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Taylor’s hypothesis, or the frozen turbulence approximation, can be used to estimate
also the specific energy dissipation rate ϵ by comparing experimental results with the
Komogorov-Obukhov expression. The hypothesis assumes that a frequency detected by
an instrument moving with a constant large velocity V can be related to a wavenumber by
ω = kV . It is, however, not obvious how large the translational velocity has to be in order
to make the hypothesis valid, or at least applicable with some acceptable uncertainty.
Using the space-time varying structure function for homogeneous and isotropic condi-
tions, this question is addressed in the present study with emphasis on small velocities
V . The structure function is obtained using results from numerical solutions of the
Navier-Stokes equation. Particular attention is given to the V -variation of the estimated
specific energy dissipation, ϵest, compared to the actual value, ϵ, used in the numerical
calculations. In contrast to previous studies, the results emphasize velocities V less than
or comparable with the one component root mean square velocity, urms. We find that
ϵ can be determined to an acceptable accuracy for V ⩾ 0.3urms. A simple analytical
model is suggested to explain the main features of the observations, both Eulerian and
Lagrangian. The model assumes that the observed time variations are solely due to eddies
moving past the observer, thus ignoring eddy deformation and intermittency effects. In
spite of these simplifications the analysis accounts for most of the numerical results when
also eddy size dependent velocities are accounted for.
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1. Introduction

Taylor’s hypothesis (Taylor 1938), also known as the frozen turbulence approximation,
is frequently used for estimating a wavenumber spectrum on the basis of measured
frequency spectra (Lumley 1965; Lueck et al. 2002; Wyngaard & Clifford 1977; Moin 2009;
Geng et al. 2015). The hypothesis can just as well be used for the correlation function, or
as in the present study, the structure function (Schulz-DuBois & Rehberg 1981). Given a
randomly varying velocity field u with components uj(r, t), j = 1, 2, 3 and r = {r1, r2, r3},
we can formulate Taylor’s hypothesis by referring to a frame of reference moving with a
known velocity V to give a time series uj(r0 +Vt, t). An experiment can for instance be
realized by a flying hot wire system (Kelso et al. 1994). The Taylor hypothesis, or the
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frozen turbulence approximation, assumes uj(r0 + Vt, t) ≈ uj(r0 + Vt, 0). Associated
with the signal we have the correlation function Ruj (r, t) = ⟨uj(ξ, τ)uj(ξ + r, τ + t)⟩
for any velocity component uj with respect to the r-direction. Usually the longitudinal
velocity component is selected where uj = u∥ = u · r/r. Assumptions of homogeneous
and stationary conditions are essential, and we assume also isotropic conditions. In terms
of differential operators, Taylor’s hypothesis states ∂/∂t ≈ −V · ∇. In terms of the
correlation function, Taylor’s hypothesis states Ruj (r, t) ≈ Ruj (V t, 0). This means that
an observer moving with a known velocity V with respect to the turbulence reference
frame where ⟨u⟩ = 0 can obtain a long time series and then from this construct a time
varying velocity correlation function Rt(t). Given the hypothesis, this correlation function
can subsequently be used to give Ruj

(r, 0) = Rt(V t). An alternative form in terms of
wavenumber spectra E is often used, where E(k, ω) is found by Fourier transforming the
correlation function with respect to the spatial and temporal variables. In a spectral
representation, Taylor’s hypothesis has the form E(k, 0) = Et(ω)dω/dk with ω = V k, i.e.,
when dω/dk can be taken to be constant, and we have Et(ω) being the frequency power
spectrum obtained from the time series.
The Taylor hypothesis can be understood graphically by representing the correlation

function, or alternatively the related space-time varying second order structure function
S(r, t) = 2

(
⟨u2⟩ −R(r, t)

)
as a surface over an (r, t)-plane and then sampling this surface

along a ”cut” or line r = V t. The resulting function S(V t, t) can be shown as a function
of t or, as it turns out to be more convenient, a function of r = V t. This presentation will
be illustrated in the following. The second order structure functions contain power-law
subranges that are readily visualized in log-log presentations.

1.1. Estimation of the specific energy dissipation rate

A key parameter for characterizing turbulence conditions is the specific energy dis-
sipation rate ϵ. This is used in many applications, for instance for quantifying the
turbulent mixing in marine environments (Kiørboe 2008; Pécseli et al. 2020). When
an estimate for the wavenumber velocity power spectrum is obtained, ϵ can be estimated
(Stiansen & Sundby 2001) by comparing experimental results with the Kolmogorov-
Obukhov spectrum C0ϵ

2/3k−5/3, where C0 ∈ {0.4 − 0.9} is the Kolmogorov-Obukhov
constant (Sreenivasan 1995). The accuracy of the obtained value for ϵ depends on the
sampling velocity V . It thus has a practical value to find the error in estimating the
specific energy dissipation rate on the basis of turbulence measurements for varying
sampling velocities V . This particular application of the Taylor hypothesis will be central
for the present study. The Kolmogorov-Obukhov constant is known only with some
uncertainty (Sreenivasan 1995). It can be argued that a relative error in the estimate
for ϵ is acceptable as long as it is comparable to the uncertainty in C0, assumed to be
approximately ±30%. If the viscous subrange of the turbulence can be resolved (Davidson
2004), the transition scale size separating the two ranges can be identified. This apparent
value of the Kolmogorov scale can then be compared with the actual value.
A limiting case with V = 0 has been emphasized by Tennekes (1975). The random

advection by large scale energy containing eddies could be sufficiently fast to make
Taylor’s hypothesis effective also in this case now with ω = V ′k interpreted in terms of
some average velocity V ′ related to

√
⟨u2⟩. This case was discussed later and the model

amended (Wyngaard & Clifford 1977) to account for scale-size dependent advection ve-
locities (Del Álamo & Jiménez 2009; Renard & Deck 2015). The problems in interpreting
Taylor’s hypothesis for small V is found in the uncertainty in the actual sweeping velocity
of the small scales. The relative motion of these smallest scales with respect to the
observer is due in part to the the bulk motion with velocity V , and in part to the
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advection of small scales induced by the larger scales. Taylor’s hypothesis in its original
form ignores the contribution from the latter. An eddy velocity is scale-size dependent:
this approach is pursued in more detail in Appendix A. Since the largest eddies contain
most of the energy, their characteristic ”eddy turn-over velocity” is ∼

√
⟨u2⟩. It is

reasonable to take this value as a reference velocity here. The choice is, however, not
unique: a ratio of the correlation length and the correlation time could be chosen as well.
The given databases do not allow us to distinguish various reference velocity choices to
any significant accuracy.
There are in principle no upper limit on the velocity V with regards to the Mach

number, but practical experimental conditions can limit the range of realistic velocities. In
many experiments, in laboratory or nature, the velocity V can be chosen freely, at least to
some extent. In a number of cases, however, the velocity is imposed by external conditions,
such as a tidal current (Pécseli et al. 2020). A practical advantage obtained by use of
Taylor’s hypothesis is that a one point measurement suffices. To obtain, for instance, the
full frequency-wavenumber power spectrum a minimum of two-point measurements are
needed (de Kat & Ganapathisubramani 2015).
The accuracy of Taylor’s hypothesis for varying sampling velocities is not well un-

derstood, in particular not for small translation velocities V . Experimental observations
have been reported (Cheng et al. 2017) where the hypothesis seems to give incorrect
results, and other limitations have also been mentioned (Dennis & Nickels 2008; de Kat
& Ganapathisubramani 2015). The present work aims at investigating the hypothesis
for varying sampling velocities V with emphasis on small values including V = 0, since
the hypothesis is already found to be justified (Taylor 1938) for large V , as normalized
by the root mean square velocity component urms. In his original work Taylor (1938)
had velocities V/

√
⟨u2⟩ ∈ {20; 80}, see for instance his figure 5. In the following data

analysis we use a reference velocity urms =
√
⟨u2⟩/3 to represent one velocity component

throughout.
There are other methods for estimating the value for ϵ. For wind generated turbulence

in the oceans, ϵ has at times been found by some empirical formula where a readily
measurable quantity like the wind velocity enters (MacKenzie & Leggett 1993). The
accuracy of this model is not well understood.
Only three dimensional, locally homogeneous isotropic conditions are considered in

the present study, but the problem remains relevant and interesting also for nonisotropic
conditions as those met in laboratories and boundary layers (Squire et al. 2017; Shet
et al. 2017; Han et al. 2019), as well as for flow conditions on large scales in the Earth’s
atmosphere and lower ionosphere (Nastrom & Gage 1985; Larsén et al. 2013; Vierinen
et al. 2019) where a spatially 2 dimensional model may be applicable.

1.2. Choice of presentation in terms of structure functions

The present analysis uses the space-time varying second order structure function
for tests of the Taylor hypothesis. When the term ”structure function” is used in the
following, it implies everywhere that it is of second order. Given a full space-time varying
structure function S(r, t) we can construct the time varying structure function that would
be derived from a time series obtained by an observer moving with constant velocity V :
this correspond to mapping a cut in the space-time varying structure function along
the line r = V t. The result will be S(V t, t). Taking this as representative for S(r, 0)
we can estimate ϵ by comparing with the Kolmogorov-Obukhov expression CK(ϵr)2/3

introducing the Komogorov constant Ck. The result will be in error, unless V is very
large. Taylor’s hypothesis can be tested numerically for different values of V , in particular
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to find the accuracy of an estimated energy dissipation rate ϵ. A corresponding systematic
experimental study in a laboratory or in nature will be difficult to carry out.
The form of presentation given before has one draw-back: for small values of V we

need long time-sequences to cover the variability of the structure function. A figure with
results for several velocities V will thus contain very long and very short time-series.
The presentation is made neater and more compact by introducing a spatial separation-
like variable by taking t = r/V to give S(r, r/V ). This form shows how the Taylor
hypothesis is reached when V → ∞ for a finite r. We can introduce normalized units
r/ηK to write S(r/ηK , (r/ηK)uK/V ) corresponding to a normalized time t/τK , where
ηK , τK , uK are the Kolmogorov length, time and velocity, respectively. We will find that
V is best normalized by urms so we can write S(r/ηK , (r/ηK)(uK/urms)urms/V ) where
uK/urms ≪ 1 is constant for a given experiment or numerical simulation. The results
obtained in the present work are assumed to be universal and applicable for similar
estimates using the inertial subrange of the velocity power spectrum. In some cases this
latter approach can be preferable (Wyngaard & Clifford 1977).

The bulk of the present work refers to Eulerian sampling with constant translational
velocities V . An alternative sampling is also relevant where the fluctuating flow velocities
are obtained along self-consistently moving particle, i.e., Lagrangian, orbits. We find that
for this Lagrangian sampling the scale-size dependent advection velocities (Del Álamo
& Jiménez 2009; Renard & Deck 2015) are particularly important. We discuss also this
problem.

2. Numerical results

The present study is based on numerical simulations of the incompressible Navier-
Stokes equations. Two simulation results are available with different specific energy
dissipation rates. The Navier-Stokes equations were integrated by using fully de-aliased
pseudo-spectral methods for a total time spanning almost three decades: from the order
of a tenth of the Kolmogorov time scale, τK , to approximately three times the integral
time scale, TL. The flow was forced by keeping the total energy constant in the first two
wavenumber shells. The energy input rate equals the energy dissipation rate when steady
state conditions are reached, i.e., when correlations depend on time separations and not
absolute times. The average value of ϵ is thus known after a transient time interval where
a steady state is established. The calculations and relevant tests are described in the
original papers (Biferale et al. 2004, 2005a,b), so here only some basic information is
summarized.

2.1. Description of the database

The computations giving the two datasets (I and II) are carried out for three di-
mensional flows, performed in a 512 × 512 × 512 and a 1024 × 1024 × 1024 system of
grid-points for extended time periods of 1167 and 1841 time steps, respectively. The box
sizes are 2π × 2π × 2π in computational units for both cases. The system is periodic in
all directions. From the numerically obtained flow field, a large number (1.92× 105 and
3.64× 105, respectively) of point particle trajectories are constructed and these form the
basis for the following analysis. (It is not practically feasible to store the entire space-
time information of the velocity field u(r, t).) The database can be seen as a numerical
equivalent of, for instance, the laboratory experiment of Ott & Mann (2000); Mann
et al. (2005) where the trajectories of a large number of small polystyrene spheres were
followed by image-velocimetry techniques. The basic parameters of the two numerical
simulations are summarized in Table 1, where Reλ denotes the microscale Reynolds
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Simulation I Simulation II

dx 2π/512 = 0.012272 2π/1024 = 0.0061359
ν 2.05× 10−3 8.8× 10−4

ϵ 0.8853212 0.810878
E = 1

2
⟨u2⟩ = 3

2
u2
rms 3.01 2.96

urms (average) 1.42 1.40
λ 0.2642 0.179
Reλ 183 286
ηK 0.00993 = 0.81 dx 0.0054 = 0.88 dx
τK 0.048 0.033
uK ≡ ηK/τK 0.206 0.164
T 5.84 4.23

Table 1. Simulation I lasts 1167 time steps with dt = 0.005, simulation II lasts 1841 time steps
with dt = 0.0023. All numbers are in computational units. The time duration of the simulations
is T . The value of urms given is an average of the root-mean-square (RMS) values of the three
velocity components.

number and the Kolmogorov micro-scale is ηK ≡ (ν3/ϵ)1/4, while τK ≡ (ν/ϵ)1/2 is the
Kolmogorov time scale. Parameters are given in standard notation (Biferale et al. 2005b)
using computational units. We have ϵ to be approximately the same for both simulations,
but the specific viscosities ν differ. Consequently the two Reynolds numbers as well as
the two Kolmogorov scales are substantially different. The universal subranges will be
different for the two cases. The uncertainties in the results are confined to regions for
small particle separations, and the estimated error is illustrated by a grey shading in
figure 1.
Since only simulation particle trajectories are available, the numerical results can not

be used for directly obtaining any frequency spectrum from single point measurements.
By using two-point measurements of velocity components of many pairs of particles,
uj(ξ, t) and uj(ξ + r, t) taken at the same time t and different r, a structure function
can, however, be determined just as in the laboratory experiment by Ott & Mann (2000).
The analysis can be extended to points also at different times, i.e. uj(ξ, ϑ) together with
uj(ξ+r, ϑ+ t) to obtain estimates for the full space-time varying structure function. The
two particles are selected with the only constraints being on their space-time separation,
irrespective of their ”history”. The space-time varying structure function can be used for
tests of the Taylor hypothesis, as discussed in the following. The analysis has a Lagrangian
counterpart which is discussed separately.

2.2. Basic results

To demonstrate the quality of the data used for the present study we first show the
structure function S(r, t) ≡

〈
(u∥(ξ, ϑ)− u∥(ξ + r, ϑ+ t))2

〉
with u∥ being the velocity

component along the separation vector r. In the following we use the abbreviation S(r) for
S(r, t = 0). Using the basic parameters ϵ and ν, a well known argument (Chandrasekhar
1957) gives the only dimensionally correct combination (Buckingham 1914) to be

S(r) =
〈
(u∥

(
ξ, t)− u∥(ξ + r, t)

)2〉
= CK(ϵν)1/2F (rϵ1/4ν3/4) (2.1)

for homogeneous and isotropic conditions, where F (z) is a dimensionless function of a
dimensionless variable z and CK is the Kolmogorov constant. In an inertial subrange,
independent of ν, we require F (z) = z2/3 in order make the viscosity ν vanish from
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Figure 1. The numerically obtained normalized longitudinal structure function
S(r)/u2

K ≡ ⟨(u∥(ξ, t) − u∥(ξ + r, t))2⟩/u2
K , shown on a double logarithmic scale for varying

normalized separation r/ηK , with ηK = (ν3/ϵ)1/4 being the Kolmogorov length scale, see

also Pécseli et al. (2020). The Kolmogorov velocity uK = (νϵ)1/4 is used for normalization.
Results from the two simulations (I and II) are shown with blue dashed and black full lines,
respectively. Analytical results are shown for the inertial and viscous subranges by the slopes
of the red lines with r2/3 and r2, respectively. For clarity of presentation, the two slopes as well
as an empirical analytical approximation (thin red line) have been offset vertically by a factor
2. A vertical arrow indicates the ”cross-over” length between the two subranges at r = η0. The
uncertainty at small separations is indicated by a grey shading. This shading is representative
also for the following figures 2, 3, 8, and 9.

the expression (Chandrasekhar 1957; Beran 1968), thereby giving the well known result
for the structure function in the inertial subrange, CK(ϵr)2/3. The Kolmogorov constant
is determined empirically to be in the range CK ∈ {2.1, 2.5}. The same dimensional
arguments (Chandrasekhar 1957) will give the expression for the temporal structure
function of any velocity component to be〈

(u
(
ξ, ϑ)− u(ξ, ϑ+ t)

)2〉
= CT ϵt (2.2)

in a subrange independent of ν with CT being a universal dimensionless constant (Du
et al. 1995; Falkovich et al. 2012). The result (2.2) is ambiguous in one respect: the
result can be obtained experimentally by either sampling the flow in a fixed position as
a function of time, or alternatively, by following an ensemble of particles along their
Lagrangian orbits to obtain the time varying velocity (Sawford & Yeung 2015). In
the first case, the time variation will in part be due to smaller universal scale eddies
being swept past the observer by large scale non-universal eddies, and the result thus
be ”contaminated” by non-universal effects (Tennekes & Lumley 1972; Tennekes 1975).
Using a second order Lagrangian model of grid turbulence the Kolmogorov constant
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ϵ [m2s−3] ηK [m] τK [s] uK [m s−1]

Open ocean 10−10 − 10−6 10−2 − 10−3 102 − 1 10−4 − 10−3

Fjord 5× 10−8 3× 10−3 6 5× 10−2

Shelf 10−7 − 10−6 2× 10−3 − 10−3 3− 1 6× 10−2 − 10−3

Coastal zone 10−7 − 10−4 2× 10−3 − 2× 10−4 3− 0.1 6× 10−4 − 2× 10−3

Tidal front 10−5 5× 10−4 ∼ 0.3 1.5× 10−3

Table 2. The specific energy dissipation ϵ (dissipated energy pr. unit mass of fluid) and other
characteristic turbulence parameters as found in the oceans (Granata & Dickey 1991; Kiørboe
& Saiz 1995; Pécseli et al. 2020).

CT was estimated by Du et al. (1995) for the Lagrangian structure function, giving
CT ∈ {3.0± .5}.
Analytical results for the structure function in the viscous subrange (Davidson 2004)

give ⟨(u∥(ξ, t) − u∥(ξ + r, t))2⟩ = Cνr
2ϵ/ν. The numerical coefficient is here obtained

analytically as Cν = 1/15. The separation between the inertial and viscous subranges
are found for CK(ϵr0)

2/3 = Cνr
2
0ϵ/ν, i.e., at r0 = (15CK)3/4ηK ≈ 13ηK ≡ η0. The

difference between ηK and η0 is not trivial (Pécseli & Trulsen 2007). For ideally frozen
turbulence this length scale translates to a time η0/V . In most laboratory experiments,
the Kolmogorov scale is in or below the mm-range and the viscous subrange can not
be resolved. For conditions met in nature, also this subrange has importance (Kiørboe
2008), so for completeness we show representative data relevant there in Table 2.

Approximations for the structure functions are found for the combined intermediate
separations r, i.e., the inertial subrange, and for small r, i.e., the viscous subrange, see
Appendix B. In Appendix A we discuss in detail a model for the space-time variation of
the structure function in the inertial subrange. For large r outside the inertial range, the
structure function will approach the value 2u2

rms, with urms again being the root-mean-
square value of the velocity component chosen for the structure function.

Normalized numerical results for the structure functions are shown in figure 1 for the
two datasets. The results have been plotted for separations up to r ≈ π in computational
units. The figure uses double logarithmic axes and the normalizations are made by the
length, ηK , and velocity, uK , scales. In this form we find an excellent agreement between
the two simulations. Earlier results (Pécseli et al. 2020) used a reduced sampling rate
during the evaluation of the structure function. This has effect for the statistical uncer-
tainty of the results for small r. The analytical approximation discussed in Appendix B
is very good and agrees with the numerical results within the line thickness in the plot.
We find this observation to be worth emphasizing. Figure 1 is our reference, i.e., the one
that should be reproduced by use of Taylor’s hypothesis, should it be ideally applicable.

Also the transverse structure functions G(r) ≡
〈(
u⊥(ξ, t) − u⊥(ξ + r, t)

)2〉
were

determined with u⊥ being either one of the velocity components ⊥ r. Apart from a
difference in the numerical factor, also G(r) follows the universal (ϵr)2/3 scaling, indicating
that the smallest scales have reached an isotropic statistical equilibrium. A large scale
eddy turn-over time can be defined as Tt ≡ L/urms. With L ≈ π in computational
units we find Tt ≈ 2 for both simulations. This time is of the same order of magnitude
as the simulation time T , see Table 1, so the largest eddies may not have reached
an equilibrium. It is found that the RMS-values of the three velocity components are
somewhat different for the two datasets. We find the normalized RMS-values of the three
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Figure 2. Estimate for the normalized longitudinal structure function S(r, t)/u2
K using dataset

I, shown as a function of normalized variables r/ηK and t/τK with logarithmic scales on all axes.
Full black lines are for the levels {0.1, 0.3, 1, 3, 10, 30}, the dashed lines for normalized velocities
V/urms = {0.1, 0.3, 1, 3, 10., 100.}. These lines will be parallel when projected on the r− t plane
for logarithmic scales. The time separation axis begins at t = 0.02τ , the spatial separations at
r = 0.4ηK . Thin black parallel lines are given for selected t-values and serve only as a guide for
the eye.

components urms,j/uK with j = 1, 2, 3 to be {7.7, 6.3, 6.7} and {10.6, 7.2, 8.1} for the
datasets I and II, respectively.
Both the viscous and the inertial subranges of the turbulence are well resolved for

both simulations. There are no indications of a ”bottle neck” effect (Dobler et al. 2003)
in the power spectrum obtained by Fourier transform of the auto-correlation function
entering S(r). Physically, the bottle-neck effect arises because of the finite resolution of
the sub-Kolmogorov scales in numerical simulations, giving a lack of small scale vortices.
This makes the energy cascade less effective around the Kolmogorov length scale, as
compared to the ideal physical conditions. Some numerical results seem to indicate that
the bottle-neck effect is a consequence of viscous effects stabilizing small vortex tubes
against the kink instability (Woodward et al. 1995). These problems do not arise here.
We conclude that the quality of the database is so that we can test the validity of also
the Taylor hypothesis for both inertial and viscous subranges with confidence by using
these data.

2.3. Space-time varying structure function

To test the Taylor hypothesis we choose the space-time varying longitudinal structure
function S(r, t) ≡

〈
(u∥(ξ, ζ)−u∥(ξ+r, ζ+t))2

〉
. The particle-trajectory data are searched

for particles at some position and then at a later time t at a displaced position r within
a narrow |r| interval. The velocity differences are recorded and the data subsequently
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Figure 3. Estimate for the normalized longitudinal structure function using dataset II, shown
as a function of normalized variables r/ηK and t/τK with logarithmic scales on all axes. Levels
and normalizations are as in figure 2.

averaged. The time resolution is given by the computational time-step. Similarly, also
the space-time varying transverse structure function G(r, t) can be obtained.
In figures 2 and 3 we show numerically obtained longitudenal structure functions for

the two datasets. To cover an r-range extending by more than 4 orders of magnitude,
the samples for the evaluation of the Eulerian structure function are collected in bins
with size varying exponentially with r. At small r the bin size is changed to a linear
variation in order to balance the requirements of both spatial resolution and statistical
uncertainty. For the range r/ηK < 3 the number of samples per bin varies like r2 and
more rapidly for larger r-values. This gives rise to an increasing statistical uncertainty
by several orders of magnitude towards the smallest r-values. For this reason a least
square local second order polynomial approximation noise reduction has been applied for
r/ηK < 3 in figures 2 and 3 as well as in figure 1. For the three orders of magnitude,
extended discrete t-range similar measures are incorporated. Reference dashed lines are
inserted for normalized velocities V/urms = {0.1, 0.3, 1, 3, 10., 100.}. This normalization
turns out to be the most suitable for the following. To obtain the limiting case in figure 1
we have to sample along a line with V/urms → ∞.
In the viscous and inertial subranges, the spatially varying structure function S(r)

is insensitive for the large scale dynamics and the value of urms, except for a transition
zone between the inertial and non-universal ranges. Its time varying Eulerian counterpart
S(t) will, on the other hand, contain significant contributions from the large scale energy
containing non-universal eddies (Tennekes 1975) characterized by velocities of the order
of urms. A transition region in S(r, t) for varying (r, t) can thus be expected, but
the details of this transition have not been discussed in the literature. To gain more
information, we suggest taking the ratio of the total and the longitudinal structure
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Figure 4. Colorplot of the ratio ST (r, t)/S(r, t) for dataset II plotted on double logarithmic
axis. The construction of the figure uses the longitudinal as well as both transverse velocity
components. The full black line is drawn for the level 11/3. Some noise is found in the data for
small spatial separations, for reasons already mentioned.

functions ST (r, t) ≡
〈
(u(ξ, ϑ)− u(ξ + r, ϑ+ t))2

〉
≡ 2G(r, t) + S(r, t) and S(r, t). The

result is shown in figure 4. For vanishing time separations both have the same universal
scalings with r and ϵ in the viscous and inertial subranges, with only the numerical
coefficients being different for the longitudinal and transverse cases. For large time
separations the large non-universal eddies will deteriorate the proportionality of the two
structure functions. For r → 0 the difference between the transverse G and longitudinal
S structure functions vanishes, and the ratio (2G + S)/S → 3 for all times t > 0.
To get a numerical reference value for comparison with the ratio used for illustration

in figure 4 we have for vanishing time separations the general relation (Batchelor 1953)
G(r) = S(r) + 1

2rS
′(r). For any power-law relation S(r) = Arα we have G(r)/S(r) =

1+ 1
2α applicable for both the viscous and the inertial subranges. For the inertial subrange

we find G(r)/S(r) = 4/3 while the viscous subrange gives G(r)/S(r) = 2. The transition
from the viscous to the inertial subrange is here found at a separation length scale of
approximately 10 ηK for the transverse structure function, to be compared with the
separation for the parallel structure function at approximately 13 ηK . In figure 4 the
results should be compared to values 11/3 and 5 for the two subranges also for t > 0.
Some details are seen better in figure 5. For t = 0 we note a clear separation between
the viscous and inertial subranges along the r/ηK-axis, and also a well defined transition
region in the (r, t)-plane as the time separation is increased. This transition is not along
a straight line in the (r, t)-plane, although it can be approximated by r = t urms for
r > η0. The grey area in figure 4 corresponds to a level close to the value 3. The results
in figures 4 and 5 invite the interpretation that the velocity vector directions (parallel
and perpendicular) to a separation vector, for r > η0 become decoupled for times larger
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Figure 5. The ratio ST (r, t)/S(r, t) derived from the longitudinal and transverse structure
functions for dataset II is shown here on a linear vertical scale for selected times
t/τK = 0.0, 0.04, 0.35, 0.70, 2.51, 6.84, and 17.45. For r > η0 we find a plateau developing
near 11/3 shown by a dashed line, while we for r → 0 with t = 0 find a saturation at the level 5.
The curves are uncertain for r < ηK because only few samples for the estimation of the structure
functions are found at these small separations. The noise for small r seen in figure 4 is found
also here.

than r/urms, i.e., G(r > η0, t > r/urms) ≈ S(r > η0, t > r/urms). Similar observations
can be made for r in the viscous subrange, but here the separation line does not have
a correspondingly simple form, although r = t urms can be an approximation also here.
If the two points with separation r are selected at the same time with separations in
the universal subrange, they will move without relative displacement when advected by
eddies with scale sizes larger than the separation (Csanady 1973; Mikkelsen et al. 1987;
Del Álamo & Jiménez 2009). The separation between the two points is of the other
hand controlled by eddies smaller than the separation distance. In this limit the RMS
value of the velocity is immaterial. If, however, the two points are sampled at different
times, the separation of the points is influenced also by the large scale eddy motion.
The larger the time separation, the stronger is the effect of large scales. With a spatial
separation r we associate eddies with a similar scale. A corresponding eddy turn over time,
or coherence time, is τr ≈ ϵ−1/3r2/3 (Tennekes 1975), while a characteristic velocity is
ur ≈ (ϵr)1/3. Due to the motion of the large scale non-universal eddies, the smaller inertial
eddies are displaced a distance ℓe ≈ urms/t in the time interval t entering the structure
functions. When ℓe > r and t > τr the correlation is reduced between the directions
of the two samples of the local fluid velocities entering the structure function. Scales
larger than r retain, on the other hand, their coherence at the same time separation.
Appendix A contains more details of the arguments, showing also an illustrative model.
Scale dependent advection velocities are also discussed here.
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2.4. The Lagrangian structure function

For comparison with the analytical result (2.2) we show in figure 6 the normalized
Lagrangian structure function SLx(t)/u

2
K ≡ ⟨(ux(ξ(ϑ), ϑ) − ux(ξ(ϑ + t), ϑ + t))2⟩/u2

K

as a function of normalized time (Biferale et al. 2008; Sawford & Yeung 2015). The
initial variation follows a clear t2 variation, that becomes closer to a t-proportional
variation at later times, t/τK > 2. The agreement is not perfect, indicating that a
significant fraction of the Lagrangian trajectories entering the averaging are short and
within the viscous subrange, while others are long and close to the outer scales in the
non-universal part of the turbulence. In figure 7 we show (on double logarithmic axes)
samples from the distribution of the lengths of trajectories entering the construction
of the Lagrangian structure function, illustrating the systematic increase in average
trajectory lengths with increasing time. The separation between the inner and outer
scales in the present simulations is not sufficient to give the analytical result (2.2)
unambiguously. The initial t2 variation is explained by a short time series expansion of
ux

(
r(t), t

)
≈ ux(0, 0) + dux/dt|t=0 t in the Lagrangian structure function. For large time

separations t/τK the velocities ux(ξ(ϑ), ϑ) and ux(ξ(ϑ + t), ϑ + t) become independent
and S → 2⟨u2

x⟩ for the Lagrangian structure function. This limit is not accessible within
the spatial and temporal ranges available in the simulations, but in figure 6 we note that
the curve begins to ”flatten out” for large t/τK . Indications are that the Lagrangian
time scale is shorter than its Eulerian counterpart, in agreement with some analytical
results (Weinstock 1976). The difference between the time-exponents for the Lagrangian
structure function and its Eulerian counterpart taken for vanishing spatial separations
demonstrates the limitations of the result in (2.2) as discussed before. The time variation
of the Eulerian structure function in the inertial subrange is very different from the
corresponding variation of its Lagrangian counterpart (Tennekes & Lumley 1972).

2.5. Implementation of Taylor’s hypothesis

The velocity fluctuations in a turbulent environment in nature can be sampled by a
detector moving with velocity V along a straight line trajectory at two times ϑ and ϑ+ t,
corresponding to two positions ξ and ξ+ r ≡ ξ+Vt. Repeating the measurement many
times an ensemble of realizations can be obtained and the average of the mean square
velocity difference can subsequently be estimated. The result will correspond to a point
on the structure function S(r = V t, t). With a spatial correlation length rc, the range of
relevant time variation is t ∈ {0, rc/V }, i.e., for times outside this range, the correlation
function is negligible. When V is large, the range of time variation is small and we have
S(r = V t, t) ≈ S(r = V t, 0) ≡ S(r = V t) which represent the Taylor hypothesis applied
for the structure function. The question is how large V has to be for the approximation
to be valid.
In figures 8 and 9 we show results for structure functions S(r, r/V ). The data are

obtained by sampling the structure function S(r, t) in figure 2 along lines r = V t for
V/urms = 0.1, 0.3, 1, 3, 10 and 100. A red line give the analytical approximation (B 1)
for S(r). The results for V/urms = 3, 10 and 100 are hardly distinguishable and agree
entirely with S(r) within the inertial subrange.
As V is decreased we observe several features in figures 8 and 9. i) Deviations from the

ideal results S(r) are first found for the viscous subrange for decreasing V . The power-
law (i.e. the slope in a double logarithmic presentation) for the viscous subrange remains
approximately constant when reducing V . ii) The sampled curves move consistently to
higher values of S/u2

K as V is reduced. A power-law for the structure function remains an
acceptable approximation, but the exponent reduces for decreasing V . iii) The separation
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Figure 6. Estimate for the normalized Lagrangian structure function SLx(t)/u
2
K using dataset

II, shown as a function of normalized time variable t/τK with logarithmic scales on both axes.
Full red reference lines give the slopes for t2 and t. The thin red curve gives the empirical
transition between the viscous and the inertial ranges corresponding to the transition parameter
p = 5/2, see Appendix B. The underlying green curve illustrates the corresponding analytical
model for the transition from the universal range to the asymptotic limit for a transition
parameter p = 2.

point between viscous and inertial subranges moves towards smaller r/ηK for decreasing
V when V < urms. iv) The estimates of ϵ are steadily increasing for decreasing sampling
velocities V . Considering the inertial subrange only, we find ϵ to be determined with an
accuracy of 10% for V/urms = 3, and with approximately 25% for V/urms = 1. Even for
a value as low as V/urms = 0.3 we find a difference between the ideal and the sampled
result in the inertial subrange to agree within a factor of 3, noting though that the slope
of the sampled curve deviates from the analytical value 2/3. As a ”rule of thumb” it can
be argued that when V/urms ⩾ 0.7 we have ϵ determined with an accuracy comparable
to or better than the one found for C0. An order of magnitude (or better) estimate for ϵ
can be obtained for V/urms ⩾ 0.3.

In figures 10 and 11 we show the variation of S(0, t). Since the exact value r = 0
is not obtainable in the analysis, we use the three smallest available r-separations,
r/ηK = 0.6, 0.8 and 1.0 for dataset I and r/ηK = 0.4, 0.6 and 0.8 for dataset II.
The analytical form (2.2) finds no support in figure 10, for reasons already mentioned.
Alternatively it was hypothesized by Tennekes (1975) that a fixed observer is not
experiencing the (ϵ t)-scaling of the structure function as found by dimensional reasoning,
but rather a time variation caused by the smaller inertial eddies swept past the observer
by the large scale non-universal part of the spectrum, where most of the energy is found,

see also Appendix A. By this argument we expect that (ϵ r)2/3 →
(
ϵ t urms

)2/3
, where it

is implicitly assumed that the large non-universal eddies contain nearly all of the energy.
A more accurate estimate is found by taking a plausible velocity probability density to
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Figure 7. Snapshots of the normalized distribution function fr of normalized lengths r/ηK
measured from start-point to end-point of trajectories that enter the construction of the
Lagrangian structure function in figure 6. Selected snapshot times are t/τK ≈ 1, 3, 10, 20, and
35. The figure uses double logarithmic axes.

be a Maxwellian giving ⟨u2/3
∥ ⟩ = u

2/3
rms × 21/3Γ (5/6)/

√
π ≈ 0.80u

2/3
rms to replace urms in

the foregoing expression.
The normalized separation time scale between the two subranges is estimated to be

t0/τK = 1.5 ± 0.5 for the two datasets taken together. For comparison we have the
result obtained by the suggestion of Tennekes (1975) giving t0/τK = η0/(urmsτK) = 1.79
using the figures from Table 1. The agreement is reasonable considering the uncertainties
involved. Since the scales in the viscous subrange contains the smallest part of the energy,
the scale-size dependence of the advection velocities (Del Álamo & Jiménez 2009; Renard
& Deck 2015) is of minor importance there. Consequently, the argument of Tennekes
(1975) applies best for this subrange.
We tested the estimate (ϵ t urms)

2/3 argued before for the time variation of the fixed-
point Eulerian structure function, see also Appendix A. It seems that the result has
little support in the analysis. This observation has support in the analysis of Wyngaard
& Clifford (1977). The agreement was worst for dataset II. We find it unlikely that the
Eulerian fix-point results can be used for estimating ϵ, but studies for very high Reynolds
numbers might give more promising results.

3. Discussion

The present database has the same shortcoming as several other direct numerical
solutions of the Navier-Stokes equation: the moderate Reynolds number. Compared
with conditions in nature, the oceans in particular, see Table 2, (Granata & Dickey
1991; Kiørboe & Saiz 1995; Pécseli et al. 2020), the parameters are not unreasonable,
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Figure 8. Sampling of the normalized structure function S along lines r = V t for
V/urms = 0.1, 0.3, 1, 3, 10 and 100 from figure 2 (dataset I). A thin red line give the analytical
approximation (B 1) for S(r). The results for V/urms = 3, 10 and 100 are hardly distinguishable
with the given line thickness. The top curve is for V/urms = 0.1 with V increasing down.

Figure 9. Results corresponding to figure 8, here using figure 3 (dataset II).
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Figure 10. Estimate of the time variation of the normalized Eulerian structure function
S(0, t) for dataset I. The exact value r = 0 is not available due to the construction of the
present database, so we show results for the three smallest available r-separations for dataset
I, r/ηK = 0.6, 0.8 and 1.0, the smallest separation are at the bottom. The lines are slightly

irregular due to the limited number of samples for small r-separations. Two lines for t2 and t1/2

are inserted in red color for reference. On average, the smallest r-separation (steepest t-variation,
shown with black line) comes closest to the result ∼ t2 for t/τK < 1. The thin red line represents
the p = 1 fit discussed in Appendix B. Note that power-law approximations become inaccurate
for t > τK .

however, and the data suffice to test the applicability of Taylor’s hypothesis. In spite
of the moderate Reynolds numbers usually found in nature, a clear inertial subrange
can usually be identified for all three velocity components. Examples for such power
spectra are shown, for instance, by Pécseli et al. (2020). To make a comparison between
the numerical results and the conditions found in nature we can use the approximation
for the Reynolds number Re = (L/ηK)4/3, where L is the outer scale (Frisch 1995).
With L/ηK ≈ 600 and 1200 in the two simulations, respectively, we have the estimates
Re ≈ 5× 103 for dataset I and Re ≈ 12× 103 for dataset II.
Some of the main findings of the present analysis are summarized in figure 12, shown

on a semi-logarithmic scale. These results are obtained by approximating curves for a
given V > 0 in figures 8 and 9 by CK(ϵestr)

2/3. The ratio ϵest/ϵ is then determined for the
selected V -value, where ϵ refers to the rest-frame value. The curve-fitting is associated
with some uncertainty, resulting in the error bars. It is found that the estimates ϵest/ϵ
thus obtained are steadily increasing for decreasing sampling velocities V . The error bars
indicate the uncertainty of ϵest and they also increase in magnitudes with decreasing V .
A ”rule of thumb” requirement for the applicability of the Taylor hypothesis seems to
be V ⩾ urms ≫ uK , where the velocity V is measured with respect to the frame where
the average value of the turbulent velocity fluctuations vanish. Within an acceptable
uncertainty we can even accept velocities V ≈ 0.3urms where the error on ϵ is still
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Figure 11. Results corresponding to those shown in figure 10, here using dataset II. The
black, green and blue curves correspond to r/ηK = 0.4, 0.6 and 0.8.

smaller than a factor 3. For most conditions in the oceans (Granata & Dickey 1991;
Kiørboe & Saiz 1995; Pécseli et al. 2020), see Table 2, this requirement is easy to satisfy.
There is, however, a subsidiary requirement of having long time-series available measured
in terms of τK . For V = 10−3 ms−1 we will need time series much longer than 10 s, in
reality several hours. By cruising along a linear trajectory in a fjord, for instance, the
detector is likely to leave the turbulent region and it might be necessary instead to follow
some closed path.
The foregoing discussion was based on the inertial subrange since it is the one usually

obtained. Should data for the viscous subrange be available then estimates for ϵ can be
obtained also there. This analysis has been carried out with results similar to those in
figure 12, albeit with smaller error bars.
The exponent for a power-law approximation for the viscous subrange is nearly con-

stant for varying V -values used in the analysis. The corresponding exponent for the
inertial subrange is decreasing systematically for decreasing V from its original value 2/3
at V → ∞. In the limit V → 0 we find an exponent of approximately 1/2.

4. Conclusions

In the present analysis we estimated the error resulting in using the Taylor hypothesis
(or the ”frozen turbulence approximation”) for varying sampling velocities. The analysis
made use of the structure function rather than the power spectrum. The latter form of
the analysis is the one often found in the literature. The results found by the structure
function are, however, assumed to be universally valid and the conclusions can be applied
to the power spectra as well. We find it important that the results are supported by
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Figure 12. Variation on a linear scale of the estimated specific energy dissipation rate ϵest
normalized with its actual value in the simulation for varying V/urms. Both datasets are
included. V and urms are assumed to be known with certainty.

two numerical solutions of the Navier-Stokes equation with different Reynolds numbers,
although the calculations are made by the same numerical program.
A summary figure 12 shows the relative error when the Taylor hypothesis is used for

estimating ϵ as compared to the accurate value which is know in the numerical analysis.
Figure 12 can be used for calibration of experimental results when the sampling velocity
V is known.
The hypothesis put forward by Tennekes (1975) suggests that small turbulent eddies

are swept past a fixed observer by the large scale non-universal eddies with a velocity
sufficiently large to make Taylor’s hypothesis valid also in this case. This conjecture
was also tested in our analysis and found some support concerning the predicted time
variation, but not for use in determining ϵ. A better agreement may possibly be found for
Reynolds numbers significantly exceeding those found in the present numerical solutions
of the Navier-Stokes equation. Appendix A describes a model where the observed tem-
poral variations due to ”sweeping” of small scales by the large energy containing eddies
dominates the time variations caused by the energy cascade. It is found that the model
has features similar to those found in the numerical results.
The RMS-value of the fluid velocity has no importance for the viscous and inertial

subrange of the spatially varying structure function for vanishing time delay. The value
of urms is, on the other hand, important for the time varying Eulerian structure function
for vanishing spatial separation. The present results demonstrate the existence of a well
defined transition region near r/t ≈ urms when the entire space-time varying structure
function is analyzed.
Turbulent mixing is central for many turbulence applications, in particular it has been

found (Rothschild & Osborn 1988) that it is essential for the the feeding process of
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plankton in marine environments. The specific energy dissipation rate is a key parameter
here. Studying micro organisms in such conditions, it is often found that the relevant
scale sizes are smaller than η0 ≈ 13ηK . Therefore the modeling needs to consider also
the viscous subrange (Pécseli & Trulsen 2007; Kiørboe 2008; Pécseli et al. 2020). This
subrange may be poorly resolved by use of Taylor’s hypothesis. The inertial subrange
can still be used to determine ϵ, which can then be used for the ensuing analysis. The
value for the viscosity ν in the same environment will depend on the salinity of the water
(Sharqawy et al. 2010, 2012), which needs to be determined independently.

Taylor’s hypothesis has wider applications than for fluid dynamics by being used also
in, for instance, studies of plasma turbulence (Treumann et al. 2019). Here it will be
a great simplification that in many cases measurements of a scalar, the electrostatic
potential or the plasma density, suffices. Plasma media, especially magnetized plasmas,
are particularly rich in wave phenomena, and a universal turbulent spectrum is found only
in few cases (Pécseli 2015). For a wide class of plasma wave phenomena the fluctuations
are compressible and this gives a complication when estimating the mean square velocity
fluctuations: the Eulerian and Lagrangian values will usually be different (Tennekes &
Lumley 1972).
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Appendix A. A model for space-time varying structure functions

The present Appendix illustrates the properties of a model where the observed time
variations are solely due to the sweeping by the non-universal large energy containing
eddies, ignoring variations due to eddy-deformation and vortex stretching. These effects
are likely to be important for modeling the space-time structure of sheared turbulence
(Maré & Mann 2016). Intermittency effects are ignored. The model used in the following
was discussed in part by Tennekes (1975) and also by Chen & Kraichnan (1989) and
Yakhot et al. (1989). The following summary uses results from Kofoed-Hansen & Wandel
(1967). The model is formulated in terms of the full space-time varying correlation
function rather than the velocity component alternative used in the foregoing parts of
this work. The the original Kofoed-Hansen Wandel (KHW) analysis is extended.

The KHW analysis is based on a series expansion of the correlation function (Hinze
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1975) in the form

RE(τ) = ⟨u(t) · u(t+ τ)⟩ =
∞∑

n=0

(−1)n

〈(
dnu

dt2

)2

E

〉
τ2n

(2n)!
(A 1)

and subsequently evaluating terms (dnu/dtn)E = ((u− v) · ∇)
n
u where v is a suitably

defined probing velocity (Wandel & Kofoed-Hansen 1962; Kofoed-Hansen & Wandel
1967). Only the leading terms are retained in the series expansions entering the analysis.
The applications of this model, and some related to it, are discussed in the following.

A.1. Unfiltered advection velocities

The numerical simulations use periodic boundary conditions, so the corresponding
wavenumber spectrum is not representative for those occurring naturally. The ”outer
scale”, in particular, is not well defined in the simulations. We have chosen a generally
accepted form for the longitudinal spectrum with k ∈ {−∞,∞}, shown in standard
notation

E11(k) =
9

55
α ϵ2/3L5/3 1

(1 + (Lk)2)5/6
, (A 2)

with α ≈ 1.5 being a numerical constant of the same order of magnitude as the spectral
Kolmogorov constant. By EK(k) = k3d(k−1d E11(k)/dk)/dk, the expression (A 2) is
related to the standard von Kármán (1948) spectrum

EK(k) = αϵ2/3L5/3 (Lk)4

(1 + (Lk)2)17/6
. (A 3)

Both (A 2) and (A3) have an asymptotic k−5/3 inertial Komogorov-Obukhov subrange.
We consider the von Kármán spectrum as representative for the non-universal large scale
and inertial ranges of locally homogeneous isotropic turbulence found in nature and many
laboratories.
The two transverse spectra (Batchelor 1953) are found by 1

2 (E11(k) − kdE11(k)/dk)
giving the forms

E22(k) = E33(k) =
3

110
α ϵ2/3L5/3 3 + 8(Lk)2

(1 + (Lk)2)11/6
. (A 4)

By (A 2) we have the variances

⟨u2
1⟩ = ⟨u2

2⟩ = ⟨u2
3⟩ = α(ϵL)2/3

3
√
πΓ (1/3)

44Γ (11/6)
≈ 0.34α(ϵL)2/3 ≡ u2

rms. (A 5)

For later reference we introduce the abbreviation σ2
u ≡ ⟨u2⟩ = 3u2

rms. The Reynold’s
number is estimated by Re = (L/ηK)4/3 (Frisch 1995).
With E = E11+E22+E33, a corresponding spatial correlation function is given through

the Wiener-Khinchine theorem as
∫∞
0

E(k) cos(kr)dk. The normalized structure function
derived from this is shown in figure 13. Since the von Kármán spectrum by construction
has a long inertial range, the structure function has a corresponding r2/3 range.
The suggestions forwarded by Tennekes (1975) postulates that the Eulerian fixed-

point observed time variations are dominated by the sweeping by the large non-universal
energy containing eddies, where a characteristic velocity is σu. To implement this
model we write the Eulerian correlation function used before as

∫∞
0

E(k) cos(kr)dk →∫∞
0

E(k) cos(kut)dk where the sweeping velocity u has a probability density P (u) =

(u2/σ3
u)
√
2/π exp(− 1

2 (u/σu)
2). We find

∫∞
0

E(k) exp(− 1
2 (kσut)

2)(1 − (σukt)
2)dk. The
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Figure 13. The model structure function for varying normalized spatial separations. A reference
dashed line gives the slope of r2/3. The effects of the large scale non-universal eddies accounted
for in the von Kármán spectrum becomes noticeable when r/L ∼ 1.
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Figure 14. The temporal variation model structure function for varying normalized time
separations. For reference we have a thin dashed line giving the slope of t2/3. The heavy dashed
line gives the result for filtered advection velocities.

corresponding fixed-point Eulerian time varying structure function is found as

ST (t) = 2⟨u2⟩ − 2

∫ ∞

0

E(k)e− 1
2 (σukt)

2 (
1− (σukt)

2
)
dk. (A 6)

This result is shown in figure 14 with a full line. We find that ST (t) ∼ (ϵt)2/3 in a
large time interval as anticipated by Tennekes (1975). The same result we found also
by Kofoed-Hansen & Wandel (1967). For small times t an approximation is ST (t) ≈
3Γ (2/3)α (ϵ σut/2)

2/3. The result (A 6) assumes a spectrum without a viscous subrange,
but takes the limit r → 0 nonetheless. This inconsistency has no consequence for t ≫ τK .
To find the full space-time varying structure function we make the following argument:

reaching a space-time position (r, t) amounts to propagating with a constant deterministic
velocity V so that r = V t, to arrive at time t. To illustrate the idea we can take a one
dimensional case

∫∞
0

E(k) cos(kr)dk which with r = (u+ V )t. Averaging this expression
over velocities u with a Maxwellian distribution in one dimension gives the correlation
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function ∫ ∞

0

E(k)e− 1
2 (kσut)

2

cos(kV t)dk →
∫ ∞

0

E(k)e− 1
2 (kσut)

2

cos(kr)dk.

The full three dimensional case is more complicated. As an alternative to the series
expansion of Kofoed-Hansen & Wandel (1967) we can write cos(kr) = cos(k|u+V|t) ≡
cos(kUt). With a change of variables u2 = (U−V)2 = U2 + V 2 − 2UV cosΘ where Θ is
the angle between U and V, we rewrite the Gaussian probability density for u. After an
integration for all Θ ∈ {0, 2π} and 0 ⩽ U < ∞ we have

ST (r, t) = 2⟨u2⟩ − 2

∫ ∞

−∞
E(k)e− 1

2 (σukt)
2

(
cos(kr)− sin(kr)

kr
(σukt)

2

)
dk

= 2

∫ ∞

−∞
E(k)

(
1− e−

1
2 (σukt)

2

(
cos(kr)− sin(kr)

kr
(σukt)

2

))
dk, (A 7)

where ST ≡ S + 2G. The result (A 7) reproduces (A 6) in the limit r → 0 as required. It
will mostly be small k in the spectrum that contributes for large t due to the combination
kt in the arguments in (A 7). So far the model assumes all scales to have a velocity u+V
with an average over all u. The model will be improved in Section A.2.
The result (A 7) is shown in figure 15. We find the similarities between the results in

figures 15 and 2 interesting. It is thus conceivable that many of the details in figure 4
can be explained by the sweeping motion caused by the large non-universal eddies.
The analysis of Kofoed-Hansen & Wandel (1967) allows also an estimate of the

Lagrangian structure function. The result turns out to consist of simply replacing σu

by σu

√
2. We analyzed also this case using the model spectrum (A3). The observed time

variation was ∼ t2/3 and in noticeable disagreement with that in figure 6.
As far as the inertial subrange is concerned, it makes no substantial difference to

distinguish the component spectra and the full summed spectrum and corresponding
structure functions. By the choice of the von Kármán spectrum we illustrate here a
systematic and physically plausible transition to the large scale non-universal energy
containing eddies for k → 0.

The present model could in principle be generalized to include a viscous subrange.
There is, however, no universally accepted spectral model that includes such a viscous
subrange.

A.2. Filtered, scale size dependent, advection velocities

A.2.1. The Eulerian case

In the foregoing section it is implicitly assumed that all scales are advected with
the same velocity. In reality an eddy with characteristic size D is advected by scale
sizes ⩾ D (Csanady 1973; Mikkelsen et al. 1987), while smaller scales distort the eddy.
This argument can be expressed in terms of wavenumbers by letting D ∼ 1/k. At a
wavenumber k the sum of component power spectra E(k) entering (A 6) will contain
contributions from all wavelengths ⩽ 2π/k due to the aliasing. At any given k we can
account for the advection caused only by the larger scales by introducing a filtered power

spectrum u2
f (k) =

∫ k

0
EK(ξ)dξ replacing σ2

u. For very large wavenumbers (small scales)

the filter gives approximately σ2
u while small k gives (11/9)(kL)5(Γ (5/6)/Γ (1/3)

√
π)σ2

u ≈
0.3 (kL)5σ2

u. The result for filtered, or scale size dependent, velocities is shown with a
heavy dashed line in figure 14. The structure function is now only approximately following
a simple power law, and here with an exponent smaller than 2/3, closer to 1/2. The model
result is now in better agreement with the numerical results found in figures 10 and 11,
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Figure 15. Model results for the space-time varying structure function. Since the model applies
only to the inertial subrange, the figure is restricted to r ⩾ η0 and t ⩾ τK . A solid blue line
gives r = σut.

keeping in mind though that those contain also the viscous subrange. The spatially
varying structure functions shown in figure 1 are not affected by this filtered advection.
A summary of the results for the full space-time variation of the structure function is
found in figure 16. The overall features remain the same as in figure 15. The modifications
due to the filtering are modest for r ⩾ σut, while differences are found in the details for
r < σut.
The present velocity filtered model opens for the possibility of a∼ t2/3 inertial subrange

also for the time varying Eulerian structure function, but only if a time range τK ≪ t ≪
L/σu can be realized. This is not the case for the present numerical simulations.
As an additional illustration of the properties of the filtered KHW-model we show in

figure 17 results obtained by sampling the structure function along a line t = r/V and
then changing the plotting variables as in figures 8 and 9. Comparing figures 8, 9 and
17 we keep in mind that the KHW-model in its form used here contains only the inertial
subrange. Also for the model we find a saturation as V is increasing, although here the
requirement appears to be more restrictive, i.e., the model requires V/σu ⩾ 3 before
we can argue that S(r, r/V ) ≈ S(r, 0). The general features of figures 8, 9 and 17 are



24 H. L. Pécseli and J. K. Trulsen

0.1

0.2

0.5

Figure 16. Model results for the space-time varying structure function, corresponding to
figure 15, here using a velocity filter accounting for scale size dependent velocities.
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Figure 17. Model results (in a double logarithmic presentation) for samples of the
Taylor hypothesis applied to the filtered version of the KWH structure function using
V/σu = 1/8, 1/4, 1/2, 1, 5/2, and 10 from top to bottom, to be compared with figures 8 and

9. A dashed line gives the slope of r2/3 for reference.

the same: the curves for S(r, r/V ) increase and moves towards smaller r-values as V is
decreasing. Also we find a slow systematic decrease in the average slope of the structure
function as V is decreased.

A.2.2. The Lagrangian case

TheWKH-result for the Lagrangian structure function, see figure 18, was not promising
by giving a t2/3-form for the time variation in a large time interval, different from the
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Figure 18. Model results for the Lagrangian structure function. The full line gives the result
found by Wandel & Kofoed-Hansen (1962), the thick dashed line is the one suggested in the

present analysis. Two thin dashed lines gives the reference slopes of t2/3 and t, respectively.

numerical results in figure 6 and in disagreement also with (2.2). We believe the mistake
to be that the WKH-model includes an advection velocity in the Lagrangian model in the
same way as in the Eulerian case. The temporal variations in the Eulerian case are in part
caused by small eddies advected past the fixed observer by the large energy containing
eddies (Tennekes & Lumley 1972). A Lagrangian co-moving observer will not observe
similar time variations. In this case the observed time variations are due to eddies moving
with respect to each other and to eddy-deformations. A characteristic eddy velocity for
an eddy of size ℓ can be formed by dimensional reasoning as ue ∼ (ϵℓ)1/3, which can be
expressed in terms of wavenumbers by the replacement ℓ ∼ 1/k. A more detailed eddy
velocity model (Orszag 1977) corresponding to an eddy of scale-size 1/k can be derived
from the power spectrum as

ue(k) =

√∫ 2k

1
2k

EK(κ)dκ,

albeit with an ”ad hoc” choice of the eddy-definition (Orszag 1977). A change in definition
will only give rise to a change in a numerical coefficient. The effects of the detection point
moving along a Lagrangian orbit together with an eddy in a surrounding of other eddies
with other velocities can be described by the replacement u2

rms → u2
e(k) in (A 6). We

recall that for incompressible homogeneous isotropic flows ⟨u2⟩ is the same, irrespective
of Lagrangian or Eulerian samplings being used. The Lagrangian structure function is
shown with a dashed heavy line in figure 18. We find a clear ∼ t variation, in agreement
with (2.2). Since u2

e(k) < u2
f (k) for all k > 1/L, we can conclude that the Lagrangian

integral time scale is larger that its Eulerian counterpart. This is in variance with results
obtained by, for instance, Weinstock (1976).
The model illustrated in the present appendix is restricted by assuming all observed

time variations to be caused by advection of eddies. Nonetheless it is found that the
results can be brought into fair agreement with those found by the numerical simulations,
in particular when the a filtered advection velocity is applied. One basic feature of the
WKH-model is retained in its filtered version: it derives all time variations (both Eulerian
and Lagrangian) from the wavenumber spectrum alone. The present results are based on
a von Kármán spectrum in order to have a well defined outer scale. Due to the periodic
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conditions used in the simulations that part of the simulation results differs from the
von Kármán spectrum. The analysis here can readily be generalized to two-dimensional
turbulence, but for that case (A 7) has to be modified (Pécseli & Mikkelsen 1985; Pécseli
& Trulsen 1995).

Appendix B. Approximations for structure functions

We have analytical expressions for the structure functions for the two universal sub-
ranges, the inertial and the viscous. There seems to be no analysis covering both ranges,
but we can give a phenomenological expression and test it against the data. It turns out
that it is possible to give a very satisfactory model.
Assume that we have an experimentally or numerically determined monotonically

increasing (decreasing) function F (y) with functional forms F1(y) and F2(y) for small
and large values of the variable y, respectively. The function F can be approximated by
a class of curves of the form

F (y) =
F1(y)F2(y)(

F p
1 (y) + F p

2 (y)
)1/p , (B 1)

where p is an adjustable transition parameter, not necessarily integer. We use this model
for approximating the Eulerian and also the Lagrangian structure functions. For the
Eulerian case with y = r, we have F1(r) = C1r

2ϵ/ν and F2(r) = C2(rϵ)
2/3 and find that

the choice p = 5/4 gives an excellent fit as shown in figure 1. The coefficients C1 and
C2 are determined through least square fit to take values 0.062 and 1.924. These should
be compared with Cν = 1/15 ≈ 0.0667 and CK . A Fourier transform of the correlation
function obtained from the fitted curve in figure 1 reproduces a subrange following the
spectral Kolmogorov-Obukhov 5/3-law.
The approximation inherent in (B 1) can always be used, but there is no a priory reason

for it to be particularly good, so the observed fine agreement deserves attention. In a
previous study (Pécseli et al. 2020) we gave an analytical approximation using p = 1,
but found that the choice mentioned before is more accurate. The difference between the
values of C1 and Cν may be due to an upper wavenumber limit for the viscous subrange
in the numerical solutions. It could also be due to the increased statistical uncertainty of
the numerical result at small r values.

Analytical approximations can be given also for the results shown in figures 10 and 11.
here With F1(t) = C1t

2 and F2(t) = C2t
1/2 and proper choices of the constants C1 and

C2, and using p = 1, we find the analytical curves shown with thin red lines in figures 10
and 11.
An approximation for the Lagrangian structure function over the entire universal range

in figure 6 can be obtained as well. With F1(t) = C1t
2 and F2(t) = C2t, using p = 5/2 we

obtain the result given by the thin red curve in figure 6. For the normalized Lagrangian
counterpart of the structure function, see figure 6, we found C1 = 12.677 and C2 = 9.101.
The Lagrangian structure function differs from the Eulerian by showing a trend toward

the constant asymptotic limit within the available r-range. The green (partly underlying)
curve in figure 6 is the result by using the expression (B 1) a second time with F1 set
equal to the universal range approximation (the thin red curve), F2 = 2u2

x,rms and p = 2.
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