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ABSTRACT The performance of piezoelectric sensors deteriorated due to the presence of defect, delamina-
tion, and corrosion that needed to be diagnosed for the effective implementation of the structural health
monitoring (SHM) framework. A novel experimental approach based on Coulomb coupling is devised
to visualise the interaction of ultrasonic waves with microscale defects in the Lead Zirconate Titanate
(PZT). Multiresolution dynamic mode decomposition (mrDMD) technique in conjunction with image
registration, and Kullback Leibler (KL) divergence is utilised to diagnose and localise the surface defect in
the PZT. The mrDMD technique extracts the spatiotemporal coherent mode and provides an equation-free
architecture to reconstruct underlying system dynamics. Additionally, due to the strong connection between
mrDMD and Koopman operator theory, the proposed technique is well suited to resolve the nonlinear and
dispersive interaction of elastic waves with boundaries and defects. The mrDMD sequentially decomposes
the three-dimensional spatiotemporal data into low and high frequency modes. The spectral modes are
sensitive to defects based on the scaling of wavelength with the size of the defect. The error due to offset and
distortion was minimised with ad hoc image registration technique. Further, localisation and quantification
of defect are performed by evaluating the distance metric of the probability distribution of coherent data
of mrDMD acquired from healthy and defected samples. In the arena of big-data that is ubiquitous in
SHM, the paper demonstrates an efficient damage localisation algorithm that explores the nonlinear system
dynamics using spectral multi-mode resolution techniques by sensitising the damage features.

INDEX TERMS Damage detection, lead zirconate titanate, multiresolution dynamic mode decomposition,
piezoelectric ceramic, structural health monitoring.

I. INTRODUCTION
In recent times, Lead Zirconate Titanate, also known as
PZT, has emerged as the preferred choice for excitation of
ultrasonic waves for a wide variety of applications. The
notable aspects of PZT are wideband spectral response with
negligible mass, ease in integration, physical robustness,
lower power consumption, and economical benefits. The PZT
ceramics play a vital role in several industrial and military
applications, such as optoelectronics, telecommunication,
biomedical devices, actuators, energy harvesting devices, and
structural health monitoring (SHM) [1]–[5]. SHM focuses
on diagnostic, etiognosis, and prognosis for improving the
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reliability and operational life of mechanical and aerospace
structures [6], [7]. SHM can be broadly classified into two
main categories, i.e., i) global health monitoring, and ii) local
health monitoring. In the latter category, ultrasonic-based
SHM plays a crucial role in damage detection and localisa-
tion at the microscale. However, the accuracy and reliability
of diagnosis are constricted by the quality of piezoelectric
sensors. Under the operational condition, the sensor may
deteriorate due to exposure to humidity, temperature fluctua-
tions, and a corrosive environment. To avoid inaccuracies in
the SHM framework, it is imperative to diagnose aberration
to PZT sensors arising from surface defect, corrosion, and
delamination [8], [9].

In the past few decades, a significant number of non-
destructive evaluation (NDE) and SHM techniques have been
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evolved and implemented for detecting the failure in critical
structures [10]–[12]. Several non-destructive methodologies
like; 1) neutron diffraction, 2) nano-indentation, 3) X-ray
diffraction, and 4) Raman spectroscopy have been tradi-
tionally used to characterise PZT thin films [11], [12]. The
above-mentioned techniques provide localised information
on the mechanical properties of the material.

To enhancematerial characterisation and damage detection
over a wide area, active sensing based on tuned Lamb waves
and surface acoustic waves (SAWs) with piezoelectric wafers
has been adapted due to its capability to propagate large
distances without much loss of energy [3], [13]–[18]. These
techniques being sensitive to defect are less appealing for
high-resolution spatial localisation of surface and subsurface
aberration.

To achieve high resolution acoustic imaging (∼1 MHz-
1 GHz), Scanning Acoustic Microscopy (SAM) has evolved
that utilises contrast in reflectivity of the elastic waves upon
interaction with the surface defect [19], [20]. Rabe et al. [21]
demonstrated the technique to measure the dynamic Young’s
Modulus at nanometer resolution on soft material using
near field Atomic Force Acoustic Microscopy (AFAM).
However, the technique is exclusive to measure surface prop-
erties and limits itself to quantify subsurface and bulk prop-
erties. Shilo et al. [22] has demonstrated high-resolution
visualisation of high frequency (0.29 GHz) surface acous-
tic wave (SAWs) propagating in semiconductor crystal (Si
and GaAs) without any additional electrode using X-ray
diffraction. The novel approach has opened avenues for
studying phonon interaction with a defect in piezo and
non-piezoelectric crystal. However, the technique demands
a high-intensity X-ray Synchrotron Radiation Facility that
restricts its wide acceptability. Sugawara et al. [23], demon-
strated visualisation of phonon vibrations with nano-meter
resolution in the piezoelectric crystal using pico-second
laser ultrasonic. The ultrashort optical pulse generates heat
that creates non-equilibrium electron heating and sponta-
neous relaxation results in the generation of high frequency
(∼1 GHz) strain waves. More recently, Scanning Laser
Doppler Vibrometer (SLDV) has evolved to facilitate the
three-dimensional visualisation of acoustic wave propaga-
tion in isotropic and anisotropic materials. Several studies
have demonstrated the interference of guided waves with
surface and subsurface inclusions in materials such as com-
posite structures, piezoceramics, piezo-crystals, and metallic
plate-like structures [24], [25]. However, both picosecond
laser ultrasonic and SLDV, apart from being an expensive and
time-consuming technique, required an optically opaque and
polished sample surface.

Past one decade, our group has dedicated efforts to opti-
mise the point contact excitation and detection method for the
generation and visualisation of broadband ultrasonic waves in
piezoelectric materials [26]–[31]. The technique has success-
fully demonstrated its diversity in excitation and detection of
bulk and guided waves, metamorphosis to Lamb, and surface
acoustic wave by exciting phonon vibration in piezoelectric

materials [26]–[32]. The phonon vibration is excited by virtue
of transforming the electromagnetic field into mechanical
energy [33]. A detailed description of the working principle,
advantages over the other NDE of piezoelectric materials has
already been published earlier and omitted herein [31], [32].

In order to excite and detect the ultrasonic waves, a probe
made of a gold sphere or a steel sphere was used that acts
as a Coulomb electrode. Habib et al. [30] have demonstrated
the influence of probe radius on the directionality and forward
contribution of the emitted and detected ultrasonic wave. This
paper has extended the point contact excitation and detection
technique to visualise the interaction of ultrasonic waves with
a surface defect in sintered piezoceramic. The propagation
of the ultrasonic wave in solid plate structures possesses a
multiresolution characteristic of system dynamics. When the
ultrasonic wave encounters the boundaries and defects, it con-
tinues to suffer from several reflections and interferences.
Due to multiple interactions with edges and defects, often
the ultrasonic waves undergo mode conversion resulting in
spatial and temporal dispersion. In such a scenario, the local-
isation of defects from wave visualisation becomes challeng-
ing, in particular, when microscale and macroscale effects
are conceivably differed in both space and time by orders
of magnitude. Thus, it is essential to extract and quantify
damage features from big-data.

We propose an advanced damage detection method based
on multiresolution dynamic mode decomposition [34], image
registration, and Kullback Leibler (KL) divergence [35]. The
mrDMD algorithm is an extension of dynamic mode decom-
position (DMD) with multiresolution analysis (MRA) in
time. The mrDMD is ideally suited for the decomposition of
complex waveforms and extract coherent spatiotemporal fea-
tures. In a recent computer vision algorithm, DMD has been
utilised to extract spatiotemporal features and applied to sep-
arate the foreground and background of video frames in real-
time [36]. Bilal et al. [37] employed the mrDMD algorithm
to detect the epileptic seizure. Further, Sikha and Soman [38]
detected the salient region in noisy images by utilising the
mrDMD algorithm. The well-suited methods to perform
MRAs are windowed Fourier transform [39], Hilbert-Huang
Transform [40] and wavelet-based methods [41], [42]. These
techniques are limited in implementation in both space and
time simultaneously. However, the mrDMD overcomes the
limitation and separates the multiscale spatiotemporal fea-
tures. To the best of our knowledge, none of these techniques
in together or separately are employed for detection and
localisation of damage.

The proposed damage detection algorithm has numerous
advantages for high dimensional wave field images acquired
by the Coulomb coupling technique. At the very outset,
the data-driven and equation-free framework of the mrDMD
algorithm reconstructs the underlying dynamics alone from
the snapshot measurements [43]–[46]. Additionally, due to
the strong connection between mrDMD and Koopman oper-
ator theory, the proposed technique is well suited to resolve
the nonlinear and dispersive interaction of elastic waves with
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FIGURE 1. Flowchart of the proposed novel damage detection algorithm.

boundaries and defects [47]–[50]. Finally, one can modify
the DMD algorithm to take advantage of the sparse or lim-
ited measurement of the complex system [51], [52]. The
experimental method based on the Coulomb Coupling tech-
nique is a well-suited method for the detection of surface
cracks. Further, the proposed novel damage detection algo-
rithm is a data-driven and equation-free technique. Recently
data-driven breakthroughs are transforming how we detect,

model and control damages in the SHM framework. Most
of the techniques available are based on empirical models
or derivation based on first principles. In SHM, the sys-
tems depict as nonlinear, high-dimensional, dynamic, and
multi-scale in space and time. With unprecedented accessi-
bility of data and expanding computational resources make
the novel data-driven algorithm robust and ease of use in
real-life scenarios. The algorithm is divided into two-phase,

FIGURE 2. (a) Experimental setup for point contact excitation and detection scheme, and (b) 3D illustration of the
arrangement of sender and receiver steel probe along with PZT.
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i.e., i) spatiotemporal feature extraction using mrDMD, and
ii) damage localisation using distance measure of the prob-
ability density of 2D wavefield image data-set of healthy
state and damaged state. The advantages mentioned above
of mrDMD combined with image registration and KL diver-
gencemandate the developed data-driven algorithm as robust,
accurate and computationally viable for the SHM framework.
The schematic representation of the overview of the paper
emphasising the damage-detection algorithm comprising of
mrDMD, Image registration and KL divergence is shown in
Fig. 1.

II. EXPERIMENTAL SETUP
Our group has previously provided a comprehensive
overview of the excitation and detection probes fabrication,
as well as the experimental setup [27], [29], [31], [32].
This innovative experimental technique for point contact
excitation and detection is based on Coulomb coupling and is
designed for the excitation and detection of ultrasonic waves
in a piezoceramic. A Coulomb coupling technique is based on
electro-mechanical excitation to generate an electric field that
induces stress waves. The experimental method was designed
for effective electric field coupling with elastic modulus and
permittivity of piezoceramics. The experimental setup for
point contact excitation and detection in PZT ceramic sample
is depicted in Fig. 2.

The excitation Dirac delta pulse of 70 ns time width
was produced using an arbitrary function generator (Agilent
81150A). The excited signal was routed to a radio-frequency
(RF) amplifier (Electronics and Innovation: 403LA,
New York, USA) for signal amplification. The amplified
signal was sent to the excitation steel probe. The steel sphere
made gentle contact with the sample’s surface. The excited
signal produced the acoustic waves in the PZT ceramic spec-
imen. An identical steel sphere was employed on the opposite
side of the PZT ceramic plate specimen to acquire the propa-
gated signal, which was then amplified by a trans-impedance
amplifier (DHPCA-100). A trans impedance amplifier of

FIGURE 3. Optical image for the surface flaw of the PZT ceramic sample.
The size of the defect is 1.2 mm × 1.3 mm and 1.5 mm in depth.

this kind transforms current into voltage using an adjustable
amplification factor. Finally, the amplified signal was cap-
tured using an oscilloscope (Agilent 3024A) capable of digi-
tising up-to 12 bits. The data collection sampling interval was
25 ns. The oscilloscope averages 256 pulse shots and digitises
the signal, which is then saved in a personal computer (PC)
via a USB port. The PC also controls the mechanical scanner
in the XY plane, i.e., the step size is 50 µm in both directions
and a scanning area of 10 mm × 10 mm.

The objective of the experiment was to visualise the wave
propagation in the PZT sample and localise the defect in the
sample. At first, a healthy PZT sample as a reference was
placed in the experimental setup, and the measurement was
performed. Following the completion of healthy state exper-
iment, a calibrated damage was introduced on the surface of
PZT ceramic with a high-speed diamond drill. The damage
was approximately 1.2 mm × 1.3 mm and 1.5 mm in depth.
The optical image of the drilled PZT can be seen in Fig. 3.
The interaction of the ultrasonic wave with the damage was
visualised by performing the experiment again.

III. MULTIRESOLUTION DYNAMIC MODE
DECOMPOSITION (mrDMD)
To discuss the mathematical background of mrDMD, let us
assume S be a matrix that represents a collection of two
dimensional (2D) snapshots given in (1). The spatial dimen-
sion of each snapshot is p× q, and there existsM number of
such snapshots along the time axis. It is possible to unwrap
each frame to a higher dimensional matrix, for instance,
N − dimensional (N = p× q� 1) column vector of a large
data matrix X. Corresponding to each frame, the columns of
X are sampled regularly at 1t in time as given in (2).

S =
[
it1 , it2 , . . . , itM

]
(p×q)×M (1)

X = [x1, x2, . . . , xM ]N×M (2)

To apply DMD, we can arrange the data matrix X into two
matrices X1 and X2 as given in (3) and (4).

X1 = [x1, x2, . . . , xM−1]N×(M−1) (3)

X2 = [x2, x3, . . . , xM ]N×(M−1) (4)

The DMD algorithm assumes that there exists a best-fit
linear operator F relating both the X1 and X2 matrices as
given in (5).

X2 = FX1 (5)

where, F represents the system dynamics and is also referred
to as the Koopman operator [34]. The matrix F can be com-
puted by pseudo-inverse or eigen decomposition as given
in (6).

F = X2X
†
1 (6)

where, † denotes Moore-Panrose pseudo inverse.
For a high dimensional data, i.e., N is large, the compu-

tation of matrix F may demand higher computational cost.
To reduce the computational cost, the rank reduced represen-
tation of F as denoted by F̃ is computed by projecting F onto
proper orthogonal decomposition (POD) modes.
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Further, to apply mrDMD, the samples of spatiotem-
poral data are selected such that all possible low and
high-frequency contents are available. The mrDMD is a
recursive approach of DMD, which extract the low-frequency
features from the given spatiotemporal data. At first,
the mrDMD removesm1 modes andm1 is the number of slow
modes at level 1. The remaining modes are considered as the
fast modes at level 1. Mathematically, mrDMD solution can
be approximated as given in (7).

xmrDMD(t) =
m1∑
k=1

bk (0) φ
(1)
k (ξ ) exp(ωk t)︸ ︷︷ ︸

(slow modes)

+

M∑
k=m1+1

bk (0) φ
(1)
k (ξ ) exp(ωk t)︸ ︷︷ ︸

(fast modes)

(7)

where, ξ are the spatial coordinates, bk (0) is the initial
amplitude of each mode. φ(1)k is DMD mode or eigenvector
of full snapshot matrix, and exp(ωk t) is the corresponding
eigenvalue. After the first level of decomposition, the time
window is reduced for the second level. The DMD algorithm
can be performed again with a reduced time window on the
second sum, representing the fast modes of (7). However, the
fast modes are again separated into two matrices.

XM/2 = X(1)
M/2 + X(2)

M/2 (8)

The first matrix of the right-hand side in (8) has the
first M

/
2 snapshots, and the remaining snapshots are in

the second matrix. At this level of decomposition, the m2
slow-DMD modes are represented by φ(2)k are computed sep-
arately from the first- or second-time interval. This removal
of slow modes is repeated recursively till the desired trun-
cation level is achieved. This process is also represented

FIGURE 4. (a) The general structure of the mrDMD decomposition tree. Illustration of eigen value on a complex plane
corresponding to the dynamic-modes at b) level 1, c) level 2, and d) level 3 of decomposition. The yellow and grey
shaded regions represent slow and fast mode region at that level respectively.
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in Fig. 4. The general mrDMD decomposition structure is
illustrated in Fig. 4(a). The eigen value of (7) corresponding
to a dynamic-mode represents a particular point on a complex
plane. Referring to Fig. 4(b), Fig. 4(c) and Fig. 4(d), the slow
dynamic-modes at a certain level of decomposition are repre-
sented by the points near to the origin of the complex plane.
There exists m1 slow modes at 1st level of decomposition
which are shown by red dots on a complex plane in Fig. 4(b).
The m2 (blue circles) and m3 (black squares) represent the
slow dynamic-modes at 2nd and 3rd level of decomposition as
shown in Fig. 4(c) and Fig. 4(d). The grey region illustrates
the slow modes which are removed at that level. In Fig. 4(d),
the green stars represent some dynamic-modes which can be
extracted beyond 3rd level of decomposition.

The schematic diagram of the mrDMD technique is
explained in Fig. 5. A three-level decomposition of
mrDMD (left) and the sampling strategy of snapshots (right)
at each level is shown in Fig. 5. The mrDMD extracts the
slow varying features at level-1 (the bottom panel), and the
fast scale features are successively extracted at a higher level
of decomposition. The mrDMD method initially adapts M
snapshots to capture slow scale features. At each higher level,
successively, the sample size of the data is reduced to half of
its previous level. The level 1 has the lowest frequencies of the
dynamic-modes and increases as the level of decomposition
an increase.

Formally, one can define the mrDMD solution in a
generalised form as

xmrDMD(t) =
L∑
l=1

J∑
j=1

mL∑
k=1

f l,j(t)b(l,j)k φ
(l,j)
k (ξ ) exp(ω(l,j)

k t) (9)

where,

l = 1, 2, . . . ,L : number of decomposition levels, (10)

j = 1, 2, . . . , J : number of time bins per level

(J = 2(l−1)), (11)

k = 1, 2, . . . ,mL : number of modes extracted

at level L. (12)

f l,j(t) is known as indicator function acts as a sifting function
and is defined as:

f l,j(t) =
{
1, tj ≤ t ≤ tj+1
0, elsewhere

(13)

Equation (9) represents the mrDMD solution containing
the information about time bins, the number of decomposition
levels and the modes extracted at various levels.

The detailed algorithm of mrDMD [34] is explained in
brevity in the following section.

A. THE mrDMD ALGORITHM
Step 1:Construct the data matricesX1 andX2 at level l and

time bin j of the decomposition as referred to in (3) and (4).
Step 2:Take the singular value decomposition (SVD) ofX1

X1 = U6V∗ (14)

where, ∗ denotes the conjugate transpose, U ∈ Cn×r , 6 =

Cr×r , andV = Cm×r . Here, r is the rank of the reduced SVD
approximation to X1; the left singular vectors of U are POD
modes.

FIGURE 5. Illustration of mrDMD algorithm demonstrating sampling strategy of snapshots at various levels. a) time-frequency
decomposition up to level-3 colour-coded with the snapshots, and b) snapshots of decomposition up to level-3 decomposition.
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Step 3: Next, compute F̃
(l,j)

, the r × r projection of the
entire matrix F(l,j) onto POD modes:

F(l,j)
= X2V6−1U∗

F̃
(l,j)
= U∗F(l,j)U = U∗X2V6−1 (15)

Step 4: Compute the Eigen decomposition of F̃
(l,j)

F̃
(l,j)

W =W3 (16)

where, the columns ofW are eigenvectors and3 is a diagonal
matrix with the corresponding eigenvalues λk
Step 5: At this level of decomposition, collect the slow

eigen values to construct slow modes, if present, where∥∥λj∥∥ < ρ, and ρ is chosen in such a way to extract slow
modes.
Step 6: Finally, reconstruct the Eigen decomposition of

F̃
(l,j)

fromW and3. Specifically, the eigen values of F(l,j) are
presented by 3, and the eigenvectors of F(l,j) (DMD modes)
are the same as the columns of 8(l,j):

8(l,j)
= X2V6−1W (17)

Step 7: Halve the initial sampling window at level l + 1,
and repeat the procedure for each subsequent sample.

In step 2, the rank r may be chosen by the optimal
hard threshold technique; the principled way of truncation is
discussed briefly in the following section.

B. OPTIMAL HARD THRESHOLD TO OBTAIN
SINGULAR VALUE TRUNCATION
Noise is an unavoidable part of data collected from an experi-
ment. In such case, a principle way to truncate singular values
of a data matrixX under the assumption that it has a low-rank
matrixXt with additive white noise error matrixXn and noise
magnitude υ is given by the recent theoretical discovery by
Gavish and Donoho [53] that determines the optimal hard
threshold τ :

X = Xt + υXn (18)

When the noise magnitude υ is known:

τ = η
√
Nυ (19)

a. For a square matrix, X ∈ RN×N

η =
4
√
3

(20)

b. For rectangular matrix, X ∈ RN×M andM � N with
β = M

/
N

η(β) ,

√
2(β + 1)+

8β

(β + 1)+
√
β2 + 14β + 1

(21)

When the noise magnitude υ is unknown, this is usual in
real-world situations:

a. For a rectangular matrix, X ∈ RN×M

τ = ω(β)σmed (22)

Here, σmed is the median singular value; ω(β) = η(β)
/
µβ ,

µβ can be approximated numerically by solving:
µβ∫

(1−
√
β)2

√
((1+

√
β)2 − t)(t − (1−

√
β)2)

2π t
dt =

1
2

(23)

The rank r of the reduced SVD approximation can be deter-
mined by using the technique as discussed in this section.

IV. IMAGE REGISTRATION
Image registration is the method of superimposing two or
several images of the same event from various perspectives
or sensors [54], [55]. With respect to the reference image,
the sensed image is geometrically aligned. Image registration
is utilised in the application where different way of image
acquisition is considered such as a) Images of the same
scene acquired from different viewpoints, b) Images of the
same scene acquired at different times, c) Images of the
same scene acquired by different sensors, and d) Scene to
model registration. Universal method of image registration is
not practical because of the variation of images and several
types of degradation. The image registration should take into
account factors such as geometric deformation among the
images, required accuracy and the noise content. Nonethe-
less, registration methods mostly comprise of the following
four steps [54] (see Fig. 6):

a. Feature detection- Salient and distinctive features are
manually or automatically detected.

b. Feature matching- A spatial relationship among the
detected features in the sensed image v(x, y) and those
in reference image u(x, y) is established.

c. Transform model estimation- The parameters of the
mapping functions are computed with the help of estab-
lished spatial relationship among the features.

d. Image resampling and transformation- Mapping func-
tions formed in the previous step are employed to

FIGURE 6. A schematic diagram representing the four steps of image
registration.
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transform the sensed image. The necessary interpola-
tion technique is used to calculate image value in the
co-ordinate where the information is missing after the
transformation.

Finding the similarity is an important component in the
proposed damage detection algorithm. An mrDMD mode
from the healthy data is considered as a reference image and
from the damage data is considered as a sensed image. After
registering these images, they are compared based on the
content. Here in this work, the author used KL divergence for
comparison of the images. In the following section, the KL
divergence is briefly discussed.

V. KL DIVERGENCE
The Kullback Leibler (KL) divergence measures the dis-
tance between the two probability density functions h(x) and
u(x) [35]. In statistics, it characterises the entropy, and it is
defined as:

DKL(h ‖ u) ,
∫
h(x) log

h(x)
u(x)

dx (24)

KL divergence can be used efficiently to measure the simi-
larity between images [56]. In information theory, it measures
the information loss in the fitted model u(x) relative to that
in the reference model h(x). Note that, DKL(h ‖ u) = 0,
if h(x) = u(x)(since log 1 = 0) which indicates the
self-identification and DKL(h ‖ u) > 0 for all h(x) and u(x).

VI. RESULTS AND DISCUSSIONS
In this section, we present results by implementing the pro-
posed damage detection algorithm. Fig. 7 shows the visuali-
sation of two dimension (2D) acoustic waves propagation in
the PZT ceramic. The time interval of the 2D image is 190 ns.
The total acquisition time of the temporal images was 1µs,

corresponding to 365 time-varying snapshots. The dimension
of the spatiotemporal data matrix S is 200 × 200 × 365.
Referring to Fig. 7 (H1-H2), the maximum intensity was
observed at the centre of the image attributing to strong
coupling of the electric-field. The outward radiating longitu-
dinal wave generates circular wave fringe due to the isotropic
property of the PZT ceramic.

Upon completion of the Coulomb scanning of the healthy
specimen, a controlled surface damage was introduced in the
PZT ceramic. The damaged ceramic was reoriented to ensure
minimum scanning offset (translation/rotation) with respect
to a healthy state. Fig. 8 shows the time-sequential images
of wave propagation in damaged PZT ceramic. The surface
defect in the PZT ceramic behaves as a reflector and impedes
the transmission of the elastic wave. The forward propagating
wave reflects from the surface defect and plate boundaries.
The wave experience multiple interferences between the
forward propagating and back-propagating reflected waves,
as evident from Fig. 8 (D3-D6). Further, the interaction of
ultrasonic wave with the defect cause attenuation of the bulk
wave.

The precise detection and quantification of the defect
directly from the experimental images are difficult due to
the multiple interferences between the forward and reflected
waves. To overcome the challenge, here we demonstrated an
algorithm that separates spatiotemporal features emanating
from the wave interaction with the defect. The main contribu-
tion of the paper is to develop a time-frequency based feature
detection algorithm for damage detection and localisation of
damage. The mrDMD is ideally suited for decomposition
of complex waveform and extract spatiotemporal features
of damage. The algorithm is divided in two phases i.e.,
i.) spatiotemporal feature extract using mrDMD, and
ii) damage localisation using distance measure of probability

FIGURE 7. The sequential images of propagation of acoustic wave at an interval of 190 ns in a 3 mm thick sintered PZT ceramic plate
(healthy state). The scanning region was 10 mm × 10 mm.

FIGURE 8. The sequential images of propagation of acoustic wave at an interval of 190 ns in a 3 mm thick sintered PZT ceramic plate (with
surface defect). The scanning region was 10 mm × 10 mm.
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FIGURE 9. Results of mrDMD applied on 2D wave propagation in healthy PZT ceramic. a) Four-level of time frequency decomposition (top
panel), b) level 1, c) level 3, and d) level 4 of mrDMD modes (bottom panel).

density of 2D wave field image dataset of healthy state and
damaged state.

Fig. 9 and Fig. 10 represent the results obtained by
applying the mrDMD algorithm in the healthy and dam-
aged state, respectively [34], [57]. Fig. 9(b) and Fig. 10(b)
shows first level of decomposition, representing slowest wave
mode for healthy and damaged state, respectively. Refer to
Fig. 9(b) and Fig. 10(b), the slowest wave mode is denoted
by φ(1,1)H1 and φ(1,1)D1 that represent the long time period. In this
mode, the strong intensity at the centre is observed due to the
strong coupling of the electric field. Fig. 9(c) and Fig. 9(d)
represent level 3 and level 4 of mrDMD modal decomposi-
tion for healthy sample. The higher-order modes represent
fast-varying features of acoustic wave propagation in PZT
that are sensitive to surface and subsurface defects.

The data-driven approach of mrDMD extracts sensitive
spatiotemporal features of the wave interaction with the
defect. Fig. 10 shows the four-level of mrDMD decompo-
sition of spatiotemporal wavefield imaging in the defective
PZT. Further, at the first level of decomposition, the extracted
mode, φ(1,1)D1 , of the damaged state shows the impression of
the surface defect (Fig. 10 (b)). However, the lowest order

mode has long wavelength that restricts the spatial resolu-
tion. The level-3, φ(3,3)D3 of mrDMD decomposition, shows
extracted feature of the reflected wave from the edge of the
defect along with the forward propagating acoustic waves
(Fig. 10(c)). Further, Fig. 10(d) illustrates the mrDMD level 3
mode, φ(3,3)D4 that shows considerably low intensity of the
reflected wave. Upon, comparison of the original wavefield
image, (refer Fig. 8-D3), with level-3 mrDMD mode shows
a similar observation of reduced intensity. For both healthy
and damaged situation, a 4-level decomposition is sufficient
to extract spatiotemporal sensitive features.

Considering, the decomposition of mrDMD modes,
the subsequent objective is to localise and quantify the dam-
age in the PZT. To achieve this, we considered the slowest
mode, φ(1,1)H1 and φ(1,1)D1 at level 1 of the decomposition from
both the healthy and damaged data. Since, the healthy and
damaged data are disjoint and acquired independently, hence,
it is presumed that the 2D wave filed image will possess
geometrical offset and rotation. As, the mrDMD modes are
extracted from raw images, the offset or rotation will also
present in such modes. A minor offset or rotation can lead
to a considerable error in the quantification of the defect.
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FIGURE 10. Results of mrDMD applied on 2D wave propagation in damage PZT ceramic. a) Four-level of time frequency decomposition
(top panel), b) level 1, c) and d) level 3, and e) level 4 of mrDMD modes (bottom panel).

FIGURE 11. Results of intensity-based image registration. a) The damage mode (magenta) is registered and overlaid on the healthy
mode (green), b) the aligned cropped image of healthy mode, and c) the aligned cropped image of damage mode.

To overcome the errors arising due to offset in the consid-
ered modes, the intensity-based image registration technique
is employed. In the intensity-based image registration, the
healthy mode is considered as a reference image (green)
and the damage mode as translated/rotated image (magenta)
(refer to Fig. 11(a)). Fig. 11 shows the outcome of offset
correction obtained through the image registration technique.

The common region of Fig. 11(a) is selected and masked for
quantifying the defect. Fig. 11(b) and Fig. 11(c) show the
resulting aligned cropped images for healthy and damaged
mode, respectively.

Once the process of image registration is performed,
the localisation and quantification of damage are performed
by computing the KL divergence. The key idea of computing
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FIGURE 12. Plot of normalized KL Divergence scores. a) The scores are computed by first considering the horizontal strip and sliding
across along the vertical direction, and b) the vertical strip sliding across along the horizontal direction.

KL divergence is computing the statistical distance between
the modes of healthy and damaged states. The mrDMDmode
of damage state almost exhibits themode of healthy state with
some loss of information at the damage location. Consider
I1(x, y) and I2(x, y) represent the output masked image of
the healthy and damaged state respectively; the dimension of
each image is w × h. As discussed in section V, KL diver-
gence scores are minimum for similar modes (i.e I1(x, y) ≈
I2(x, y)). Here, we computed KL divergence strip-wise; first
a horizontal strip is considered and sliding the strip along the
vertical direction (Ik (x, j); 1 ≤ k ≤ 2; 1 ≤ j ≤ h) and vice

FIGURE 13. Localisation of the surface defect in a rectangular region
between i = 87 to 116 and j = 34 to 56 unit. The size of the surface defect
is quantified as approximately 1.4 mm × 1.1 mm.

versa (Ik (i, y); 1 ≤ k ≤ 2; 1 ≤ i ≤ w). The computation
of KL divergence scores by considering both directions are
illustrated in Fig. 12.

Referring to Fig. 12(a), sliding strip along the vertical
direction, the KL divergence scores suddenly escalate in the
domain from j = 34 to j = 56. Similarly, from Fig. 12(b),
the strip along the horizontal direction, in the domain from
i = 87 to i = 116 the KL divergence scores are again
increased abruptly. Referring to Fig. 13, a rectangular region
is compartmentalised between j = 34 to 56 and i = 87 to 116
which conforms to the location of the defect. The size of the
surface flaw is quantified approximately 1.1 mm × 1.4 mm.
The original size of the defect was approximately 1.2 mm ×
1.3 mm. Therefore, the proposed algorithm is efficient for
localisation and quantification of the damage with an error
of about 1.3%.

Further, we implemented the algorithm repeatedly by vary-
ing several parameters to illustrate the reliability of the
proposed algorithm. The first parameter considered here is
the rank r that has significant importance in the mrDMD
algorithm. It depends on the factors such as the amount of
noise and the distribution of the singular values. Often, one
selects the rank r of the SVD by identifying ‘‘elbows’’ or
‘‘knees’’ in the plots of singular values on the logarithmic
scale. The ‘‘elbows’’ or ‘‘knees’’ may represent the transition
of important patterns from noise. Another way of truncating
the singular values at the rank r that captures a pre-defined
energy such as 80% or 90% in the original data [57]. Despite
primitive, these techniques are commonly used. To overcome
this, a principled approach to obtaining rank reduced SVD
is discussed in Section III-B. We also implemented the algo-
rithm by setting the rank r on identifying the ‘‘elbows’’ from
the distribution of singular values in a logarithmic scale. The
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damage is identifiedwith an accuracy of about 97%. As stated
earlier, the accuracy is further improved when the optimal
truncation value is employed using the optimal hard threshold
technique as discussed in Section III-B. The second parame-
ter considered to illustrate the reliability is ρ in step 5 of the
mrDMD algorithm. The parameter ρ is chosen to extract slow
modes. There is some liberty in the selection of ρ. This value
is selected based on the length of the sampling window. The
results presented in this paper chooses the value of ρ in such
a way that to extract modes with fewer than two cycles within
the sampling window. However, the algorithm is repeated
by setting the various values of ρ, such as one cycle and
three cycles of oscillations. In each repetition, the damage is
identified with an error of less than 5%. Finally, defining the
limits of the escalating region in the plot of the KL divergence
score is a contentious choice. However, one can define the
limit by threshold crossing of the KL divergence score.

VII. CONCLUSION
Multiresolution dynamicmode decomposition is an equation-
free data-driven technique that explores the underlying sys-
tem dynamics by extracting spatiotemporal coherent mode.
The unique ability of mrDMD is leveraged to extract
higher-order dynamic-modes of the ultrasonic wave. The
point source technique based on Coulomb coupling is
employed for the excitation and detection of ultrasonic waves
in PZT sensors. The two-dimensional spatial temporal evo-
lution of waves in the PZT is imaged for diagnosis and
localisation of surface defects in the PZT. The mrDMD pro-
vides input-output models for the interaction of waves with
complex geometries. The coherent mode of propagation of
elastic waves are filtered, and modes sensitive to defect are
considered for localisation. Further, KL divergencemethod in
two-dimensional scanningmode is used to localise the detects
from the mrDMD defect sensitive modes. The proposed algo-
rithm exhibits good accuracy in detecting and quantifying
damage with an error of around 1.3%. Albeit, the technique
being implemented on full-field transient imaging, has still
poised itself to perform satisfactorily in situations of data
sparsity that needs further investigation.
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