concurrent computing

As illustrated in figure 2.1, there may be fewer concurrent connections on the
way from edge to cloud, but the data amount remains the same. Receivers
sometimes have to process data from several senders. It is natural for routers
in networking and for simulations emulating several independent data sources.
For several simultaneous data streams, parallel computing may help to dis-
tribute the workload among several threads, processes, cores, or nodes. In
accordance with [42], in parallel computing, several processes are solving the
same issue simultaneously, while in concurrent programming several processes
are running simultaneously.

In the prototype construction (chapter 6), the principles of parallel computing
help, for example, to simultaneously extract router data from the network
using several goroutines. Nevertheless, all units are running concurrently:
independently, but at the same time.

2.2 Network scalability

When it comes to communication between nodes, there is a need for a network
- an abstraction for the data exchange. Simultaneous connection requires
synchronization. Simultaneous access to shared variables assumes mutual
exclusion. The network can be static or dynamic, but the number of nodes may
vary from run to run. It means that routines in the prototype should be flexible
to handle any number of network elements within a given range.

2.2.1 Communication & synchronization

Despite the sharedmemory availability and support for the global configuration,
the simulation should emulate independent edge nodes to have similar behavior
to the network of Observation Units. Communication happens both between
members of the same local network and between members of different remote
networks. That is why data transfer algorithms are needed.

Parameters are passed from the level of the shadow network in a form of
multicast. Multicast takes place when the data from the control center is
propagated to all the edge nodes via routers and other network layers [51].
The entire network communication is based on the message-queuing model,
where data is transferred in chunks and can be delivered even after the original
sender was shut down [51]. Channels in Go support buffering [20] and can
accept several or several hundreds of messages.
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The intra-node communication can be based on the persistentmessage-oriented
model [51]. Such systems do not require all members to be active at the moment
of connection [51]. Message passing via Go channels using messages with key
primitives can be used to implement this kind of model. This approach opens
for the data synchronization via neighbor nodes (see 6.3.8).

2.2.2 Mutex

When several nodes are trying to send the data via the same non-private
channel, simultaneous access may affect the message order between processes.
Despite the fact that the mutual exclusion in shared memory is mainly an
issue for systems with simultaneous multiprocessor access to the data [4], race
conditions can occur between several processes as well. Some orchestration
approaches are lock-free and non-blocking, but if data channels would be ac-
cessed simultaneously by several processes, the lock-based approach should be
considered. Maekawa’s algorithm [33] is permission-based and demonstrates
good results when applied to communication within linked lists structures
[32]. That is why the principle of asking for permission before entering the
critical region is applied in the prototype. A simplified permission-based lock
implementation is described in chapter 6.

2.3 Network topology

There is an issue, unique for distributed systems - incomplete knowledge about
the distant elements. This issue may be partially resolved by data synchro-
nization [43]. But what is the proper organization of the network and how
many ranks and roles there should be? Peleg [43] introduces locality-sensitive
distributed algorithms. Even in case of extensive network growth, build in a
locality-sensitive way, the algorithm will operate in the given relatively small
part of the data path without knowledge on the entire system. So the principle
of locality is employed in the simulation prototyping, more details on design
baselines are in section 6.2.

2.3.1 Ranked networks

Some systems scale without errors, for some scaling may result in failures after
extensive growth. Synchronization algorithms may not cope with a changed
number of nodes in some cases. Observation Units are homogeneous edges -
identical nodes of the same level. All of them have to follow identical paths
to push the data to its destination as explained in the next subsection. So
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the simulation is the one-rank network. Routers have different roles - they
belong to the transport layer and are not considered in the ranked model. The
flat model still supports various options of node-to-node and node-to-router
communication.

2.3.2 Linked lists

One of the most primitive forms of the flat, one-ranked network organization -
is the linked list. An example of such a list is illustrated in figure 2.2.

nextnode 0 node nnextnode 2nextnode 1

Figure 2.2: Linked list principle

For the simulation without neighbor-empowered synchronization (section
6.3.8), the organization remains flat without any links. Nodes are only con-
nected to the router as discussed in chapter 6. But in some cases, an extra
connection is needed. In ordinary linked lists, every list entry has a reference
to the next entry [16, p.12]. The circular linked list’s tail has a reference to the
head. The double-linked list assumes that every element has a reference to
a successor and to a predecessor [16, p.18]. The circular double-linked list is
illustrated in figure 2.3.

back
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node n

back
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back
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next

back
node 0

back

next
node 4

back
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Figure 2.3: Double-linked list principle

The form of intra-node communication illustrated in figure 2.3 has the advan-
tage of simplicity. Iteration complexity in big-endian notation is O(1) for any
node-node step and O(1) to go from any node to the nearest router. With this
approach, complex network traversing can be avoided.
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2.3.3 Shadow networks

While remote nodes might be unavailable, the "shadow" layer represents edge
nodes and is exposed to a user. In fact, shadow nodes are designed to contain
copies of data from remote edge nodes. In this thesis, such an extra layer is
called a shadow network. Practically, this approach exists in other systems in
form of proxies, CDN’s, replicas, and other technologies masking network or
remote service full/partial unavailability. Almost any network can be unavail-
able due to various factors: power outage, physical network line damage, and
so on. Reasons for hiding those issues might be (1) entertaining: streaming
the media content without interruptions; (2) scientific: having an up-to-date
replica with a data backup; (3) others.

For instance, the CAP theorem states that it is impossible to achieve more than
two of three following properties in a distributed storage system: availability,
consistency, and partition tolerance [17]. In general, a "shadow" layer increases
data availability. It makes the data accessible by providing an extra network
channel or adding more computational resources.

2.3.4 Observation of observational networks

Monitoring can help to maintain, adjust and fix a network or simulation of a
network. Some mechanisms may be intrusive and affect the network workflow
bringing extra causalities [14]. As highlighted by Fidge, this phenomenon is
sometimes referred to as "The Heisenberg" effect [14]. In computer science,
an example is when a profiler alters the original concurrent program behavior.
Hence, the intrusive observation method’s effects should be taken into account
to predict such alterations of behavior. There is also a need for real-time
network monitoring. For this purpose, real-time global timestamps can be
used. As discussed in [51], this approach may bring causalities, because the
system load can be different, so the timestamping in concurrent threads can
result in incorrect io order, despite the global clock [14]. For the flat network,
where nodes have private channels and do not use shared channels for data
transfer, the discussed drawback is not vital. The role of timestamping in
the prototype is to measure the network bandwidth and data transfer rate.
Implementation details can be found in chapter 6.



3
Methodology
This chapter describes the research method. Here comes the clarification for
the experimental setup and how all the research steps are interconnected. The
chapter starts with the description of the scientific research method principles,
their connection with the statistical method via analysis, synthesis, and review.
The experimental setup is explained from the position of experimental control
and randomization.

3.1 Scientific research method

Quantitative research assumes that measurements and experiments are in
focus. But as highlighted by Goertzen M. quantitative research has limitations
as it is may require longer periods for the data collection [19]. The simulation
described in chapter 6 - Prototype has the main goal to save resources and give
access to big data massives without long observations.

The scientific research method and the scientific experiment are theoretical
frameworks for the simulation from design to execution and evaluation. Gen-
erally, basic ideas of the scientific research method and quantitative method
are similar: stating the question, defining the hypothesis, making predictions,
testing and evaluation.[18]

13
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3.2 Mathematical model

Insights on the step of observation help to identify an open question by virtue
of the existing limitations. Understanding is the first step in the mathematical
method and correlates with the principle of characterization of observation in
the scientific method.

In research conducted by the COAT group [13], the main data collection lim-
itations are the limited energy and connectivity of remote edge nodes. Edge
nodes are in the sleep mode most of the time and the back-haul network is not
always ready when edge nodes are active. Hence, data availability becomes an
issue. That is why the first step was to clearly identify the problem and make
the first logical assumption or hypothesis.

The hypothesis is the basic element of the scientific method, while in the
mathematical method this step is called analysis. [9] In other words, the
hypothetico-deductive method is strongly connected with the mathematical
method and sometimes implies the same principles, follows the same steps
[9].

The next step assumes making predictions from the hypothesis. In mathemati-
cal research, this step is called synthesis. Statistics, as a part of mathematics, is
a helpful instrument that can provide the statistical expectation or predicted
result with a certain chance of probability. The mathematical synthesis ap-
proach that sublimates into the prediction step of the scientific method brings
the research further to the experimental stage (hypothesis testing) and the
review (evaluation and improvement). In chapter 5 such predictions are listed
together with the calculation method.

3.3 Empirical model

When the research question is stated, the hypothesis is formulated and the
prediction is ready, comes the testing or the experiment that is aimed at
data collection. Analysis of the collected data can validate the hypothesis or
require further testing (if the hypothesis is not validated) [18]. The experiment
here is the model simulation after the prototype design and implementation
as discussed in chapter 6. The prototype is the computer simulation of the
network built in accordance with scientific controlled experiments principles
but has some limitations as discussed previously in section 1.3.5. A closer look
at the design prototyping methods can help to understand the simulation’s
role as a part of the research method.
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3.3.1 Design prototyping methods

There is a number of approaches to building prototypes [7]. The observation
unit network simulation, which is the core part of the thesis follows some of
those principles as any other prototype.

For instance, the virtual prototyping model is aimed at resource-saving. It
may save time and expenditures. Natural shortcomings include the limited
amount of environmental factors that can be efficiently emulated. But such
a model is a tool for observation, testing, and prediction which is dependent
on computational resources, not the natural conditions or access to complex
equipment for real-life observation. Virtual prototyping is capable of simulating
time with a given scale. Months can be simulated in seconds in case of the
properly constructed model and enough compute power.

The iterative prototyping approach means that all the design process is done
in several iterations [7]. During the project development, it is possible to go
back to the previous iteration in order to evaluate it and enhance components
that might increase the accuracy of measurements for example.

Another type described in the article and which is relevant for the simulation
discussed is the scaled prototype model [7]. Such models compensate for the
lack of time by scaling nanoseconds to minutes by employing extra CPU power
and ram for instance. The next possible advantage is connected with the
geographical scale. In the real world, observational nodes can be kilometers
away from each other in natural conditions with no roads and no infrastructure.
In the scaled model, the physical distance and the network complexity can be
expressed in a form of functions and methods.

There is no one and only one proper approach that describes the ou network
simulation. That is why the three most relevant modeling principles are listed.
The mixed model inherits ideas from all those principles.

3.3.2 Experiment methodology

Once the prototype is built, starts the simulation that generates significant data
amounts. In order to assure result correctness, the experimentmust follow basic
scientific controlled experiments principles [18].

The chance of uncertainty that takes place during any experiment influences
the results and should be predicted. Such a prediction helps to identify the
standard deviation and the confidence interval. Extra data sampling during the
experiment provides more data. Sufficient data amounts can increase the de-
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gree of result correctness. A homogeneous experimental setup guarantees that
changing the runtime environment would not raise the uncertainty level.

Randomization of input data confirms that the result correlates, but is not
bound to the input. Usage of random input helps to identify trends and
dependencies. Positive control ensures data processing correctness. Under
certain circumstances, the result must be exact. For instance, a signal from
the motion detector on the remote node must always result in the camera
module activation. In a similar way, negative control helps to figure out if the
experiment responds properly to the results that will deliberately bring the
failure. For example, connection requests from unauthorized devices must be
rejected.

Contrast with observational study can be the next step of the experiment. If
we know that the simulation behaves unpredictably in a different manner than
the real-world network, some error or uncertainty is existing and is currently
unknown. If the contrast is high enough, adjustment to the model should be
done in the previous iteration.

3.4 Quality assurance

After the data is collected and analyzed, or the experimental stage is complete,
the output should be validated and reviewed. The scientificmethod assumes the
entire process is done in several iterations. It means that is possible to reproduce
any stage and introduce new elements that may increase the experiment
accuracy. As discussed previously, the contrast with the observation, positive
and negative control, extra data sampling, and input randomization are possible
indicators of results validity.

In general, reproducibility is the key to research transparency. Repetition of
the experiment is the form of control for continuous improvement. If others
are able to reproduce the experiment, it ensures that results would not be
corrected in order to match the hypothesis. The experiment quality is assured
both during the development process as discussed in subsection 6.2 - Design
and after result collection as showed in section 7 - Evaluation. Subsections 7.2
and 7.3 are examples of the iterative prototyping approach.



4
Related Work
This chapter gives a brief overview of existing solutions for issues discussed
in the thesis. The articles and project results listed below provided a starting
point for the research. There are 4 points of interest to be discussed: existing
observational edge node networks, synchronization in edge node networks,
masking effects of edge nodes being unavailable, and the large-scale network
simulation.

4.1 Observational edge node networks

Researchers and research groups all over the world are constantly improving
their toolboxes for environmental monitoring. The network of sensors is now an
essential part of the large-scale data collection process. Nevertheless, statistical
prediction, data analysis, processing, storage, and the search for the perfect
balance between the cost and throughput make such networks a subject for
research, enhancement, and discussion.

SATURN1 Observation Network has a system distributed on the Columbia
River in order to collect physical and biogeochemical data [37]. The project
is a part of The Center for Coastal Margin Observation Prediction (CMOP).

1. SATURN Observation Network: http://www.stccmop.org/datamart/
observation_network (accessed: 2021-11-10)
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Project members introduce own mechanisms for the adaptive data sampling as
described by Thanh Dang et al. in [12]. There is a need for a periodical cruise
that would go by the river and collect the extra data in addition to the data
received from the observational nodes. Such a cruise is expensive and rare,
so the data collection must be precise and efficient. In their article, the data
collection algorithm for the accuracy improvement is discussed.

The Marine Observation Network uses "Underwater Vehicles" [31]. There is a
lack of cheap and robust wireless network infrastructure underwater, so there is
a need for specific communication protocols. A set of several autonomous under-
water vehicles together with a mobile surface platform can be efficiently used
for oceanographic data collection. Vehicles are able to collect the temperature
data accurately in both "autonomous" and "connected" modes.

Not only the wild nature is the subject for the data collection via networks of
edge nodes. Cities are the everyday environment for millions of people. An
effective way for the real-time traffic intensity estimation can be done using
vehicles dashboard cameras [27]. Vehicles serve as cyber-physical systems -
edge nodes that generate huge data amounts. All the computation is done on
the edge node by the modified dashboard camera software. The method of the
dashboard camera data extraction shows over 90% precision and exceeds the
GPS-based method accuracy.

Raspberry Pi Zero W2 based network prototype developed by United States
Military Academy [10]. Wildlife monitoring is done via a set of Raspberry Pi
serving as edge nodes. The sensor network is designed and evaluated from
the power-saving perspective and shows 80 hours of working time with 22,000
mAh battery capacity and 5.8A current output. The system collects the data
via an infrared motion sensor and a camera with a microphone. If there is
no data from the motion sensor for 20 minutes, the device enters sleep mode.
Nodes have 30 meters range and can communicate with a master node, which
is able to connect to the end user’s Android-based device. Project results are
especially relevant for the research described in the thesis.

4.2 Synchronization in edge node networks

Synchronization is one of the key aspects in edge node networks. An unbal-
anced synchronization mechanism may lead to higher resource consumption
and become the reason for unpredictable errors and uncertainties. A stable syn-

2. Raspberry Pi Zero W official documentation: https://www.raspberrypi.org/
products/raspberry-pi-zero-w (accessed: 2021-11-10)

https://www.raspberrypi.org/products/raspberry-pi-zero-w
https://www.raspberrypi.org/products/raspberry-pi-zero-w
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chronization mechanism would help to employ network resources effectively
and deliver data in a consistent manner.

Relational Covariate Adjustment (RCA) is an estimation algorithm for causal
effects in relational data [3]. The method is declared as a reliable way to esti-
mate causal effect in both simulations and real-world network structures. A set
of experiments showed that the causality estimation matches the observational
data. The hypothesis is based on relational causal graphical models and is
confirmed by summarizing the marginal individual effect with the marginal
peer effect and future comparison to the synthetic network of 36,692 nodes
and 183,831 edges. This method can be used for the synchronization mecha-
nisms adjustment during the network design and development process even
for networks of edge nodes with only one or two neighbors.

Synchronization in complex networks with uncertainty and time delay is
another relevant study [54]. Examples of such systems are multi-sensor earth-
quake monitoring networks, automated highways as well as low-orbit satellite
systems. The main synchronization issue is the inability to send the data pre-
cisely due to uncertainty and time delay. According to the research, the edge
node synchronization accuracy can be predicted with given probability using
the Laplacian L and G, and the graph theory.

The optimization algorithm for directed networks synchronizability assessment
gives sufficient stability conditions despite the fact that prediction might not
always be precise due to the system complexity [11]. The main benefit is the
possibility to identify the impact of additional indirected links on the entire
synchronization mechanism. This method is applicable to a range of networks
from the brain neural synchrony disruption to power-grid network synchroniza-
tion. The research shows the possibility to adjust the synchronization primitives
in directed networks (where nodes and edges are of the same type).

4.3 Masking node’s unavailability

The main issue with layered networks is that edge nodes might be unavail-
able as discussed previously. This issue has especially high priority in nature
observation networks, where energy consumption and network availability
determine the overall system design.

Edge-Empowered Graph Convolutional Network model consists of edge nodes
aggregating representations of their neighbors in case neighbors might be
unavailable later [53]. The study demonstrates the high level of statistically
modeled data reliability despite edge node’s partial unavailability.
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Another study proposes a strategy for network resilience and shows the algo-
rithm for optimization of wireless mesh networks in case of edge node’s failure
[45]. Main steps such as "Defend", "Detect", "Remediate", "Recover" result in two
loops: "Diagnose" and "Refine". The network resilience strategy is explained
through the�2 ∗'2+�' principle, where the first loop is based on the runtime
analysis, the second loop might involve machine learning. The theory is aimed
at improved network stability and its ability to recover.

The Pexip Project3 introduces two new types of instances: transcoding nodes
and proxying edge nodes [38]. They are suggested to be placed closer to the
end-user in order to ease the load balancing in the network and mask possible
connectivity issues. This might be used as a variant of the edge-node network
with a "shadow" layer and superpeers.

4.4 Large scale network simulation

The idea to create a synthetic network is not new. Here some relevant examples
of large-scale network simulations and simulation analysis are presented.

Simulation of the network of more than 1500 LTE cells on approximately 1500
CPU cores showed that big-scale network simulation requires the optimization
of parallelization mechanisms [49]. The simulation on the high-performance
computing cluster is done, results are collected and evaluated (parallelization
approach on shared memory called Horizon).

Parallelism potentials in distributed simulations are analyzed [2] by the exam-
ple of the peer-to-peer distributed hash table-based network called Kademlia
[34]. The study considers synchronization waiting time and the physical mes-
sage exchange between logical processes as primary overhead sources. The
main outcome is that the partitioning identical on the host machine and the
simulated nodes routing tables reduces the inter-processors communication up
to a factor of 6. At the same time, location-based partitioning reduces the syn-
chronization cost, increases the spatial distance between remote nodes.

A study on large-scale network simulators is the overview of large-scale network
simulators and their main characteristics [6]. The authors list some parallel
discrete event simulators as well as systems based on discrete simulation
principles. This is a good starting point for designing own network simulator
for a large network.

3. Pexip Infinity technical documentation: https://docs.pexip.com/admin/
distributed_edge.htm (accessed: 2021-11-10)

https://docs.pexip.com/admin/distributed_edge.htm
https://docs.pexip.com/admin/distributed_edge.htm


5
Statistical expectation
The current chapter illustrates the statistical expectation calculation algorithm
and shows the reason for the prediction making based on the mathematical
method. The assumption based on calculations below provides the fundament
for further research and prototyping.

5.1 Calculation method

The chosen calculationmethod is taken from the statistical field of science and is
based on the theory of probability. The resulting values may have uncertainties
due to the relative simplicity of the chosen approximation method. Researches
in graph theory and general statistics show that complex models can visualize
and predict the behavior of the network after collection of the relational data on
the characteristics[29, p.51]. But the thesis doesn’t pursue the goal of extensive
mathematical research as defined by scope and limitations in section 1.3.5.
The motivation is to identify the general trend of single success probabilities
dependent on the back-haul network availability chance and the chance of
edge node being awake. The statistically derived result will be compared with
the simulation results.

21
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5.1.1 Two events probability

From the statistical point of view, two independent events can be defined as
events that don’t have an influence on each other in terms of occurring order
and result dependency [46]. In the observation unit network, there are two
types of events with given probabilities:

• P(N) - the chance of the back-haul network being available

• P(A) - the chance that the observational node will be awake and available
for the synchronization

The chance of network the back-haul network being available varies in range
0 ≤ % (# ) ≤ 1. The chance of the node being awake has the same range
0 ≤ % (�) ≤ 1 and is applicable to every single node wake-up - a moment
when compute node is not sleeping and is ready for the connection. It means
that % (�) = 1 will result in successful synchronization every single time,
while % (�) = 0.5 reduces the chance of successful synchronization to 50%.
% (�) = 0.05 means that the chances of synchronization are about 5%, so for
20 wake-ups, we can expect approximately one synchronization.

These two events P(A) and P(N) are independent, they do not trigger each
other and do not have any impact on each other’s results. It means that the
chance of two events happening together can be calculated using the equation
5.1 [46].

% (�) ∩ % (# ) = % (�) ∗ % (# )
(5.1)

If the probability P(N) is 50% and the probability P(A) is 5%, using formula
5.1, we get: % (�) ∩ % (# ) = % (�) ∗ % (# ) = 0.5 ∗ 0.05 = 0.025. Both ele-
ments influence the overall probability chance for one single node wake-up
(trial).

5.1.2 Binomial pmf

When one-time probability is given, binomial pmf distribution can estimate
the probability that there will be s successful synchronization(s) after n trials
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[47]. It is possible to estimate the binomial pmf for a range of trials if only the
expected number of successful synchronizations is defined. Given the number of
trials, binomial pmf can be estimated for a range of successful synchronizations.
The calculation is performed using equation 5.2 [47].

% (B;?;=) =
∑

% ({(41, . . . , 4=)}) =
(
=

B

)
?B (1 − ?)=−B

(5.2)

For instance, using the probability % (�) ∩ % (# ) = 0.025 from the previous
example and given that we await at least one successful synchronization after
100 trials, binomial pmf value will be:

% (B;?;=) =
(100
1

)
0.0251(1 − 0.025)100−1 = 0.20389

In other words, % = 0.20398 corresponds around 20% chance of at least one
successful synchronization after 100 trials. But the function should be read
from charts, as it will decline after its peak value [47]. The chart shows the
direction: either the number of trials should be increased or the number of
successes expected should be reduced to get a higher probability P.

To sum up, the binomial pmf is an instrument for prediction of the peak value
of at least s synchronization chance after n trials. The value in one point can’t be
exclusively used without the graph as it doesn’t show whether the probability
goes up or down after that point.

5.2 Results & Expectation

This section shows how the binomial pmf can help to predict a declining/in-
creasing trend in a success chance probability in the simulation. Results derived
from the statistical model would be tested in the simulation.

5.2.1 Number of successes

For the first statistical experiment, the probability of the back-haul network
availability P(N) is 20%, the probability of the node being awake P(N) is 10%. It
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means that the connection will be available with a ratio 1 to 5, and one node will
be ready for the synchronization approximately once in 10 trials. The overall
chance of two independent events happening together is % (�) ∩% (# ) = 0.025
as calculated using equation 5.1 and reflected in table 5.1. Let’s assume that
the simulation period is one week or 168 hours. It means 168 node weak-ups or
168 trials n. More details on time scaling in section 6.2.2 - Scale. Let’s calculate
the binomial pmf value for a range of successes from 1 to 50 and reflect some
of them in table 5.1.

Awake % Network % % (�) ∩ % (# ) n s Binomial pmf

10 25 0,025 168

1 0,06123788
2 0,13111186
3 0,18602196
4 0,19675399
5 0,16547515
12 0,00081045
25 1,0046E-12

Table 5.1: Binomial pmf for % (�) ∩ % (# ) = 0.025

Judging from results in table 5.1, after 168 trials, the expected synchronization
probability is around 19% for approximately 4 successful synchronizations (s).
5 successful synchronizations can be expected with a probability of around
16%. Let’s plot all 50 values to the chart.

Figure 5.1: Binomial pmf for % (�) ∩ % (# ) = 0.025

The chart illustrated in figure 5.1 confirms that for 168 trials, the probability
of up to 5 successful synchronizations is around 16%. After that point, the
synchronization chance is reduced. A relatively low value before this point
doesn’t mean that at least 5 successful synchronizations are more probable than
at least one. Such value distribution means that exactly 5 synchronizations have
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a higher probability to occur than exactly one successful synchronization.

Here, the probability % (�) ∩% (# ) = 0.025 is relatively high and doesn’t cover
worst-case scenarios. The next step is to make tables and plot charts for other
% (�) ∩% (# ) cases to include more realistic chances. Tables are not listed here,
but all 6 resulting plots can be found in figure 5.2.

(a) Binomial pmf for % (�) ∩ % (# ) = 0.0005 (b) Binomial pmf for % (�) ∩ % (# ) = 0.0025

(c) Binomial pmf for % (�) ∩ % (# ) = 0.005 (d) Binomial pmf for % (�) ∩ % (# ) = 0.125

(e) Binomial pmf for % (�) ∩ % (# ) = 0.375 (f) Binomial pmf for % (�) ∩ % (# ) = 0.5625

Figure 5.2: Binomial pmf for 0.00025 ≤ % (�) ∩ % (# ) ≤ 0.5625

Individual charts in figure 5.2 are showing the estimated chance of s after
168 trials for % = 0.0005, % = 0.0025, % = 0.005, % = 0.125, % = 0.375,
% = 0.5625 in figures 5.2a, 5.2b, 5.2c, 5.2d, 5.2e, 5.2f respectively. For the first
two cases, the function values are relatively low. It means that exactly one
synchronization chance is only 7.5% for % = 0.0005 as shown in figure 5.2a.
Binomial pmf chart for % = 0.0025 in figure 5.2b promises up to 3 successful
synchronizations with a chance of 25%. In the case of % = 0.5625, the function
has not even begun to show its peak after the point of 49 trials as shown in
figure 5.2f. It can be assumed that the function peak is much more far away to
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the right and for such a high % value, so we can expect more than 50 successful
synchronizations after 168 trials.

Figure 5.3 below combines a chart from figure 5.1 and all 6 individual charts
from the figure 5.2. The chart a secondary axis. The primary axis (on the left)
is for the area diagrams which represent % < 0.1, the secondary axis contains
values for curves of binomial pmf for % > 0.1. The three cases with the highest
total probability of two independent events show that:

• for % = 0.125 we can expect around 21 successes with probability of 10%;

• for % = 0.375 there will be over 49 successful synchronizations, proba-
bility only starts to go up after the point of 49;

• for % = 0.5625 there will be much more than 49 successful synchroniza-
tions, probability starting point is not even visible after 50 trials.

Figure 5.3: Combined graph for binomial pmf for 1 ≤ B ≤ 50

The four cases with the lowest total probability of two independent events
show that:

• for % = 0.0005 there will be maximum one synchronization and the
probability is 7%;

• for % = 0.0025 there can be one synchronization with probability 20%;

• % = 0.005 shows up to 3 successful synchronizations at 20% chance;
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• for % = 0.025 the number of successful synchronizations is 5 at 20%
probability.

To sum up the section, n=1 (one successful synchronization) reflects the reality,
because it is applicable to all the range of probabilities. The simulation will
examine worst-case scenarios with low % (�)∩% (# ) probabilities when at most
one synchronization during the period of time can be expected. This value will
be used for the next statistical experiment and the empirical experiments from
sections 7.5, 7.6, 7.7, 7.8, 7.9.

5.2.2 Number of trials

This statistical approximation is opposite to the previous one as it aims to find
out a number of trials needed to reach at least one success at various probability
ranges.

The Definition 6. Single Synchronization Success Chance

Single Synchronization Success Chance is the probability that the edge node
would synchronize at least once during the given period of time at a given
one-time synchronization probability % (�) ∩ % (# ).

As in the previous calculation, for the first example, the probability of the
back-haul network availability P(N) is 20%, the probability of the node being
awake P(A) is 10%, % (�) ∩ % (# ) = 0.0005, B = 1. Table 5.2 shows values of
binomial pmf for trials (wake-ups) from 1 to 200 (calculated using equation
5.2).

Awake % Network % % (�) ∩ % (# ) s n Binomial pmf

1 5 0,0005 1

1 0,0005
2 0,0009995
3 0,0014985
100 0,047584669
168 0,077269238
199 0,09011917
200 0,09052674

Table 5.2: Binomial pmf for % (�) ∩ % (# ) = 0.0005

The first value set derived from the equation 5.2 is for % (�) ∩ % (# ) = 0.0005.
Let’s plot the range of pmf values into the chart. The chart is illustrated in
figure 5.4. It shows that for such a low synchronization success chance, the
number of trials needed for at least one synchronization is over 200. It means
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that for this P value, the more trials will be, the higher chance we get. Even if
there will be 200 trials, the chance is only 10%.

Figure 5.4: Binomial pmf for % (�) ∩ % (# ) = 0.0005; B = 1

The next step is to make tables and charts for other % (�) ∩% (# ) values. Tables
are not listed here, but charts are plotted into the figure 5.5 which contains pmf
values for at least one synchronization for % = 0.0005, % = 0.0025, % = 0.005,
% = 0.125, % = 0.375, % = 0.5625 after 1 to 200 trials.

Figure 5.5 shows that the single synchronization chance is growing in the
direct correlation with the number of trials and the one-time synchronization
probability % (�) ∩ % (# ). In cases 5.5a and 5.5b the number of trials needed
is especially high (over 200 trials to reach the peak pmf value). For the most
"positive" scenarios 5.5e and 5.5f the number of trials needed is 2 with 40%
probability and only 1 with 55% probability respectively. All 7 cases from figures
5.4 and 5.5 are combined into a single chart illustrated in figure 5.6.

Figure 5.6 combines a chart from figure 5.4 and all 6 individual charts from the
figure 5.5. The chart has a secondary axis. The primary axis contains values
for curves of binomial pmf for % > 0.1, the secondary axis (on the left) is for
bars which represent % < 0.1. The four cases with the lowest total probability
of two independent events show that:

• for % = 0.0005 more than 200 trial are needed to get at least 10% single
synchronization success chance,

• for % = 0.0025 after 195 trials, the chance of to get at least one synchro-
nization is 30%,
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(a) Binomial pmf for % (�) ∩ % (# ) = 0.0025 (b) Binomial pmf for % (�) ∩ % (# ) = 0.005

(c) Binomial pmf for % (�) ∩ % (# ) = 0.025 (d) Binomial pmf for % (�) ∩ % (# ) = 0.125

(e) Binomial pmf for % (�) ∩ % (# ) = 0.375 (f) Binomial pmf for % (�) ∩ % (# ) = 0.5625

Figure 5.5: Binomial pmf for 0.00025 ≤ % (�) ∩ % (# ) ≤ 0.5625

• for % = 0.005 after 195 trials, the chance of to get at least one synchro-
nization is 36%,

• for % = 0.025 the chance to get one synchronization accomplished is
36% after 40 trials.

The three cases with the highest total probability of two independent events
show that:

• for % = 0.125 40% synchronization chance is hit after 7 trials,

• for % = 0.375 after one-two trials, the chance of getting 1 success is 45%,

• for % = 0.5625 even after the first trial, success chance is over 50%.
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Figure 5.6: Combined graph for binomial pmf for 1 ≤ = ≤ 200

It is reasonable to set the simulation period to in the interval between 100 and
200 trials to cover even worst-case scenarios with a low probability % (�)∩% (# ).
Too short simulation time would cut off monitoring of nodes that didn’t get
enough trials. Too long simulation time should not bring any advantage. After
this statistical experiment, the simulation period is set to 168 trials which
correspond to 7 weeks of simulation where an observation node wakes up
once an hour. For more details on the time scaling principle, refer to section
6.2.2.

Taking everything into consideration, the statistical model gives the prediction
for the simulation and the simulation gives the prediction for the real-world
cluster. The goal here is to investigate the possibility to use the statistical expec-
tation as input for the simulation, to examine the accuracy level of calculated
values. The open question list is: is it sufficient with the statistical prediction
only, is it accurate enough? If yes, in which cases? Should probability values
be used for the simulation planning only or does it work for the real cluster as
well? Some of these questions are raised in chapter 8 - Results, some questions
transformed into plans for the future work (chapter 10)



6
Prototype
This chapter provides details on the prototype’s architecture, design, and
implementation.

6.1 Architecture

There are several types of simulation instances that reflect simplified real-world
observational network architecture. As described in the introduction (chapter
1), the ou is the edge node and the key element of the simulation. It collects,
stores, and sends the data from sensors over the network (definition 1).

su contains a copy of the ou. To mask possible edge node unavailability, su
is fronted to the user (from definition 4). The shadow (su) is assumed to be
always up and running. It is constantly trying to obtain the latest data from
the observation unit.

Another term that is used to describe a specific type of observation unit is
neighbor.

The Definition 7. Neighbour

Neighbor is an ou that has a direct link (communication channel for data
transfer) to another ou as illustrated in figures 6.4 and 6.5.

31



32 chapter 6 prototype

Neighbor is used by an ou as a reserve solution for the data transfer in case
of network connection unavailability (if there is no link to the router). Every
singleou is a neighbor of anotherou. The data from ou’s goes via the network
to shadow units. Devices for data packets forwarding on the network level of
abstraction are routers.

The Definition 8. Unit Router

Unit Router (ur) is the access point that brings the data from Observation
Units to the next router as illustrated in figures 6.1 and 6.2.

The Definition 9. Shadow Router

Shadow Router (sr) is the access point that brings the data from ur to the end-
user - the shadow unit, su that corresponds the observation unit as illustrated
in figures 6.1 and 6.2.

As in definition 3, all Unit Routers and all Observation Units compose the
observation unit network, while all Shadow Routers and all shadows represent
the shadow network. At the same time, there is one more level of abstraction
that will be referred later - a cluster, so an extra definition is required:

The Definition 10. Cluster

A cluster is a group of nodes connected to the same router, alternatively called
island, illustrated in figure 6.2.

The main difference between a neighborhood (definition 2) and a cluster is
that a neighborhood may include several clusters.

The network topology is designed to strengthen one of three desirable prop-
erties of the distributed data store: availability (from the CAP theorem [17]).
The goal is to create a "mask" that can hide the temporary absent connection
to the remote nodes.

The Definition 11. Mask

The mask is the abstraction that includes the shadow network and the set
of activities performed from the perspective of increasing observational data
availability level.
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To sum up, the cluster includes units and one router. All unit clusters form the
observation network, while shadow clusters are replicas that form the shadow
network. Everything together, all types of units and routers, is the observation
unit network simulation.

The Definition 12. Simulation

The simulation is an application that emulates the network of Observation
Units, Shadow Units, Unit Routers and Shadow Routers and uses them in a
controlled way for a period of time.

6.1.1 Interconnection

A closer look at the network components is now followed by the demonstration
of the general interconnection pattern. Figure 6.2 illustrates the connection
principle. The global observation unit network simulation scheme is illustrated
in figure 6.1.

Figure 6.1 shows that Unit Routers have side connections. Those are planned to
enable global indexing in the future. The example illustrates that the network
is designed to be scalable, a possible number of clusters and number of a nodes
inside of clusters are adjustable. Figure 6.2 gives a closer look on a separate
cluster.

6.1.2 Direct communication

In figure 6.2, a separate island of Observation Units is connected to its shadow
representation. As discussed earlier,Observation Units get the data from sensors
and send it further to the ur. The ur gets the data from private unit channels
and sends the data on separate channels further to the sr. The sr delivers
the data via the private channel to the final user - shadow nodes.

When the message reaches the final destination, it would be checked and saved
to the local disk. If the disk mode is not enabled, the data consistency would
only be checked without disk output (disk mode is described in section 6.3.10).
Let’s take a closer look at the data flow in the simulation.
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Unit CH 1

Unit 1


Unit CH N

Unit N


Router CH 2 Router CH 3Router CH 1

Shadow Router 0

Unit CH 0

Unit 0

Unit CH 2

Unit 2


Unit CH 3

Unit 3


Shadow CH1

Shadow 1


Shadow CH N

Shadow N


Shadow CH 0

Shadow 0

Shadow CH 2

Shadow 2


Shadow CH 3

Shadow 3


Router CH NRouter CH 0

Sen 1

Sen 2

Sen 3

Disk 2


/dir1

/dir2

/dir3

Disk 3


/dir1

/dir2

/dir3

Sen 1

Sen 2

Sen 3 Sen 1

Sen 2

Sen 3 Sen 1

Sen 2

Sen 3 Sen 1

Sen 2

Sen 3

Disk 1


/dir1

/dir2

/dir3

Disk 0


/dir1

/dir2

/dir3

Disk N


/dir1

/dir2

/dir3

Unit Router 0

Figure 6.2: The cluster architecture
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6.1.3 Direct data flow

There are two main operation modes that would be discussed later - direct
synchronization and synchronization via the right neighbor. The direct type
of communication is illustrated in figure 6.3. The scheme is the simplified
representation of figure 6.2 highlighting the data path. The use of private
channels is marked in the figure. Such an organization is an attempt to save
simulation clock cycles by avoiding complicated routing.
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Shadow CH 1 Shadow CH NShadow CH 0 Shadow CH 2 Shadow CH 3

Unit CH 1

Figure 6.3: Direct data path

6.1.4 Neighbor communication

The next communication pattern designed for the simulation is the synchro-
nization via the right neighbor. Any kind of communication requires a com-
munication channel with communication primitives. Despite the right and left
channel availability, only one is suited for the observational data transition. The
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right channel serves as a data transfer corridor, while the left one is made for
responses. Such an approach makes the orchestration easier. Figure 6.4 is the
modification of figure 6.3 with focus on a single observational cluster.
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data

Unit 0

data

ack
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Unit CH 2Unit CH 1
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Figure 6.4: The simulation architecture with neib

There are four channel-pointers associated with each ou. Every ou supports
an incoming data connection via its left channel and has a data connection
to the right neighbor via the right channel. The incoming right connection is
used to receive simple responses from the right neighbor. The outgoing left
connection transfers simple communication primitives back to the left neighbor.
Thus, every observation unit has two roles:

• An observation unit, ou in case of the direct data transfer.

• A neighbor that is used as an additional data transfer channel

Such a model is referred to as neib in the thesis and corresponds to definition
13.
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Figure 6.5: neib data path

The Definition 13. Neighbor Mode (NEIB)

Neighbor protocol, neighbor mode or neib is the data transfer model where
the right neighbor serves an additional channel for the data transfer.

6.1.5 NEIB data flow

The data path that is followed when the neib mode is activated has similar
principles as in the case of direct communication. The difference is that the
data can be transferred not only via the node’s private channel as illustrated
in figure 6.3. The alternative solution in case of network’s unavailability is the
data path illustrated in figure 6.5.
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As reflected in figure 6.5, the data goes first to the right neighbor, then to theur
via neighbors private channel and, finally, routes back to node’s private channel
on the step of router-router communication. But what are the sufficient criteria
for the data transfer via neighbor? If the node has no network connection or
is not supposed to try to connect at the moment, it can still ask the neighbor
to take the data stream. The entire node-to-node communication process is
illustrated in figure 6.6.
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(a) PING on connection startup
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 network
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(b) ACK and data flow

Unit 1


REQUEST

NACK

  !active 

       || 

!network

Unit 0


(c) NACK to REQUEST

Figure 6.6: neib communication patterns

As shown in figure 6.6a, the node initially checks if the neighbor exists and is
available. Such a sanity check happens only once in the very beginning.
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In order to have the synchronization in place, every node must first send a
handshake - "ping" message to the right neighbor and respond affirmatively to
incoming handshake request by "ack" message. When the handshake procedure
is done, the node can request a synchronization via the neighbor - figure 6.6b.
If the neighbor has no network or is not supposed to transfer the data now, it
would reply negatively with "nack" and synchronization would not happen -
figure 6.6c. If there is a back-haul network connection available and the node
is awake, the reply must be positive. The neighbor "locks" until the data from
the origin is transferred. When the sender issues EOF - "release" message, the
neighbor can unlock and send its own data - figure 6.6b.
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msg

process msg
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Shadow
router

Raise an errorno

yes
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noyes
channel ID = 
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Figure 6.7: Routing principle via neighbor

The question is how to distinguish between the direct communication and
the neib communication for the ur. Routers have an in-built sanity check
procedure as well assertion methods (discussed in section 6.3). Figure 6.7
reflects the general algorithm that is followed by Unit Routers. When a new
message comes to the router, it is checked whether the sender’s Identificator
(id) corresponds to the channel and to the destination. Only if the neibmode
enabled, it is allowed that the message origin can be on the left side of the unit
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connected to this particular channel. If it is the case, the message would be
then re-routed to the private channel of the original sender. The current section
is about the architecture and shows the main patterns, while implementation
details are covered in section 6.3.

6.2 Design

The prototype is built with respect to design principles discussed in section
3.3.1. This section covers design issues related to distributed systems. There
are numerous approaches to design issue identification. Challenge classifica-
tion proposed by Dan Nesset [36] is taken as a framework for the prototype
application design.

6.2.1 Design basic principles

General design issues are in the following list [36]:

Scale is an issue because scaling from a few nodes to millions require a design
that is adaptive, can change dependent on network size.

Heterogeneity means that nodes of different types need interfaces to become
a single system.

Objects (representation, encoding, and translation) or big data streams re-
quire significant computation resources.

Resource management includesworkload balancing and the productivity/resource-
economy balancing.

Protection (security and privacy) in this particular simulation assumes the
use of private data channels.

Naming principle requires unique Identificators for nodes and files to set
ownership and keep proper addressing.

Error Control issue can be resolved using runtime monitoring and correctness
testing.

Synchronization aspect is connected with naming, protection and is natural
to distributed systems because data flows require node synchrony and
communication orchestration.
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Measurement, testing and debugging is the continual improvement princi-
ple, which starts on the development phase and lasts during the simula-
tion lifetime.

The principles discussed in the next subsections address the issues listed
above.

6.2.2 Scale: a second for an hour

The scaling of the simulation is not only the question of size and dynamic
resource allocation, though it will be discussed in section 6.3. From the design
perspective, scaling has more aspects. In the network prototype, the time is
scaled. The idea is to simulate weeks of execution. There is not enough time to
observe the cluster with a one-to-one time proportion. Hence, if Observation
Units wake up every X minutes, we can skip the time when the node is idle. In
the real world, edge nodes wake up every hour or half an hour, that is why the
simulation lets nodes wake up every second and count it as an hour. In other
words, the design principle can be described as "idle time skip".

While the heterogeneity issue is discussed in section 6.1, object and resource
management are issues for the section 6.3. The next design issue is protection,
security, and privacy.

6.2.3 Randomization

Another principle that enables scaling is the randomization of incoming data.
In real world, there are always differences in the environment in two different
moments of time. The simulation is limited and does not concern possible
external effects. In fact, with totally the same experimental setup, the exper-
iment results would be identical. The reason is the use of pseudo-random
values. Some prototype functions (for instance, package rand [20], see 6.3)
use pseudorandom approach. It doesn’t provide truly randomized input but
is sufficient for simulation purposes. In the case of future development, more
attention should be paid to randomization, because it makes the simulation
more similar to the real network.

6.2.4 Dynamic adaptation

A new setup of the number of nodes, workload, execution time, and network
type would result in new, sufficiently random input. Such an approach helps to
enable scaling from 1 to several thousand edge nodes and make sure that the
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result is not bound to the hard-coded values. The prototype is developed with
as few hard-coded values as possible. Every time a new cluster size or number
of edge nodes is applied, counters, etc. are generated using supplementary
functions.

6.2.5 Atomic variables

The issue of privacy and protection in distributed systems assumes that there
shouldn’t be unauthorized and unexpected access to the data [36]. In this
simulation, the protection is related to parallel data io. Processes and threads
in the shared memory can do the simultaneous modification of the same data
chunk. Several variables are designed from this point of view. For instance,
some global counters are modified by several goroutines simultaneously. Such
counters have "atomic" characteristics as illustrated in listing 6.1. It provides a
guarantee that only one goroutine would modify the value at one particular
moment. This design approach is addressing the data protection during the
parallel io. Every time when a goroutine needs to modify a global variable, it
enters the critical region.

Listing 6.1: Atomic variables

type counter int32

func ( c * counter ) increment () int32 {
return atomic . AddInt32 ((* int32 )( c ) , 1)
}

func ( c * counter ) decrement () int32 {
return atomic . AddInt32 ((* int32 )( c ) , −1)
}

func ( c * counter ) load () int32 {
return atomic . LoadInt32 ((* int32 )( c ))
}

6.2.6 Naming convention

Every instance in the network simulation, that is wrapped into a goroutine,
has a unique name. It helps to identify the sender and recipient of the data.
Since there are only a few files used as input in the simulation, there is an
issue with file naming. Unique UUID [26] in the data disk mode guarantees
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that even similar samples would receive unique identifiers. Unique id enables
data consistency check using md5 checksum as discussed in section 6.3.

6.2.7 Runtime observation

The simulation needs observation for the adjustment and resource monitor-
ing. As stated by Fidge in [14] and discussed previously in 2.3.4 the probe
effect may bring extra workload to the system. However, the monitoring of
both correctness and stability is vital. One of the principles of the simulation
is graceful finalization. The prototype is designed with an in-built observer
function: app_wathcman(), discussed in the next section - see 6.3. The function
does the error check and forces the application shutdown in case of simulation
is unresponsive. The secondary role of the function is the resource monitoring
by printing the Operating System (os) memory data and instance runtime
data out to the terminal.

6.2.8 Finalization delay

The synchronization issue has a very high priority in this prototype. Due to
physical computational resource limitations, parallel processes running with a
global clock may have different execution orders. Only the os decides which
parallel threads would receive more resources than others. That is why the
global finalization delay principle is introduced. Sometimes Observation Units
do not have enough time to complete the data transfer and report the graceful
shutdown. To address this problem, an extra delay is introduced before the
application termination would be forced. This mechanism adds more reliability
to synchronization orchestration assuring that the transition channel would
not be cut while data transfer is underway.

6.2.9 Development & Testing

In chapter 7 (Evaluation), module testing, and profiling are discussed closely.
From the design perspective, continuous development and iterative modular
testing help to measure the prototype characteristics and identify errors. The
project is developed with tools and libraries which are not platform-bound and
can be executed on most Operating Systems and program environments. There
is no specific effort put into portability. The prototype is developed in a single
codebase without UNIX or NT add-ons. The development process is iterative,
which allows isolating several steps from each other for the purpose of testing
and adjustment. The benefits of iterative prototyping are discussed in chapter
3 - Research Method.
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6.3 Implementation

The implementation section covers technical details of the prototype. It starts
with the technical background which lists the equipment, instruments, and
tools employed for the project development. The overview below makes the
experimental setup reproducible because it contains exact technical charac-
teristics (physical parameters, versioning) of the hardware and software. The
reasoning for choice made in favor of concrete technologies provided.

6.3.1 Development environment

The prototype (simulation of the observational network) is developed in form
of a source code written in Golang [20]. As discussed in chapter 1 - Introduction,
the simulation is designed for the execution on a High Performance Computing
(hpc) cluster.

GoLang vs Message Passing Interface (mpi)

The natural question that comes up is: why not to use mpi with an Intel com-
piler? It might seem natural to use mpi for the hpc applications. In principle,
there are two approaches of distributed application design: shared-memory
system architecture and the distributed memory system architecture, according
to Tanenbaum [51, p.25]. Practically, in shared-memory applications, processes
and threads are operating in the same memory space and can share global
variables. In the case of the distributed memory system architecture, differ-
ent simulation elements are running on remote and isolated memory spaces
without globally shared variables. Message passing is designed for distributed
memory applications to enable interaction between processes running in dif-
ferent memory spaces. Shared-memory applications require coordination of
processes, load balancing, and thread-safety [41, p.49] because shared vari-
ables can be accessed simultaneously by several processes. mpi provides a
resource inexpensive method for inter-process communication but requires
extra complexity in the message organization. For instance, MPI_Receive may
freeze the process forever because of no matching MPI_Send [41, p.94].

Another potential pitfall is connected with the parallel io. The simulation of
the observational network does the parallel processing of global variables in
the shared memory. At the same time, the disk data is read and written in a
concurrent manner. Several threads representing Observation Units read the
input media from the shared disk. Several threads perform the concurrent
write to the same file system of the shared storage as illustrated in figure 6.8.
In the case of the message passing approach, every node would write to its
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Figure 6.8: Parallel io on the local filesystem

own isolated file system. That may ease the workload for a single disk but may
bring the overhead to the joint file system, where such an application would be
emulated. Another point is an extra communication cost during the simulation
due to the absence of shared variables.

Go programming language is a popular way to build shared memory applica-
tions due to concurrent programming syntax [52]. There is an advantage of
global variable’s availability without send routines. Goroutine, a core element
of the GO environment, is a function, lightweight thread that independently
of other goroutines, but concurrently runs in the same address space [21].
Concurrency aids parallelism because if the data chunks are processed by inde-
pendent goroutines (concurrently), it can be done in parallel, simultaneously.
The limitation of the shared-memory programming is the total memory limit
(both physical and virtual). An hpc cluster has enough memory resources to
support more simultaneously running goroutines than an ordinary workstation
is able to handle (see section 6.3.2). Go language has in-built primitives for the
os resource utilization such as spreading the functions among CPUs and cores
[23]. That can improve the scaling ability on a simple workstation, but hpc
cluster resources provide even more scaling potential.

Go channels

Goroutines emulate edge nodes that send and receive data to/from neighbors
and through the network. Channels are "data pipes" which can take the input
from one goroutine and deliver the output to another goroutine. [21] Such
pipes are used for the node communication in the simulation as illustrated in
figure 6.9.
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Figure 6.9: Go channel working principle

Goroutines receive pointers to a named channel. Using those pointers, gorou-
tines can send a data piece. Message passing over a named channel helps to
assure that the exact sender is using the exact named channel to reach the exact
receiver. Channels have support for internal buffers [21]. A buffered channel
can take several messages before it would be full and blocked. A non-buffered
channel can take only one message. In both cases, messages must be received
before new messages can be sent from the origin.

Golang additional libraries

The number of cores employed can be altered using runtime.NumCPU(). In
the simulation, the runtime package is used to force utilization of maximum
cores available. Golang runtime.MemStats helps to utilize memory, the in-built
garbage collector is constantly trying to free unused memory allocations. It
keeps track of the activity in the MemStats structure [23].

Pprof shows memory leaks, top memory-expensive goroutines and more [22]. A
profiler is a lightweight server that has a graphical user interface for the visual
function dependency representation. The server responds to API requests and
performs stress tests, returning runtime profiling data. Results can be found in
section 7.3 - Profiling.

UUID package [26] used for the unique file id generation. The package GoNum
[24] has in-built functionality for calculating statistical and mathematical func-
tions: factorial and binomial Probability Mass Function.

Crypto/MD5 package [25] used for the file hash generation. It calculates and
returns the MD5 checksum of the data.
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6.3.2 Hardware platform

Hardware development platform

Before porting to thehpc cluster, the projectwas assembled and tested in a form
of the local run on the ordinary workstation. The workstation’s characteristics
are:
Intel® Core™ i7-9750H CPU (2666 MHz, 12 MB cache, 6 Cores), 32 GB DDR4-2667
ECC SDRAM

Software development environment

The main os was Ubuntu 20.04 LTS with Go programming language compiler:
go version go1.13.8 linux/amd64
The executable file assembly has also been checked on Windows 11 Pro 21H2
with Go compiler: go version go1.16.5 windows/amd64

In both cases the application startup may be done either by calling:
go run ounet 50 168
or by passing arguments to the compiled Linux binary as:
./ounet 50 168
or to the Windows executable:
ounet.exe 50 168

Before the hpc run, the binary must be compiled using make make build on
Linux and go build on Windows. The reason is the lack of internet connection
on the hpc nodes, so binary with all the external libraries must be built before
propagation to compute nodes.

Hardware runtime platform

The simulation is done on Fram1 supercomputer owned by NRIS - Norwegian
Research Infrastructure Services2 and located at the University of Tromsø
(uit). Table 6.1 shows the main hardware parameters. The theoretical peak
performance is 1.1 PFLOP/s [50]. The datacenter consists of Lenovo NeXtScale
nx360 machines with Intel E5 / Intel E7 CPU. Most of the nodes have 64 GB
memory, 8 nodes have 512 GB ram ("big memory" nodes), 2 nodes have 6 TB
ram ("huge memory" nodes) [50].

1. Fram official documentation: https://documentation.sigma2.no/hpc_
machines/fram.html (accessed: 2021-11-10)

2. NRIS home page: https://www.sigma2.no/nris (accessed: 2021-11-10)

https://documentation.sigma2.no/hpc_machines/fram.html
https://documentation.sigma2.no/hpc_machines/fram.html
https://www.sigma2.no/nris
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Software runtime platform

The entire Fram cluster has CentOS3 7.9 build 2009.0.el7.centos.x86_64 kernel
3.10.0-1160 as the mainos at the moment of simulation execution. The queuing
system installed and used for the job submission is Slurm⁴, version 20.11.8.
Go is loaded using: Modules based on Lua⁵: Version 7.7.2;
module load Go/1.11.2 in the Slurm batch script results in:
go version go1.11.2 linux/amd64

Details Fram
System Lenovo NeXtScale nx360
Number of Cores 32256
Number of nodes 1006
CPU type Intel E5-2683v4 2.1 GHz

Intel E7-4850v4 2.1 GHz (hugemem)
Max Floating point performance, double 1.1 Petaflop/s
Total memory 78 TiB
Total disc capacity 2.5 PB

Table 6.1: Fram supercomputer characteristics [50].

3. The CentOS Project: https://www.centos.org/ (accessed: 2021-11-10)
4. Slurm Workload Manager documentation: https://slurm.schedmd.com/

documentation.html (accessed: 2021-11-10)
5. Lmod documentation: https://lmod.readthedocs.io/en/latest/ (accessed:
2021-11-10)

https://www.centos.org/
https://slurm.schedmd.com/documentation.html
https://slurm.schedmd.com/documentation.html
https://lmod.readthedocs.io/en/latest/
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6.3.3 File system organization
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Figure 6.10: Simulation directory tree
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The simulation is operating in the shared memory and on a shared disk as dis-
cussed previously in section 6.3.1. The shared disk hosts the directory structure
with input and output subdirectories. The general directory tree is illustrated
in figure 6.10:

• /log keeps the terminal output and csv tables with instance runtime
statistics. Every single node and router sends statistical data by the end
of simulation to the printer function which produces such tables (example
in table 6.2-6.3).

• /tmp keeps temporary data for debugging, and logs from previous runs

• /input has two subdirectories:

– /video where the input video can be found (for the testing purposes,
the uit promotional video is used [40]);

– /photo has 10 subdirectories with images taken from real ous,
example in figure 6.11;

• /mount has subdirectories for ous and sus in accordance with their IDs.
Every subdirectory has another set of three subdirectories:

– /sensor1 for the text data from the temperature sensor;

– /sensor2 for images from the ou’s camera;

– /sensor3 for videos from the ou’s camera.
Unit
ID

Last Sync since
2021-10-04 20:28:25

Never
Synced

Packets
all

Text
all

Photo
all

Video
all

Text
->

Photo
->

Video
->

Text
queue

Photo
queue

Video
queue

19 04.10.2021 20:57 0 4 1801 69 12 1716 0 0 85 69 12
0 04.10.2021 20:54 0 18303 1718 69 17 1452 61 0 266 8 17
7 04.10.2021 20:28 1 1 1801 77 21 0 0 0 1801 77 21
45 04.10.2021 20:51 0 3 1801 98 13 1414 0 0 387 98 13
32 04.10.2021 20:28 1 1 1801 92 28 0 0 0 1801 92 28
2 04.10.2021 20:37 0 2 1801 76 13 535 0 0 1266 76 13
18 04.10.2021 20:53 0 11703 1763 92 16 1459 39 0 304 53 16
1 04.10.2021 20:54 0 3 1801 76 10 1592 0 0 209 76 10

Table 6.2: Example of detailed ou output in the CSV table (beginning)

Unit
ID

Text
neib

Photo
neib

Video
neib

Exit
Code

Link
Wait

Data Rate
(max 2500000 Bps)

No sync:
!active

No sync:
!net

No sync:
!neib

19 0 0 0 1 0s 0.000000 1781 1719 0
0 0 0 0 1 13.48µs 346797.791592 1703 1618 0
7 0 0 0 1 13.48µs 0.000000 1788 1700 0
45 0 0 0 1 13.48µs 0.000000 1781 1727 0
32 0 0 0 1 13.48µs 0.000000 1794 1726 0
2 0 0 0 1 13.48µs 0.000000 1779 1704 0
18 0 0 0 1 14.035µs 693515.731597 1735 1672 0
1 0 0 0 1 14.035µs 0.000000 1781 1707 0

Table 6.3: Example of detailed ou output in the CSV table (continuation)
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Goroutines have simultaneous access to the disk. In the case of several thousand
parallel io operations, undesirable storage overhead can occur. Consequently,
for bigger simulations, disk operations were reduced significantly. Only the
critical log data would be saved locally. All the data processing would happen
in memory as described below in section 6.3.10.

Figure 6.11: ou camera data examples [13]

6.3.4 Application structure

Application is designed in the form of interconnected functions that are spread
among a set of files written in Golang. A simplified application architecture in
terms of functions is illustrated in figure 6.12. The simulation starts from the
main() function which is the entry point. Then the argument_processor() is
called to process command-line arguments and edit the global configuration
accordingly. An additional task of the argument_processor() is to display the
execution instruction if the argument help is detected. After that, the program
exits as illustrated in listing 6.2. The order of arguments is not important, only
the timeout must be entered in the end.
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Listing 6.2: Simulation help meny
go run ounet help
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Arguments :
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[ACTIVE5]
[HELP]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Usage :

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

go run ounet (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) ( l a s t )

(1) − number of nodes in the s imula t ion [5/50/500/5000. . .n]
(2) − in format ion l e v e l in l og s [ s t a t u s / in fo /debug]
(3) − choose data stream mode [ l i g h t /medium/heavy ]
(4) − network type at un i t s ide [ l o ra / b le / w i f i ]
(5) − un i t a v a i l a b i l i t y chance [ ac t i ve1 / ac t i ve5 / ac t i ve10 / ac t i ve25 / ac t i ve50 / ac t i ve75 / act ive100 ]
(6) − network a v a i l a b i l i t y chance [ net1 /net5 /net10/net25/net50/net75/net100 ]
(7) − sync v ia neighbours [ neib ]
(8) − remove data from prev ious run [ cleanup ]
(9) − d i sk wr i te mode [ d i sk ]
(10) − log wr i te mode [ log ]
(11) − memory l i v e in fo [mem]
(12) − node l i v e in fo [ l i v e ]
(13) − enable GPROF se rve r [ gprof ]
(14) − enable i n f i n i t e run [ i n f i n i t e ]
(15) − enable 100% photo chance
(16) − enable 100% video chance
( l a s t ) − t imeout in sec [ 5 /15 . . . n]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Example 1: . / ounet 25 s t a t u s heavy w i f i ac t i ve50 net25 neib cleanup d i sk mem l i v e log 150

Example 2: . / ounet 900 medium wi f i i n f i n i t e

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

ex i t s t a t u s 2

If disk-related arguments (disk, log or cleanup) were entered, the argument_processor()
would call functions empty_logs() and create_file_structure(). Those functions
perform the log cleanup and recursively create subdirectories needed for the
defined amount of nodes. If no node number is given and no timeout is defined,
the default values are 3 nodes and 168 seconds of simulation.

When the command line argument parsing is done, the main() function calls
run_all_units() together with app_watchman(). The last one guarantees that
the simulation is not frozen after the timeout, the principle described in section
6.3.12. The first one initializes a slice of slices with channels for every type of
instance. The function points every unit and router to their private channels.
After the channel assignment is done, the function is making wait groups [21]
to set a barrier for the simultaneous execution of goroutines representing nodes
and routes. More details on unit’s and router’s runtime principles can be found
in the next subsection: 6.3.5.

What is for the initial goroutine execution process, there is a nested loop
that allocates the required number of islands based on the node amount.
Island allocation happens dynamically. ous and sus receive ids and channel
references dynamically as shown in listing 6.3
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Listing 6.3: Goroutine startup loop

// d e c l a r e d i f f e r e n t wai tgroups f o r d i f f e r e n t ho s t s
var wai t_un i t s sync . WaitGroup
var wait_shadows sync . WaitGroup
var wai t_un i t _ rou te r sync . WaitGroup
var wait_shadow_router sync . WaitGroup

// popu la t e wai tgroups dependent on the number o f nodes
wai t_un i t s . Add( ncopies )
wait_shadows . Add( ncopies )
wa i t _un i t _ rou te r . Add( n_ i s l ands )
wait_shadow_router . Add( n_ i s l ands )

remainder := ca lcu la te_remainder ( ncopies )

// popu la t e e v e r y i s l a n d with OU ’ s and SU ’ s
for i s l and := 0; i s l and < n_ i s l ands ; i s l and++ {

var un i t _ t o_ rou te r [CLUSTERSIZE]chan msg_struct
var shadow_to_router [CLUSTERSIZE]chan msg_struct

// number o f channe l s i n s i d e o f the c l u s t e r i s the same as the number o f i s l a n d members
channels := CLUSTERSIZE

i f ( i s l and == n_is lands −1) && ( remainder != 0) {
channels = remainder

}

// f o r e v e r y un i t i n s i d e o f t h i s i s l and , c r e a t e channe l s f o r the communication with r ou t e r s
for channel := 0; channel < channels ; channel++ {

un i t _ t o_ rou te r [ channel ] = make(chan msg_struct , CH_BUFFERSIZE)
shadow_to_router [ channel ] = make(chan msg_struct , CH_BUFFERSIZE)

id := channel + i s l and *CLUSTERSIZE

go func ( uni t_channel chan msg_struct ) {
un i t ( id , ncopies , timeout , unit_channel , u n i t _ s t a t i s t i c s , un i t _ to_un i t , &wa i t _un i t s )

}( un i t _ to_ rou t e r [ channel ])

go func ( shadow_channel chan msg_struct ) {
shadow( id , ncopies , t imeout_extended , shadow_channel , shadow_s t a t i s t i c s , &wait_shadows )

}( shadow_to_router [ channel ])
}

go func ( i s l and in t ) {
un i t_ route r_ run ( i s land , ncopies , n_ i s lands , timeout_extended , &un i t_ to_ rou te r ,

u n i t _ r o u t e r _ s t a t i s t i c s , &route r_ to_ rou te r , uni t_router_neighbour_chans , &wa i t _un i t _ rou te r )
}( i s l and )

go func ( i s l and in t ) {
shadow_router_run ( i s land , ncopies , n_ i s lands , timeout_extended , &shadow_to_router ,

shadow_rou t e r _ s t a t i s t i c s , &rou te r_ to_ rou te r , shadow_router_neighbour_chans , &wait_shadow_router )
}( i s l and )
}

// wait a l l groups
wai t_un i t s . Wait ()
wait_shadows . Wait ()
wa i t _un i t _ rou te r . Wait ()
wait_shadow_router . Wait ()

When the timeout is reached, nodes start to report termination. When every
instance has reported successful termination or the application shutdown was
forced, the print_stat() function is called. This function receives pointers to
global buffered channels. Those channels are filled by units and routers with
simple statistical data that is printed out by the end of the simulation. After
that, the application finalizes.
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All the main and supplementary functions are spread among several files:

• main.go - initial functions that create the structure and start the simula-
tion;

• config.go - global configuration file;

• unit.go - ou-specific functions;

• shadow.go - su-specific functions;

• unit_router.go - functions for the Unit Router;

• shadow_router.go - functions for the Shadow Router;

• network.go - network communication functions;

• neighbour.go - primitives needed for synchronization between neighbor
edge nodes;

• sensors.go - temperature sensor and camera emulation;

• utils.go - functions for measurement units conversion and statistical
expectation;

• disk.go - os library based functions for file tree creation and cleanup;

• ounet_test.go - module testing.

The executable can be built using go build ounet.

6.3.5 Simulation topology

Functions distributed among files described in the previous subsection have a
role to emulate real-world network instances. With respect to the time scaling
method, described in section 6.2.2, the piece of Go code from listing 6.4 shows
the main loop of any running instance by the example of ou emulation.



6.3 implementation 57

Listing 6.4: Unit run loop
for x := range time . Tick (d) {

f (x , i , unit , unit_channel , un i t _ t o_un i t )

// g e t the cu r r en t t ime to c a l c u l a t e i f d ead l i n e i s ove r
t := time .Now()
elapsed := ( t . Sub( s t a r t ) ) . Seconds ()

// i f d ead l i n e i s now , a s s i gn e x i t code , t e rmina t e and r e tu rn s u c c e s s code
i f in t ( e lapsed ) > timeout && ! i n f i n i t e && ! un i t . locked {

un i t . ex i t_code = EXIT_TIMEOUT
return true

}
}

The for loop repeats every duration of time d which is calculated in the caller
function. Duration is set to 1 second but can be random or any fixed period
of time. The loop runs the unit_body() function, which updates the structure
representing the instance. If the time elapsed exceeds the timeout value, the
loop breaks and returns successful termination code. The function for structure
updating is passed as the argument f to the function containing the loop. A
closer look at the implementation of specific instances is needed before the
data flow principle would be explained in section 6.3.6.

Observation Units

ou is emulated using the loop principle discussed above. The main difference
between the ou emulation and other instances here is in the structure that
represents the ou. A structure combines several different variables of various
types [21].

Every unit gets an associated structure that holds counters, flags, names, and
some limited amount of text data from sensors. The ou’s structure has infor-
mation about its id, cluster, operation and network status, links to associated
input directories, lists of sent and pending files by types, network last and best
transfer rate, last synchronization time, exit code and some others. This struc-
ture is created first by function unit_init() and updated by function unit_body()
which is passed to the unit_loop(). Both unit_init() and unit_body() are called
by the function unit_run(), which is called directly from the main function
and run_all_units() as explained in section 6.3.4. The unit_body() function
communicates to sensors, checks the network availability, and sends the data
over the network.
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Shadow Units

The su emulation follows the same principles as ou’s one does. The most strik-
ing difference is the structure contents: it has some shadow-specific variables
like the rate of data downloading, average message travel time on different
segments, and so on. shadow_body() function is responsible for the communica-
tion with associated sr and for the timestamp processing. As the shadow side
is expected to have more computational resources, it takes the responsibility
of timestamp collecting and aggregating into average values. More details on
message timestamping are provided in 6.3.12.

Unit Routers

Unit Routers are initialized and operate in the same manner as ous and
sus do. The unit_router_initialize() returns the structure representing ur. It
calculates how many units would be connected, routers id, status, message
counters and so on. When the structure is ready, the unit_router_body() function
updates it using a function similar to the one in listing 6.4. In addition to this,
unit_router_body() checks all the channels connected to ous within the island
and sends them further to the sr. Before the sending, the router does the
timestamping and checks if the sender id corresponds to the channel id as all
the units have private channels.

Shadow Routers

In contrast to Unit Router, ShadowRouter sends the data to the final destination
point - to sus. The sr double checks that incoming channel id matches the
recipient id.

6.3.6 Application data flow

Structures of all units are briefly explained in the subsection above. Figure
6.13 illustrates the path of the data stream that every single message has to
follow in order to travel from the ou to the su. All the communication goes
via private channels.
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unit_router_run()
+ type router struct

+ unit_router_loop()

shadow_router_run()
+ type router struct

+ shadow_router_loop()

unit()
+ type unit_structure struct

+ unit_loop()

shadow()
+ type shadow_structure

+ shadow_loop()

unit_init()
+ unit.id
+ unit.neighbours []

+ return

unit_loop()







+ &unit
+ &channel

+ for x := range time.Tick(d)

unit_body()
+ &unit
+ &channel
+ &unit.active
+ &unit.temps
+ &unit.timestamps
unit_to_router[i] <- msg

+ get_status()
+ get_temp()
+ sensor2()
+ sensor(3)

shadow_init()
+ shadow.id
+

+ return

unit_router_init()
+ router.neighbours
+ router.id

+ return

unit_router_body()
case msg, ok :=  <-(*unit_to_router)[i]

+ router_to_router[i] <- msg

shadow_router_init()
+ router.id
+ router.neighbours [] int

+ return

shadow_loop()
+ &shadow
+ &shadow_channel

+ for x := range time.Tick(d)

shadow_body()
+ &shadow_channel
+ &shadow
+ case msg, ok := <-(*shadow_to_router)[i]

+ return true

get_status()
+

+ return 1 || 0

get_temp()
+

+ return temp &
timestamp

sensor2()
+

+ return true

sensor3()
+

+ return true

shadow_router_loop()
+ &router
+ &unit_to_router chan

+ for x := range time.Tick(d)

shadow_router_body()
case msg, ok := <-(*router_to_router)[i]

+ (*shadow_to_router)[i] <- msg

shadow_to_disk()
+&shadow

+

n_copies

n_copies

n_islands

n_islands

unit_router_loop()
+ &router
+ &unit_to_router chan

+ for x := range
time.Tick(d)

Figure 6.13: Intra-goroutine data flow in the simulation.
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Every ous gets pointers to the channel, that goes to the ur, on the initial call
from the run_all_units(). Every ur has pointers to unit channels within the
cluster and pointers to channels that are connected to the sr on the other side.
Shadow Router has pointer channels from ur and pointers to channels to sus
within the cluster. su has the pointer to the private channel that leads to the
sr. As illustrated in figure 6.13, the data is pulled and pushed by the "_body()"
type of functions.

6.3.7 Network simulation

Everymessage is extracted fromGo channels using casemsg,ok :=<-(*channel)[i]
principle. This method is non-blocking. If the channel is closed, the Boolean
would be !ok, but that wouldn’t raise a critical problem. The information is only
used for debugging and orchestration improvement. If the channel is empty,
the default rule of switch would be applied, but no error appears (listing 6.5).
Table 6.4 shows io result dependent on the channel status.

NIL Open Closed
Send Blocked Allowed Panic

Receive Blocked Allowed Allowed

Table 6.4: Go channel io in different channel states [20]

Concurrent packet routing

Message extraction happens concurrently as illustrated in listing 6.5. If there is
a stream of messages on one channel, the serial approach would stop and wait
until the work with the channel is done. As a result, a longer link wait time can
be experienced at the ou side. Simultaneous data extraction and processing
on the range of channels emulates the higher cumulative bandwidth. Though
it might be not viable when only one edge node has data to send, the issue is
critical on higher synchronization chances.
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Listing 6.5: Concurrent packet routing
var f rom_unit sync . WaitGroup
from_unit . Add( route r . n_members)

// go through channe l s one by one and read messages
for channel := 0; channel < route r . n_members ; channel++ {

// but c on cu r r e n t l y
go func ( channel in t ) {

defer f rom_unit . Done ()

// check i f t h e r e i s a message
se l ec t {
case message , ok := <−(*un i t _ t o_ rou te r )[ channel ] :

message . u r _a r r i v a l _ t ime = time .Now()

// i f channe l i s c l o s e d
i f ! ok {

. . .
// r ou t e r . t e rminated = t rue

} else {
. . .

}

default :
. . .

}
}( channel )

}
from_unit . Wait ()

Artificial Bottleneck

The bandwidth can’t be unlimited. The simulation supports several types of
network protocols that have their limitations. The list of supported networks
and their characteristics is in the table 6.5.

The recent version of Wi-Fi protocol IEEE 802.11ax has a maximum theoretical
data transfer rate of 2.4 Gbps that is equal to 2400000 Kilobytes per second
(kbps) [44]. Research on a very long-distance Wi-Fi network shows the pos-
sibility of a successful connection over WiMAX with a 279-kilometer distance
between nodes and transfer rate around 3 Mbps [15]. The article highlights the
need for massive non-portable equipment for such connections. For the network
of observational edge nodes in the arctic tundra, portability is an important
aspect. For ordinary Wi-Fi connections, especially for older standards like IEEE
802.11g, 100 and 200-meter distance between nodes can reduce the network
throughput 2.5 times and 10 times accordingly [28]. ous in the real world
have significant distances between each other, so 20000 kbps is taken as an
expected Wi-Fi maximum data transfer rate.
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Maximum Transfer Unit (mtu) is another characteristic of networks, for Wi-Fi,
it is around 2000 bytes [44] and set to be 2312 bytes in the simulation. ble
has maximum mtu 512 bytes, but various vendors set their limitations. ble
has support for Data Length Extensions (DLE) [1] with 257 bytes mtu and 244
bytes for the payload. The data rate is up to 2 Mbps, but for the simulation
with significant distances between nodes 1360 kbps is chosen as a positive
scenario.

For LoRa, the mtu size depends on the data rate used. Some of LoRa family
protocols support point-to-point communication. So for LoRa emulation, no
exact version is taken, just the general principle. While theoretical rate is 54
kbps, experiments with an increasing spread show around 12 kbps [5]. For
the simulation, the mtu size of 64 bytes and data transfer rate of 27 kbps are
chosen. The absolute correctness of emulated network characteristics is not
vital, approximate values are sufficient to show the difference in simulations
behavior in various network environments.

Network mtu
(bytes)

Rate
(kbps)

LoRa 64 27
ble 244 1360
Wi-Fi 2312 20000

Table 6.5: Network characteristics

A "bottleneck" is needed to reduce the transfer rate in the simulation and
create some artificial obstacles. A random run of the simulation shows average
7.3 Gbps get rate which goes up to 49.5 Gbps on a randomly chosen shadow
island. The function attached in listing 6.6 illustrated the principle of the
artificial bottleneck in the simulation. Any message sequence is monitored
during the transfer process, func bottleneck() is called to check if the data
volume transferred during the period of time is too high. The ratio between the
total transferred data amount in this iteration and the cumulative time elapsed
in this iteration shows the data rate approximation. If such an approximation
is higher than the maximum allowed value from table 6.5, the function enters
the "sleep" loop creating the artificial delay. When the estimated transfer rate
is under given limits, the function returns.
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Listing 6.6: Artificial bottleneck
func bo t t l eneck ( s t a r t time . Time , s i ze_o f_proce s sed_da ta int , id in t ) {

// g e t the t ime s i n c e s t a r t o f t r a n s f e r
elapsed := time . Since ( s t a r t )

// c onv e r t Kbps To Bps and a s s i gn max data ra t e in accordance with network c h a r a c t e r i s t i c s
data_ra te_bps := KbpsToBps ( da ta_ra te )

// i f t ime e l ap s e d i s > se conds
i f int64 ( e lapsed ) == elapsed . Nanoseconds () && ( in t ( e lapsed . Seconds ( ) ) != 0) {

// c a l c u l a t e the cu r r en t r a t e
bps := f loat64 ( s i ze_o f_proce s sed_da ta ) / e lapsed . Seconds ()

// i f c u r r en t r a t e ex c e ed max ra t e
i f bps > f loat64 ( data_rate_bps ) {

// s t a r t a t i c k e r f un c t i o n u n t i l r a t e w i l l under the r a t e from network t e c h n i c a l max
for range time . NewTicker ( time . Second ) . C {

delayed := f loat64 ( s i ze_o f_proce s sed_da ta ) / time . Since ( s t a r t ) . Seconds ()
i f delayed < f loat64 ( data_rate_bps ) {

return
}

}
}

}
}

6.3.8 Communication

The main primitive used for communication over the network is a message.
The message is a go structure. It has a field for the data which is equal to the
mtu. mtu in this simulation is always smaller than the maximum size of
the message that can go over a Go channel (The Go channel maximum is 216
bytes = 64 kilobytes) [21]. The message structure has pre-defined fields for
timestamps because every step of the route is known. There is also information
about the sender’s id and the cluster’s id, the receiver must have the same id
as the sender. The type of the message (PING, TERMINATED, ACK, DATA...) and
the type of the data (TEXT, PHOTO, VIDEO) provided. The first message of the
transfer contains the file name, the checksum, and the number of messages in
the sequence. The last message contains message.last_one = true flag.

Direct communication

When an ou has a connection to the back-haul network and is awake, it
would send the data over the network. The first message states the type of the
message and the file type. func send_message() determines if more messages
are needed for the transfer. If there is only one message, it is sent to the router
right away. If there is a sequence of messages, those would be sent in the loop
using func cut_and_send() function. func send_message() requires a pointer to
the channel to use. An ur can see that the message number is not the same
as the total number of messages expected and accepts the data stream until
the message with flag message.last_one = true is received. The sr does the
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same as the ur. sus receive all the incoming data disregarding any order, but
if there is a sequence of messages, an su starts the receiving loop in function
func get_and_assemble() until the last message is found. When the last message
arrives, the consistency check starts.

Neighbor communication

If communication goes via the neighbor, the message is to be sent in the same
way as in the case of direct communication, but the channel would be the right
neighbor channel. If a neighbor has a connection to the back-haul network and
is awake, it would resend the message sequence via its private channel with
the neib flag added. It helps the router to reroute the message to the private
channel of the original sender.

accepted request

yesno unit.busy ?lock wait 1 secondresend message

yesno last_one?get next
message unlock

Figure 6.14: The mutex principle

Mutual exclusion

The locking principle is illustrated in figure 6.14. If a neighbor reported the
connection availability, it must take the incoming data. It means that the
neighbor has to process both its own data, and the data from its left neighbor.
An internal lock unit.busy is needed and is set for the data transfer time. If
there is a transfer of own data, the node would unlock in the end of transfer. If
there is a data set from the left neighbor, the sender would issue an mpi-like
the message of the type message.msg_type=UNLOCK. The neighbor wouldn’t
take this message further on the network but would cut the transfer channel,
unlock and continue with its own data. So if the incoming request would
appear during the transfer, it would have to wait until the end of the transfer
that is already underway.
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6.3.9 Random behavior emulation

The random behavior emulation makes the model closer to real-world behav-
ior. Working conditions may vary in the wildlife environment, that’s why the
simulation is designed with a certain degree of randomization.

Random delay

The core loop which is the fundament for all instance types in the simulation
has support for the random delay. For the time being, units wake up every
second. In principle, such a wake-up period can be randomized. There are
two variables: maxdelay := 10 and mindelay := 1 which are maximum and
minimum vales of the delay. The calculation of time duration is done using the
rand library and is illustrated below:
duration := time.Duration(int64((rand.Intn(maxdelay-(mindelay)) + minde-
lay)) * int64(time.Second))
Such awakeup delay randomization can enable different behavior ofous.

Input data

There are three types of data in the simulation: text, photos and videos. Only
the input video file [40] is the same for all the units. Photo input directory is
assigned on the startup from a random photo directory as illustrated in the
directory tree 6.10. Every ou is assigned to one directory, which has up to
10 files. Every time when a photosensor is generating an image, it chooses a
random image and assigns a unique name using the UUID[26] library.

The same principle works for the text data emulated by the temperature sensor.
The sensor returns a timestamp and a random temperature value within a
given range.

Sensors

The sensor behavior is randomized and controlled by the global configuration
located in config.go as discussed in section 6.3.4. Every sensor has a success
rate in range 0 < A0C4 < 1. If the image chance is set to 0.1, the sensor would
generate an image approximately once in ten calls. If the ou wakes up every
hour, a new image would be generated approximately every 10 hours. The
code simply returns return rand.Float32() < photo_chance. The video chance
and video file naming follow the same pattern.
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6.3.10 Disk mode

There are two disk modes: the "no disk" mode and the "disk mode". The disk
mode is io-oriented and is designed for a small-scale simulation which would
save files to the local file system. The data is read from the disk as discussed in
the previous subsection. The size of the file is divided by the mtu size to get
the number of messages to send. On the su side, the entire message sequence
is written to the local disk into the /mount/0/sensor1/. subdirectory, where 0
is the id of the su and the sensor1 is the sensor type.

Wi-Fi msg ble msg LoRa msg
Text Size 1 1 1
Photo Size 300 2843 10839
Video Size 3000 28426 108374

Table 6.6: Number of messages required to send one "empty" file by type

No disk mode

In the case of "no disk" mode, the standard message number is set to 1 for
the text data, 300 for images, and 3000 for videos as shown in table 6.6.
This number corresponds to an approximate number of messages required to
transfer an ordinary file, but in this case, the file will be "empty" - filled with
nonsense data. The reason for the "no disk" mode is to avoid the simulation
io overhead. Simulation of several thousand nodes would spend too many
resources on the parallel read on and the concurrent write. Edge nodes with
the shared file system are not the case for the real-world network, it is only a
part of the simulation.

For ble and LoRa, the number of messages to be sent is higher, because mtu
sizes are smaller. As illustrated in figure 6.15, LoRa would send 36 times more
messages than the Wi-Fi due to the smaller mtu size. In case of connection
via ble, the number of messages required to transfer the same data amount
is higher by the factor of 9.0 compared to the Wi-Fi environment.
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cut_and_send

yesno disk mode?
read file size

n messages =
size/MTU


BLE LoRaWiFi

generate 300
messages

300 messages 

x1

300 messages 

x9

300 messages 

x36

->unit_router_ch

Figure 6.15: Message generation principle in !disk mode

6.3.11 Data consistency check

Before any file is sent, its checksum is calculated using crypto/md5 package.
The hash is added to a special field inside the message among with the file
name. So the file can be disassembled into smaller messages of mtu size that
are sent over the network one by one. The entire process is illustrated in figure
6.16.

When all the messages are received, the su assembles the file and performs the
consistency check as illustrated in the figure. If the new checksum is identical
to the hash from the first message - the consistency test is passed. If not, the
fatal error would be raised, which means that the simulation needs further
data synchronization primitives adjustment and general debugging.
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file file

calculate md5 assemble

msg 0
+ md5msg 1msg 2

msg 3msg 4msg 5

msg 6msg 7msg n 
msg.last


calculate md5disassemble
send receive

Figure 6.16: Data consistency check process

6.3.12 Runtime observation

The runtime observation helps to monitor the simulation in real-time. There
are two techniques described in this subsection: extended timeout and packet
time tracking.

Extended timeout

If "infinite" command-line argument is provided, the simulation would run
as long as it is possible. But when the exact time is given, the main loop of
the instance checks if the elapsed time exceeds the timeout. If the timeout is
reached, the instance sends a message to the ur with terminated flag. The
Unit Router brings this message to the sr and, further to the su. When all
units within the cluster have terminated, both routers terminate as well.

In practice, it happens sometime that the ou can not terminate within the
given timeout, because it might not be done with the data transfer or still waits
for some response from the network. For this particular case, an extended
deadline, which is usually, a half simulation time, is given. If nodes can not
finalize within extended deadline, the app_watchman() function triggers the
simulation exit on the os level by returning false to the initial main() function
(listing 6.7). This function runs concurrently with other goroutines during all
the simulation periods. Before exiting, static data is collected over statistical
channels.
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Listing 6.7: Timeout control function
func app_watchman( s t a r t time . Time , ncopies int , n_ i s l ands int , t imeout in t ) bool {

// d e c l a r e MemStats to g e t \ ac {ram} data us ing runtime package
var m runtime . MemStats
var gorout ines = 0

for {
t := time .Now()
elapsed := ( t . Sub( s t a r t _ t ime ) ) . Seconds ()

i f in t ( e lapsed ) > t imeou t _ k i l l e r && ! i n f i n i t e {
return fa l se

}
}

}

Packet time tracking

Timestamping is a resource-demanding technique as highlighted by Fidge [14].
The profiling section (7.3) confirms that significant resources are used for the
collection of this information. But the value of the monitoring is higher than
the cost in this case.

sus are expected to have more computational resources than ou. That is why
the shadow side is responsible for the timestamp processing and aggregating
into average values which are kept inside the su structure in the simulation.
The main principle is that at every stage, the message receives a timestamp on
any arrival or departure. As a result, the delay between the ou and the ur,
the sr and the su can be estimated.

Another task of the message timestamping is to indicate the delay before the
ur is able to handle the incoming data stream. This value can show a degree
of asynchrony between ous and associated routers.

To sum up the chapter, not all the functionality is discussed in detail. Only the
basic functions, approaches, and primitives needed for the simulation work-
ing principle are explained. The next chapter covers the practical use of the
simulation.





7
Evaluation
To keep a homogeneous environment and follow the scientific experiment
guidelines (see section 3.3.2), all simulations are done on the cluster. Even those
experimental cases without extensive memory requirements are executed on
the cluster’s compute nodes. Experiments requiring hundreds of gigabytes of
shared memory are executed on big memory and huge memory nodes.

7.1 Known shortcomings

The prototype is not perfectly balanced and adjusted. Some uncertainties may
appear during the runtime. Typical errors are identified and listed here to be
considered and, thus, reduce the overall uncertainty level.

7.1.1 Send on a closed channel error

As discussed in chapter 6.3 Implementation, node-to-node communication
happens over gochannels via simple messages of certain types. Some of those
messages require a response. In the case of the neib synchronization in a
big network, the node may finalize and close its neighbor channels too early,
because the global clock doesn’t guarantee the proper orchestration (see section
2.3.4). As a result, a neighbor may freeze forever waiting for a response or send
a message on a closed channel which would result in panic (section 6.3.7) and
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application’s forced termination. In practice, it happens rarely but randomly.
The issue is mostly observed for neib simulations with > 200000 ous. In
the case of future development, the node communication and orchestration
methods should be improved, but such an error is not critical and doesn’t
influence stated research tasks.

7.1.2 Transfer rate deviation

For a single ou, the transfer rate can be unexpectedly high. It happens because
a random small file can be transferred less than in a second. The issue occurred
several times during local runs. It can be explained by the 3 GB/s read speed of
the local NVMe SSD used for the prototype development and testing. A random
file that is small enough can be transferred less than in a second avoiding the
bottleneck function (section 6.3.7). Transfer rates with deviation are identified
during the runtime. The transfer rate value is set to "-1" in such a case and is
excluded from the average transfer rate calculation. These values don’t raise
the overall uncertainty level. For 100,000 ous simulation, the number of nodes
with transfer rate deviation rarely exceeds 3 or 5.

7.1.3 Time scaling issue

As discussed in section 6.2.2, ous wake up once a second. That is the timescale
of one hour in the real world. But for the network and routers, the time is not
scaled, and the data transfer is calculated in actual Bytes per second (bps). It
may result in a problem when units are about to terminate due to timeout, but
the data transfer is still underway. Generally, networks with low bandwidth
and high data transfer volumes would show some data delivery delay. In the
prototype, the issue doesn’t affect the link delay or transfer rate calculation in
the middle of runtime. But for large clusters emulation and significant data
amounts, data delivery delay can be higher than the expected delay in the
real cluster. Such an issue doesn’t affect the prototype significantly, but the
data delay value extracted by the end of the simulation should be used with
caution.

7.2 Benchmarks

Benchmarking is implemented in a form of module testing. Module tests are
assertions performing positive and negative control as discussed earlier in
section 3.3.2. As illustrated in listing 7.1, a go module responsible for project
testing runs tests from ounet_test.go.
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Listing 7.1: Test module output
=== RUN TestConvers ion
−−− PASS : TestConvers ion (0.00 s )
=== RUN TestNodeIndex
−−− PASS : TestNodeIndex (0.00 s )
=== RUN T e s t S t a t i s t i c s
=== RUN T e s t S t a t i s t i c s /30 ,0.05000 ,1
=== RUN T e s t S t a t i s t i c s /30 ,0.00500 ,1
=== RUN T e s t S t a t i s t i c s /60 ,0.02000 ,1
=== RUN T e s t S t a t i s t i c s /60 ,0.00020 ,1
=== RUN T e s t S t a t i s t i c s /60 ,0.00002 ,1
−−− PASS : T e s t S t a t i s t i c s (0.00 s )
−−− PASS : T e s t S t a t i s t i c s /30 ,0.05000 ,1 (0.00 s )
−−− PASS : T e s t S t a t i s t i c s /30 ,0.00500 ,1 (0.00 s )
−−− PASS : T e s t S t a t i s t i c s /60 ,0.02000 ,1 (0.00 s )
−−− PASS : T e s t S t a t i s t i c s /60 ,0.00020 ,1 (0.00 s )
−−− PASS : T e s t S t a t i s t i c s /60 ,0.00002 ,1 (0.00 s )

=== RUN TestSensors
−−− PASS : Tes tSensors (0.00 s )
=== RUN Te s t I n i tUn i t
−−− PASS : T e s t I n i tUn i t (0.00 s )
=== RUN TestInitShadow
−−− PASS : TestInitShadow (0.00 s )
=== RUN Tes t In i tUn i tRou te r
−−− PASS : Te s t In i tUn i tRou te r (0.00 s )
=== RUN TestInitShadowRouter
−−− PASS : TestInitShadowRouter (0.00 s )
=== RUN Te s tD i s kU t i l s
−−− PASS : Te s tD i s kU t i l s (0.00 s )
=== RUN TestMemory
−−− PASS : TestMemory (0.00 s )
PASS
ok ounet 0.041 s

Sensor functionality, the correctness of measurement unit conversion, instance
initialization, etc. is ensured by benchmarking. Test is run periodically during
the prototype development process to ensure that no methods were altered
occasionally.

7.3 Profiling

Profiling is the code adjustment to reduce undesirable memory leaks and com-
putational resource wasting. The entire profiling process is done using the
PPROF [22] package. The package supports several profiling modes aimed at
various application architectures. For the prototype, the total amount of allo-
cated memory, memory in use, goroutines, and CPU statistics were evaluated.
Profiling results provided for the simulation of 10000 ous running in Wi-Fi
mode with 5% back-haul network availability chance and 10% chance of node
being awake. Listing 7.2 shows the top of functions that require memory al-
location. Most of the memory is allocated for message processing in function
cut_and_transfer(). Much memory is allocated for the ou functionality in the
unit_body(). This is the expected behavior, excepting get_shadow_disk_path
which shouldn’t use many resources to assign exclusive paths to sus.
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Listing 7.2: PPROF alloc profiling -top representation
Type : a l l o c_ space
Time : Oct 23 , 2021 at 2:29pm (CEST)
Showing nodes account ing fo r 656.02MB, 97.84% of 670.49MB t o t a l
Dropped 39 nodes (cum <= 3.35MB)

f l a t f l a t% sum% cum cum%
494.25MB 73.71% 73.71% 494.25MB 73.71% main . cu t_and_ t rans fe r
42.53MB 6.34% 80.06% 536.78MB 80.06% main . unit_body
27.01MB 4.03% 84.09% 27.01MB 4.03% main . r un_a l l _un i t s
26.50MB 3.95% 88.04% 29MB 4.33% main . get_shadow_disk_path
10.56MB 1.58% 89.61% 10.56MB 1.58% main . get_message_t imetrack
9.50MB 1.42% 91.03% 9.50MB 1.42% os . newFileStatFromWin32finddata ( i n l i n e )
6.50MB 0.97% 92.00% 6.50MB 0.97% runtime . malg
5.50MB 0.82% 92.82% 5.50MB 0.82% os . newFile

5MB 0.75% 93.57% 15.51MB 2.31% os . openDir
4.50MB 0.67% 94.24% 15.06MB 2.25% main . process_rece ived_msg
4.50MB 0.67% 94.91% 16MB 2.39% os . ( * F i l e ) . r eadd i r
3.65MB 0.54% 95.46% 30.66MB 4.57% main . main
3.50MB 0.52% 95.98% 578.30MB 86.25% main . un i t
3.50MB 0.52% 96.50% 3.50MB 0.52% st r conv . fo rmatB i t s
2.50MB 0.37% 96.87% 541.29MB 80.73% main . un i t_ loop

2MB 0.3% 97.17% 47.57MB 7.09% main . shadow
2MB 0.3% 97.47% 4MB 0.6% s y s c a l l . Fu l lPa th

1.50MB 0.22% 97.69% 3.50MB 0.52% s y s c a l l . UTF16ToString
0.50MB 0.075% 97.77% 45.56MB 6.80% main . shadow_loop
0.50MB 0.075% 97.84% 32.51MB 4.85% main . get_random_input_photo_dir

Listing 7.3 shows the heap memory. The central function - run_all_units()
which starts all the units together with the function for unit body update take
most of the memory resources.

Listing 7.3: PPROF heap profiling -top representation
Type : inuse_space
Time : Oct 23 , 2021 at 2:29pm (CEST)
Showing nodes account ing fo r 73.31MB, 100% of 73.31MB t o t a l

f l a t f l a t% sum% cum cum%
27.01MB 36.84% 36.84% 27.01MB 36.84% main . r un_a l l _un i t s
18.02MB 24.58% 61.43% 19.53MB 26.64% main . unit_body
6.50MB 8.87% 70.30% 6.50MB 8.87% runtime . malg
3.65MB 4.98% 75.28% 30.66MB 41.83% main . main
3.50MB 4.78% 80.06% 28.04MB 38.24% main . un i t
2.50MB 3.41% 83.47% 3.51MB 4.79% main . process_rece ived_msg
2.50MB 3.41% 86.88% 23.53MB 32.10% main . un i t_ loop

2MB 2.73% 89.61% 7.01MB 9.56% main . shadow
2MB 2.73% 92.34% 2.51MB 3.42% time . NewTicker

1.50MB 2.05% 94.39% 1.50MB 2.05% main . cu t_and_ t rans fe r
1.01MB 1.37% 95.76% 1.01MB 1.37% main . get_message_t imetrack

1MB 1.36% 97.12% 1MB 1.36% st r conv . fo rmatB i t s
0.60MB 0.82% 97.94% 0.60MB 0.82% runtime . a l lgadd
0.51MB 0.69% 98.64% 0.51MB 0.69% time . s t a r tT imer
0.50MB 0.68% 99.32% 0.50MB 0.68% main . shadow_router_run
0.50MB 0.68% 100% 5.01MB 6.83% main . shadow_loop

Listing 7.4 confirms the intrusive nature of chosen runtime observation tech-
nique (section 2.3.4). The goroutine checks if the global deadline is over. It takes
more than half of the CPU resources consumed by the simulation. Probably
bottleneck and timestamping require significant CPU resources for monitoring
and message tracking. Functions that update the main body of the ou take
some CPU resources but are supposed to have a much higher share.
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Listing 7.4: PPROF cpu profiling -top representation
Type : cpu
Time : Oct 23 , 2021 at 2:28pm (CEST)
Duration : 30.12 s , Tota l samples = 37.16 s (123.36%)
Showing nodes account ing fo r 33.38 s , 89.83% of 37.16 s t o t a l
Dropped 200 nodes (cum <= 0.19 s )

f l a t f l a t% sum% cum cum%
5.74 s 15.45% 15.45% 18.76 s 50.48% main . app_watchman
4.72 s 12.70% 28.15% 4.72 s 12.70% time . Duration . Seconds
3.37 s 9.07% 37.22% 3.37 s 9.07% time .now
2.59 s 6.97% 44.19% 2.60 s 7.00% time . Time . Sub
2.47 s 6.65% 50.83% 5.85 s 15.74% time .Now
1.30 s 3.50% 54.33% 1.30 s 3.50% runtime .memmove
1.23 s 3.31% 57.64% 1.25 s 3.36% runtime . s t d c a l l 6
1.09 s 2.93% 60.58% 1.09 s 2.93% runtime . si f tdownTimer
0.97 s 2.61% 63.19% 0.97 s 2.61% runtime . s t d c a l l 1
0.66 s 1.78% 64.96% 3.09 s 8.32% main . unit_body
0.64 s 1.72% 66.68% 0.64 s 1.72% runtime . p rocy i e ld
0.54 s 1.45% 68.14% 0.54 s 1.45% runtime . gopark
0.42 s 1.13% 69.27% 1.32 s 3.55% runtime . lock2
0.42 s 1.13% 70.40% 0.43 s 1.16% runtime . s t d c a l l 2
0.39 s 1.05% 71.45% 0.39 s 1.05% runtime . c a s g s t a tu s
0.39 s 1.05% 72.50% 1.35 s 3.63% runtime . chanrecv
0.36 s 0.97% 73.47% 1.67 s 4.49% math/ rand . ( * lockedSource ) . Int63
0.33 s 0.89% 74.35% 0.33 s 0.89% runtime . ( * g L i s t ) . pop
0.30 s 0.81% 75.16% 3.76 s 10.12% main . shadow_loop
0.30 s 0.81% 75.97% 0.32 s 0.86% runtime . unlock2

Listing 7.5 shows that goroutines executed inside the simulation are spread
evenly. As expected, for 10000 ous there are 10000 goroutines. For sus there
are 10000 more goroutines. Additionally, there are 2*157 goroutines for urs
and srs, and 1 for the app_watchman running concurrently. The output from
the listing is represented graphically in figure 7.1.

Listing 7.5: PPROF goroutine profiling -top representation
Type : gorout ine
Time : Oct 23 , 2021 at 2:29pm (CEST)
Showing nodes account ing fo r 20335 , 100% of 20337 t o t a l
Dropped 51 nodes (cum <= 101)

f l a t f l a t% sum% cum cum%
20335 100% 100% 20335 100% runtime . gopark

0 0% 100% 10000 49.17% main . r un_a l l _un i t s . func1
0 0% 100% 10000 49.17% main . r un_a l l _un i t s . func2
0 0% 100% 157 0.77% main . r un_a l l _un i t s . func3
0 0% 100% 157 0.77% main . r un_a l l _un i t s . func4
0 0% 100% 10000 49.17% main . shadow
0 0% 100% 10000 49.17% main . shadow_loop
0 0% 100% 157 0.77% main . shadow_router_loop
0 0% 100% 157 0.77% main . shadow_router_run
0 0% 100% 10000 49.17% main . un i t
0 0% 100% 10000 49.17% main . un i t_ loop
0 0% 100% 157 0.77% main . un i t _ rou te r_ loop
0 0% 100% 157 0.77% main . un i t_ route r_ run
0 0% 100% 20286 99.75% runtime . chanrecv
0 0% 100% 20283 99.73% runtime . chanrecv2

When it comes to simulations with neib enabled, listing 7.6 shows that most
memory is consumed by checking neighbor channels for incoming synchro-
nization requests. In the case of future development, this function requires a
redesign.
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Type: goroutine
Time: Oct 23, 2021 at 2:29pm (CEST)
Showing nodes accounting for 20335, 100% of 20337 total
Dropped 51 nodes (cum <= 101)

See https://git.io/JfYMW for how to read the graph

runtime
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runtime
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runtime
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Figure 7.1: PPROF goroutine profiling graphical representation
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Listing 7.6: PPROF alloc profiling -top representation for neib
Type : a l l o c_ space
Time : Oct 23 , 2021 at 2:27pm (CEST)
Showing nodes account ing fo r 16065.73MB, 99.30% of 16178.46MB t o t a l
Dropped 72 nodes (cum <= 80.89MB)

f l a t f l a t% sum% cum cum%
10533.16MB 65.11% 65.11% 10533.66MB 65.11% main . check_neib_channels
5109.46MB 31.58% 96.69% 5109.46MB 31.58% main . cu t_and_ t rans fe r
157.35MB 0.97% 97.66% 5266.81MB 32.55% main . unit_body
104.54MB 0.65% 98.31% 104.54MB 0.65% main . get_message_t imetrack
78.71MB 0.49% 98.79% 183.25MB 1.13% main . process_rece ived_msg
70.50MB 0.44% 99.23% 88.50MB 0.55% main . get_shadow_disk_path

7MB 0.043% 99.27% 281.77MB 1.74% main . shadow
2.50MB 0.015% 99.29% 5313.32MB 32.84% main . un i t
1.50MB 0.0093

Another striking difference is in listing 7.7. There are 10000 more concurrent
goroutines allocated for neighbor channels check. The synchronization via the
right neighbor is only an additional task, so this memory leak would not be
improved in the current version of the prototype.

Listing 7.7: PPROF goroutine profiling -top representation for neib
Type : gorout ine
Time : Oct 23 , 2021 at 2:27pm (CEST)
Showing nodes account ing fo r 30471 , 80.01% of 38084 t o t a l
Dropped 54 nodes (cum <= 190)
Showing top 10 nodes out of 36
f l a t f l a t% sum% cum cum%
30463 92.95% 92.95% 30463 92.95% runtime . gopark

0 0% 92.95% 10000 30.51% main . check_neib_channels
0 0% 92.95% 873 2.66% main . get_shadow_disk_path
0 0% 92.95% 7128 21.75% main . reques t_ne ib_sync
0 0% 92.95% 10000 30.51% main . r un_a l l _un i t s . func1
0 0% 92.95% 10000 30.51% main . r un_a l l _un i t s . func2
0 0% 92.95% 157 0.48% main . r un_a l l _un i t s . func3
0 0% 92.95% 157 0.48% main . r un_a l l _un i t s . func4
0 0% 92.95% 10000 30.51% main . shadow
0 0% 92.95% 906 2.76% main . shadow_body
0 0% 92.95% 10000 30.51% main . shadow_loop
0 0% 92.95% 157 0.48% main . shadow_router_loop
0 0% 92.95% 157 0.48% main . shadow_router_run
0 0% 92.95% 10000 30.51% main . un i t
0 0% 92.95% 7264 22.17% main . unit_body
0 0% 92.95% 10000 30.51% main . un i t_ loop
0 0% 92.95% 10000 30.51% main . un i t_ loop . func1
0 0% 92.95% 157 0.48% main . un i t _ rou te r_ loop
0 0% 92.95% 157 0.48% main . un i t_ route r_ run
0 0% 92.95% 19290 58.86% runtime . chanrecv
0 0% 92.95% 19197 58.58% runtime . chanrecv2
0 0% 92.95% 8573 26.16% runtime . g cA s s i s t A l l o c
0 0% 92.95% 8573 26.16% runtime . gcMarkDone
0 0% 92.95% 11032 33.66% runtime . goparkunlock ( i n l i n e )
0 0% 92.95% 8573 26.16% runtime . mallocgc

PPROF was actively used during the prototype development. There are some
shortcomings indicated in the final versions of profiling results. The current im-
plementation is sufficient for the stated goals. In the case of future development,
some functions are subjects for improvement.
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7.4 Performance metrics

There are performance metrics that are chosen for the evaluation of the sim-
ulated network and data processing. In contrast to the system testing and
benchmarking, they help to describe the behavior of the emulated observa-
tional network, not only the characteristics of the application running in the
os.

The Definition 14. Fresh node

An ou which has been updated during the last 24 hours is referenced as a fresh
one.

The Definition 15. Throughput

Throughput is the volume of transferred data during simulation execution time,
MB/s

The Definition 16. Generated data amount

Generated Data Amount (gda) is the total data amount generated by the
simulation per second of execution, MB/s

The Definition 17. Mask cost

Mask cost coefficient is calculated as a ratio between the throughput and the
os ram used by the simulation.

The Definition 18. Simulation efficiency

Simulation efficiency coefficient is calculated as a ratio between the Generated
Data Amount and the os ram used by the simulation.

The Definition 19. Node resource demand

Node Resource Demand (nrd) is the estimate of how much ram is used to
emulate one instance in KB according to equation 7.1, referred to as ram per
node.

nrd =
ram

ou ∗ 2 + 2 ∗ ⌈ ou
2;DBC4AB8I4

⌉
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(7.1)

The Definition 20. Time to sync one node

Time to sync one node is the average time required to get the latest data for
a single edge node (ou → su), calculated according to equation 7.2, where
t is the total execution time, n is the total number of edge nodes, !s is the
share of never synchronized edge nodes, s is the number of synchronized edge
nodes.

time to sync one node = 1(
=−=∗!B
C

) =
C

B

(7.2)

The Definition 21. Time to sync all nodes

Time to sync all nodes is the average time required to get the latest data from
all edge nodes (ou → su), calculated according to equation 7.3, where t is the
total execution time, n is the total number of edge nodes, !s is the share of never
synchronized edge nodes, s is the number of synchronized edge nodes.

time to sync all nodes =
(

1
=−=∗!B
C

)
∗ = =

C ∗ =
B

(7.3)
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7.5 Experiment 1: Time Influence

Experiment one tests the possible effects of the execution time on the behavior
of the simulation. As discussed in statistical experiments (chapter 5) and
the design guidelines (section 6.2), 168 seconds is the standard runtime for
experiments. This set of runs would show if the time scaling principle can be
used or there is a need for longer runtime.

7.5.1 Setup

Variables used in the experiment are listed in the table 7.1. The number of ous
is 10000, cluster size is 256 nodes per router, the main network type is ble. For
some cases, LoRa and Wi-Fi network environments are tested as well, every
run is done both for direct synchronization and neib. Execution time values
are 60, 120, 168, 240, 480, 960, 1800, 2700 and 3600 seconds. The chance of
the back-haul network availability is set to 5%, the chance of an ou being
awake is 1%. The % (�) ∩% (# ) is 0.0005 which represent one of the worst-case
scenarios. For the neib mode, the single synchronization chance doubles and
is equal to 0.001. There are 24 simulations in total.

7.5.2 Simulation results

Results are partially reflected in the table 7.1. The original table with simulation
values spans 30 more columns and is not listed here. Only the most relevant
data is reflected in the table, but the general rule is that results are plotted on
charts. Values reflected in the table have the following meanings:

• trans (means transferred) is the share of data transferred from ous to
sus during the simulation.

• synced is the share of nodes synced at least once.

• fresh is the share of fresh nodes by the end of simulation.

• !synced is the share of never synced nodes.

• 1-sync is transferred multiplied by synced. This value reflects the chance
that the user will request a random data piece and this data would be
available.
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Variables Statistical Data Empirical Basic Data

Nodes Cluster Time
= n Conn P(A) P(N) neib

P(A)
∩

P(N)
s pmf Trans Synced Fresh !Synced 1-sync

10000 256

60
Wi-Fi

1 5

No
0.0005

1

0.029
1.36 % 2.86 % 0.90 % 97.1 % 0.04 %

LoRa No 1.47 % 2.94 % 1.00 % 97.1 % 0.04 %

ble

No 1.40 % 2.85 % 1.00 % 97.2 % 0.04 %
Yes 0.001 0.107 2.48 % 5.24 % 1.80 % 94.8 % 0.18 %

120 No 0.0005 0.057 2.80 % 5.63 % 1.20 % 94.4 % 0.16 %
Yes 0.001 0.107 4.85 % 10.01 % 1.80 % 90.0 % 0.49 %

168 No 0.0005 0.077 4.11 % 8.24 % 1.40 % 91.8 % 0.34 %
Yes 0.001 0.142 6.89 % 14.28 % 2.20 % 85.7 % 0.98 %

240 No 0.0005 0.106 5.48 % 11.21 % 1.10 % 88.8 % 0.61 %
Yes 0.001 0.189 9.70 % 20.01 % 1.70 % 80.0 % 1.94 %

480 No 0.0005 0.189 10.65 % 21.43 % 1.20 % 78.6 % 2.28 %
Yes 0.001

0.297
18.56 % 36.84 % 2.20 % 63.2 % 6.84 %

960
Wi-Fi No

0.0005
18.93 % 37.49 % 1.30 % 62.5 % 7.10 %

LoRa No 18.73 % 38.06 % 1.20 % 61.9 % 7.13 %
ble No 0.297 18.90 % 37.01 % 1.40 % 63.0 % 7.00 %

Yes 0.001 0.368 30.90 % 57.89 % 2.30 % 42.1 % 17.89 %

1800
Wi-Fi No

0.0005 0.366
32.24 % 59.94 % 1.20 % 40.6 % 19.14 %

LoRa No 31.85 % 60.12 % 1.04 % 39.9 % 19.16 %

ble

No 31.49 % 58.48 % 1.10 % 41.5 % 19.42 %
Yes 0.001 0.298 47.11 % 80.36 % 2.40 % 19.6 % 37.86 %

2700 No 0.0005 0.350 42.20 % 73.47 % 1.60 % 26.5 % 31.00 %
Yes 0.001 0.181 59.09 % 90.82 % 2.20 % 9.2 % 53.66 %

3600 No 0.0005 0.298 50.59 % 83.23 % 1.60 % 16.8 % 42.11 %
Yes 0.001 0.098 66.92 % 96.20 % 3.60 % 3.8 % 64.37 %

Table 7.1: Experiment 1: Variables and general data transfer results

For instance, statistical expectation shows that the pmfwould increase together
with the runtime. It is confirmed by experiment as illustrated in figure 7.2,
primary axis (left), pmf reaches its peak after 960 seconds. It means that
with a given single-time probability P=0.0005 for direct synchronization and
P=0.001 forneib, 1 successful synchronization can be expected after 960 trials
with a probability around 0.3 (≈ 0.36 for the neib mode).

Figure 7.2: E1: Binomial pmf values

The total share of data transferred in comparison to all data generated is
growing (secondary, right axis). So the execution time has an influence on the
total amount of data transferred both in accordance with statistical expectation
and practically. The chance that one single ou would be synchronized at least
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once is growing as well, for the neibmode the function peak is reached earlier
than after 960 trials, because of the higher chance of synchronization via the
right node. For theneibmode, the amount of transferred data is approximately
1.5-2 times higher.

Figure 7.3: E1: Fresh nodes share and global synchronization counter

Figure 7.3 illustrates the share of fresh nodes and the global synchronization
counter. The total number of synchronizations grows linearly, for the neib
mode the number of successful synchronization is always higher. That means
the at any point the number of nodes synchronized during the last 24 hours
is approximately the same, overall execution time has no impact on the share
of fresh nodes. Samples were taken for LoRa and Wi-Fi on 60, 960, and 1800
seconds to demonstrate similar shares of fresh nodes.

Figure 7.4: E1: The share of data generated in model transferred to shadow nodes

The share of data generated in the model transferred to shadow nodes is
illustrated in figure 7.4. The relative share of sent files in the total data amount is
growing as shown in the primary axis (left). For the neibmode, the secondary
axis (right) shows that both the total number of generated files and the number
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of sent files increasing over the time. That is the expected behavior, longer
simulation time results in more files generated and transferred.

Figure 7.5: E1: Data transfer rate and link delay

Data transfer rate is illustrated in primary (left) axis of figure 7.5. Transfer rate
has declining trend probably because of general performance decrease, would
be discussed in the next subsection. Link delay is decreasing (secondary, right
axis). The reason might be in longer transfer periods. ous that accumulated
significant media data package may use transfer channel for a longer time and,
hence, have a lower average link wait time.

7.5.3 Computed performance metrics

Performance and physical characteristics are evaluated using metrics from
section 7.4. Simulation’s ram demand during the runtime is in figure 7.6.

Figure 7.6: E1: ram usage for ble with and without neib
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There is a trend of increasing demand for memory for longer execution periods.
The neib mode always consumes more memory. It means that instances accu-
mulate the data over time, and hence the simulation would become inefficient
after a while. ous and sus are not designed to hold huge amounts of data all
the time.

ram use per node (Node Resource Demand) is illustrated in figure 7.7. Go
structures that represent nodes become bigger over the runtime as observed
previously in section 7.3 on profiling. It is the reason why nodes tend to
consume more ram as the execution time increases (≈ 20 KB for ble after
120 seconds and ≈ 100 KB for ble after 1800 seconds). Samples taken for
LoRa and Wi-Fi on 60, 960, and 1800 seconds demonstrate that in the LoRa
environment less ram per node is needed. The reason might be that emulated
nodes in LoRa network do not have enough time to update structures and
all resources are spent on the networking. More runs are needed to come to
definite conclusions.

Figure 7.7: E1: ram use per node, KB

The data amount generated in the simulation per second on average during
the execution time is the Generated Data Amount (definition 16). All the data
transferred inside the model during the execution is throughput (definition
15). Both metrics are plotted in figure 7.8. The gda is reflected on the primary
axis (left), throughput on the secondary axis to the right.

The decreasing gda for both modes means that less data generated send per
second if the simulation runs for a longer period. For the neib mode there
is a 10% gda difference between simulations for 60 seconds and for 3600
seconds. That can be explained by the increased chance of synchronization and
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Figure 7.8: E1: Throughput and Generated Data Amount for ble with neib

probably longer queues because the runtime can alternatively be considered
as the "number of trials". The throughput goes up, especially for the neib
mode, if the simulation runs for a longer period. That can be explained by the
increased chance of photos and video. The next step is to plot the throughput
and the gda with ram dependency - see figure 7.9

As illustrated in figure 7.9, the overall simulation efficiency (definition 18)
decreases, especially for theneibmode. It means that the ram usage increases
much faster than the model produces new data - reflected on the primary axis
(left). The mask cost (definition 17) increases until 1800 seconds of simulation,
which corresponds 1800 hours or 75 days of simulation (section 6.2.2). That is
the peak point of ≈ 3.2 mask cost value. After that point, the coefficient’s value
goes down. This trend is reflected on the secondary axis (right) and means
that after 1800 seconds the simulation uses a significant amount of ram but
the amounts of data produced and sent remain on their levels.

Figure 7.9: E1: Mask cost and simulation efficiency for ble with neib
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The next step is to identify the time expected to get the latest data. Time-
related results of the simulation are in the table 7.2. Values reflected in the
table have the following meanings:

• Synced nodes is the number of nodes synchronized by the end of simu-
lation, calculated as: (1−!B~=2) ∗ =, where !sync is the share of never
synchronized nodes, n is the total number of ous emulated.

• Synced nodes per sec is the number of nodes with the latest data appearing
in the shadow network every second.

• One node sync, sec is the approximate average time required to get the
latest data from a single random node, calculated using equation 7.2.

• All nodes sync, sec is the approximate average time required to get the
latest data from all edge nodes, calculated using equation 7.3.

• neib benefit is the ratio between all nodes sync time with and without
neib. This value reflects the speedup of time required to get the latest
data if the neib mode is activated.

Exec Time NEIB Network Synced
nodes

Synced
nodes
per sec

One node
sync, sec

All nodes
sync, sec

NEIB
benefit

60
No Wi-Fi 290 4.83 0.21 2068.97

1.857No LoRa 290 4.83 0.21 2068.97
No

BLE

280 4.67 0.21 2142.86
Yes 520 8.67 0.12 1153.85

120 No 560 4.67 0.21 2142.86 1.785Yes 1000 8.33 0.12 1200.00
168 No 820 4.88 0.20 2048.78 1.743Yes 1430 8.51 0.12 1174.83
240 No 1120 4.67 0.21 2142.86 1.785Yes 2000 8.33 0.12 1200.00
480 No 2140 4.46 0.22 2242.99 1.719Yes 3680 7.67 0.13 1304.35

960
No Wi-Fi 3750 3.91 0.26 2560.00

1.564No LoRa 3810 3.97 0.25 2519.69
No BLE 3700 3.85 0.26 2594.59
Yes 5790 6.03 0.17 1658.03

1800
No Wi-Fi 5940 3.30 0.30 3030.30 1.011No LoRa 6010 3.34 0.30 2995.01
No

BLE

5850 3.25 0.31 3076.92 1.374Yes 8040 4.47 0.22 2238.81
2700 No 7350 2.72 0.37 3673.47 1.235Yes 9080 3.36 0.30 2973.57
3600 No 8320 2.31 0.43 4326.92 1.156Yes 9620 2.67 0.37 3742.20

Table 7.2: Experiment 1: Time to get the latest data

Results from table 7.2 are illustrated in figure 7.10. Seconds are scaled to hours.
It means that if time to get the latest data from a single node is expressed
in 0.21 seconds, it corresponds 0.21 hours (≈ 12.5 minutes). Lines represent
time to get the latest data from all edge nodes with and without neib on the
primary axis (left). Bars represent time to get the latest data for a single edge
node with and without neib on the secondary axis (right).
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Figure 7.10: E1: Time to get the latest data from one node and from all nodes

Firstly, with neib, one node sync time reduces 1.52 times on average. Secondly,
there is more time required to get the latest data from one node and all nodes
if the simulation runs for a longer period. It means that statistically expected
number of nodes that would deliver the latest data is not precise. If the simula-
tion is running for some time and some number of nodes were synchronized, it
is assumed that doubling of runtime would double the number of synchronized
nodes. In practice, single synchronization chance is not dependent on previous
successes. It means that there can be a node that wouldn’t synchronize even
after several months of simulation at such a low single synchronization success
probability 0.0005 ≤ % (�) ∩ % (# ) ≤ 0.001. As a result, the approximation of
time increases both for one node and for all nodes.

For the simulation of one week, the expected time to get the latest data from
one random node is ≈ 5 hours. If the neib mode is used, the time reduces to
≈ 3 hours. All nodes are expected to synchronize at least once after ≈ 90 days
but with neib the expected time is ≈ 50 days.

7.5.4 Interpretation of results

Experiment 1 confirmed that statistically calculated values can be used for
further experiments. The execution runtime doesn’t affect the simulation in
terms of fresh nodes and single success probabilities. The overall performance
decrease is noted, adjustment is needed in case of further experiments on
longer execution periods. The use of neib shortens the time required to get
data from ou to su by 1.52 times on average. Not all the charts are described
in details, because numbers are dependent on the % (�) ∩ % (# ) probability
and other variables. It is more important to identify general trends.
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7.6 Experiment 2: Scalability

Experiment 2 tests simulation’s ability to scale within the range 10 - 1,000,000
ous for three types of network: Wi-Fi, ble and LoRa. In accordance with
research tasks (section 1.3.2), the prototype supports a network of several
thousandous. The ability of the simulation to operate normally despite various
sizes is the test subject. There are 24 runs, 8 for each network type.

7.6.1 Setup

The experimental setup is the same for three different network types. Number
of nodes is 10; 100; 1,000; 10,000; 100,000; 250,000; 500,000; and 1,000,000.
Cluster size is 64 units per router. Execution time is 168 seconds, the chance
of ou being awake is 50%, the chance of the back-haul network availability is
5%. Variables can be found in table 7.3 for Wi-Fi, table 7.4 for ble and table
7.5 for LoRa.

Variables Statistical Data Empirical Basic Data

Nodes Cluster Time
= n Conn P(A) P(N)

P(A)
∩

P(N)
pmf Trans Synced Fresh !Synced 1-sync ram, KB

10

64 168 Wi-Fi 50 5 0.025

0.
06

12

63.28 % 90.0 % 30.0 % 10.0 % 56.95 21889
100 75.89 % 100.0 % 43.0 % 0.0 % 75.89 53066
1,000 74.25 % 98.1 % 44.6 % 1.9 % 72.84 112246
10,000 73.46 % 98.6 % 43.4 % 1.4 % 72.45 613297
100,000 73.6 % 98.7 % 43.4 % 1.3 % 72.6 % 5735866
250,000 73.4 % 98.6 % 42.9 % 1.4 % 72.3 % 14027043
500,000 56.6 % 88.0 % 25.8 % 12.0 % 49.8 % 20580838
1,000,000 37.6 % 64.3 % 16.0 % 35.7 % 24.2 % 33363774

Table 7.3: Experiment 2: Variables and data for Wi-Fi

Variables Statistical Data Empirical Basic Data

Nodes Cluster Time
= n Conn P(A) P(N)

P(A)
∩

P(N)
pmf Trans Synced Fresh !Synced 1-sync ram, KB

10

64 168 ble 50 5 0.025

0.
06

12

69.8 % 100.0 % 27.0 % 0.0 % 69.8 % 15235
100 74.5 % 90.0 % 32.0 % 1.0 % 73.7 % 42800
1,000 73.6 % 98.3 % 30.0 % 1.7 % 72.3 % 118944
10,000 73.8 % 98.7 % 29.0 % 1.4 % 72.8 % 593536
100,000 73.5 % 98.6 % 29.0 % 1.4 % 72.5 % 5226683
250,000 73.6 % 98.6 % 29.0 % 1.4 % 72.5 % 13215734
500,000 61.5 % 92.1 % 20.0 % 7.9 % 56.6 % 20732040
1,000,000 42.3 % 71.0 % 13.0 % 29.0 % 30.0 % 33535043

Table 7.4: Experiment 2: Variables and data for ble

Variables Statistical Data Empirical Basic Data

Nodes Cluster Time
= n Conn P(A) P(N)

P(A)
∩

P(N)
pmf Trans Synced Fresh !Synced 1-sync ram, KB

10

64 168 LoRa 50 5 0.025

0.
06

12

69.6 % 90.0 % 17.0 % 10.0 % 62.6 % 23595
100 73.8 % 98.0 % 10.0 % 2.0 % 72.3 % 36448
1,000 72.2 % 98.1 % 15.0 % 1.9 % 70.9 % 94647
10,000 73.6 % 98.5 % 8.0 % 1.5 % 72.5 % 511571
100,000 76.0 % 98.6 % 7.8 % 1.4 % 73.5 % 5239528
250,000 73.9 % 98.6 % 8.0 % 1.4 % 72.8 % 11483491
500,000 62.6 % 92.9 % 9.0 % 7.1 % 58.2 % 19452390
1,000,000 42.3 % 71.0 % 8.0 % 29.0 % 30.0 % 31614107

Table 7.5: Experiment 2: Variables and data for LoRa
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7.6.2 Simulation results

Some data collected during the simulation is reflected in tables 7.3 for Wi-Fi,
7.4 for ble, and 7.5 for LoRa. The original table with simulation values spans
30 more columns and is not listed here. Only the most relevant data is reflected
in the table, but the general rule is that results are plotted on charts. Data fields
in the table have the same meanings as in experiment 1 (section 7.5).

Statistical expectation shows that pmf is 0.0612 which is a value on a declining
pmf curve. A case with % (�) ∩ % (# ) = 0.025, at least one success and 168
trials was discussed in chapter 5 and is plotted in figure 5.1. Such low pmf
values demonstrate that the function peak was much closer to the beginning of
the x (horizontal) axis. According to figure 5.1,≈ 3 successful synchronizations
can be expected with a probability of 20% after 168 trials.

Figure 7.11: E2: Fresh nodes share and global synchronization counter

In figure 7.11 the number of synchronizations is illustrated in bars on the
secondary axis (right). Before 250,000 nodes, the number of synchronizations is
growing linearly, while after 250,000 ous, the total number of synchronizations
remains almost the same disregarding the network type. That indicates scaling
difficulties. The number of fresh nodes is illustrated in the same figure on the
primary axis (left) and shows the neutral trend until the point of 250,000 nodes.
After that point, the share of nodes synchronized during the last 24 hours before
the simulation’s termination demonstrates moderate growth continued by the
recession. For the LoRa environment, there are 10% − 15% fresh nodes, for
ble ≈ 30%, for Wi-Fi ≈ 45%. It means that network types that require more
packets for the data transfer may cause data delivery delays. The conclusion
here is that the network size is growing, but the total number of file transfers
goes down after the point of 500,000 nodes.
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Figure 7.12: E2: All files generated and files sent

Figure 7.12 confirms the trend identified in figure 7.11. Bars illustrate the
total number of files generated inside the simulation during the runtime. The
network of ous is not influenced by scaling until 250,000 nodes, because the
number of generated files increases proportionally. After 500,000 the scaling
doesn’t bring benefits because for 1,000,000 ous the behavior is almost the
same. It is confirmed by the line representing the number of sent files. ou
doubling should double the number of sent files, but here, this number is going
down indicating scaling issues. In all three environments, the behavior is similar,
but the number of sent files in LoRa is always lower. It confirms the conclusion
from the previous experiment - the simulation of LoRa network requires more
packets to send data, and is able to process fewer files.

Figure 7.13: E2: The share of never synced nodes and share of total data transferred
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The share of the data transferred from ous to sus is plotted in the secondary
(right) axis of figure 7.13. Relatively high synchronization success probability
results in more than 70% of data generated in the model is transferred to the
destination. After scaling to 500,000ous, all three networks types demonstrate
the decrease in the transferred data share. At the same time, the share of nodes
that have never been synchronized remains relatively flat for 100 to 250,000
nodes (plotted in the primary axis of figure 7.13). After 250,000 the share
of never synchronized nodes increases rapidly. In the network of 1,000,000
nodes,≈ 36% of nodes didn’t manage to synchronize at least once for the Wi-Fi
environment and ≈ 29% for the ble and LoRa.

(a) E2: Data transmission rate for Wi-Fi (b) E2: Data transmission rate for ble

(c) E2: Data transmission rate for LoRa

Figure 7.14: E2: Data transmission rate for Wi-Fi, ble and LoRa

Figure 7.14 provides a closer look at network-specific technical characteristics.
The data transmission rate for Wi-Fi is illustrated in figure 7.14a. Both the last
synchronization’s rate (≈ 5000 kbps - blue line) and the best rate (≈ 20000
kbps - green bars) follow neutral trends. They remain within the range defined
for the Wi-Fi environment.

ble in figure 7.14b and LoRa in figure 7.14c do not show any significant devia-
tion and remain within defined limits. The LoRa environment demonstrated
23-25 kbps last data transfer rate, 27 kbps best transfer rate. For ble the last
rate is ≈ 1000 kbps, while the best data transfer rate is ≈ 1200 kbps. Rates
are not affected by the number of ous emulated.
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Figure 7.15: E2: Link delay for Wi-Fi, ble and LoRa

The next figure (7.15) illustrates the average link delay registered for Wi-Fi,
ble, and LoRa on different network sizes. The delay remains on the same
level Wi-Fi for different test cases. For 1,000,000 ous simulation, the delay
starts to increase. The same applies to the ble environment, but the delay
level is 10%-30% higher. It means that Wi-Fi routers can handle requests faster,
so the time between the first packet and the send one is shorter. LoRa shows
a significant link delay up to 3 seconds after the size of 10,000 nodes. LoRa
routers use more time to handle incoming requests and the data transfer lasts
longer due to the physical limitations of the emulated protocol.

Figure 7.16: E2: Packet Travel Time for Wi-Fi, ble and LoRa

The Packet Travel Time for all three network environments is demonstrated
in figure 7.16, while figure 7.17 shows detailed ptt for Wi-Fi, ble, and LoRa.
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There are no changes in ptt for is Wi-Fi and ble on different network
scales, but LoRa has generally longer ptt, probably because of long delays
and the artificial bottleneck. It is interesting that the ptt decreases in LoRa
environment in networks of more than 250,000 ous.

(a) E2: Packet Travel Time for Wi-Fi (b) E2: Packet Travel Time for ble

(c) E2: Packet Travel Time for LoRa

Figure 7.17: E2: ptt structure for Wi-Fi, ble and LoRa

Figure 7.17a contains detailed representation of the ptt trend inWi-Fi network.
There are three segments which every message have to go through:

• From the Observation Unit to the Unit Router, marked as U→UR;

• From the Unit Router to the Shadow Router, marked as UR→SR;

• From the Shadow Router to the Shadow Unit, marked as SR→S;

ForWi-Fi andble,ptt is mostly spent on endpoints:ous and sus as illustrated
in figures 7.17a and 7.17b respectively. ptt values for ble are ≈ 20% higher
than for Wi-Fi. For instance, for 100,000 emulated nodes, the ptt between the
ou and theur is≈ 12ms forWi-Fi and≈ 15ms forble. Figure 7.17c with LoRa
data samples confirms that the reason for longer ptt is connected with link
delay and communication with the first intermediate destination - theur. It can
be explained through emulated limitations of the LoRa environment (smaller
mtu size). The emulation of the LoRa routers requires adjustment.
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(a) E2: File types for Wi-Fi (b) E2: File types for ble

(c) E2: File types for LoRa

Figure 7.18: E2: File types for Wi-Fi, ble and LoRa

The next figure (7.18) shows the distribution of file types in three different
network environments. Figure 7.18a shows data samples for Wi-Fi, figure
7.18b for ble and figure 7.18c for LoRa. In all three environments, data types
correspond to chosen file probabilities. 94% of data are text messages from
temperature sensors, 5% of data are images and approximately 1% of data are
video files. The network size and type don’t affect this behavior.

7.6.3 Computed performance metrics

The technical performance evaluation starts with ram monitoring. Figure
7.19 combines two datasets: ram used by simulations from 10 to 10,000
ous (figure 7.19b) and ram used by simulations from 100,000 to 1,000,000
ous (figure 7.19a) The ram consumption increases linearly as network size
increases in all environments. For all three network types, the ram required to
emulate a particular number of nodes is approximately on the same level. ram
amount used for LoRa emulation is always slightly lower. The reason might be
that in slow network environments, less data is transferred and, hence, fewer
communication primitives are used.

Figure 7.20 shows how much ram is needed to emulate one node in various
network sizes and different protocols. The calculation was performed using
equation 7.1.
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(a) E2: ram usage for nodes 10 - 10000 for
Wi-Fi, ble and LoRa

(b) E2: ram usage for nodes 100,000 -
1,000,000 for Wi-Fi, ble and LoRa

Figure 7.19: E2: ram usage for Wi-Fi, ble and LoRa

As in previous figure, 7.20 combines two datasets: nrd in simulations from
10 to 10,000 ous (figure 7.20a) and nrd in simulations from 100,000 to
1,000,000 ous (figure 7.20b). It is "cheaper" in terms of ram per node to
emulate bigger networks. For ble, less than 20 KB ram needed to emulate
one node in the network of 1,000,000 ous. If there are 1,000 nodes, the nrd
is ≈ 60 KB. It means that some part of memory is always used on the emulation
of basic os-related functions, statistics, etc. In bigger networks, most of the
memory is spent on ous. The efficiency of such big simulations is the next
question.

(a) E2: ram for nodes 10 - 1,000,000 (KB) (b) E2: ram for nodes 1000 - 1,000,000 (KB)

Figure 7.20: E2: ram use per node for 10 - 1,000,000 nodes for Wi-Fi, ble and LoRa
(KB)

In figure 7.21, the simulation’sgda is shown for different network environments
and different numbers of nodes. The Generated Data Amount is plotted using
bars on the primary axis (left). As in figure 7.12 that shows the number of
generated files, the amount of data generated per second doesn’t increase after
the point of 500,000 nodes. The growth happens before the point of 250,000
nodes. There is no clear trend in gda values if the three environments would
be compared, but for all three network types scling issues occur after the point
of 250,000 nodes.
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Figure 7.21: E2: Generated Data Amount and simulation efficiency for Wi-Fi, ble and
LoRa

The efficiency, ratio between ram andgda is plotted in the secondary axis, rep-
resented by lines. The value goes down after the network size of 250,000 ous.
That confirms scaling issues. ram consumption goes linearly up dependent on
the number of ous, while the gda is the same or reducing after 500,000 nodes.
Efficiency calculation demonstrates especially high ram consumption per gda
for LoRa. There is a deviation noted at the point of 100,000 edge nodes. The
efficiency coefficient is ram-bound, so there might be a slightly higher ram
requirement at that particular point. Several runs with the same input could
show the standard deviation and minimize such anomalies.

Figure 7.22: E2: Network throughput and the mask cost for Wi-Fi, ble and LoRa
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Figure 7.22 provides the information about network throughput (definition
15) illustrated by bars on the primary axis (left). The throughput is always
lower for LoRa and decreases after its peak of ≈ 1300 MB/s with 500,000
ous. For ble and Wi-Fi, the decrease starts already after 250,000 nodes. Wi-Fi
demonstrates generally higher network throughput, as expected due to higher
network data transmission rate. The maximum throughput of ≈ 2100 MB/s
is reached in the Wi-Fi environment in the network of 250,000 emulated ous.
When it comes to the mask cost, the ratio between ram and throughput, it
goes down after the size of 250,000 nodes (plotted in the secondary axis and
represented by dotted lines). For LoRa the breaking point is 100,000 nodes.
The mask cost coefficient is low for simulations with a few nodes, the lowest
value is 0.0042 (Wi-Fi network with 10 edge nodes). The maximum throughput
observed in the Wi-Fi environment corresponds to the maximum mask cost
coefficient equal to 0.1545 meaning that the throughput is the most efficient
with respect to the used ram.

Figure 7.23: E2: Time to get the latest data from one node and from all nodes

Figure 7.23 shows the time estimated to get the latest data from a single
edge node and all edge nodes calculated according to equations 7.2 and 7.3.
Results for the average time to get the latest data from a single edge node
are represented by lines plotted along the primary axis (left). Bars represent
the average time to get the latest data from all edge nodes, plotted along
the secondary axis (right). With respect to the scaled model, the time to get
the latest data from all edge nodes is ≈ 180 hours. In other words, the entire
observation network would synchronize the data after approximately one week
with given % (�) ∩% (# ) = 0.025 probability. The time expected to synchronize
a random ou is dependent on the number of edge nodes (≈ 2.5 seconds for
1,000,000 edge nodes; ≈ 2 hours for 100 ous). For networks with 500,000+
ous more time to get the latest data from all edge nodes is needed.



98 chapter 7 evaluation

The decrease in time to get the latest data from a single edge node doesn’t
assume a correlation with the number of edge nodes. Having more ous means
more trials at a given single synchronization success chance. That’s why the
number of updates from nodes per second is increasing as the observation
network size is growing. But the time expected to get updates from the entire
observation network is approximately at the same level until the number of
edge nodes is 1,000,000. The 1.5 times increase of the expected time at this
point either confirms the scaling issues revealed before. It also highlights that
more edge nodes would require many more trials to get the entire network
completely synchronized. The average time expected to get the latest data
from the entire network at the given single synchronization chance (0.025) is
≈ 180 hours, which corresponds to 7.5 days.

7.6.4 Interpretation of results

The experiment showed that the simulation scales from 10 to 1,000,000 Obser-
vation Units. As a result, simulation supports up to 2031250 instances emulated
by concurrently running goroutines (1,000,000 ous + 15,625 urs + 15,625 srs
+ 1,000,000 sus). The emulation of the observation network size over 250,000
nodes is possible, but the behavior is not as it was expected. ram consumption
goes significantly up, while the data amount produced and transferred is the
same as it was for smaller network sizes or even lower. That is indicated by
lower efficiency coefficients. Scaling problems occur already after the point of
100,000 ous in the LoRa environment. Wi-Fi demonstrated generally higher
throughput, gda values, and lower mask cost coefficient value. It means that
there were more data, but if ram usage is taken into consideration, the data
generation and transfer was not so "efficient". The average time expected to
get the latest data from all edge nodes is around one week at the given single
synchronization chance % (�) ∩ % (# ) = 0.025.

For the next experiment, the observation network size of 100,000 ous is chosen
as a safe point, where scaling issues have no impact on the emulated network
behavior.
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7.7 Experiment 3: Cluster Size

This experiment tests if the size of the cluster can influence the simulation’s
behavior. As a result, an optimal cluster size for further experiments would be
chosen. There are 7 simulations in total.

7.7.1 Setup

The experimental setup has the same parameters as in the previous experiment:
execution time is 168 seconds, the chance of node being awake is 50%, the
chance of the back-haul network being available is 5%. The optimal number of
ous is found in the previous experiment (section 7.6) - 100,000. The network
environment is ble. Cluster sizes to be tested are 16, 32, 64, 128, 256, 512 and
1024 units per router. Variables and the statistical expectation are in table 7.6
below.

Variables Statistical
Nodes Cluster Exec Time Connection Awake % Network % P(A)∩% (# ) n X Binom pmf

100,000

16

168 BLE 50 5 0,025 168 1 0,061237875

32
64
128
256
512
1024

Table 7.6: Experiment 3: Variables

7.7.2 Simulation results

In contrastwith previous experiments, an extended range of data extracted from
simulations is provided in tables. Table 7.7 contains node statistics, information
about the number of messages and their types. Most of the fields in the table
have the same meanings as in experiment 1 (section 7.5). Additionally, "N sync"
is the number of synchronizations; "Packets sent" is the number of sent packets;
"Files→" is the total number of sent files followed by columns for file types:
"Text", "Photo", and "Video".

Variables Empirical Basic Data Network Data
Cluster Trans Synced Fresh !Synced 1-sync ram, KB N sync Packets sent Files→ Text Photo Video

16 73.5 % 98.6 % 43.6 % 1.4 % 72.4 % 5484027 501404 494551131 13044840 12937540 99719 7581
32 73.5 % 98.6 % 43.4 % 1.4 % 72.5 % 5309598 501219 496367998 13041196 12933513 100072 7611
64 73.5 % 98.6 % 43.3 % 1.4 % 72.5 % 5226683 498652 494333893 13022228 12915367 99239 7622
128 73.5 % 98.5 % 43.0 % 1.5 % 72.4 % 5123998 501637 497955015 13030761 12921787 101443 7531
256 73.5 % 98.6 % 42.5 % 1.4 % 72.5 % 5141210 499721 500647114 13012483 12904304 100452 7727
512 73.6 % 98.6 % 42.5 % 1.4 % 72.6 % 4809645 497796 485774991 13004848 12898307 99224 7317
1024 73.6 % 98.6 % 42.3 % 1.4 % 72.6 % 4666470 498521 496495696 12958752 12850527 100668 7557

Table 7.7: Experiment 3: Data
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Graphical representation of the total number of files and packets generated for
cluster sizes 16 to 1024 from table 7.7 can be found in figure 7.24. The total
number of transferred packets is represented by blue bars and has similar values
between ≈ 485,000,000 and ≈ 500,000,000 packets for all cluster sizes. The
minor difference can be explained through the deviation in value distribution
due to data emergence dependency on media data chances and node’s awake-
ness probability. The total number of files generated is approximately 1.4 times
bigger than the number of files sent (≈ 13,000,000 files sent; ≈ 18,000,000
files generated). The same trend is identified for all cluster sizes.

Figure 7.24: E3: Total data generated for cluster sizes 16 to 1024

The diagram in figure 7.25 demonstrates the following:

Red line: The share of synchronized nodes in the total number of nodes.

Blue line: The share of transferred data in the total data amount of data.

Light green line: The probability of single synchronization success - (plotted
nearly over the blue line, values are similar).

Dark green line: The share of fresh nodes in the total number of nodes.

Yellow line: The share of never synchronized nodes in the total number of
nodes.

All the data-related values are similar for all cluster sizes. It means that the
cluster size doesn’t affect the simulation’s behavior.
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Figure 7.25: E3: Data on shadow nodes for cluster sizes 16 to 1024

Table 7.8 represents network metrics. "Last Rate" is the last registered data
transfer rate in kbps (for ous), while "Best Rate" is the highest registered one.
"Get Rate" is the data rate registered at the su side. The ptt between instances
is shown using the "X→Y ms" form. "Link Delay" is the time before the ou gets
the connection to the ur after the connection was requested. "!Network" and
"!Active" are counters of reasons for no synchronization.

Variables Network Data

Cluster Last Rate
kbps

Best Rate
kbps

Get Rate
kbps

ptt
ms

ou
→
ur

ur
→

SR ms

sr
→

su ms
Link Delay !Network !Active

16 1154 1197 620521 29 12 4 11 0,12407 15912546 8375726
32 1126 1200 623977 29 13 4 11 0,12209 15902750 8368381
64 1060 1198 627602 31 15 4 12 0,13132 15874111 8353781
128 1118 1359 606918 33 13 7 12 0,12354 15896081 8311574
256 1064 1359 638541 35 17 5 12 0,15387 15871097 8366790
512 956 1359 699271 41 23 5 13 0,19268 15833448 8332450
1024 834 1359 672130 47 29 5 13 0,23738 15771885 7198937

Table 7.8: Experiment 3: Network

Figure 7.26 contains the data from table 7.8. The red line represents the
average of all best data transfer rates on ous. There is no correlation between
the best transfer rate and the size of the cluster, the rate is around ≈ 1300
kbps on average. The value is almost the same for all cluster sizes and is within
technical specifications for the ble environment. The blue line representing
the last registered data transfer rate value decreases by 20% from ≈ 1100 kbps
to ≈ 850. That is because a longer waiting time can apply when one router
has to transfer packets from up to 1024 concurrent connections.



102 chapter 7 evaluation

Figure 7.26: E3: Network metrics for different cluster sizes 16 to 1024

That is confirmed by the link delay trend represented by the yellow line in the
same figure. The link waiting time goes significantly up from ≈ 0.13 seconds
to ≈ 0.24 seconds after the cluster size exceeds 128 nodes.

The Packet Travel Time is increasing as the cluster size increases. The ptt
represented by the gray line increases by ≈ 20% from 33 seconds at the size
of 128 to 47 seconds when there are 1024 ous in the cluster (ptt specification
can be found in table 7.8). The most of the ptt increase is connected with the
ou→ur step. For generally higher synchronization probabilities, more data
would be generated and sent. The Unit Router may become a bottleneck if
it has too many concurrent channels to process, both in simulation and in a
real-world network.

7.7.3 Computed performance metrics

Simulation efficiency coefficients and other metrics are listed in table 7.9.
This table illustrates the minor difference despite significantly different cluster
sizes.

Variables Metrics
Cluster Throughput, MB/S Mask Cost Generated data

amount, MB/S Simulation Efficiency ram/node, KB
16 709.08 0.132 9920.61 1.852 27.42
32 711.65 0.137 9905.51 1.910 26.55
64 708.78 0.139 9877.44 1.935 26.13
128 713.88 0.143 9889.03 1.976 25.62
256 717.67 0.143 9887.87 1.969 25.71
512 696.68 0.148 9858.48 2.099 24.05
1024 711.75 0.156 9834.03 2.158 23.33

Table 7.9: Experiment 3: Metrics

The graphical representation of ram usage per node (nrd) is in figure 7.27.
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For bigger cluster sizes, fewer simulation resources are needed to allocate all
the instances. There are fewer routers to allocate because more units can
use the same router. That is why there is a trend of a minor decrease in ram
requirement from 25.5 KB for the size of 256 to 23.5 KB for the size of 1024.

Figure 7.27: E3: ram use per node, KB

The mask cost (ram divided by the network throughput) is represented by
bars in figure 7.28 on the primary axis. Table 7.9 shows that the throughput is
almost the same for different cluster sizes. There is a minor difference because
of probabilistic deviation. But there is slightly lower ram consumption which
results in the uprising trend of mask cost coefficient. The coefficient is rising
to 2.15 at the point of 1024 edge nodes per router. At the initial point, where
the size of the cluster is 16, the value is 15% lower.

Figure 7.28: E3: The mask cost and simulation efficiency
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The simulation efficiency trend is illustrated as the red line plotted along the
secondary axis. In the same way, from table 7.9, the amount of data generated
by the simulation is approximately the same for all cluster sizes. But there is
less ram needed to generate the same amount of data (gda) because fewer
instances are needed. That is why the simulation efficiency coefficient has an
uprising trend that repeats the mask cost trend.

Figure 7.29: E3: Time to get the latest data from one node and from all nodes

Figure 7.29 illustrates the time expected to get the latest data from a single
and all edge nodes, calculated using equations 7.2 and 7.3. The figure confirms
observations made previously in this experiment. Bars represent the time to get
the latest data from all edge nodes (primary axis, the left one). Lines represent
the time to get the latest data from the entire observation network (secondary
axis, the right one). Generally, time here does not depend on the size of the
cluster. Minor deviation at the point of 128 nodes is only 0.00001, which counts
for ≈ 0.04 seconds in the scaled model. With respect to the scaled model, the
average single node sync time is ≈ 0.002 hours, all nodes sync time is ≈ 170
hours (approximately one week). In other words, a new synchronization of one
random edge node is expected every 7 seconds if % (�) ∩ % (# ) = 0.025.

7.7.4 Interpretation of results

From the perspective of a real-world cluster, many concurrent connections
may result in a bottleneck. In case of higher synchronization probabilities and,
hence, higher data volumes transferred over the network, the bottleneck effect
may appear even for smaller cluster sizes. From the perspective of simulation,
allocation of fewer routers require less ram, but the difference is minor. The
link delay and ptt can increase, so theram economy doesn’t bring any positive
effect that can be taken into account. The time expected to get the latest data
from a single and all edge nodes does not depend on the cluster size.
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7.8 Experiment 4: NEIB

Experiment 4 described in the current section tests the scalability of the neib
protocol. The expected result is the set of values demonstrating the advantages
and disadvantages of synchronization via the right neighbor. There are 16
simulations in total, 8 with neib and 8 with direct synchronization.

7.8.1 Setup

The experimental setup has the same execution time of 168 seconds as in the
previous experiment, the network environment is ble. The chance of being
awake is set to 5%, the chance of the back-haul network being available is
5%. An optimal cluster size of 64 nodes is found in the previous experiment
(section 7.7). The number of Observation Units is in the following range: 10;
100; 1000; 10,000; 100,000; 250,000; 500,000 and 1,000,000. For each step,
there are two runs: one with neib and one without. Variables and statistical
expectations can be found in table 7.10.

Variables Statistical

Nodes Cluster size Exec Time Conn. neib Awake % Network %
P(A)
∩

P(N)
n X Binom pmf

10

64 168 ble

No

5 5

0.0025

168 1

0.276505846
Yes 0.005 0.363692019

100 No 0.0025 0.276505846
Yes 0.005 0.363692019

1,000 No 0.0025 0.276505846
Yes 0.005 0.363692019

10,000 No 0.0025 0.276505846
Yes 0.005 0.363692019

100,000 No 0.0025 0.276505846
Yes 0.005 0.363692019

250,000 No 0.0025 0.276505846
Yes 0.005 0.363692019

500,000 No 0.0025 0.276505846
Yes 0.005 0.363692019

1,000,000 No 0.0025 0.276505846
Yes 0.005 0.363692019

Table 7.10: Experiment 4: Variables

7.8.2 Simulation results

An extended range of data extracted from simulations is provided in table 7.11.
The table contains node statistics, information about the number of synchro-
nizations, used resources, and the counter of sent messages.

Statistical expectation shows that for % (�)∩% (# ) = 0.0025,which is relatively
low chance of single synchronization, pmf demonstrates a relatively high value.
It means that after 168 trials we can expect at least one synchronization of
one ou with probability 28% without neib and 36% with neib. Use of neib
doubles the single synchronization chance (according to table 7.10), but it
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doesn’t guarantee a double chance of success after 168 trials. Does it mean that
resources used for the synchronization via the right neighbor would bring 7%
additional fresh nodes only? A closer look at the simulation result is needed to
answer this question.

Variables Empirical Data
Nodes neib Trans Nodes

Synced Fresh !Synced 1-sync ram, KB N sync neib
sync

Packets
Sent

10 No 11.43 % 20.00 % 0.00 % 80.00 % 2.29 % 17244 4 0 126
Yes 30.11 % 70.00 % 10.00 % 30.00 % 21.01 % 24216 19 5 35307

100 No 14.15 % 28.00 % 2.00 % 72.00 % 3.96 % 40444 36 0 33615
Yes 25.68 % 54.00 % 6.00 % 46.00 % 13.87 % 51712 41 34 90576

1,000 No 16.97 % 34.20 % 5.30 % 65.80 % 5.80 % 35450 476 0 396126
Yes 27.76 % 52.00 % 10.00 % 48.00 % 14.44 % 117060 479 428 906588

10,000 No 17.83 % 34.45 % 6.00 % 65.50 % 6.14 % 503804 5269 0 5366142
Yes 29.29 % 54.32 % 10.30 % 45.70 % 15.91 % 603756 4982 4519 7714053

100,000 No 17.47 % 34.37 % 5.50 % 65.60 % 6.01 % 4308592 51030 0 51246567
Yes 15.50 % 8.94 % 3.10 % 91.10 % 1.39 % 3402552 7266 5771 10658952

250,000 No 17.60 % 34.52 % 5.60 % 65.50 % 6.07 % 10321668 129377 0 132698727
Yes 4.02 % 49.87 % 0.00 % 50.10 % 2.00 % 13992156 11129 3452 5646726

500,000 No 15.98 % 31.48 % 5.00 % 68.50 % 5.03 % 14964809 225407 0 216182979
Yes - - - - - - - - -

1,000,000 No 4.87 % 8.27 % 2.00 % 91.70 % 0.40 % 24915547 91524 0 60901623
Yes - - - - - - - - -

Table 7.11: Experiment 4: Data

Figure 7.30 is based on the information from table 7.10 The number of synchro-
nizations is illustrated by lines on the secondary axis (right). Before 500,000
nodes, the counter grows up to the peak value of ≈ 225, 000 synchronizations.
At the point of 1,000,000 ous, the total number of synchronizations goes back
to the result observed at the point of 250,000 ous simulation. That indicates
scaling difficulties. For neib, the number of synchronization shows the neutral
trend until the point of 250,000 nodes. After that point, the synchronization
via the right node is not tested due to significant ram use (over 200 GB) and
a decrease in the Generated Data Amount and the network throughput.

Figure 7.30: E4: The share of fresh nodes and global synchronization counter

In principle, the number of synchronizations in the network is expected to
grow together with the number of ous. The share of fresh nodes is illustrated
in the same figure by bars on the primary axis (left). It shows the neutral trend
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until the point of 500,000 nodes (≈ 6% fresh ous). After that point, the share
of nodes synchronized during the last 24 hours halves. The neib mode can
double the number of fresh nodes, but the synchronization issues appear at
the point of 100,000 nodes. The conclusion here is that the network size is
growing, but the total number of file transfers goes down after the point of
500,000 nodes in case of direct synchronization.

Figure 7.31: E4: The share of data generated in simulation transferred to shadow
nodes

Figure 7.31 confirms the trend identified in figure 7.30. The chart combines
two different data sets. Stacked bars illustrate the share of sent files in the total
number of files without neib on the primary axis (left). There are 10%− 15%
transferred data on average. It is expected behavior because this value shouldn’t
be affected by the changing size of the observation network. As in the previous
figure, the share of sent files decreases after the point of 500,000 ous. Such a
decrease to ≈ 5% indicates scaling issues.

Lines on the secondary axis (right) represent the total number of sent files and
the total number of files generated in the simulation with neib. The number of
generated files grows rapidly until 100,000 ous, while the trend of the number
of sent files remains almost flat. After 100,000 ous both the total number of
files generated and the number of sent files drops.

The chart for the direct synchronization is represented by relative values, but
the neib mode is described using absolute numbers. Despite this difference,
the dynamics of sent files are similar with similar points of growth and decrease.
Hence, the same scaling issues are relevant for both modes, but in the case of
neib those are observed earlier. It means that more resources are used to keep
the neib up, but it doesn’t bring the desired effect of growing synchronization
chance.
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Figure 7.32: E4: The share of neib packets in all packets

Figure 7.32 shows the share of neib-related messages in the total number
of messages. Packets that contain neib synchronization data make almost
40% of all the communication inside the model and this share is constantly
increasing. It means that while the size of the observation network is growing,
the neib mechanism becomes more expensive in terms of resources spent on
communication.

Figure 7.33: E4: The share of never synced nodes and the share of total data transferred

Bars plotted along the secondary axis (right) of the next figure (7.33) illustrate
the share of data transferred from ous to sus in the total amount of generated
data. Without neib, the share of transferred data has a neutral trend (≈ 17%)
until scaling issues at the point of 1,000,000 ous. With neib, the share of
transferred data is 50% − 60% higher until the point of scaling issues at
100,000 ous. After that, neib becomes "inefficient" which would be confirmed
by further tests.
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Lines on the primary axis of the same figure show the share of never synced
nodes. The trend identified before is confirmed here as well. Without neib,
the share of never synced has a neutral trend (≈ 65%) until scaling issues at
the point of 1,000,000 ous. For the neib, the share of never synced is ≈ 25%
lower until the point of scaling issues (100,000 ous). The conclusion is that
synchronization via the right neighbor brings higher synchronization success
chances, but can be evaluated until the network size of 100,000 ous.

Figure 7.34: E4: Data transmission rate for blewith direct synchronization and neib

The next figure (7.34) demonstrates the data transfer rate in the ble network
with and without neib. Bars show the best registered data transfer rate. With-
outneib, the average value is 1250 kbps. It is expected behavior corresponding
the technical limitations of the emulated network environment. For the neib
mode, the best rate goes down after the network size is 250,000 ous.

The last synchronization rate represented by the green line indicates some
delays at the point of scaling issues (1,000,000 ous). The last synchronization
rate with neib represented by the blue line shows the decreasing trend (the
reverse dependency on the number of emulated ous).

Figure 7.35: E4: Link delay for ble with direct synchronization and neib
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When it comes to the delay, figure 7.35 demonstrates how the link wait time
changes for various network sizes. The delay increases at critical points: ≈ 2.2s
at 100,000 ous for neib and ≈ 0.9s at 1,000,000 ous without neib.

Figure 7.36: E4: Packet Travel Time

The ptt characteristics are illustrated in figures 7.36 and 7.37. Figure 7.36
shows that the ptt repeats the trend identified previously. Lines remain flat
until critical points. The ptt increases to ≈ 3s at 100,000 ous for the neib
mode and ≈ 0.21s at 1,000,000 ous without neib.

Figure 7.37: E4: Packet Travel Time and structure

Figure 7.37 demonstrates the structure of the ptt. For the direct synchroniza-
tion, relative values are reflected by bars on the primary axis (left). As the
number of nodes is increasing, the share of travel time from the sr to su
increases. An unexpected bottleneck occurs at the side of the shadow network
(≈ 70% of the ptt spent here). For the neib synchronization, absolute values
are represented by lines on the secondary axis (right). The time that message
is traveling from the sr to the su increases rapidly after 100,000 ous, that is
the point of scaling issues. In this case, as well, the point between the su and
the Shadow Router becomes an unexpected bottleneck with ≈ 2.5s ptt.
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7.8.3 Computed performance metrics

Computed performance metrics are represented graphically in the current
subsection. Figure 7.38 illustrates the simulation’s Generated Data Amount
(definition 16) and network’s throughput (definition 15). The gda is repre-
sented by lines plotted along the primary axis (left).

Figure 7.38: E4: Network throughput and simulation’s gda

The maximum gda value of ≈ 45, 000 MB/s is reached at the point of 500,000
ous for direct synchronization. The gda reduces when the number of ous is
1,000,000. With the neib mode, the gda is 9 times lower and reaches the
maximum of the number of ≈ 5, 000 MB/s at the point of 250,000 ous. It
means that most of the resources are spent on communication primitives in
the neib mode.

Throughput can be found in the same figure (7.38), represented by bars plotted
along the secondary axis (right). The data amount transferred per second is
following the same pattern as the data amount generated per second does. The
maximum throughput of ≈ 320 MB/s is reached at the point of 500,000 ous
for direct synchronization. With the neib mode, the throughput is 20 times
lower and reaches the maximum of the number of ≈ 15 MB/s at the point
of 100,000 ous. Scaling issues observed previously are confirmed by these
metrics.
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Figure 7.39: E4: ram usage with and without neib for cluster sizes 10 - 1,000,000
(KB)

ram usage is generally higher for neib as illustrated in figure 7.39. But the
trend doesn’t indicate significant scaling issues, the increase in ram require-
ments is expected, because the number of emulated instances grows. The
conclusion is that not only the ram demand triggers the scaling issues.

Figure 7.40 shows the ram usage per node. Chart 7.40a reflects the general
picture,where thenrd is higher for several instances than for several thousand.
That is because all the supplementary functions of the simulation have to be
started regardless of the network size. For bigger networks, more resources are
needed to allocate memory for instances. The neib mode requires on average
≈ 30% more ram per node.

(a) E4: ram per node, KB (b) E4: ram per node for >1000 nodes, KB

Figure 7.40: E4: nrd for cluster sizes 10 - 1,000,000 for ble (KB)

Figure 7.40b shows the nrd without points of 10 and 100 ous (to cut the
highest values). Here, 100,000 nodes is the point when a run with neib
requires less ram per node (≈ 17 KB) than the direct synchronization does
(≈ 22 KB). It means that the simulation withneibmight be effective on certain
network sizes despite the scalability issues identified before. But in general,
the neib mode is more ram resource-demanding.
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Figure 7.41: E4: The mask cost and simulation efficiency

Figure 7.41 shows the last chart used for the efficiency evaluation in this
experiment. Bars represent the mask cost (definition 17) plotted along the
primary axis (left). The mask cost coefficient is slightly growing for the direct
synchronization until it drops when 1,000,000 ous are emulated. With the
neib mode enabled, the mask cost is growing and becomes higher (≈ 0.016)
than direct synchronization’s mask cost (≈ 0.02) when the network consists of
10000 ous. That confirms the previous observation, under certain conditions,
the neib has a 20% higher mask cost efficiency coefficient.

The trend for the simulation efficiency (definition 18) is represented by lines
plotted along the secondary axis (right). neib mode demonstrates generally
lower simulation efficiency because more resources are needed to perform the
communication between edge nodes. Without neib, the model has a growing
efficiency trend until 1,000,000 ous. The peak of ≈ 3 is reached at the point
of 500,000 ous without neib.

The next step is to calculate the time expected to get the latest data. Time-
related results of the simulation are in table 7.12. Only the data which can
be used to estimate the neib mode is presented. The neib benefit field is
calculated as a relation between time to get the latest data from all edge nodes
with and without neib. The average value indicates 1.75 times speedup.

Nodes NEIB Synced
nodes

Synced
nodes
per sec

One node
sync, sec

All nodes
sync, sec

NEIB
benefit

10 No 2 0,01 84,00 840,00 3,5Yes 7 0,04 24,00 240,00
100 No 28 0,17 6,00 600,00 1,928Yes 54 0,32 3,11 311,11
1,000 No 342 2,04 0,49 491,23 1,520Yes 520 3,10 0,32 323,08
10,000 No 3450 20,54 0,05 486,96 1,573Yes 5430 32,32 0,03 309,39
100,000 No 34400 204,76 0,00 488,37 0,258Yes 8900 52,98 0,02 1887,64

Table 7.12: Experiment 4: Time to get the latest data
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Results from table 7.12 are illustrated in figure 7.42. Seconds are scaled to hours.
It means that if the time to get the latest data from a single node is expressed
in 6 seconds, it corresponds to 6 hours. Bars on the secondary axis (right)
represent time to get the latest data from all edge nodes with and without
neib.

Lines represent time to get the latest data from a single node with and without
neib on the primary axis (left). The time to get the latest data from a single
random node is dependent on the size of the observation network. For example,
for 10,000 ous one synchronization is expected every 0.05 hours (≈ 3 minutes)
with direct synchronization and 0.03 hours (≈ 1 minute) with the neib mode
enabled. Before the point of scaling issues, the use of neib shortens the time
required to get data from the ou to the su by 1.75 times on average.

Figure 7.42: E4: Time to get the latest data from one node and from all nodes

Less time is required to get an update from one random node as the number of
edge nodes grows. That is because more nodes are able to make more attempts
to synchronize but the chance to get data from one particular node would be
the same. Statistically, more edge nodes mean more trials are done for the
same % (�) ∩ % (# ) probability. That is confirmed by the flat trend of time
required to get the last data from the entire observation network (≈ 500 hours
to get the latest data from all edge nodes). With the neib mode enabled, the
time required to get the last data from the entire observation network is ≈ 300
hours before the point of scaling issues at 100,000 ous.
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7.8.4 Interpretation of results

The simulation demonstrated general scaling issues for 1,000,000 ous with
direct synchronization. Issues appeared for neib synchronization already after
100,000 edge nodes. It means that the simulation-based predictions can’t be
derived when the overall efficiency is low because uncertainty makes results
unreliable. In case of future development, the model should be adjusted for
the execution of 1,000,000+ Observation Units.

Before points of scaling issues, the results can be used to make some assump-
tions. Despite the difference in absolute numbers, the observed dynamics of the
neib mode and direct synchronization is similar with similar points of growth
and decrease. Hence, the same scaling issues are relevant for both modes, but
in the case ofneib those are observed at the earlier stage because of the higher
workload.

Chosen single synchronization probability (0.25%) represents one of the worst-
case scenarios when ous can synchronize only once in 24 hours and the back-
haul network might be available only once in 24 hours at a random point of
time. In this case,neib synchronization helps to achieve better synchronization
chances. ram cost per unit is around 30% higher, while the number of fresh
(definition 14) nodes by the end of synchronization increases by 50%-100%.
The time required to get data from the ou to the su is 1.75 times less on
average.

The simulation showed scaling issues after 100,000ous becausemore resources
are needed to perform the communication between edge nodes. In real world,
such an implementation may bring some degree of communication overhead,
because an extra port listening to incoming connections from the neighbor node
is needed. That might influence hardware requirements, and, hence, power
consumption. Not all the charts are described in details, because numbers are
dependent on the current set of variables. It is more important to identify
general trends.
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7.9 Experiment 5: Success Heat Map

Experiment 5 tests the network characteristics and the synchronization results
under various single synchronization success probabilities % (�) ∩ (% (# )). The
goal here is to combine all data derived both statistically and experimentally.
Synchronization success heat map creation is the main result. There are 39
runs, 13 for each network environment.

7.9.1 Setup

The experimental setup is the same for all three network environments: Wi-Fi,
ble, and LoRa. Various combinations of chance of node being awake P(A) and
chance of the back-haul network availability P(N) give single synchronization
success probabilities (% (�)∩% (# )): 0.0001, 0.0005, 0.0025, 0.005, 0.01, 0.025,
0.0625, 0.125, 0.25, 0.375, 0.5625, 0.75 and 1. Execution time is 168 seconds as
suggested in section 5, calculated statistically and checked in experiment 7.5.
There are 100,000 ous, such size of the network is chosen to avoid possible
scaling issues discussed in experiment 7.6. Cluster size is 64 units to minimize
the bottleneck (section 7.7). Variables are in tables 7.13 for LoRa, 7.14 for ble,
and 7.15 for Wi-Fi.

Figure 7.43: E5: Binomial pmf for n = 168 and s = 1

The statistical expectation is provided in tables with variables, values are the
same for different network environments. Figure 7.43 shows the Probability
Mass Function for 168 trials (n) and at least one expected synchronization
success (s). The function reaches its peak at the point of % (�) ∩% (# ) = 0.005,
where the chance that the ou would be synchronized at least once is 30%.
Lower probabilities represent "worst-case scenarios".
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Variables Statistical Empirical Basic

Nodes Cluster Conn Time
= n P(A) P(N)

P(A)
∩

P(N)
pmf Trans Synced Fresh !Synced 1-sync ram, KB

10
0,
00

0

64 LoRa 168

1 1 0.0001 0.0165 0.79 % 1.68 % 0.20 % 98.30 % 0.01 % 5754831
1 5 0.0005 0.0773 3.89 % 8.14 % 1.10 % 91.90 % 0.32 % 5654827
5 5 0.0025 0.2765 17.56 % 34.50 % 5.20 % 65.50 % 6.06 % 6141578
5 10 0.005 0.3637 30.81 % 56.88 % 8.80 % 43.10 % 17.53 % 5835360
10 10 0.01 0.3136 49.61 % 81.66 % 14.60 % 18.30 % 40.51 % 6308659
10 25 0.025 0.0612 74.47 % 98.60 % 20.50 % 1.40 % 73.44 % 6681536
25 25 0.0625 0.0002 88.57 % 100.00 % 15.40 % 0.00 % 88.57 % 7181064
25 50 0.125 0.0000 93.40 % 100.00 % 12.30 % 0.00 % 93.40 % 6774713
50 50 0.25 0.0000 96.31 % 100.00 % 7.20 % 0.00 % 96.31 % 6805847
50 75 0.375 0.0000 97.19 % 100.00 % 4.80 % 0.00 % 97.19 % 6693161
75 75 0.5625 0.0000 98.06 % 100.00 % 2.80 % 0.00 % 98.06 % 6550555
75 100 0.75 0.0000 98.91 % 100.00 % 1.40 % 0.00 % 98.91 % 6503276
100 100 1 0.0000 100.00 % 100.00 % 0.10 % 0.00 % 100.00 % 6464071

Table 7.13: Experiment 5: Variables and data for LoRa

Variables Statistical Empirical Basic
Nodes Cluster Conn Time

= n P(A) P(N) % (�)∩
% (# ) pmf Trans Synced Fresh !Synced 1-sync ram. KB

10
0,
00

0

64 ble 168

1 1 0.0001 0.0165 0.78 % 1.60 % 0.20 % 98.40 % 0.01 % 5680004
1 5 0.0005 0.0773 3.81 % 8.04 % 1.10 % 92.00 % 0.31 % 5626445
5 5 0.0025 0.2765 17.47 % 34.37 % 5.50 % 65.60 % 6.01 % 4308592
5 10 0.005 0.3637 30.77 % 65.80 % 10.50 % 43.20 % 17.48 % 6354914
10 10 0.01 0.3136 49.27 % 81.57 % 20.00 % 18.40 % 40.19 % 6559335
10 25 0.025 0.0612 73.60 % 98.62 % 32.33 % 1.40 % 72.58 % 7103293
25 25 0.0625 0.0002 87.59 % 100.00 % 56.63 % 0.00 % 87.59 % 8105345
25 50 0.125 0.0000 93.22 % 100.00 % 66.15 % 0.00 % 93.22 % 9110557
50 50 0.25 0.0000 96.43 % 100.00 % 56.70 % 0.00 % 96.43 % 9130606
50 75 0.375 0.0000 97.59 % 100.00 % 66.38 % 0.00 % 97.59 % 9365521
75 75 0.5625 0.0000 98.56 % 100.00 % 72.08 % 0.00 % 98.56 % 9482062
75 100 0.75 0.0000 99.27 % 100.00 % 73.65 % 0.00 % 99.27 % 9278584
100 100 1 0.0000 100.00 % 100.00 % 74.63 % 0.00 % 100.00 % 9325042

Table 7.14: Experiment 5: Variables and data for ble

Variables Statistical Empirical Basic
Nodes Cluster Conn Time

= n P(A) P(N) % (�)∩
% (# ) pmf Trans Synced Fresh !Synced 1-sync ram. KB

10
0,
00

0

64 Wi-Fi 168

1 1 0.0001 0.0165 0.82 % 1.73 % 0.20 % 98.30 % 0.01 % 6081871
1 5 0.0005 0.0773 3.88 % 8.03 % 1.10 % 92.00 % 0.31 % 6112438
5 5 0.0025 0.2765 17.49 % 34.37 % 5.50 % 65.60 % 6.01 % 6381879
5 10 0.005 0.3637 30.90 % 57.14 % 10.60 % 42.90 % 17.66 % 6498280
10 10 0.01 0.3136 49.25 % 87.58 % 20.00 % 18.40 % 4.18 % 6726923
10 25 0.025 0.0612 73.52 % 98.68 % 43.20 % 1.30 % 72.54 % 7177333
25 25 0.0625 0.0002 87.60 % 100.00 % 75.60 % 0.00 % 87.60 % 7552031
25 50 0.125 0.0000 93.45 % 100.00 % 75.50 % 0.00 % 93.45 % 8607589
50 50 0.25 0.0000 96.49 % 100.00 % 70.50 % 0.00 % 96.49 % 8598620
50 75 0.375 0.0000 97.52 % 100.00 % 86.30 % 0.00 % 97.52 % 8849556
75 75 0.5625 0.0000 98.55 % 100.00 % 95.50 % 0.00 % 98.55 % 8947392
75 100 0.75 0.0000 99.28 % 100.00 % 98.90 % 0.00 % 99.28 % 8382304
100 100 1 0.0000 100.00 % 100.00 % 99.80 % 0.00 % 100.00 % 8778004

Table 7.15: Experiment 5: Variables and data for Wi-Fi

7.9.2 Simulation results

Simulation results are interpreted both from the model’s perspective and the
real-world network’s perspective. The first figure - 7.44 - shows the success heat
map build using the share of fresh nodes from tables 7.13, 7.14, and 7.15 for three
network environments. For worst-case scenarios, the share of fresh nodes is
almost the same. Rare synchronizations have no impact on network bandwidth,
the network has enough resources to deliver the data from Observation Units
to Shadow Units.
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Figure 7.44: E5: The share of fresh nodes for different % (�) ∩ % (# ) for Wi-Fi, ble
and LoRa

Starting from the point of % (�) ∩ % (# ) = 0.025, differences begin to appear.
Such a single synchronization probability corresponds % (�) = 0.05; % (# ) =
0.5 or % (�) = 0.25; % (# ) = 0.10 which are realistic scenarios. In those cases,
there would be significant data amount both generated and transferred.

The share of fresh nodes on higher % (�) ∩ % (# ) probabilities indicate clearly
that the data transmission rate becomes a bottleneck. For instance, the Wi-Fi
environment is superior to LoRa in terms of the share of fresh nodes by the
end of the simulation, but the reason is still undefined. Starting from the point
of % (�) ∩ % (# ) = 0.0625, all nodes managed to synchronize during the last
24 hours. In the LoRa environment, there are only 15% fresh nodes at that
point. Afterward, the share of fresh nodes in the LoRa environment decreases
significantly. The ble environment demonstrates the flat trend in the share of
fresh nodes trend which is almost 2 times lower than for Wi-Fi.

Figure 7.45 shows two data sets on the same axis. The share of never synchro-
nized nodes and the share of all data transferred is plotted dependent on the
% (�) ∩ % (# ). The share of transferred data is not influenced by the network
type, remains on the same level disregarding the environment. Only the single
synchronization success chance influences the share of transferred data.

The same applies to the share of never synchronized nodes in the total number of
nodes. In all three network environments, independent tests showed the same
number of nodes that have never synchronized. There is a direct dependency
on the single success probability. After the point of % (�) ∩ % (# ) = 0.0625,
there are no never synchronized nodes, all the data was successfully transferred
to the shadow network.
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Figure 7.45: E5: The share of data transferred and the share of never synced nodes
for different % (�) ∩ % (# ) for Wi-Fi, ble and LoRa

Figure 7.46 shows the number of all files generated during the simulation (bars)
and the number of files sent (lines) during the simulation. The first trend is that
almost all files were transferred in cases of a single synchronization probability
higher than 25%. That is the expected behavior of the real-world network.

Figure 7.46: E5: All files generated and files sent

The second trend is that the total number of generated files is reducing after
the maximum of 18,000,000 files. As the network workload grows, more
simulation resources are spent on data transfer, but on the new data generation.
The behavior is not expected, but the general trend is correct: on higher
synchronization chances, more files are transferred until the point of scaling
issues % (�) ∩ % (# ) = 0.025.
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The third trend is connected with the LoRa environment. It is generally less
data generated, and, therefore, less data sent in this network type. Usage of
smaller packets for network communication led to the lack of resources for
data generation. It is seen to be an uncertainty, but it doesn’t explain the trend
of fewer fresh nodes in the LoRa environment.

Figure 7.47: E5: The number of synchronizations and number of packets sent

Figure 7.47 has a focus on a number of packets that were sent in different
network types (represented by bars). The LoRa environment produced signif-
icantly more packets as reflected in the primary axis (left). There are up to
≈ 7, 800, 000, 000 packets in the LoRa network, ≈ 2, 000, 000, 000 for ble,
and ≈ 220, 000, 000 for Wi-Fi. The difference in numbers corresponds to the
technical characteristics of the emulated network types. The secondary axis
(right) shows the absolute number of successful synchronizations. For Wi-Fi
and ble the number is very close (≈ 4, 500, 000), but LoRa demonstrates 4.5
times less number (≈ 1, 000, 000). This is the same behavior as discussed
previously ("heat map", figure 7.44) but it doesn’t explain the reason.

The next figure (7.48) illustrates the average link delay for Wi-Fi, ble, and
LoRa at different % (�) ∩ % (# ) probabilities. The delay increases when the
synchronization probability is high. LoRa shows significant link delay which
is up to ≈ 16 seconds at the maximum value of single synchronization success
chances. When the % (�)∩% (# ) probability is lower (and the networkworkload
is not so high), all three environments show delays of ≈ 0.2 seconds.

Most likely, LoRa routers use more time to handle incoming requests and
the data transfer lasts longer due to the physical limitations of the emulated
network protocol. Queues can be the reason for the lower share of fresh nodes in
the LoRa environment. The ble environment demonstrates similar maximum
delays of ≈ 3.6 seconds as in the Wi-Fi network (≈ 3.3). The difference is
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Figure 7.48: E5: Link delay for Wi-Fi, ble and LoRa

minor and becomes visible only if the % (�) ∩ % (# ) probability increases and
the network throughput is maximal.

The ptt value for Wi-Fi, ble, and LoRa are demonstrated together in figure
7.49, while figure 7.50 shows details for the different network environments.
In "worst-case" scenarios, the LoRa network has longer ptt ≈ 350 ms, which
reduces to≈ 100ms as % (�)∩% (# ) probability becomes higher. ble has longer
ptt thanWi-Fi, but the difference isminor. For cases with rare synchronizations,
the ptt values are ≈ 100 ms. In the case of the high network workload, the
Packet Travel Time reduces to ≈ 2 − 10 ms.

Figure 7.49: E5: Packet Travel Time for Wi-Fi, ble and LoRa

The assumption here is that when the network is rarely available (P(N)<0.1),
the ptt is long because there are orchestration issues between instances.
Nodes and routers wake up approximately once a day and follow the global
clock principle. The time on edge nodes and Unit Routers is not synchronized
deliberately. That is why the time before the packet is received by the Unit
Router might be long.
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(a) E5: Packet Travel Time for Wi-Fi (b) E5: Packet Travel Time for ble

(c) E5: ptt for LoRa

Figure 7.50: E5: ptt structure for Wi-Fi, ble and LoRa

ForWi-Fi andble, the ptt is mostly spent on endpoints: Observation Units and
Shadow Units. This trend is illustrated in figures 7.50a and 7.50b respectively.
The longest ptt occurs in case of a low single synchronization chance. But
even in the case of the lowest % (�) ∩ % (# ) probability, the ptt is distributed
evenly. For the Wi-Fi environment, ≈ 30 ms is spent on each stage (ou→ur,
ur→sr, sr→su). For the ble type of network, ≈ 40 ms is spent on each
stage. As the single synchronization chance becomes higher, most of the ptt
is spent between ous and urs. Thus, Unit Routers become bottlenecks.

Figure 7.50c with data samples from the LoRa environment indicates that the
reason for the longer ptt is connected with link delay. There are communi-
cation issues with the first intermediate destination: Unit Router. It can be
explained through emulated technical limitations of the LoRa network envi-
ronment and possible orchestration issues between edge nodes. Another trend
here is that Wi-Fi and ble have shorter ptt as the % (�) ∩ % (# ) probability
becomes higher. But for the LoRa environment, the ptt is generally high, and
the problematic area is always in the ur. 90% of the Packet Travel Time (which
is up to ≈ 300 ms) is spent here.
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(a) E5: File types for Wi-Fi (b) E5: File types for ble

(c) E5: File types for LoRa

Figure 7.51: E5: File types for Wi-Fi, ble and LoRa

Figure 7.51 combines three charts showing types of files generated in different
network environments under various % (�)∩% (# ) probabilities. Figure 7.51a is
for Wi-Fi, 7.51b is for ble, and 7.51c is for LoRa. There are ≈ 94% of text data,
≈ 5% of images, and ≈ 1% of video files. In all three environments, data types
correspond to chosen media probabilities. Types of files are not influenced
by the emulated network environment or single synchronization probability.
Minor differences in samples are results of statistical deviation at given media
probability values.

Figure 7.52 provides a closer look at network-specific technical characteristics.
The data transmission rate for the Wi-Fi is illustrated in figure 7.52a. Both the
last synchronization’s rate (blue dotted line, ≈ 5, 000 kbps) and the best rate
(green bars, ≈ 20, 000 kbps) follow neutral trends. They remain within the
range defined for Wi-Fi.

ble in figure 7.52b and LoRa in figure 7.52c indicate that the last registered
data transfer rate becomes lower at higher % (�) ∩ % (# ) probabilities. The
deviation is especially highlighted in the ble chart (decrease from ≈ 1100
kbps to ≈ 600 kbps). A relatively stable rate trend in the LoRa network can
be explained through its generally low max data rate.
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(a) E5: Data transmission rate for Wi-Fi (b) E5: Data transmission rate for ble

(c) E5: Data transmission rate for LoRa

Figure 7.52: E5: Data transmission rate for Wi-Fi, ble and LoRa

7.9.3 Computed performance metrics

Performance metrics are represented graphically in the current subsection. The
first chart reflects the overall ram usage for three different network modes in
figure 7.53. The total ram usage is increasing as % (�) ∩ % (# ) raises.

Figure 7.53: E5: ram usage for Wi-Fi, ble and LoRa

ForWi-Fi, the range of values is generally higher because there are fewer packets
to be sent per message, but more resources are needed for data generation and
transfer. The LoRa network demonstrates the lowest ram requirement despite
the smaller single message size and, hence, the higher number of packets.
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More resources are used by simulation for data transfer, so there is less data
generated. This trend indicates scaling issues. ble trend is in the middle,
but follows the same pattern as Wi-Fi: more synchronizations means more
individual packets transfers and more ram to emulate the network.

Figure 7.54: E5: ram usage per node for Wi-Fi, ble and LoRa

Figure 7.54 reflects the nrd value (equation 7.1). ble and Wi-Fi demonstrate
similar value rows, the minor deviation for the ble can be explained by
statistical uncertainty. The nrd values are generally lower for the LoRa type of
network ≈ 30 KB compared to ble and Wi-Fi which require ≈ 40−45 KB. The
LoRa network environment has a declining trend of ram per unit requirement
as % (�) ∩ % (# ) becomes higher. It confirms the assumption made for figure
7.53: there is less ram required for more packets, but some scaling issues take
place.

Figure 7.55: E5: Network throughput and the mask cost for Wi-Fi, ble and LoRa

Figure 7.55 illustrates the network’s throughput (definition 15) and the mask
cost. Throughput is represented by bars plotted along the primary axis (left).
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For the LoRa environment, the maximum network throughput (≈ 800 MB/s)
is 3.5 times lower than max for Wi-Fi and ble (≈ 2900 MB/s). It means
there were less data sent per second in the simulation in the LoRa type of
network.

The mask cost coefficient values are represented by lines plotted on the sec-
ondary axis (right). TheWi-Fi environment has the highestmask cost coefficient
(≈ 0.35) which means the most efficient (definition 17) ram utilization. The
values of the mask cost coefficient are expressed by lines plotted along the
secondary axis in the same figure 7.55. The LoRa network demonstrated the
lowest mask cost coefficient (≈ 0.1) because there is less data transfer for this
environment, but the ram usage is almost the same.

Figure 7.56: E5: The gda and simulation efficiency for Wi-Fi, ble and LoRa

Figure 7.56 illustrates models gda (definition 16) and simulation efficiency
(definition 18). Thegda is represented by bars plotted on the primary axis (left).
The value is decreasing for all three network types as the single synchronization
chance is increasing. It means that the simulation is able to generate less
data if there are more resources spent on data transfer. LoRa environment
demonstrates extra sensitivity to the synchronization chance, the gda starts
the decrease at the earlier point. In the case of a lower single synchronization
chance, the maximum gda value of ≈ 10, 000 MB/s is reached. In the case
of high network data traffic, the Generated Data Amount value goes down
to ≈ 2, 700 MB/s for the Wi-Fi and ble environments. For the LoRa type of
network, the value is 3.6 times lower (≈ 750 MB/s).

The simulation efficiency coefficient (definition 18) is expressed by lines plotted
along the secondary axis in the same figure 7.56. The maximum simulation
efficiency coefficient is observed at the point of % (�) ∩ % (# ) = 0.0025 for the
ble environment (≈ 2.2). More runs are needed to get the standard deviation
because the main trend shows the highest coefficient of ≈ 1.8 for the cases with
the low workload of the network. Simulation efficiency coefficients in all three
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network environments decrease after the point of % (�) ∩% (# ) = 0.0625. That
confirms scaling issues, the simulation doesn’t cope with high data amounts to
be generated and sent.

Figure 7.57: E5: Time to get the latest data from one node and from all nodes

Figure 7.57 shows the time estimated to get the latest data from a single edge
node and all edge nodes calculated according to equations 7.2 and 7.3. The
average time to get the latest data from a single edge node is expressed by bars
plotted along the primary axis (left). Lines represent the average time to get
the latest data from all edge nodes, plotted along the secondary axis (right).
Both time estimates are decreasing inversely to the increasing % (�) ∩ % (# )
chance, but after % (�) ∩ % (# ) = 0.125, all ous were synchronized within one
week (≤ 168 seconds of simulation). The average time to get the latest data
from a single edge node is 0.0012 hours (≈ 6 seconds).

7.9.4 Interpretation of results

Experiment 5 demonstrated that the simulation and, probably the real-world
network behave differently under various network environments. For instance,
Wi-Fi and ble require more ram to emulate networks. Wi-Fi and ble seem
to be suitable for networks with higher throughput because high throughput
requires higher bandwidth. The LoRa environment may become a bottleneck in
case of many concurrent synchronizations with many large media files.

At the same time, LoRa shows an acceptable level of throughput and mask cost
in the case of rare synchronizations, when a single synchronization chance is
under 0.025%. LoRa requires less ram resources and, therefore, less energy.
The data rate and link delay are acceptable for networks with fewer synchro-
nizations and smaller files (mainly the text). The time estimates to get the
latest data are decreasing inversely to the increasing % (�) ∩% (# ) value.





8
Results & Discussion
This chapter summarizes the results described in previous chapters. Statistical
expectation validity, prototype design advantages, and disadvantages discov-
ered practically, discussed. The data collected during simulations tests the
validity of theoretical assumptions and vice versa.

8.1 Statistical expectation

In chapter 5 statistical expectation was provided based on the theory of prob-
ability. It was concluded that 168 seconds of simulation is sufficient to get at
least one successful synchronization on all ranges of single synchronization
success probabilities % (�) ∩ % (# ). Statistical expectation formed the basis for
the prototype development and initial experimental setup.

In principle, the neighbor node that has the same setup as the Observation
Unit would just "give one more synchronization trial" and, therefore, double
the chance. The calculation showed that the neib protocol would not double
the single synchronization success probability, it was expected to gain 30%
more synchronization success.

The statistical expectation here is not the exact statistical model represent-
ing the real-world network. It doesn’t concern causalities, physical limitations,
pseudorandom behavior, and so on. Using the equations provided, the model
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scalability can’t be estimated. For instance, network characteristics and bot-
tleneck effect can be observed in the prototype only due to simplifications of
statistical methods in this thesis.

8.2 Prototype functionality

The prototype was developed in order to check statistical assumptions and
make predictions for the real-world network behavior. The model was suited
for the hpc machine. In the process of application development (section 6.2),
parallel data processing (section 6.3.7), time scaling factor (section 6.2.2),
and optimization of memory usage via gprof (section 7.3) led to a significant
decrease inram requirement. One of the first versions of the application needed
≈ 400 GB ram to emulate half a million edge nodes. After improvement
runs of the simulation required up to ≈ 100 GB ram for all the range of
experiments.

Data consistency checks, "graceful finalization", real input data, and various
network environments emulation helped to make the prototype closer to the
real-world network. At the same time, there were new problems discovered
during the simulation evaluation and execution.

8.2.1 Discovered shortcomings

In addition to known errors listed in 7.1, new issues were discovered. A short
overview is in the following list:

1. overloaded edge nodes become undesirable and unintended bottlenecks;

2. difficulty with network types comparison under high loads;

3. global clock principle brings delays and orchestration issues;

4. Unit Routers message queues are bigger than expected which result in
longer ptt;

5. time scaling may bring measurements distortion at the end of the simu-
lation execution;

6. iterative synchronization approach can result in extra delays in case of
future development for the large scale simulation;
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7. the "intrusive observation method’s" effects were stronger than expected;

8. neib required significant communication to emulate bidirectional con-
nection between pairs of several thousand nodes.

Probably there is too much data to be processed and stored inside structures
representing edge nodes. Observation Units are generating data and affecting
the workflow of the entire simulation. It results in extensive memory demand
and extra network delays which are architecture-bound.

Another difficulty is connectedwith high data traffic in the network. Sometimes
network’s throughput is especially high because of many concurrent synchro-
nizations with many media files. In that case, most of the simulations resources
go to upkeep communication and deliver messages. Emulated network envi-
ronments are affected by the lack of resources in simulation. As a result, new
causalities are distorting the measurement of the network characteristics. In
the real world, networks are equipped with suitable routers and synchroniza-
tion primitives. All networks in the prototype use similar communication paths
and mechanisms, Wi-Fi and ble emulation works better than the simulation of
LoRa on very large networks with high % (�) ∩ % (# ) probability. In a situation
when one of the networks is affected more than others, a comparison is not
fully credible.

A set of experiments showed the weakness of the global clock approach. Im-
plemented global clock-based way of synchronization was supposed to work
without affecting the prototype’s functionality. In practice, ous are emulated
by different goroutines and only theos decides howmuchramwould be spent
on every single thread. As a result, different instances have a slightly different
local clock, so the measurement of the data transfer rate taken between any
two instances doesn’t reach the desired high level of accuracy.

Message queues are longer than expected, and the router implementation is
more sensitive to the size of the buffer than proposed. After an Observation Unit
has been unavailable for a long period, it starts the synchronization which may
last for a long time. A data transfer can take so much time that synchronization
wouldn’t finish within a timeout or even an extended timeout. That is why
metrics would show fewer recently synchronized nodes.

In the simulation, the time is scaled. In the real world with a similar setup, an
ou would wake up every hour, and synchronization would have enough time
to finish before the next hour starts. The network would have enough time to
finalize the data transfer if the timeout is reached. But what if data transfer in
the simulation lasts for several seconds? What if data transfer would not finish
by the time timeout is reached? That is why, to be more precise, the time is
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not scaled, but the idle time of edge nodes is skipped. As a result, the share
of fresh nodes by the end of the simulation can be lower, because the node
execution time is scaled from hours to seconds, but the data transfer rate is
not. The issue is especially relevant for the LoRa environment with a smaller
mtu size and, hence more messages to be generated per file. This moment
should be taken into account, and the simulation results should be adjusted
accordingly. The drawback is not critical, but an extra effort should be put into
router’s functionality adjustment in future.

Another aspect is connected with the iterative approach to instance update.
Every emulated network element has an internal structure that is updated by
a special function once a second. Consequently, all instances are updated once
a second. Let’s assume that a synchronization lasts for several seconds and the
neib is on. As a result, a node may "hold" the router by data transfer, while
its neighbor can wake up for a second time and request a synchronization.
Both the ou port listening to neib request and the router would be busy.
Theoretically, it can result in unrealistically long link wait time and Packet
Travel Time.

Observation of the simulation runtime gave the undesirable effect of extra
memory requirement. Profiling (7.3) showed that the function which guaran-
tees the finalization takes up to 20% of all resources in certain periods of time.
An hpc cluster orientation lowered the implementation’s sensitivity to ram
requirement. In contrast to this, an increasing memory resource demand may
result in synchronization and orchestration deviations, because the workload
manager has to distribute fewer resources among more instances.

For the neib synchronization, most of the memory and network traffic was
used for communication between nodes. A significant share of packets was sent
only to request a synchronization via the neighbor. It became critical to the
simulation at the point of 500,000 emulated nodes. In the case of a real-world
network, the effect of efficiency decrease probablywouldn’t be so strong because
every pair of nodes would be responsible for the communication between each
other, there wouldn’t be shared memory for the entire cluster.

Despite investigated issues, the simulation demonstrated a certain degree of
stability. The issues discussed are undesirable but not critical. Various network
environments with their technical characteristics were emulated. The data
path in the simulation and its architecture resemble the data path in the real-
world network. The current implementation is sufficient for stated goals, so
the planned experiments were performed.
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8.3 Simulation data collection

After the prototype has been tested and evaluated, experiments provided the
data for analysis of the modeled observational network behavior. Results of
experiments 7.5, 7.6, 7.7, 7.8 and 7.9 created basement for further theoretical
assumptions.

8.3.1 Real world assumptions

There are several predictions about the real-world network behavior listed
below:

1. Extra port always listening to incoming connection can be used for
"worst-case scenarios".

2. Some environments suited better for the low level of network traffic,
some show better results in higher workloads.

3. Edge nodes, endpoints become bottlenecks for the data flows.

4. Cluster size can’t be scaled unlimitedly, queues can occur.

5. Failures have a tendency to accumulate over time, the code testing needed
before the deployment.

As discussed previously, the neib synchronization requires an increase of mem-
ory and network coordination resources by approximately 30% for successful
emulation. In the real world, such a solution would require an extra port lis-
tening to incoming connections. The port should be able to wake up the node
or, at least, send a simple negative response. It might be a resource expensive
solution from the perspective of power. But should be acceptable for very low
synchronization chances, when the back-haul network is unavailable and the
node is often offline.

Networks with smallermtu size and, hence, lower data transmission rates are
suited for environments with lower synchronization chances and lower network
traffic. If media data transfer is expected, there should be a network protocol
with a higher data rate and biggermtu despite possibly lower energy efficiency.
Otherwise, bottleneck effects and longer transfer time would minimize extra
gain from choosing energy-saving protocols.

Mainly, bottlenecks occur where edge nodes connect to the network, on the
step: ou→ur. The use of superpeers with leader elections or communication
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between neighbor routers may ease the workload distribution.

The size of the cluster didn’t have any significant effect on the simulation.
But the last experiment with higher data volumes showed the possibility of
queues and bottlenecks. It can be assumed that unsuitable cluster sizes can
have a negative effect on data delivery time, cluster size should be adjusted in
accordance with network environment and expected throughput.

It is noted that failures andmemory leaks tend to accumulate over time. If there
is an issue with the structure of the node, it may become worse after a while.
Errors tend to repeat and can crash the node. If longer runtime is expected,
generally more attention should be paid to testing before the deployment both
in terms of hardware and software.

8.4 Hypothesis validity

The structure of the thesis followed the following logic: The identified prob-
lem became the subject of the theoretical research and related work analysis.
Methodology showed how statistical expectation can be used for the simula-
tion. But the simulation needed to be first designed and developed so that
statistically derived input could be tested. So every step of the project gives
the input to the next step.

Experiment 1 showed that the suggested simulation time of 168 seconds was
sufficient for stated goals. Experiments 2 and 3 were aimed at the choice of
variables for the main experiments. The expectation of at least one successful
synchronization (B = 1) is dependent on the node being awake and the back-
haul network availability with probabilities on the range from 0.005 to 1.0.
During simulations, such metrics as the share of fresh nodes, the Packet Travel
Time, the Generated Data Amount, and simulation’s efficiency were computed.
Results collected in experiments 4-5 showed prototypes advantages/disadvan-
tages and expected behavior of the real-world network with the given input
and environment.

The main outcome is that there is a cost behind masking the effects of edge
nodes being unavailable. Synchronization via the right neighbor can require
an increase of resource demand by 30% per unit but may increase the data
availability level by 50%-100%. The time required to get data from ou to su
is 1.75 times less on average using neib. Energy-efficient networks such as
LoRa may save battery but are suited for networks with low data traffic. The
next step is a comparison of collected values to the real-world network, so the
prediction’s accuracy level can be estimated.



9
Contributions
The main contributions of this research is in the Mask artifact, in the experi-
mental results about the Mask, in the simulation system artifact, and in the
measured performance of the simulation system.

The main findings are summarized in the current chapter. Those are listed
from the edge node’s, shadow node’s and the client’s perspective with respect
to the research question: What are the benefit and cost of masking edge node’s
unavailability?

First of all, the mask provides instant access to the data storage for edge nodes
when the back-haul network becomes available. Observation Units do not have
to wait for the client connection to push the observational data. The cost of
the mask is connected with replicating the edge nodes in the shadow network.
The shadow network receives and processes incoming data traffic from edge
nodes. It also receives and responds to requests from clients trying to access
the edge nodes. Consequently, the needed resources are processing, memory,
network bandwidth, and storage.

The shadow network is exposed to the client, it has enough energy to be always-
on and has a network connection with sufficient bandwidth. Even if Shadow
Units have not received updates for a longer period, the old data would be still
available for users. The main value for the client is that the shadow layer is
polling the observation network all the time. Clients do not have to wait for edge
nodes to become available, in principle they can subscribe for the notification

135



136 chapter 9 contributions

and access the data even after the edge node became unavailable again. From
the client’s perspective, the prioritized characteristic of the observation network
is the data availability - time to get the latest data from one edge node and
the time to get the latest data from all edge nodes. Those are dependent on
single synchronization success chances.

For instance, after a week of execution, all the edge nodes in the observation
network of 100,000 ous would synchronize at least once in the case of P(N)
= 0.25 and P(A) = 0.25. That corresponds to one node wake-up at least every
6 hours and the back-haul network being available at least every 6 hours.
If the cumulative % (�) ∩ % (# ) probability is lower or the desired time to
get the latest data should be minimized, an additional data delivery path
should be considered on the edge node’s side. Synchronization via the right
neighbor principle adds an extra communication channel which increases the
data availability level by 50%-100%, but the resource demand grows by 30%
per unit. The time required to get data from an ou to a su is 1.75 times
less on average using the neib. From the statistical point of a view, a simple
approximation can indicate how much time is required to get at least one data
update with a given probability % (�) ∩ % (# ). The expectation of time to get
the latest can be adjusted according to the approximation.

The simulation provided predictions and assumptions for the observational
network. For instance, the cumulative network throughput of approximately
≈ 2100 MB/s and the Generated Data Amount ≈ 25000 MB/s can be achieved
at the cost of ≈ 80 KB Node Resource Demand. That helps to predict the
behavior of the observation network with 250,000 edge nodes running for one
week. The simulation scales from 10 to 1,000,000 ous and supports Wi-Fi,
ble and LoRa network environments. Proven simulation’s sensitivity to the
network type, the number of edge nodes, and networks throughput indicates
possible observational network sensitivity to the same list of factors. 5 times
more data synchronizations per day may require an increase of resource cost
by 50%.
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Future Work
There is an open list of questions even though actual goals have been achieved.
Scope and limitations defined in section 1.3.5 highlight where the current
work should be stopped. There is still a list of tasks that is out of the stated
scope. Another project development vector is defined by the improvement of
known weaknesses. One more aspect of motivation is connected with scientific
curiosity. The idea is to test the hypothesis further and try to make sufficiently
reliable predictions for the real-world network of Observation Units.

10.1 Model development

Experiments and benchmarking showed opportunities for prototype improve-
ment. Some elements can be implemented as additions, while others require
the redesign of existing solutions.

10.1.1 Scaling

There are general scaling issues observed under high network throughput
(experiment 7.9) and for large networks (experiment 7.7). A memory leak fix is
probably needed. The first step is to do extra profiling and stress tests.
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Structures that contain data of network instances (ou, ur, sr, su) need
optimization. One suggestion is to split them into a "static" and a "dynamic"
part. All the data that is updated rarely or on startup only can be put into
the "cold" storage - the "static" part of the structure. The data that is accessed
regularly can reside in "hot" storage and become a part of the "dynamic"
structure element. Less io would result in fewer resources required to allocate
structures in memory.

Routers possibly need to operate differently. Start-up every second makes it
impossible to invoke synchronization outside the router’s uptime. If there will
be a development of bidirectional communication between Shadow Units and
Observation Units, an extra port always listening to incoming connection is
required at the router side.

10.1.2 Superpeers

Superpeers can reduce the workload on the edge nodes. It is a kind of "fog"
that can be introduced in terms of "cloud"-"edge" perspective. Superpeers
or "fog" nodes can increase data availability because ous would have an
intermediate always available instance located closer than a router. A leader
election mechanism would increase the level of resilience to failures. The node
with "superpeer" role shouldn’t be static in order to enable network recovery
in case of node’s crash. Any node should be capable of becoming a leader, so
the election mechanism has to be dynamic and available on every ou.

10.1.3 Edge computing

Another possible improvement is connected with load balancing. The first step
is to find out how much power is required for every wake-up. If there is the
time when ous are up, but idle then more work can be done on nodes, the idle
time can be spent on more data processing.

10.1.4 Isle to isle communication

There was an attempt to develop communication between clusters. The proto-
type has this functionality on the "beta" version, routers can send a handshake
and establish connections on the current development stage. The implemen-
tation required extra effort but is out of the scope of defined goals. The com-
munication is supposed to go via unit routers as illustrated in figure 10.1. Unit
Routers can be connected in the same way as ous are connected via the right
neighbor.
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Superpeers can be assigned to groups of edge nodes in the same way, so the
topology can be inherited from the router level. This approach may ease the
future development and maintenance process.

Such a connection pattern has two goals:

• to increase data availability, because it would be possible to lookup and
synchronize nodes in the nearest cluster;

• to spread the load evenly among neighbor routers, because not all routers
have the same number of concurrent connections for the data transfer.

10.1.5 Message Passing Interface add-on

The next suggestion is connected with mpi usage in the simulation. It is im-
possible to guarantee that the message-passing approach would bring definite
benefits. But such an implementation can be compared to the current way
of communication via gochannels in future experiments. mpi may help to
distribute the workload of the simulation among several compute nodes in the
hpc cluster.

10.1.6 Clock synchronization

The global clock approach turned out to be a weak point of the current im-
plementation The next development opportunity is implementation, test, and
comparison of logical clocks, vector clocks, and Lamport’s clocks [51]. Coordina-
tion and synchronization of local clocks require extra communication between
nodes. In case of future development, this experiment would include significant
prototype redesign, a new set of benchmarks, and experiments.

10.1.7 Pseudorandomization improvement

The pseudorandom approach showed that random values are repeating from
time to time in the case of an identical experimental setup. It was sufficient
for current goals, but can be improved in case of future work. For example,
randomized input can be generated using a hardware-based random number
generator which significantly increases the level of input data unpredictability
by means of physical equipment instead of programming language functions.
Such an addition would make the prototype’s behavior closer to the real-world
network.
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10.1.8 Power mode (sync_now)

One more idea is to force an ou to be awake all the time and scan for the
network using all available means. That can be done via a remote command,
for example, sync_now.

% (# ) ∩ % (�) consists of two independent probabilities. The chance of node
being awake would be set to 100%: % (�) = 1. In addition to this,neib protocol
can be enabled if such request (sync_now) is received

The prototype would require an adaptiveneib communication pattern and sup-
port for bidirectional communication. As a result, the data availability level can
increase significantly, limited only by the back-haul network availability.

10.2 Future experiments

When new features would be implemented, a new set of experiments can be
planned. Experiments involve prototype testing and the practical application
of results.

10.2.1 Scaling and synchronization

Evaluation of the current implementation has demonstrated several weaknesses.
Implementation of previously discussed modifications can improve shortcom-
ings. New experiments can be aimed at scaling and synchronization.

For instance, the network size can be scaled up to 10 million compute nodes
for various network environments and both the direct synchronization and
synchronization via the right neighbor. The simulation can show network char-
acteristics and data availability expectations in different scenarios, including
several types of clock coordination using superpeers or flat topology.

10.2.2 Real cluster comparison

The main result of the enhancement of existing weaknesses should be the
model which is closer to the real-world network. Simulation results can pro-
vide an expectation of the real-world network behavior. A set of experiments
determining the prediction accuracy level should be designed and executed.
In the bast case, the simulation would allow predicting the effect of changes in
the real-world network.





11
Conclusion
This thesis is an attempt to answer the research question: What are the benefit
and cost of masking edge node’s unavailability? Scope and limitations do
not allow including all the elements of the real-world network. A simplified
representation of the network of Observation Units resulted in the prototype
implementation.

Statistical approximation provided the initial input for the simulation. Sug-
gested execution time of 168 seconds and the expectation of at least one
successful synchronization became basic variables for the simulation.

Execution, observation, profiling, and the benchmarking of the source code
showed not only limitations of the implemented applications. It was the first
step to identify issues that may be relevant for the real-world network as well.
For instance, an undesirable bottleneck between Observation Unit and Unit
Router indicated the possible need of extra attention to load balancing. The use
of a global clock is relatively simple to implement but may result in a certain
degree of asynchrony between edge nodes due to differences in the workload
and clock cycles order.

The simulation is conducted on Fram supercomputer owned by NRIS - Norwe-
gian Research Infrastructure Services and located at the University of Tromsø.
There was a set of experiments that confirmed the validity of statistically de-
rived variables and that is possible to use those values as input for further
experiments. Various cluster sizes and a number of edge nodes were tested
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to check the simulations scaling abilities. Simplified versions of network types
such as Wi-Fi, Bluetooth 5.2 and LoRa were emulated. Some environments are
suited better for the low level of network traffic, some show better results in
higher workloads.

The number of emulated edge nodes was between 10 and 1,000,000. The results
were assessed for the expected single synchronization success probabilities
in the range: 0.0001 ≤ % (�) ∩ % (# ) ≤ 1. Such a range of variables is
chosen to cover most of the realistic scenarios. Not only the physical metrics
of the simulation were gathered, but also assumptions about the real cluster
behavior. For instance, possible benefit from "superpeer" usage was identified.
But testing of network topology modification in the simulation requires the
prototype redesign. Proposed efficiency coefficients indicated scaling issues.
Both Generated Data Amount in the model and network throughput tend
to decrease when the number of nodes exceeds 500,000 or the amount of
transferred data becomes high at single synchronization success chances over
25%.

Synchronization via the right neighbor is designed and implemented in the
simulation. Experiments showed that the increase of resource cost per unit
by 30% due to the need of an extra port listening to incoming requests may
increase the number of recently synchronized nodes by 50%-100%. The time
required to get data from ou to su is 1.75 times less in this case. Such an
assumption is the same for the simulation and the real-world network. This cost
may be accepted on very low single synchronization success probabilities when
the cumulative chance of the back-haul network availability and node being
awake is under 2.5%. Such a single synchronization probability can correspond:
(1) % (�) = 0.05 and % (# ) = 0.5; (2) % (�) = 0.25 and % (# ) = 0.10. Those
are realistic scenarios. But there is no exact calculation on increasing battery
demand and other aspects because a limited range of real-world factors is
taken into consideration.

In case of high network workload or network environments with smaller mtu
size and, hence, lower transfer rate, theneib implementation brings additional
communication overhead. Simulation, therefore, demonstrates scaling issues
when the number of edge nodes exceeds 250,000.

The current implementation has a list of drawbacks, those are not critical, but
should be considered as a potential source of uncertainties. That opens new
ways for the future development of the prototype. For now, all the primary and
additional research tasks are completed.
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