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Abstract
Competition between heterogeneous participants leads to low‐effort provision
in contests. A principal can divide her fixed budget between skill‐enhancing
training and the contest prize. Training can reduce heterogeneity, increasing
effort. It also reduces the contest prize, making effort fall. We set up an
incomplete‐information contest with heterogeneous players and show how this
trade‐off is related to the size of the budget of an effort‐maximizing principal. A
selection problem arises implying a cost associated with a win by the inferior
player. The principal has a larger incentive to train the laggard, reducing the
prize on offer.
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1 | INTRODUCTION

How should an employer get the most out of her work force? Similarly, how should a research council get the most out
of researchers? The standard answer in many such contexts is: set up a contest with a prize to the winner – like a
promotion or a research grant. But, as many contest organizers have observed, contests do not incentivize well when
there are big differences among the contestants at the outset.1 So the modified answer is: set up a contest, and seek to
level the playing field among the contestants.2 However, what if leveling the playing field is costly? In such cases, the
contest organizer might have to trade off the prize to the winner with spending resources on training the contestants so
that they are both better equipped to put in effort in the contest and more interested in doing so.

We address the question of how to find the best balance between prize and training in a setting where a principal
organizing a contest has a fixed budget that she can split between a prize, which will incentivize the contestants to put
in more effort, and skill‐improving training, which will make the effort put in by a contestant more productive. When
there are ex‐ante differences in the contestants' skills, there is also a question of who to train.

In our model, there are two contestants who compete in an all‐pay auction, meaning that the winner is the
contestant with the higher effort. A contestant's ex‐ante skills are not known by the other contestant, nor by the
principal. But everybody knows the probability distribution that each contestant's skill is drawn from. The ex‐ante
leader is the one with skills drawn from the better distribution, while the other one is called the ex‐ante laggard.

When the principal aims at maximizing the contestants' total expected efforts, it turns out that the exact nature of
her decision on how to split her budget between prize and training depends on how large the budget is. With a medium‐
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sized budget, the principal spends resources on training the laggard exactly so that any ex‐ante differences are evened
out, with the rest of the budget being spent on the prize. When the budget is small, the budget is optimally split between
the prize and training of the ex‐ante laggard, but such that the ex‐ante difference is not totally evened out; and if the
budget is very small, there will be no training and the whole budget is spent on the prize. When the budget is large,
there is room for training both contestants in such a way that the ex‐ante difference is first evened out, and then the
expected abilities of both contestants are increased symmetrically, while still having funds for a prize.

We also discuss the case where the principal cares about having the right winner of the contest. Since skills are un-
certain ex‐ante, there is a chance that the winner is not the ex‐postmore efficient contestant. In order to take care of this
problem, the principal should aim at minimizing the probability of erroneous selection. Interestingly, the size of the prize
plays no role in this problem, so the only remaining issue is how to split the training part of the budget between the two
contestants. We show that the probability of erroneous selection is not monotonic in the amount of training given.

In addition to simply minimizing the probability of selecting the less efficient contestant, we also consider the case
in which the principal cares about the expected cost of erroneous selection (as measured by the difference in ability
between the winner and the more efficient loser). Maximizing a weighted combination of expected effort minus ex-
pected selection cost, we show that the principal is more likely to offer training to the laggard for lower budgets, the less
weight is placed on effort.

Our analysis provides insights for many situations where a principal is faced with heterogeneity among her con-
testants. We will briefly mention two such situations that are of particular importance.

For a country's research and technology policy, it is important to allocate public funds to researchers in the most
efficient way possible. There has been a concern, at least since Merton (1968), that there is too much heterogeneity
among research groups and that this leads to a lack of interest among researchers in taking part in competitions for
funds from the research council. A question arises whether funds should be given directly to universities and other
research institutions, in such a way that laggards become more able to compete for further funding, or should be
deployed through grant competitions organized by the research council. As our analysis shows, the role for the research
council is larger the smaller is the total budget allocated to research funding. As this budget increases, more of it should
be allocated to leveling the playing field among the country's research institutions.

Another equally important topic is how firms should allocate their human‐resource funds. In this research area,
there are discussions whether one should focus on selecting the best workers for promotions to more prestigious and/or
interesting jobs or on training the whole workforce in order to make them better able to compete for the promotions;
see, for example, Beck‐Krala (2020), Cron et al. (2005), and Farrell and Hakstian (2001). Training has been given special
attention in sales force management, and many companies use substantial resources on this activity (see, e.g., Krish-
namoorthy et al., 2005).3 Among others, Beck‐Krala (2020) notes a tendency in human resource management to
consider the “total reward” of an employee, encompassing financial and nonfinancial, direct and indirect rewards.
Training is one costly dimension of the total reward offered by a firm. Our analysis shows that incentivizing the
workforce through promotion contests and the like should be the main focus when the firm's funds are limited, whereas
a richer firm can focus more on training the workforce in order to rectifying biases and in this way make the whole
workforce interested in putting in efforts to obtain positions within the firm.4

Our paper builds on earlier discussions of all‐pay auctions where players have private information about their
valuations, such as Amann and Leininger (1996) and Clark and Riis (2001). In particular, Clark and Riis (2001) are close
to our basic framework, since they posit two players where one has its skill drawn from a more advantageous distri-
bution than the other, so that they, ex‐ante, are leader and laggard. See also Seel (2014), where the private information is
one‐sided, in that one player's valuation is known by both players.

This paper is related to the discussion of whether and how to rectify ex‐ante biases among contestants. See, in
particular, Franke et al. (2018), Kirkegaard (2012), and Li and Yu (2012) for discussions on how to increase total effort
by rectifying these biases.5 Our present analysis differs from the previous work in insisting that favoring a contestant is
costly and will, in the face of a fixed total budget for the contest designer, imply a lower prize for the contest winner. In
fact, we find that, when the budget is small, it is not optimal for the contest designer to completely rectify the ex‐ante
biases, since doing so would leave a too small prize to the winner.6

A number of studies discuss contest design when the designer has other concerns than simply maximizing total
expected efforts.7 Tsoulouhas et al. (2007) discuss a designer facing one group of contestants with known abilities and
another group with unknown abilities and find that it may be optimal to favor the former group. Cohen et al. (2008)
discuss a designer who has an interest in maximizing the highest expected effort of a player and find that ex‐ante biases
are preferable. In Seel and Wasser (2014), the designer has concerns for both total expected efforts and the highest
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expected effort, and again having a bias is optimal. Pérez‐Castrillo and Wettstein (2016) study a designer who wants to
select the high‐type contestant and find conditions such that, also in this case, having an ex‐ante bias is preferable. Our
analysis, in contrast, shows that, for a sufficiently large budget, it is optimal for the designer to level the playing field
irrespective of how much weight she puts on selecting the high‐type contestant, while for smaller budgets, a high such
weight means a higher concern for training the laggard in order to reduce the ex‐ante bias.

The paper relates to studies of pre‐contest investments. For example, Fu and Lu (2009) and Konrad (2002) discuss
contestants' incentives to invest in own productivity before a contest. In contrast, we discuss the principal's incentives
for such pre‐contest investments. Clark and Nilssen (2013) analyze contestants' incentives to put in extra effort in the
first round of a two‐round competition where there is complete information and learning by doing. They discuss how
the contest designer can split her prize budget across the two rounds in order to get the right balance between first‐
round learning and second‐round efforts. This is related to the present discussion of pre‐contest training versus
prize award; the framework of the present paper is quite different, however, since heterogeneous players compete under
incomplete information, and the ex‐post effect of training is not deterministic.

The paper is organized as follows. Section 2 outlines the basic contest played between heterogeneous participants.
Section 3 considers how an effort maximizing principal will divide her budget between training and the contest prize.
Section 4 focuses on the selection problem in which a low‐ability contestant can win the contest; the trade‐off between
the prize and training is considered here for a principal that maximizes a weighted sum of the expected contest effort
and the expected cost of erroneous selection. Section 5 concludes. All proofs are to be found in Appendix A.

2 | THE CONTEST

Two risk neutral players compete for a prize of size v by exerting irreversible efforts xi ≥ 0, i = 1, 2. The cost of effort to
player i is given by xi

ai, where ai is an ability parameter that is private information to that player. It is commonly known
that player 1 draws ability from a uniform distribution on [h, H], and player 2 from a uniform distribution on l;L½ �. We
make the following assumption:

Assumption 1 (i) H − h = L − l ≡ D. (ii) H ≥ L > h ≥ l > 0. (iii) HD >
4
3.

Part (i) of the assumption implies that the players' distributions are identical up to a location shift. Part (ii) means that
player 1, without loss of generality, is expected to be the more able player ex ante, withH≥ L. It also implies that the ability
distributions are overlapping, with L> h, which again implies thatD>H− L; and that L>D, since l= L−D> 0. Ex post it
can hence be the case that player 2 is actually more able, even though player 1 is expected to have the higher ability ex ante.
Part (iii) is a regularity assumption. It is not a very strong assumption to make. Necessarily, HD > 1, since h = H − D > 0.
Suppose, moreover, that L approaches h, which would mean that h − l would approach D. With L − l = D and l > 0, this
would imply h > D, or, since h = H − D, HD > 2, which is stricter than the assumption we make here.

The player with the larger effort wins the prize with certainty, with ties broken randomly, as depicted by the
following contest success function giving the probability that player 1 wins the prize:

p1ðx1; x2Þ ¼

1 if x1 > x2;

1
2

if x1 ¼ x2;

0 if x1 < x2:

8
>><

>>:

At the contest stage, player i knows his own ability but not the ability of the opponent. The expected payoffs of type
ai can be written as

π1 x1; x2; a1ð Þ ¼ Pr x1 > x2ð Þ þ
1
2

Pr x1 ¼ x2ð Þ

� �

v −
x1

a1

π2 x1; x2; a2ð Þ ¼ Pr x2 > x1ð Þ þ
1
2

Pr x1 ¼ x2ð Þ

� �

v −
x2

a2
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Let the effort function xi aið Þ of player i be a mapping from the player's ability to his chosen effort; suppose it is
continuous and strictly increasing (except possibly at zero), which implies that there exists an inverse gi xið Þ ¼ x−1

i xið Þ ¼ ai,
i = 1, 2. Since abilities are uniformly distributed, we can write expected payoffs for the two players as

π1 x1; x2; a1ð Þ ¼
g2 x1ð Þ − l

D
v −

x1

a1
ð1Þ

π2 x1; x2; a2ð Þ ¼
g1 x2ð Þ − h

D
v −

x2

a2
ð2Þ

Using arguments explained in Clark and Riis (2001), we can state the following result, the proof of which is in the
Appendix.

Proposition 1 The unique pure‐strategy Bayesian Nash equilibrium is given by the equilibrium effort functions
x�i aið Þ, i = 1, 2, where

x�1 a1ð Þ ¼
L a2

1 − h2� �

2DH
v; for a1 ∈ h;H½ �: ð3Þ

x�2 a2ð Þ ¼

0; for a2 ∈ l;
Lh
H

� �

;

a2
2H

2 − L2h2

2DHL
v; for a2 ∈

Lh
H
;L

� �

:

8
>>>>><

>>>>>:

ð4Þ

Whilst almost all player‐1 types have positive effort, some low player‐2 types (a2 ∈ l; LhH
� �

) do not find it worthwhile
to compete. Note that the two players' equilibrium effort functions have the same support, x‒; �x

� �
¼ 0; LH H − D

2

� �� �
. Note

also that, when the players draw their valuations from the same uniform distribution (i.e., when L = H), the equi-
librium effort functions are

x�i aið Þ ¼
a2
i − h2

2D
v; i¼ 1; 2: ð5Þ

Figure 1 gives an illustration of the equilibrium in Proposition 1, showing that the equilibrium effort function of the
ex‐ante less able player 2 lies over that of player 1. The superior opponent uses his expected edge to slack off and save on
effort cost. This means that a player‐2 type of inferior ability can beat a more able player‐1 type. When the players have
drawn the same ability a1 = a2 = a, which of course can only happen if a > h, it is easy to verify from Equations (3) and
(4) that x�2 að Þ > x�1 að Þ when H > L.

The ex‐ante total expected efforts (i.e., before the draws are made) are

X� ¼ E x�1
� �
þ E x�2

� �

¼
Lv

2DH
∫
H

h

a2
1 − h2� � 1

D
da1 þ

v
2DHL

∫
L

Lh
H

a2
2H

2 − L2h2� � 1
D
da2

ð6Þ

¼
L 3H − 2Dð Þ

6H
vþ

L2 3H − 2Dð Þ

6H2 v

¼
L 3H − 2Dð Þ H þ Lð Þ

6H2 v;
ð7Þ

where we use the substitution h = H − D.
Note that the ratio of the expected efforts has a simple form:
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E x�1
� �

E x�2ð Þ
¼
H
L

≥ 1:

Thus, even if, for a given a, player 2 has the higher effort, the ex‐ante expected effort is higher for player 1. Moreover,
in the case of symmetry, when L = H, the expression in Equation (7) reduces to

H −
2
3
D

� �

v: ð8Þ

Player 1 wins the contest with certainty if player 2 draws a type in the interval l; LhH
� �

, since 2 then has zero effort in
equilibrium; player 1 also wins if x�1 a1ð Þ > x�2 a2ð Þ, which by Proposition 1 occurs for a2 < L

Ha1. Hence, the probability that
player 1 of type a1 wins is 1

D
a1L
H − l
� �

; taking the expectation of this over all player‐1 types gives the ex‐ante probability
that player 1 wins the contest in equilibrium as8:

p�1 ¼ ∫
H

h

1
D

a1L
H

− l
� �

1
D
da1 ¼ 1 −

L
2H

≥
1
2
;

where the inequality follows from L ≤ H.
Even though the ex‐ante more able player 1 is expected to have more effort, this does not cost him more, since his

unit cost of effort is likely to be smaller. In fact, the expected ex‐ante costs of effort of the two players are identical:

∫
H

h

x�1 a1ð Þ

a1

1
D
da1 ¼ ∫

L

Lh
H

x�2 a2ð Þ

a2

1
D
da2 ¼

Lv
4HD2 D 2H − Dð Þ − 2ln

H
H − D

� �

:

The ex‐ante expected payoffs to the players can be found as

Eπ�1 ¼ 1 −
L

2H

� �

v −
Lv

4HD2 D 2H − Dð Þ − 2ln
H

H − D

� �

;

Eπ�2 ¼
L

2H

� �

v −
Lv

4HD2 D 2H − Dð Þ − 2ln
H

H − D

� �

¼
Lv

4HD2 D 3D − 2Hð Þ þ 2 H − Dð Þ
2 ln

H
H − D

� �� �

≔
Lv

4HD2 Θ D;Hð Þ;

F I GURE 1 Equilibrium effort functions
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where the expected payoff to player 1 is higher, since he has the higher win probability in equilibrium and the players
have the same expected cost of effort. Player 2 must achieve a nonnegative profit in equilibrium, that is, Θ D;Hð Þ ≥ 0. It
is easily verified that Θ 0;Hð Þ ¼ 0, and that it is positive otherwise so that the expectedly weakest player has a
nonnegative payoff in equilibrium as required.

3 | TRAINING TO MAXIMIZE EFFORT

Suppose the principal aims at maximizing the total ex‐ante expected efforts of the contestant. She has available a fixed
budget B, which can be divided between giving the contest prize v and investing in the abilities of the players with s1 ≥ 0
and s2 ≥ 0, respectively. Budget balance requires B = v + s1 + s2.

The development of ability at the training stage is modeled as an upward shift in the ability interval of the receiving
player, keeping the length of the interval constant at D. With expenditure si, the ability improvement is simply si;
following expenditures of s1 and s2 on the two players, the ability interval of player 1 becomes hþ s1;H þ s1½ �, while
player 2 has lþ s2;Lþ s2½ �.

At the beginning of the game, the principal announces a triple v; s1; s2ð Þ that satisfies budget balance. If either of the
training amounts is positive, then training takes place. Then draws are made from the modified ability distributions.
After this the contest is played over the prize v.

The equilibrium is based on the premise that (a) the ability intervals overlap, and (b) that the ability intervals are of
the same length with that of player 1 being above that of the rival. To ensure that the ability intervals overlap after any
training is carried out requires that L + s2 > h + s1 = H − D + s1; after training, player 1 retains the higher ability
interval as long as H + s1 > L + s2.9 Training levels that fulfill both of these requirements hence satisfy

H − L − D < s2 − s1 < H − L: ð9Þ

To facilitate comparative‐statics analysis when the lower and upper bounds of the interval are changed, it is
convenient to rewrite the equilibrium effort functions in Equations (3) and (4) using h = H − D, l = L − D, since D is
constant. We have

x�1 a1ð Þ ¼
L a2

1 − H − Dð Þ
2� �

2DH
v; for a1 ∈ H − D;H½ �: ð10Þ

x�2 a2ð Þ ¼

0; for a2 ∈ L − D;
L H − Dð Þ

H

� �

;

a2
2H

2 − L2 H − Dð Þ
2

2DHL
v; for a2 ∈

L H − Dð Þ

H
;L

� �

:

8
>>><

>>>:

ð11Þ

F I GURE 2 Equilibrium efforts when player 2 receives training
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We can now analyze the effect that increasing the expected ability of one of the players will have on the equilibrium
effort functions. Suppose first that the support of the distribution for the laggard is moved up (i.e., l and L increase).
The effect that this has on the equilibrium effort functions is drawn in Figure 2 for a shift from L to L0 > L, where the
new equilibrium efforts are given by x�0i aið Þ.

10

From this, it is apparent that the effects on the effort functions are monotonic; all player‐1 abilities increase their
efforts, since the rival is now expected to be more able than before. The laggard responds to the expected increase in
ability by providing less effort. On the other hand, the high player‐2 types will have effort above the previous maximum
level. The common upper support of both players increases to �x0.

Figure 3 depicts the effects of increasing the expected ability of the leader, that is, increasing h;Hð Þ to h00;H00ð Þ.11

Whilst the response of the receiving player 1 is to lower effort for all ability levels, except at the top of the distri-
bution, the response of player 2 is to decrease effort for low ability levels and increase it for high ones. There are also
fewer player 2 types that have positive effort when the opponent becomes more superior in expectation.

The principal knows that player 1 is the expectedly more able; since she does not know the actual draws made by the
rivals, the principal does not know which of the players is most able ex‐post. As illustrated in Figures 2 and 3, increasing
the expected ability of the laggard causes the effort function of the leader to shift upwards and that of the laggard to shift
downward; increasing the expected ability of the leader reduces the efforts of that player and of low laggard types, but
increases the effort of higher ability laggards.

Dividing the budget between the prize and training for one of the players is not a straightforward problem as
demonstrated above. The problem becomes more complex when both can receive training. However, as it turns out, the
principal will not support the ex‐ante leader with any training in our model, except if the budget is large, so that the op-
timum is to split the budget between a prize to the contest winner and training of the ex‐ante laggard. In particular, we have:

Proposition 2 A principal with a budget of B will split the budget on prize and training as follows:

(i) An insufficient budget, that is, one where

0 < B ≤
L H þ Lð Þ

H þ 2L
;

will lead to no training and v = B.
(ii) If the budget is small, that is, if

L H þ Lð Þ

H þ 2L
< B ≤

5
3
H − L; ð12Þ

F I GURE 3 Efforts when player 1 is trained
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then the principal spends s2 on training the ex‐ante laggard and the rest, B − s2, on the prize, where

s2 ¼
1
3
B −H − 2Lþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

BþH þ Lð Þ
2 −H Bþ Lð Þ

q� �

: ð13Þ

(iii) If the budget is of an intermediate size, that is, if

5
3
H − L < B ≤ 3H − L −

4
3
D;

then the principal trains the ex‐ante laggard until the two players have equal expected skills,

s2 ¼H − L;

and uses the rest, B − H + L, as the contest prize.
(iv) If the budget is large, that is, if

B > 3H − L −
4
3
D;

then the principal first spends training on the ex‐ante laggard until the two players have equal expected skills,
and thereafter spends equal amount of training on both players so that they continue to have equal expected
skills. Total spending on training is S = s1 + s2, while the rest of the budget, B − S, is spent on the prize, where

S ¼
1
6

3B − 3H − 3Lþ 4Dð Þ

s1 ¼
S − H − Lð Þ

2

s2 ¼
Sþ H − Lð Þ

2
:

ð14Þ

Consider first part (i), which indicates the case in which training is completely sacrificed in order to give a contest
prize as large as possible. When the principal is resource constrained in this way, training the laggard has a positive
effect on total effort ceteris paribus, but this directly reduces the contest prize, reducing effort. The second effect
outweighs the first, and no training is given.

Part (ii) covers the case when the budget is larger, but not enough that it pays to make the players symmetric. Now
total efforts get a boost from the laggard being trained, at the same time as there is a downward pressure on total efforts
as the prize becomes lower and lower. The amount of the budget used on training balances these two effects, finding an
internal division of the budget. Increasing the budget further, as in part (iii), allows the laggard to be trained until the
contestants are equal in expected ability, putting the remainder of the budget into the prize fund. Finally, in part (iv),
the budget is so large that the initial laggard can be trained so that he catches up the expected leader, and then both
players can be made more efficient. This occurs until the marginal effect of spending one unit of the budget on training
is equal to the marginal effect of giving that unit as a prize.

The relationship between the size of the budget and the total expected efforts is then straightforward to determine as

X� ¼

L 3H − 2Dð Þ H þ Lð Þ

6H2 B; for 0 < B ≤
L H þ Lð Þ

H þ 2L
;

3H − 2Dð Þ Ψ −Hð Þ 2H þ Ψð Þ 3BþH þ 3L − Ψð Þ

162H2 ; for
L H þ Lð Þ

H þ 2L
< B ≤

5
3
H − L;

H −
2
3
D

� �

B −H þ Lð Þ; for
5
3
H − L < B ≤ 3H − L −

4
3
D;

3Bþ 3H þ 3L − 4Dð Þ
2

72
; for B > 3H − L −

4
3
D;

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:
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where Ψ ≔ B þ L þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

BþH þ Lð Þ
2 −H Bþ Lð Þ

q

. The second and fourth parts of this function are increasing and
convex in B. For very small and for intermediate budget sizes, the first and third parts indicate that extra budget is
completely given to the prize, increasing expected effort linearly. This relationship between B and X* is illustrated in
Figure 4.12 To give an idea of the effect of training on expected effort, the line X�0 indicates expected effort without
training, that is, v = B, s1 = s2 = 0.13

For low budget levels, all funds are spent on the contest prize, and expected efforts are a fixed proportion of this, as
indicated by Equation (7). When the budget reaches L HþLð Þ

Hþ2L , it is possible to do better than this by training the laggard.
Figure 2 shows that the leader will increase effort for all ability types but that the laggard will reduce effort, apart from the
high types that are created by the training. Initially, as the budget increases beyond L HþLð Þ

Hþ2L , the net effect is positive and large
enough to outweigh the fact that resources are taken away from the contest prize, which reduces effort. As further re-
sources are used on training player 2, the players become more and more alike in expected ability; this leveling of the
playing field increases effort. If the principal has a total budget of 5

3H − L, then training is given until the players are
symmetric; hence,H− L is used on training player 2, and 2H

3 is the contest prize. An increase in the budget from this point
will optimally be put in its entirety into the prize fund; however, when the budget becomes large enough (3H − L − 4

3D),
some resources are allocated to training both players, keeping them symmetric and increasing their ability in the contest.
This leads to an increase in expected effort that is larger than would be obtained simply by granting a larger prize.

In dividing the budget between the contest prize and training player 2, the principal imparts several effects on the
expected payoffs of the players. In Figure 5, the ex‐ante expected payoffs of the players when training is not given are
represented by Eπ0

1 and Eπ0
2. Since each extra unit of budget gives an equivalent increase in the contest prize, these are

straight lines and player 1—who is expected to be most able—has the larger expected payoff. For low‐budget levels (up to
L HþLð Þ

Hþ2L ) there is no training and these basis payoffs are achieved by both players. When player 2 is trained, he expects to
draw a lower cost of participating in the contest. As illustrated by Figure 2, this causes player 1 to exert more effort than
before. This increases player 1's probability of winning, but it also increases its effort costs, so that player 1's expected
payoff falls for budgets in L HþLð Þ

Hþ2L < B ≤ 5
3H − L – even when the principal also increases the contest prize in this region. As

a response to training, most player‐2 types slack off, which reduces the probability of this player winning. But less effort,
exerted at a lower cost, and an increasing contest prize mitigates this. Figure 5 shows that the expected payoff of player 2
increases as the budget grows, even though it is lower than it would have been with no training. Note that the expected
payoff to player 2 is convex in this interval. As the budget increases, more and more training is given, and player 2 reduces
effort, but the marginal effect is smaller the more his ability interval is shifted upwards. Then the fact that effort becomes
less and less expensive makes the payoff function slope up steeply, leading to a larger expected payoff than without
training. In the interval 5

3H − L < B ≤ 3H − L − 4
3D, the ability intervals of both players are identical, and the ex ante

expected payoff of both players is the same. It increases linearly in the budget since every extra dollar is given to the prize.
When the budget is large, the principal decides to train both players symmetrically, so that only a fraction of the budget
increase is given to the contest prize; hence the slope of the expected payoff function is reduced. It can be shown that the
basis expected payoff of player 2 (Eπ0

2) is larger than the symmetric payoff with training for a sufficiently large budget.14

F I GURE 4 Equilibrium efforts as a function of budget
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4 | ACCOUNTING FOR THE PROBLEM OF ERRONEOUS SELECTION

In settings like the one we study here, it is not clear that the winner of the contest is the ex‐post more efficient one: the
ex‐ante leader may draw a high skill but still end up losing because of the laggard's higher efforts. This ex‐post selection
problem—the problem of erroneous selection—is particularly important in settings such as promotion contests and
competitions for research grants, where the winner goes on to perform tasks whose qualities may depend on the
winner's skills. In this section, we therefore amend the principal's decision problem to incorporate a concern for
erroneous selection. We do this by first studying a principal whose sole aim is to minimize the problem of erroneous
selection and then use this analysis to study the general problem of a principal with an interest in both high total
expected efforts and low expected costs of erroneous selection.

It is not possible for player 1 to win when player 2 is more able, thus we have no instance of a type‐2 error. Player 1
wins when a1 > H

La2 and is more able in all such cases. We can calculate the probability of the principal making a type‐1
error ex‐post, that is, the probability that contestant 2 wins when contestant 1 has the higher ex‐post ability:

ρ� ¼ ∫
H

L

L −
a1L
H

D

0

B
@

1

C
A

1
D
da1 þ ∫

L

h

a1 −
a1L
H

D

0

B
@

1

C
A

1
D
da1 ð15Þ

¼
H − L
2D2 L −

H − Dð Þ
2

H

" #

: ð16Þ

Note that the size of the prize v does not affect ρ*. Moreover, asymmetry (i.e., H > L) always leads to a positive prob-
ability of the contest selecting the player with the lower ability.15 The calculation of ρ* is demonstrated in Figure 6.

Player 1 wins the contest when abilities are in the areas marked byA in the figure. In all these cases, we have thata1 >a2,
so that the more able is selected as winner. This is also the case for area C, where player 2 wins and is more able. The areas
marked by b and b0 indicate combinations in which player 2 wins but is less able. The first element in Equation (15)
represents area b, while the second one is b0. When player 2 receives training, L increases and the line HLa2 moves closer to
the 45‐degree line. This in itself reduces the areas b and b0. However, the square of feasible ability combinations shifts
rightward in Figure 6, removing some low‐ability player‐2 types (who mostly lose to better player‐1 types) and introducing
some higher ability player‐2 types who can beat better opponents. Hence, the overall effect of training the laggard on the
probability of erroneous selection is generally nonmonotonic. In fact, we can state the following result.

Proposition 3 (i) If H is high and L is low, in particular, if H > 1þ 1ffiffi
2
p

� �
D, and L ∈ max H − D;Df g; H2 þ

H−Dð Þ
2

2H

� �
,

then ∂ρ�
∂L > 0; otherwise, that is, if H ∈ 4

3D; 1þ 1ffiffi
2
p

� �
D

� �
and/or L ∈ H

2 þ
H−Dð Þ

2

2H ;H
� �

, then ∂ρ�
∂L < 0.

(ii) There exists an bH such that ∂ρ�
∂H > 0 for H ∈ L; bH

� �
and ∂ρ�

∂H < 0 for H ∈ bH ;Lþ D
� �

.

F I GURE 5 Ex ante expected payoffs in equilibrium
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We see from part (i) of Proposition 3 that, when H is sufficiently large, training player 2 by increasing L can actually
increase the probability of erroneous selection for low enough levels of L. In this range, training player 2 does not
contribute to the contest picking the high‐ability player. For higher values of L, on the other hand, training reduces the
probability of picking the wrong winner. We also see that, for low values of H, training player 2 reduces the probability
of picking the low‐ability player as winner.

From part (ii), we see that training the ex‐ante leader by increasing H will increase the probability of erro-
neous selection in most cases. The exception is when H is large, in which case further increases will lead to this
probability falling, since the superior player 1 will win in most cases. The exact expression for bH is given in the proof of
Proposition 3 in the Appendix.

Although we could think of minimizing ρ* as a way to deal with the selection problem, it is even better to let the
principal put more weight on the type‐1 error the bigger the difference between the contestants' ex‐post abilities is – we
can think of this as minimizing the expected cost of erroneous selection,

Γ� ¼
1
D2 ∫

H

L
∫
L

a1L
H
a1 − a2ð Þda2da1 þ ∫

L

h
∫
a1

a1L
H
a1 − a2ð Þda2da1

� �

ð17Þ

¼
H − Lð Þ

2

6D2 L −
H − Dð Þ

3

H2

" #

: ð18Þ

Consider ability a0
1 in Figure 6. This ability type of player 1 loses to inferior player 2 types in the interval a2 ∈ ½LHa

0
1;L�,

on the line segment αβ. The cost of losing to each opponent in this interval is a1 − a2 > 0. Summing the expected cost

over the interval gives
1
D

∫
L

a1L
H

a1 − a2ð Þda2 as the expected cost of erroneous selection associated with player 1 type a0
1.

F I GURE 6 Probability of erroneous selection
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Summing over all player 1 types between H and L gives the expected cost of wrong selection associated with area b in
Figure 6. This is the first part of the bracketed expression in Equation (17). The second element in this equation sums
up the costs associated with erroneous selection in area b0.

A principal solely concerned with the ex‐post selection problem will seek to minimize Γ*. Note again that the prize v
plays no role in this problem. The expected cost of erroneous selection is 0 at L = H; while Γ* > 0 for H > L, since the

square bracket in Equation (18) is positive for L > H−Dð Þ
3

H2 , which holds.16 Contrary to the probability of erroneous se-
lection, the expected cost Γ* is strictly monotonic in L and H, as shown in the following Lemma.

Lemma 1 For L < H, (i) ∂Γ�
∂L < 0; (ii) ∂Γ�

∂H > 0. When L = H, ∂Γ�
∂L ¼

∂Γ�
∂H ¼ 0.

Given Lemma 1, we have the following:

Proposition 4 A principal who is solely concerned with minimizing the expected cost of erroneous selection will split
the budget as follows:

(i) If 0 < B ≤ H − L, then v equals a small amount, while the rest of the budget is spent on training to get as
close as possible to symmetry.

(ii) If B > H − L, then s1 = 0, s2 = H − L, so that symmetry is obtained, and v = B − H þ L ≥ 0.

Since the amount of the prize does not affect the cost of erroneous selection, it is only needed in order to actually
induce efforts in the contest. In part (i) of Proposition 4, the budget is not sufficient to achieve full symmetry between
the players and hence a cost of wrong selection of zero; in this case, a small prize is given to ensure that efforts are
positive so that the contest can work as a selection mechanism. The rest of the budget is used to get as close to symmetry
as possible. Only when the budget is large enough to achieve full symmetry (Proposition 4, part [ii]) does the budget
affect the size of the contest prize. In this case, the principal trains the laggard to full symmetry, and uses the residual
budget as a prize.17

Consider next a principal who balances her concern for total expected efforts and that of the expected costs of
erroneous selection. In particular, let her objective function be

Ω� kð Þ ¼ kX� − 1 − kð ÞΓ�

¼ k
L 3H − 2Dð Þ H þ Lð Þ

6H2 v − 1 − kð Þ
H − Lð Þ

2 H2L − H − Dð Þ
3� �

6H2D2 ;

where k ∈ 0; 1½ � is the weight put on total expected efforts. The cases of Ω� 1ð Þ and Ω� 0ð Þ are discussed above, with
results presented in Propositions 2 and 4, respectively. There is a clear trade‐off that balances the two parts of the
objective function, since giving more prize increases contest effort, but leaves less for training, so that the cost of
erroneous selection increases. Note from Proposition 2 that, when the budget is exactly B¼ 5

3H − L, the principal
optimally trains the laggard until the contestants are expectedly of equal skill, and hence there will be no selection cost.
This means that, for B¼ 5

3H − L, the principal sets s2 ¼H − L; v¼ B − s2 ¼ 2
3H, and this is independent of k. For

budgets below this, the weight k will affect the division between the contest prize and the training given. Again, it is
optimal to only train the laggard (s1 = 0, s2 ≥ 0), and we can show the following result:

Proposition 5 Let k ∈ 0; 1½ � be the weight the principal puts on total expected efforts. Let, for each k,
T kð Þ ¼ t kð Þ; 5

3H − L
� �

denote a range of the nonnegative real line such that, if the principal's budget B ∈ T kð Þ, then
the principal's decision to train the laggard is an interior solution s2 kð Þ ∈ 0;H − Lð Þ, so that the laggard receives
some training, but not enough to capture the skill level of the leader. Then, in equilibrium, ds2dk < 0, and dt

dk ≥ 0, with
dt
dk > 0 whenever t kð Þ > 0.

As shown in Proposition 2, the optimal budget division to maximize expected effort involves some training and some
contest prize, except for very low budgets. Since the expected cost of erroneous selection is independent of the contest
prize, lowering k from 1 gives the principal an extra incentive to train the laggard, and this incentives becomes stronger
as k falls. Hence, the budget at which training starts (t kð Þ) is lower, the lower is k except possibly for cases where
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t kð Þ ¼ 0. Furthermore, the amount of training given when the solution is interior will be increased, the more weight is
given to preventing erroneous selection. Proposition 5 is illustrated in Figure 7.18

In Figure 7, S(B, k = 1) is the total amount spent on training when k = 1, and this is increasing in the budget for
B ∈ t 1ð Þ; 5

3H − L
� �

and constant at S = H − L for B ∈ ½53H − L; 3H − L − 4
3D�; in both cases, only player 2 receives

training. Increases in the budget above 3H − L − 4
3D are divided between training both contestants and adding to the

prize, according to Proposition 2, so that S B; k¼ 1ð Þ ¼ s1 þ s2. Decreasing the weight k to expected effort in the
objective function increases training of the laggard for all interior solutions, and training starts at lower budgets. After
the budget reaches 5

3H − L, there is no problem of erroneous selection, since the laggard has been trained sufficiently to
have the same expected ability as the opponent, and the principal uses any budget increases to increase expected effort.

5 | CONCLUSION

A contest is an often‐used mechanism for eliciting effort. When contestants differ in ability or cost of effort, the
incentive to provide effort is dampened, and many suggestions have been made as to how an effort‐maximizing
principal may level the playing field. Remedies such as giving a head start or handicap, or a bias in favor of one
player, or requiring threshold levels of effort to obtain a prize are usually costless to the principal. In many real world
situations, however, the principal implements a policy to redress the imbalance that has to be paid for from an existing
and fixed budget. A sales manager can invest in training her employees for example, leaving a lower bonus to be granted
to the “seller of the month.” In human resource management more generally, weight has recently been attached to
“total rewards” so that funds spent on an employer are spread over salary, bonuses and expenses to skill enhancement
for instance.

We have considered the incentives of a principal to invest in skill‐enhancing training that directly reduces the
contest prize. Using a model with private information in which the ability distributions of the players overlap, we have
shown how an effort‐maximizing principal can divide her funds to increase effort through efficiency gains, even when
this reduces the contest prize. The potential for realizing efficiency gains depends upon the size of the budget. If it is too
small, then no training will be given at all, and all funds are channeled to the prize. Avoiding choosing the ex‐post
inferior player as winner gives the principal an extra incentive to train the ex‐ante laggard; however, even small
budgets may yield training if the cost of erroneous selection is given sufficient weight in the objective function of the
principal.

Our analysis gives insight into the effect on the players' expected payoff when the principal divides her budget
between the contest prize and skill‐enhancement. Several effects are at work. An incremental budget unit can be used to
enhance the contest prize, increasing the players' payoffs proportionately. However, using some of the increment to
train the expected laggard makes the players more similar and this draws their efforts closer together; the leader in-
creases effort whilst the laggard uses the efficiency gain to slack off. This increases the probability that the ex‐ante leader
wins the contest prize, but the fact that the contest prize is increased only in part, and the cost of exerting extra effort,
make his payoff fall. The lower cost of effort and a lower effort level mean that the laggard has a lower probability of
succeeding, but the overall effect is positive. However, it is not certain that the laggard gains a larger expected payoff

F I GURE 7 Optimal training for different k
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than he would have achieved without training; this is due to the fact that training is used to increase effort, without
taking account of the players' payoffs.

Two dimensions of asymmetry drive our results; the players draw ability from different intervals, and the realization
is private information. In order to draw out clear conclusions we have made everything else equal, including the effect
and cost of training the different players. It may well be the case, however, that it is more effective to train one of the
players in the contest task; the expected leader may take training easier, and hence cost less to train, or it might be
relatively cheap to help the expected laggard reach a higher skill level as he starts out low. Introducing these modi-
fications introduces a third dimension of asymmetry and—whilst realistic—does not give clear cut results. A different
base model is probably needed in order to look at these issues; one could for example dispense with the assumption of
incomplete information, and look at the interplay between the known ability difference and relative training cost. We
leave these issues as directions for further research.
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ENDNOTES
1 See Baik (1994) for an early theoretical study. Empirical studies on the discouragement effect of asymmetries are done by Sunde (2009) on

tennis tournaments and Brown (2011) and Franke (2012) on golf tournaments. See also surveys by Chowdury et al. (2020), Konrad (2009),
and Mealem and Nitzan (2016).

2 See, for example, the survey by Chowdury et al. (2020).
3 Sales‐force productivity may also be affected by other costly activities undertaken by the firm that do not directly involve training. These

include less administrative duties, and better access to back‐room resources (see Farrell & Hakstian, 2001).
4 One branch of the literature in personnel economics focuses on cases where contestants have direct benefits from their skill levels; in the

case of workers, this occurs typically because higher skills make them more attractive on the future job market, in addition to helping
them to secure high compensation in the present job. See, for example, Lazear and Oyer (2012, Section 5). Here, we disregard such direct
benefits from skills, instead focusing on the principal's need for balancing spending on training and compensation.

5 Also other instruments have been suggested to increase efforts in asymmetric contests: Che and Gale (1998) discuss putting limits on
contestants' efforts; Mealem and Nitzan (2016) discuss affecting the contestants' contest success functions and win valuations; Sisak (2009)
discusses changing the prize structure; Clark and Nilssen (2020, 2021) discuss how to split the prize fund between early and late prizes in
order to counter the effect of ex‐ante differences among contestants. See more on this in the survey by Chowdhury et al. (2020).

6 Other research also reports that a total leveling of the playing field would not be optimal in games among heterogeneous contestants. For
example, Ryvkin (2013) discusses how the shapes of the players' effort cost functions may make it optimal to leave some heterogeneity;
while Pastine and Pastine (2012) find that rectifying biases may result in a higher performance gap in a political‐campaign game.

7 Also here, see Chowdhury et al. (2020) for a more detailed discussion.
8 In the following expressions, we have substituted h = H − D and l = L − D.
9 The equilibrium is still valid if the ability interval of player 2 lies above that of 1; the player subscripts would need to be swapped in this

case, since 2 is the expectedly stronger player.
10 The support moves upwards so that L0 − l0 = D.
11 H0 0 − h0 0 = D.
12 Figure 4 is generic, but H = 2, D = 1, and L = 1.25 are used as parameter values here.
13 Here, X�0 ¼

L 3H−2Dð Þ HþLð Þ

6H2 B, as in the first line of the expression for X*.
14 In fact, when the budget is large, each contestant's expected payoff with symmetric training converges to D

3, whilst the basis payoff always
increases proportionately with prize growth.

15 This is true because the square‐bracketed term in Equations (16) is always nonnegative, since L > h¼H − D > H−Dð Þ
2

H .
16 L > H − D > H−Dð Þ

3

H2 .

14 - CLARK AND NILSSEN

https://orcid.org/0000-0002-7355-4595
https://orcid.org/0000-0002-7355-4595
https://orcid.org/0000-0003-2632-3855
https://orcid.org/0000-0003-2632-3855
https://orcid.org/0000-0002-7355-4595
https://orcid.org/0000-0003-2632-3855


17 This assumes that the principal does not have any other use of the budget. If the aim is to minimize the cost of erroneous selection at
lowest possible cost, the principal can train the laggard to the point that L = H, and then give a very small prize to induce positive effort as
in part (i) of Proposition 4.

18 Again, this figure is generic but is drawn for parameter values H = 2, L = 1.25, D = 1.
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A APPENDIX

A.1 | Proof of Proposition 1

Some properties of the equilibrium outlay functions x�1 a1ð Þ and x�2 a2ð Þ are standard (see Clark & Riis, 2001). Among
these are that the effort functions have a common upper support: x�1 Hð Þ ¼ x�2 Lð Þ ¼ �x. For player 1, x�1 hð Þ ¼ 0 and
x�1 a1ð Þ > 0 for a1 > h. For player 2, x�2 a2ð Þ ¼ 0 for a2 ∈ l; a∼2½ �, implying an equilibrium effort of zero for these types.

The first‐order conditions for maximizing Equations (1) and (2) are:

g02 x1ð Þ

D
v −

1
a1
¼ 0;

g01 x2ð Þ

D
v −

1
a2
¼ 0;

where g0i :ð Þ denotes the first derivative. Substituting ai ¼ gi xið Þ into the first‐order conditions gives a system of two
differential equations:

g02 xð Þ g1 xð Þ ¼
D
v

; ðA1Þ

g01 xð Þ g2 xð Þ ¼
D
v
: ðA2Þ

Summing Equations (A1) and (A2) yields

g02 xð Þ g1 xð Þ þ g
0
1 xð Þ g2 xð Þ ¼

2D
v
;

with general solution

g1 xð Þ g2 xð Þ ¼
2D
v
x þ K: ðA3Þ

The constant of integration, K, is determined by setting g1 �xð Þ ¼H, g2 �xð Þ ¼ L into Equation (A3):

HL ¼
2D
v

�x þ K⇒

K ¼HL −
2D
v

�x;

so that Equation (A3) becomes
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g1 xð Þ g2 xð Þ ¼
vHL − 2 �x − xð ÞD

v
: ðA4Þ

This can then be used to substitute for g2 xð Þ in the first‐order condition in Equation (A1):

g01 xð Þ −
D

vHL − 2 �x − xð ÞD
g1 xð Þ ¼ 0: ðA5Þ

Equation (A5) has a unique solution up to a constant of integration C:

g1 xð Þ ¼
1
ffiffiffi
2
p C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vHL − 2 �x − xð ÞD

D

r

: ðA6Þ

We use g1 0ð Þ ¼ h to recover the constant:

g1 0ð Þ ¼ h¼
1
ffiffiffi
2
p C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vHL − 2�xD

D

r

⇒

C ¼
ffiffiffi
2
p
h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vHL − 2�xD

D

r :

Thus, Equation (A6) can be written

g1 xð Þ ¼ h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vHL − 2 �x − xð ÞD
vHL − 2�xD

r

: ðA7Þ

We can use g1 �xð Þ ¼H in Equation (A7) to find �x:

g1 �xð Þ ¼ h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vHL

vHL − 2�xD

r

⇒

�x ¼
L H2 − h2� �

2DH
v;

so that we can state Equation (A7) as

g1 xð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

vLh2 þ 2DHx
vL

s

; ðA8Þ

and g2 xð Þ can be recovered from Equation (A4) as

g2 xð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

vLh2 þ 2DHx
� �

Lv
q

vH
: ðA9Þ

Using gi xð Þ ¼ ai and inverting Equations (A8) and (A9) give Equations (3) and (4) in the Proposition.

A.2 | Proof of Proposition 2

Suppose the principal considers the maximization of effort in two stages. At the first stage, she sets the contest prize
v ∈ 0;B½ � and then, at the second stage, divides up the rest of the budget B − v. Working backwards, we first look at the
problem of the principal when there is S = B − v of the budget available for training, so that S = s1 + s2.
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We initially make the assumption that

H − L ≥ S; ðA10Þ

so that, even if the whole training budget goes to the laggard, he is at best ex‐ante symmetric to the original leader.
Substituting s2 = S − s1 into Equation (7) gives the following maximization problem for the principal:

max
s1∈ 0;S½ �

Lþ S − s1ð Þ 3H þ 3s1 − 2Dð Þ H þ Lþ Sð Þ

6 H þ s1ð Þ
2 v;

where, for now, v is treated as a constant. The maximand is decreasing in s1 under our assumption that HD >
4
3. It follows

that, in optimum, no training will be given to 1, and the whole training budget will be given to 2: s1 = 0, and s2 = S.
Inserting for v = B − S, this means that total expected effort is

Lþ Sð Þ H þ Lþ Sð Þ 3H − 2Dð Þ

6H2 v¼
3H − 2D

6H2 Lþ Sð Þ H þ Lþ Sð Þ B − Sð Þ

So the principal's maximization problem is now

max
S∈ 0;B½ �

3H − 2D
6H2 Lþ Sð Þ H þ Lþ Sð Þ B − Sð Þ:

The solution can be found as Equation (13), which is positive for B > L HþLð Þ

Hþ 2L .
When B ≤ L HþLð Þ

Hþ 2L , total effort is falling in S, making it optimal to devote the whole budget to the prize as in part (i),
that is, v = B. Furthermore, Equation (13) satisfies our condition in Equation (A10) only if the second inequality in
Equation (12) holds: B ≤ 5

3H − L. Otherwise, it is optimal to make the players identical through training and thereafter
continue training the identical players in order to solve the following problem.

We now have H = L, and H − L of the budget already being spent on player 2. So the maximization problem would
be, from Equation (8),

max
Z∈ 0;B−HþL

2½ �
H þ Z −

2
3
D

� �

B −H þ L − 2Zð Þ;

where Z is the amount spent on training each of the two contestants after they have been equalized. The optimal
additional amount of training can be determined as Z� ¼ 1

12 3B − 9H þ 3Lþ 4Dð Þ, which is positive for
B > 3H − L − 4

3D. Inserting Z* into the expression for total training, S = H − L + 2Z*, we get Equation (14) in part (iv).
When B ≤ 3H − L − 4

3D, the principal will not train the players once symmetry is reached, since Z* ≤ 0; hence, in
part (iii), S = H − L, and the prize is B − H + L.

A.3 | Proof of Proposition 3

(i) Calculation shows that ∂ρ�
∂L > 0 for H2 þ H−Dð Þ

2

2H > L. Recalling that L >max H − D;Df g, we have to check whether the
interval

L ∈ max H − D;Df g;
H2 þ H − Dð Þ

2

2H

 !

is well defined, that is, whether H2 þ H−Dð Þ
2

2H >max H − D;Df g.
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(a) Assume first that H − D > D, that is, H > 2D. Then H2 þ H−Dð Þ
2

2H − H − Dð Þ ¼ 1
2
D2

H > 0, and the interval is well defined
in this case.

(b) Assume next that D > H − D, that is, 2D > H. Then H2 þ H−Dð Þ
2

2H − D¼ 1
2

− 4HDþD2 þ 2H2

H > 0 for H > 1þ 1ffiffi
2
p

� �
D.

Combining (a) and (b) gives the result in part (i). If H > 1þ 1ffiffi
2
p

� �
D, then we have ∂ρ�

∂L > 0 for

L ∈ max H − D;Df g;
H2 þ H−Dð Þ

2

2H

� �
. If 4D

3 < H < 1 þ 1ffiffi
2
p

� �
D, or L > H2 þ H−Dð Þ

2

2H , then we have ∂ρ�
∂L < 0.

(ii) Calculation gives ∂ρ�
∂H ¼

1
2

2H2 LþD−Hð Þ−LD2

H2D2 , which is positive when evaluated at H = L, and negative at H = L + D.

Furthermore, ∂2ρ�
∂H2 ¼ − H3− LD2

H3D2 < 0, and the only real root of 2H2 Lþ D −Hð Þ − LD2 ¼ 0 can be calculated as

bH ¼ 3 3σ þ Lþ Dð Þ½ � þ
Lþ Dð Þ

2

σ
; where

σ ¼
1
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6
ffiffiffi
3
p
D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L 8 L3 − D3� �
− 3DL 8L − Dð Þ

� �q

þ Lþ 4Dð Þ 2L − Dð Þ
23

r

:

A.4 | Proof of Lemma 1

(i) Calculation gives ∂Γ�
∂L < 0 for L > 3H3− 2D3− 6HD H−Dð Þ

3H2 , and this is least likely to hold for low values of L. Recall that the
lowest L is max H − D;Df g. We prove our claim in two steps.

Step 1. Assume first that H − D > D, that is, that H > 2D. We need to check that H − D > 3H3− 2D3− 6HD H−Dð Þ

3H2 , which

implies that 3H2 − 6HD + 2D2 > 0. Given that H > 4D
3 , 3H2 − 6HD + 2D2 > 0 is satisfied for H > 1ffiffi

3
p þ 1
� �

D, which must

be true, since H > 2D > 1ffiffi
3
p þ 1
� �

D.

Step 2. Assume next that D > H − D, that is, that 2 > H
D >4

3
� �

. We must show that

D >
3H3 − 2D3 − 6HD H − Dð Þ

3H2 ;

which can be shown to hold for ζ ≔ −3H3 þ 3HD 3H − 2Dð Þ þ 2D3 > 0. It can be determined that ζ = 0 has one real
positive solution given by

H
∼
¼ D 1þ

1
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3
ffiffiffi
6
p
þ 9

3
q

þ
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
ffiffiffi
6
p
þ 93

p

 !

≈ 2:24D;

and that ζ > 0 if and only if H < H
∼

, which always holds under our assumption in Step 2 that HD < 2.
It follows from Steps 1 and 2 that Γ* is monotonically decreasing in L for all L ∈ max H − D;Df g;Hð �.

(ii) Calculation shows that ∂Γ�
∂H > 0 for L > 3H2 H−Dð Þ

2

3H3−3HD2 þ 2D3, which is least likely to hold for low values of L. Note that, if

L = H − D > D, then ∂Γ�
∂H > 0 if H − D > 3H2 H−Dð Þ

2

3H3−3HD2 þ 2D3; this holds for 3H H − Dð Þ þ 2D2 > 0, which is always true.
If L = D > H − D, then ∂Γ�

∂H > 0 requires

D >
3H2 H − Dð Þ

2

3H3 − 3HD2 þ 2D3 ¼
3H2 H − Dð Þ

2

3H H − Dð Þ H þ Dð Þ þ 2D3:

This implies 3HD H − Dð Þ H þ Dð Þ þ 2D4 > 3H2 H − Dð Þ
2, which can be rearranged to give

3H H − Dð Þ D H þ Dð Þ −H H − Dð Þ½ � þ 2D4 > 0:
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The term in square brackets is positive, since H + D > H, and D > H − D for this case, and thus the inequality holds.
Hence ∂Γ�

∂H > 0 always.

A.5 | Proof of Proposition 5

Letting S denote training given to the laggard, the principal chooses S to maximize

Ω� kð Þ ¼ k
Lþ Sð Þ 3H − 2Dð Þ H þ Lþ Sð Þ

6H2 B − Sð Þ

− 1 − kð Þ
H − L − Sð Þ

2 H2 Lþ Sð Þ − H − Dð Þ
3� �

6H2D2

¼ kX� S;B;H;L;Dð Þ − 1 − kð ÞΓ� S;H;L;Dð Þ:

The first‐order condition for an interior maximum is

k
∂X�

∂S
− 1 − kð Þ

∂Γ�

∂S
¼ 0; ðA11Þ

with second‐order condition

∂2Ω�

∂S2 < 0: ðA12Þ

Total differentiation in Equation (A11) with respect to S and k gives

∂X�

∂S
þ

∂Γ�

∂S

� �

dkþ
∂2Ω�

∂S2 ds¼ 0;

which, using Equation (A11), can be written as

dS
dk
¼

− ∂Γ�
∂S

k ∂2Ω�
∂S2

< 0;

where the sign of the numerator is positive from Lemma 1, since sign ∂Γ�
∂S

� �
¼ sign ∂Γ�

∂L

� �
, and the denominator is negative

from Equation (A12).
To see that dt

dk > 0 when t kð Þ > 0, consider how S responds to a change in the budget in the range S ∈ 0;H − Lð Þ.
From Equation (A11), we have

dS
dB
¼ −

k ∂X�
∂B∂S

∂2Ω�
∂S2

> 0; ðA13Þ

since ∂X�
∂B∂S¼

3H− 2Dð Þ Hþ2Lþ2Sð Þ

6H2 > 0 and Equation (A12) holds. Now, fix a B¼ t kð Þ such that S t kð Þ; kð Þ ¼ 0. Compare this
with some k0 < k, which, since dS

dk < 0, implies S t kð Þ; k0ð Þ > S t kð Þ; kð Þ ¼ 0. Since S is increasing in B, by Equation (A13), it
follows that S t k0ð Þ; k0ð Þ ¼ 0 for t k0ð Þ < t kð Þ, and hence dt

dk > 0.
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