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Abstract: As the scaling of silicon PV cells and module manufacturing has driven solar energy
penetration up and costs down, concentrator photovoltaic technologies, originally conceived as a
cost-saving measure, have largely been left behind. The loss of market share by CPV is being locked in
even as solar energy development encounters significant obstacles related to space constraints in many
parts of the world. The inherently higher collection efficiency enabled by the use of concentrators
could substantially alleviate these challenges, but the revival of CPV for this purpose requires
substantial reinvention of the technology to actually capture the theoretically possible efficiency gains,
and to do so at market-friendly costs. This article will discuss recent progress in key areas central
to this reinvention, including miniaturization of cells and optics to produce compact, lightweight
“micro-CPV” systems; hybridization of CPV with thermal, illumination and other applications to
make use of unused energy streams such as diffuse light and waste heat; and the integration of
sun-tracking into the CPV module architecture to enable greater light collection and more flexible
deployment, including integration into built structures. Applications showing particular promise
include thermal applications such as water heating, industrial processes and desalination; agricultural
photovoltaics; building-integrated photovoltaics with dynamic daylighting capabilities; and chemical
processes including photocatalysis and hydrogen production. By appropriately tailoring systems
to the available solar resource and local energy demand, we demonstrate how CPV can finally
achieve real-world efficiencies, or solar resource utilization factors, far higher than those of standard
silicon-based PV systems. This makes the argument for sustained development of novel CPV designs
that can be applied to the real-world settings where this efficiency boost will be most beneficial.

Keywords: concentrator photovoltaics; hybrid solar collectors; tracking integration; building inte-
grated photovoltaics; agricultural photovoltaics; light splitting; photovoltaic-thermal systems

1. Introduction: The Promise and Pitfalls of PV and CPV

Keeping up with the rapid changes in the photovoltaics industry can be a full-time
job for researchers in the solar energy field. While the drumbeat of new PV megaproject
announcements and pricing records is constant and ever-increasing at the time of this
writing [1], it is only five years previously that photovoltaics began to reach economic parity
with conventional energy generation technologies on a global scale [2]. This rapid shift has
appeared to spell the end of the road for one technology that was once believed to hold the
key to widespread, low-cost solar energy adoption: concentrator photovoltaics (CPV).

The original cost-saving rationale for CPV has been discussed extensively [3], and
until a decade ago still attracted significant investment and research focus within the
still-immature field of photovoltaics. By shrinking the expensive photovoltaic cell and
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illuminating it with optics made from cheap commodity materials (glass or polymer),
CPV for decades achieved lower module and per-kWh costs than non-concentrating solar
panels based on large-area silicon PV cells. This was in spite of substantial additional
costs imposed by the use of concentrators: the loss of all or most of the diffuse component
of the solar resource; the requirement of a sun-tracking mechanism to maintain full-day
illumination of the solar cells; and the need for passive or active cooling of the solar
cells. However, CPV costs never declined sufficiently to compete with conventional
energy generation, and it therefore remained only a big fish in the small pond of a still-
niche solar market [4]. It was only the scaling of first silicon refining, and then cell and
module manufacturing, and the associated learning-curve cost reductions, that allowed
photovoltaics to first match, and now undercut in many places, the economics of the
prevailing generation technologies [5–8].

As this transformation of solar energy economics took hold, CPV entered what could
be described as a death spiral: pushing efficiency limits with increasingly highly-engineered
multijunction solar cells; attempting to offset their harsh economics with higher concen-
tration ratios; and finding these attempts at savings thwarted by a host of new costs in
high-precision optics manufacturing and sun tracking, and losses imposed by the increas-
ingly narrow angular acceptance profiles of these ultra-high concentration systems and
stricter spectral-matching requirements of many-junction solar cells [9]. At the present time,
efforts by conventional CPV manufacturers to salvage their business models appear to have
roundly failed, and nearly all have declared bankruptcy or moved into other business areas.

There remains, in principle, one major selling point for CPV, which is the capability for
substantially higher efficiencies in the capture and conversion of sunlight. This is usually
presented in economic terms, where high concentration factors enable the use of high-
efficiency solar cells with high manufacturing costs. However there is a fundamental aspect
as well–concentrated light is of thermodynamically higher quality than unconcentrated
light, as can be demonstrated, for example, by heating a working fluid under concentrated
and unconcentrated light, and attempting to run a heat engine from each source. As a
concentrating thermal collector can reach far higher temperatures than a non-concentrating
collector, it can drive a higher-efficiency thermal process. Likewise, the efficiency limit for
photovoltaic cells increases under concentrated light. Hence solar concentration potentially
offers many pathways to extract more and better-quality energy outputs from the available
solar resource. However, traditional CPV designs have and will continue to struggle to
realize this higher efficiency in a way that is meaningful in real-world settings. In practice,
doing so requires an understanding of the specific applications in which CPV systems are
to be deployed, and in many cases a top-to-bottom redesign of the system to maximize
applicability and collection of solar energy in its most useful forms.

This article seeks to make the case for a revival and total reimagining of concentrator
photovoltaics, leveraging such previously experimental concepts as tracking integration,
light splitting and heat recovery to utilize the full solar resource with double or triple the
efficiency of current photovoltaics systems. We will discuss established and emerging
applications for these technologies and implement simple performance models intended to
give an indication of their potential. We aim for a shift in mindset from thinking about CPV
as a specific technology to thinking of it as a “toolbox”–a suite of component technologies
that can used and combined as needed to design optimized systems for specific, high-
value applications.

2. Light-Splitting and Hybrid Solar Energy Collection

A central concept in the design of application-oriented CPV systems is the division or
splitting of the solar resource, which is illustrated in Figure 1. An important recognition
is that even a conventional single-junction solar cell splits solar energy into different
forms, although only the electrical output is typically utilized. In Figure 1a, this division
of the solar spectrum is illustrated for an Alta Devices thin-film GaAs solar cell, the
word record-holder for single junction photovoltaic efficiency [10]. The interaction of this
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type of cell with sunlight provides a clear illustration of the natural division of sunlight
by a PV cell into converted, sub-bandgap and thermalized components. In addition to
a high power conversion efficiency of >28% on the AM1.5 spectrum [11], these high-
performance cells have also been shown to have strong specular reflectance to sub-bandgap
near-infrared photons (λ > 900 nm) due to the use of a polished, highly reflective back
contact [12]; roughly 40% of the incident solar energy is reflected, mostly in the near
infrared. The remaining energy is dissipated as heat, which can be collected and used for
low-temperature applications. In this way an appropriately-designed system based on
these cells can capture solar energy with high efficiency, divided between three streams–
electrical output, waste heat and the reflected NIR (the direct component of which can
be concentrated for high-temperature applications as has been demonstrated elsewhere,
achieving overall efficiencies of 48% [13]).
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the sun by tilting the entire modules; (d) tracking-integrated CPV uses internal adjustments of the cells and optics, avoid-
ing the need for an external sun-tracking device. 
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Restrictions on applicability, largely due to the requirement of sun tracking, have 

posed substantial limitations to the widespread adoption of CPV and present further chal-
lenges to the design of tailored application-oriented systems. A pair of developments, 
which are often combined with each other, promise to relax these restrictions if they can 
be successfully implemented in commercial products. Miniaturization of cells and optics 
to create micro-CPV systems [17] has gained popularity over the last decade as a way to 
create lightweight CPV systems with manageable form factors, while also minimizing cell 

Figure 1. Solar resource splitting examples: (a) Dividing the solar resource between electricity, low-temperature heat and
high-temperature heat using an optical concentrator including a silicon solar cell, a heat recovery system, a spectrum-
splitting filter and a high-temperature thermal absorber; (b) Dividing solar energy between light & electricity using a
refractive concentrator; (c) “range of possibilities” for resource splitting, including UV for chemical/catalytic processes,
visible band for agriculture & daylighting, visible + short NIR for Si solar cells, all wavelengths for thermal applications,
with distinction between direct (can be concentrated) and diffuse (minimal or no concentration).

Figure 1b considers the division of the solar resource by conventional CPV. The
plotted spectral conversion efficiency (SCE) curves are based on quantum efficiency [14]
and subcell I-V characteristics [15] of Spectrolab’s metamorphic III-V/Ge triple-junction
CPV cell (Spectrolab, Sylmar, CA USA)), where

SCEsubcell(λ) =
1

Eϕ(λ)
QEsubcell(λ)VOCsubcell FFsubcell (1)

SCEtotal(λ) = ∑
all subcells

SCEsubcell(λ) (2)

and where Eϕ (λ) is the photon energy at wavelength λ, and QEsubcell (λ), VOCsubcell and
FFsubcell are the quantum efficiency, open-circuit voltage and fill factor, respectively, of the
given subcell. The cell conversion efficiency on the direct component is ~40%, but the
diffuse component is lost as it cannot be concentrated. However, diffuse light still represents
a potentially valuable resource and can be captured with a straightforward modification of
the module design. A growing trend is to design the CPV module to be transparent [16],
allowing the diffuse component to be transmitted and used for illumination, as illustrated
in Figure 2a,b. However, as this diffuse component cannot be efficiently transported
(via optical fibers or light pipes), the module must be installed in the location where the
diffuse light will be used. Hence issues of applicability in, for example, building-integrated
settings, become particularly important to consider.
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Figure 2. Contrast of conventional CPV with transparent, tracking-integrated CPV: (a) CPV cannot concentrate diffuse light
and this component is lost; (b) in a transparent module, diffuse light passes through. (c) Conventional CPV tracks the sun
by tilting the entire modules; (d) tracking-integrated CPV uses internal adjustments of the cells and optics, avoiding the
need for an external sun-tracking device.

In Figure 1c a comprehensive schematic of the solar spectrum is displayed, broken
into components denoted by which technologies or applications can effectively make use of
them. Hence the spectral band from 400–1100 nm can be utilized by silicon photovoltaics;
a wider band extending to ~1800 nm can be captured by III-V/Ge multijunction cells, but
due to their high cost these cells can only be used in practice in high-concentration systems
(at least on Earth), and therefore can only access the direct portion of the spectrum. The
entire solar spectrum can be used for thermal applications, but only the direct component
can be concentrated to provide high-temperature heat. The visible band is useful for
interior daylighting and indoor or greenhouse agriculture, and can significantly offset
energy demand for artificial lighting for these applications. The ultraviolet, which is not
efficiently converted by photovoltaic cells, can have value in chemical processes via the
use of common photocatalysts, which respond strongly to the UV. The design of practical
systems that facilitate the splitting of sunlight between multiple forms or end uses will be
essential to realizing high efficiency capture of high-value solar energy.

3. Micro-Concentrators and Micro-Tracking

Restrictions on applicability, largely due to the requirement of sun tracking, have
posed substantial limitations to the widespread adoption of CPV and present further
challenges to the design of tailored application-oriented systems. A pair of developments,
which are often combined with each other, promise to relax these restrictions if they can be
successfully implemented in commercial products. Miniaturization of cells and optics to
create micro-CPV systems [17] has gained popularity over the last decade as a way to create
lightweight CPV systems with manageable form factors, while also minimizing cell heating
and temperature uniformity by enabling better heat dissipation through the module back
plate. Tracking integration [18] is a potentially game-changing concept which involves
including the sun-tracking mechanism inside the CPV module, rather than mounting the
module on an external tracker, conceptually illustrated in Figure 2c,d. In practice, these two
concepts have typically been combined into “microtracking” CPV modules for integration
into built structures.
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Various tracking integration schemes have been proposed and demonstrated for over
a decade [19–25], mostly on experimental scales but with some recent commercial activity.
Tracking integration provides an interesting study in the evolution of a concept through
the past years’ economic changes in PV and CPV. The concept of tracking integration
began to attract attention as the prospects for conventional tracker-mounted CPV began
to fade. As it became clear that CPV would be unable to compete with silicon technology
for ground-mounted projects, tracking integration efforts initially sought to access the
rooftop PV market, where the higher efficiency of CPV could add value. However, actually
realizing this higher efficiency as higher energy output per unit area on a daily or yearly
basis has proved challenging.

In order to fully take advantage of the high CPV efficiencies offered by multijunction
cells, a tracking-integrated CPV module must optimize several factors that often compete:
the concentration factor must be high enough to offset the cost of multijunction solar cells
(typically >400×); the optical losses must not be high enough to offset the higher efficiency
of the cells, generally implying that the optical system must be minimally complex with
few surfaces; and the tracking range must be sufficient to capture sunlight over a wide
range of incidence angles (±60◦ or more to approach the daily light collection performance
of a non-concentrating module).

To date, the CPV design that has most fully achieved this multiple optimization was
demonstrated by Price et al. in a mini-module consisting of a single optics-cell unit [26].
The optical system consisted of a single planoconvex lens above the cell and a concave
mirror below; the combined refraction and reflection create a “bent” light path leading
to a flat image plane, which allowed tracking over a range of ±70◦ to be accomplished
by 2-dimensional lateral movements of the cell [27]. 30% conversion efficiency of direct
sunlight was achieved in outdoor testing. The demonstration model in this work was
idealized in several key ways, including the use of high-index glass for the lens to push
the concentration factor above 600×, and the effective elimination of all but the first
optical interface by the immersion of all internal layers in an index-matching fluid. A
tracking-integrated module utilizing only refractive optics has been developed by the
Swiss startup Insolight for commercial deployment and provides a benchmark for the
performance that can feasibly be accomplished in a manufacturable tracking-integrated
module. Characterizations have indicated a conversion efficiency of 27.5% at normal
sunlight incidence in outdoor testing with a tracking range of roughly ±55◦ [28,29].

4. Light-Splitting and Microtracking CPV: Predicting Performance and
Application Potential
4.1. The Challenge of Rooftop CPV

These experimental data allow a simple performance model to be implemented which
illustrates the challenge of bringing ”pure” CPV into the rooftop solar market, even with
tracking integration. Here we show the results of a study in which the annual energy output
of a rooftop CPV array is estimated based on data extracted from a standard rooftop PV
simulation in NREL’s System Advisor Model (SAM). The originally simulated system uses
a 10 kW PV array based on 17% efficient SunPower modules, roughly the current average
of commercial PV module efficiency [30]. For a yearlong hourly simulation, the diffuse
and direct plane of array irradiance and solar incidence angle are extracted in addition to
the array DC power output and used to estimate rooftop CPV power output based on the
two experimentally-derived parameters of direct conversion efficiency and tracking range.
This assumes a constant optical efficiency within the tracing range, which is a reasonable
approximation of characterization results on real tracking-integrated CPV systems to date.
The study is carried out for 22 locations around the world for which the direct fraction f dir
(defined as the ratio of the direct POA irradiance to the total POA irradiance) ranging from
39% to 79%. Only the upper part of this range is typically regarded as suitable for CPV.
No impact of temperature is included, although experimental measurements are assumed
to reflect the cells operating at 40–60 ◦C above ambient depending on the solar radiation
strength, as shown by Price et al. [26]. It also seems likely that ambient temperature is less
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influential than for conventional PV modules if the cells are insulated on both sides by an
air gap, which seems the most promising configuration for a mass-producible module. In
Figure 3a the “CPV boost,” or the ratio of the computed annual CPV output to the modeled
PV array output, is plotted for both sample CPV systems: the “best case” system based
on the work of Price [26,27], with 30% direct conversion efficiency within a ±70◦ range,
and the “commercial” systems based on Insolight’s model [28,29] with a 27.5% conversion
efficiency and ±55◦ tracking range. The data are listed by location in Table 1. Even for
the highest DNI locations, the “commercial” model outperforms average-efficiency PV
modules by a factor of just 25%. As high-efficiency modules with efficiencies above 20%
more, which would reduce the CPV advantage to almost nothing, are readily available on
the market for a modest premium, the argument for adopting rooftop CPV purely as an
electricity-generating technology is unclear.
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module based on Insolight’s THEIA technology [28,29] and “high-performance” module based on prototype of Price
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(b) CPV boost vs. direct fraction for the “commercial” non-transparent model and the same with 50% transparency to
unconcentrated light.

Table 1. Summary of comparative performance simulations of TI-CPV and PV systems mounted at latitude tilt at 22 global
locations, based on TMY weather files from the National Solar Resource Database. Both high and low DNI locations are
included as indicated in the “direct fraction” column; direct fraction is the ratio of the annual beam POA irradiance to the
total POA irradiance. The CPV boost is the ratio of the simulated annual CPV output to that of the reference silicon PV
system. While the “commercial” CPV model provides only a modest boost in high DNI conditions, the semi-transparent
CPV model offers a consistent boost of 50–75% across nearly all locations.

Location Direct Fraction High-Performance CPV Boost Commercial CPV
Boost

50% Transmissive Commercial
CPV Boost

Buenos Aires 0.53 0.94 0.59 1.58
Bogra 0.50 1.03 0.86 1.70

Calgary 0.64 1.15 0.83 1.55
Dagget 0.79 1.56 1.24 1.74
Aswan 0.74 1.51 1.26 1.74
Fargo 0.59 1.08 0.83 1.53
Berlin 0.44 0.83 0.66 1.53

Amapala Los Palonas 0.68 1.39 1.14 1.76
Reykjavik 0.42 0.76 0.55 1.45

Kagoshima 0.49 0.96 0.79 1.60
Semipalatinsk 0.54 1.02 0.79 1.55

Kaunas 0.39 0.72 0.57 1.50
Macau 0.52 1.04 0.87 1.65

Kathmandu 0.57 1.16 0.96 1.70
Arequipa 0.68 1.30 0.85 1.64
Kangnung 0.53 1.01 0.82 1.58

Dakar 0.55 1.10 0.92 1.64
Bangkok 0.42 0.87 0.73 1.66

Kiev 0.45 0.84 0.67 1.53
Tucson 0.77 1.54 1.26 1.75

Abu Dhabi 0.73 1.48 1.22 1.76
Harare 0.48 0.89 0.51 1.58
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However, further incorporating the concept of hybridization changes the proposi-
tion significantly.

4.2. Rooftop CPV with Partial Transparency: Adding Value from Unconcentrated Light

Figure 3b plots the boost in total solar resource utilization when the “commercial”
module design is modified to transmit 50% of all unconcentrated light. The solar resource
utilization is defined as the fraction of the available solar energy that is delivered to an end
use in any form and can be defined formally as:

SRU = ∑
i

Ei
S

(3)

where Ei is the total energy in output stream i, and S the total solar energy incident,
during the time period of interest (in this case one year). In this example there are two
output streams: electricity and transmitted radiation. If the transmitted stream is used for
illumination or agriculture, only the visible portion of the spectrum (400–700 nm) counts
towards the useful energy output. The calculations for Figure 3 assume the AM1.5 spectrum,
for which visible light represents 43% of the total energy. In practice the transmitted
spectrum will differ substantially from the solar spectrum and this should be considered
rigorously in module design. In this configuration, the increase in total SRU relative to the
reference PV systems can exceed 75%. Interestingly, the dependence on the direct fraction
is greatly reduced, since radiation that cannot be concentrated onto the cells instead passes
through the module and is counted in the transmitted light stream.

It is worth briefly considering the transmitted component in the “natural” units of
the two main target applications–building integration/illumination and agriculture. Illu-
mination standards are typically given in lumens or lux (lum/m2); the conversion from
irradiance to illuminance is spectrally dependent, but for standard solar spectra the conver-
sion is typically taken as 90–100 lumens/W for direct sunlight and 110–120 lumens/W for
the diffuse component, which is blue-shifted by atmospheric Rayleigh scattering [31]. For
agriculture, the photosynthetically active radiation (PAR), which corresponds to the visible
band, is measured in terms of photon flux (mol/m2/s), and the main parameter impacting
plant growth is the daily light integral (DLI), given in mol/m2/day [32]. In Figure 4, the
performance of a high-performance transmissive CPV module is modeled for the climates
of Abu Dhabi and Boston, MA, USA using a simplified CPV performance model assuming
25% conversion efficiency of all direct light over the year and 70% transmission of all
diffuse. The two locations are chosen to represent two interesting cases for CPV: a “dusty
desert” climate with globally high DNI but also a significant diffuse component, stronger
in the summer months, due to heavy scattering from atmospheric dust; and a temperate,
mid-DNI climate in which CPV would not typically be used. The simulation is done
for a south-facing system at latitude tilt. The transmitted component for each model is
expressed in the average daily light integral. As would be expected, the Abu Dhabi system
significantly outperforms the Boston system in terms of electricity production, owing to
the stronger DNI resource and relative lack of cloud cover. However, the Boston system
transmits more light year-round and especially during the summer days, when the days are
long but frequent cloud cover still reduces the DNI resource significantly. This is consistent
with the trend shown in Figure 3b, where the total solar resource utilization when both
electrical output and light transmission are considered is much less dependent on the
DNI fraction than the electrical output alone. The loss of electrical output in low DNI
conditions tends to be compensated by increased light transmission. Hence, depending on
the electricity and light requirements in a particular application setting, semi-transparent
CPV can in principle find applicability in a much wider range of geographic location than
pure CPV. In Figure 4b, the typical daily profiles for January and July of transmitted light
are displayed in lux (ignoring spectral changes over the day) and molPAR. In terms of lux,
the transmitted illuminance mostly ranges from 10,000–20,000 lux. Given that standard
guidelines recommend 500–1000 lux for most indoor activities, the transmitted light could
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in principle be sufficient to illuminate a floor area of perhaps 10 times the module area
during daylight hours, or alternatively to light multiple stories of a commercial building.
Hence a promising early application could be as skylights in residences or the atrium
of a multistory building. Turning to an agricultural greenhouse application, PAR values
throughout most of the year fall between 100–400 µmol/m2/s, below the light saturation
point for all but the lowest-light crops [33]. This indicates that the transmitted light will be
fully utilized by most crops, but for higher-light crops significant additional lighting will
be required. Another perspective on this is given in Figure 4c, where the cumulative daily
light integrals for the two locations are plotted. The transmitted light alone is suitable for
“low light” crops with DLI requirements of <10 mol/m2/day. For moderate-light crops
(10–20 mol/m2/day), the additional DLI can be partially supplied through greenhouse
walls with appropriate design; in addition, the CPV module can in principle be operated
to dynamically switch between energy production and additional light transmission, by
defocusing the optics to transmit more light at times when energy demand is reduced.
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4.3. Spectrum Splitting: New Applications for an Old Concept?

The partially transparent CPV concept that has been discussed up to this point rep-
resents one form of light-splitting CPV. Another form of light-splitting that has a long
history but has failed so far to find widespread commercial application in the solar energy
field is spectral splitting. While in principle spectral splitting between multiple parallel PV
cells can provide the efficiency of multijunction PV cells without the requirement of lattice-
matching between the subcells [35,36], in practice the cell technologies do not presently
exist on a commercial scale that would make this approach economically favorable over
multijunction cells. Spectrum-splitting PV-thermal collectors can reach high working fluid
temperatures while retaining low cell temperatures by splitting the solar resource between
a PV-optimized band and a thermal band [37]. Spectral splitting has been implemented
with spectral filters [38,39], refractive and diffractive optics [40,41], and the use of the band
gap of thin-film PV cells as a natural light splitter [42]. While all face economic challenges
at this point, continued advances in nanofabrication and III-V device processing offer the
possibility of changing this [43].

Some attention has been paid to spectral splitting or modification in the context
of agricultural PV systems. As the incident light spectrum can have a significant on the
growth of plants, e.g., by favoring flowering, fruiting or stem growth [44], some approaches
to agricultural PV have considered the impacts of spectral filtering on crop growth [45].
Integrating pre-tailored spectral filtering, or the capability of dynamic spectral control, into
agriculture-oriented CPV systems could be a fruitful area for future study.

Anther multi-stream spectral splitting concept could be the integration of PV and/or
solar thermal collection with photocatalytic processes [46]. Photocatalysis has long been
proposed as an environmentally friendly pathway to chemical production, and can be
accomplished with the use of low-cost catalytic materials, most prominently TiO2 [47].
Due to the wide band gap of common photocatalysts, these processes operate with low
efficiency on the fully solar spectrum, despite research efforts to broaden photocatalyst
absorption beyond the UV [48]. However, combination with photovoltaics, which do not
effectively convert the UV, or with solar thermal collection in a thermo-photocatalysis
configuration [49], could present a feasible option for cost-effective and energy-efficient
adoption of photocatalysis in the chemical industry.

5. PV-Thermal Applications

A second major class of CPV systems which employ hybridization to reach high levels
of solar resource utilization are PV-thermal (PVT) systems in which waste heat is recovered
from the solar cell and used for thermal applications. Non-concentrating PVT systems,
essentially flat-plate collectors with PV cells integrated into the front side, are available on
the market, although the temperatures that can be reached in this configuration are fairly
low–the system obeying the same physical restraints as conventional flat-plate solar heat
collectors [50,51]. The value of concentration is especially clear in boosting the temperature
at which heat can be extracted from a PVT collector, opening up significant possibilities for
concentrating “CPVT” systems [52,53]. Whereas the transmissive “power + light” systems
discussed in the previous section are adaptations of high-concentration CPV designs, the
most promising concentrating PVT concepts appear to be more inspired by solar thermal
collectors, with PV cells integrated into the receiver [54].

It is worth considering theoretically the physical considerations in designing a PVT
system. The two output streams are electricity and heat, where the heat is extracted from
the solar cell during operation. In the evaluation of such a system it is helpful to consider
the total exergy that can be extracted from the system. For the photovoltaic component,
this is the electrical output. For the thermal output, this is the thermal collection efficiency
multiplied by the Carnot factor of the output and ambient temperatures. The following
brief analysis explores the upper limits of a CPVT systems based on heat recovery from
a high-efficiency single-junction PV cell. All parameters for the PV cell are taken from
characterizations of Alta Devices’ record GaAs cell [10,55].
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To perform this evaluation it is important to consider the dependence of PV cell effi-
ciency on both concentration and temperature. Both arise from the logarithmic dependence
of the VOC on the ratio of the photocurrent Iϕ to the saturation current I0, or:

VOC =
kT
q

ln
(

Iϕ

I0
+ 1

)
(4)

where Iϕ is proportional to the illumination intensity and the temperature dependence,
which arises from the T dependence of I0, leads to a linear dependence of VOC on tem-
perature expressed in the temperature coefficient kT(Voc). Combining with the weaker
temperature dependences of ISC and fill factor gives the temperature coefficient of power
kT(P) which will be used throughout this analysis as kT. The dependence on T and C is now
expressed as:

ηPV(T, C) = ηPV(T0, 1) ln (C
Iϕ

I0
+ 1)(1 + kT(T − T0)) (5)

The total thermal energy collected is then:

ETh = (1 − ηPV)ηThS (6)

where ηTh is the thermal collection efficiency, and the total exergy of the thermal stream is:

XTh = ETh
T − Tamb

T
(7)

Combining thermal and PV components, the total solar resource utilization factor is:

SRUPVT =
ETh + EPV

S
(8)

The contour plots in Figure 5 show the change in PV efficiency and the upper SRU
limit for different values of the temperature coefficient kT ≡ kT(P) of around −0.4%/◦C are
common for medium-efficiency PV cells. High-quality Si products such as Panasonic’s
HIT have reported values around −0.25%/◦C [56], while Alta Devices’ GaAs cells have
kT ≈ 0.1%/◦C [55]. Concentrations ranging from 1–100× are considered, as well as tem-
peratures up to 225 ◦C. Each of these ranges corresponds to the performance of a class of
deployed or proposed line-focus solar concentrators. “Etendue-squeezing” concentrators
with dual-axis tracking have been proposed for thermal and chemical applications that can
reach 100× concentration factors with a 1-degree acceptance angle [57]; 200–250 ◦C is the
upper limit of the performance of low-concentration compound parabolic collector (CPC)
modules that are currently in commercial production [58]. While this temperature range is
seen as too high for PV cell operation, this is not necessarily the case as can be seen from the
figure. While a PV cell with kT = −0.4 will lose 40% of its nominal power output when its
operating temperature is increased from 25 to 125 ◦C, this loss drops to 25% for kT =−0.25
(achieved in “premium” Si PV products), and to just 10% if kT = −0.1 as in thin-film GaAs
products. Hence the adoption of higher-quality cells with lower temperature coefficients,
always desirable for conventional PV system performance, takes on new appeal when
the possible applications of PVT systems are considered. The combination of low-kT cells
with higher-concentration optics raises the possibility of PVT systems seeing applications
far beyond the commonly-discussed low-temperature processes such as water heating
and thermal desalination [59,60]. If we consider that temperatures up to 200 ◦C might
be accessible to the PVT system, with appropriately high-performance cells, a range of
industrial processes could be fed by the thermal output stream. Of particular interest could
be applications where both heat and electricity are required. One intriguing possibility
would be high-temperature electrolysis, a hydrogen production technique in which steam
rather than liquid water is split to form O2 and H2 [61]. The elevated temperature of the
steam boosts the efficiency of the electrolysis process by lowering the effective energy
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barrier to water splitting [62]. This could be favorable if a source of “free” heat is available,
which might be the case with a suitably economical PVT system [63]. Another possible
application could be as a source of heat for carbon capture via amine scrubbing in industrial
processes [64]. As many processes involve emissions from chemical reactions that are not
mitigated by switching to low-carbon sources of energy, this represents a critical area for
decarbonization that could be addressed by PVT by simultaneously providing the energy
to drive processes and to capture process emissions.
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eters based on Alta Devices record GaAs cell [10]. For kT = 0.1%/◦C, the PV cell efficiency remains
above 20% up to 500K from 28% at 300K, raising the possibility of high-temperature CPVT collectors.

6. Remarks and Conclusions: A Future Path for CPV?

If CPV has a future as a commercial solar technology, it will have to contend with an
economic landscape vastly different that in which it was initially developed. CPV systems
that add value over conventional PV will need to leverage the capability of concentrator
systems to capture sunlight with high efficiency and to divide the solar resource between
multiple output streams in different forms and for different applications. A “toolbox”
of approaches to maximizing the applicability and performance of CPV systems can be
identified that includes:

− Miniaturization of cells and optics to create micro-CPV modules with low mass,
improved form factors and superior heat dissipation performance compared to con-
ventional CPV designs;

− Integration of sun tracking into the module to enable fixed, trackerless installation; and
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− Development of hybrid collectors which capture parts of the solar resource that are
unused by the PV cells as heat or light, boosting the overall solar resource utiliza-
tion substantially.

We have surveyed established and emerging CPV designs relying on these concepts
and identified two particular concepts as appearing to have significant future prospects:
partially transparent tracking-integrated CPV for combined power generation and illumi-
nation in built structures; and concentrating photovoltaic-thermal systems with potential
application to a range of industries, as well as water heating and desalination. The further
development of high-performance PV cell technologies, including high-efficiency multi-
junction cells with lower production costs than the current standard, and cells with lower
temperature coefficients for improved high-temperature performance. We implemented a
number of simple models of overall system performance to provide general insight into
the capabilities of these classes of system. In particular we demonstrate how currently
realized designs of semi-transparent tracking-integrated CPV modules can be expected to
provide a 50–75% boost in solar resource utilization relative to standard PV modules, when
both the electrical output and transmitted visible light are accounted for; while PV-thermal
systems can in principle reach SRU factors of 50% or more, counting electrical output and
thermal exergy, if temperatures in the range of 200 ◦C can be reached without unacceptable
degradation of PV output. A number of emerging applications were considered, including
agricultural photovoltaics, high temperature electrolysis for hydrogen production, and
chemical production via photocatalytic processes, which could be particularly benefited by
these next-generation CPV concepts. With commercial players already producing modules
based on these concepts, it is now the time to move aggressively to identify which of
these potential applications would see the most added value from a revival of CPV, and
to press forward in the continued development, evaluation and optimization of these
next-generation CPV technologies.
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